
Tracing Windows95

Min Zhou and Alan Jay Smith

Report No. UCB/CSD-99-1037

January 1999

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Tracing Windows95 �

Min Zhou and Alan Jay Smith y

January 1999

Abstract

Most published research on system behavior and
workload characterization has been based on ei-
ther Unix systems or large, usually IBM or IBM-
compatible, mainframe systems. It is reasonable to
believe that user behavior and workloads are di�er-
ent for PC systems. Further, the aspects of system
design most needing study have changed from the
mainframes dominant in the 1960s and 1970s, and
the Unix systems that became so popular in the
1980s to the PCs that seem to be rapidly taking over
many or most aspects of computing. Windows95 is
currently the most widely used computer operating
system, and is very similar to the newly released
Windows98. In this paper, we describe our tracer,
which runs on Intel Pentium based PCs running
the Microsoft Windows95 operating system. Fol-
lowing the discussion of our tracing methodology,
Windows95 operating system, and a tracing tool we
developed for Windows95, we give some descriptive
and statistical results based on the traces collected
from 29 PC users.

1 Introduction

System tracing is widely used for obtaining re-
alistic workloads for computer system analysis and
performance tuning. It is a standard technique
in computer architecture and operating system re-
search. The traces are often used to characterize
the behavior of the system as well as the workload
represented by the traces, and can be further used
in benchmark development. The traces can also be
applied to trace driven simulation to evaluate var-
ious algorithms and design-prototypes. Obtaining
a set of valid and suitable traces is often the most

�The authors' research has been supported in part by the
State of California under the MICRO program, and by Mi-
crosoft, Fujitsu Microelectronics, Cirrus, Toshiba, Quantum,
Sun Microsystems, and Intel Corporation.

yComputer Science Division, EECS Department, Univer-
sity of California, Berkeley, CA 94720-1776

di�cult and important part of trace based analy-
sis. [Smit81]

Multi-user time-sharing computer systems such
as UNIX systems and mainframe computer sys-
tems have been extensively studied. Much compre-
hensive system tracing and related work has been
done on these systems. [Smit81] [Bake91] [Oust85]
[Cost85] [Hans85] Far less system tracing and anal-
ysis have been done for personal computers, which
have already become the most widely used type
of computer. We have/had in mind a number of
research studies directed towards the PC environ-
ment, and accordingly, our �rst step has been to
write and run a tracer for such systems. Since the
most dominant PC operating system and architec-
ture are Microsoft Windows95 and the Intel x86
based Architecture (IA) respectively, we chose In-
tel based PCs running Windows95 as our tracing
target systems. We will call Intel based PCs run-
ning the Microsoft Windows95 operating system as
"PC systems" in the rest of this paper. We note
that the newly released Windows98 is very similar
to Windows95, and we believe that user behavior
and workload characteristics for Windows98 should
also be very similar to those for Windows95.

We believe that traces taken from PC systems
will di�er from those taken from multi-user time-
sharing systems in a number of ways:

First, the workload on a PC system with a sin-
gle active interactive user is likely to be di�erent
from the other systems, both because there is only
one user, and because the applications are likely to
be di�erent. The interleaved activity of a number of
users will di�er from the individual streams of activ-
ity. Even in the case of a single-user Unix worksta-
tion, it is common to have multiple processes active
at a given time. Further, we believe that PC users
are likely to run much shorter and less computa-
tionally intensive jobs. The PCs are more likely to
be used by the users for their private work. This is
very much the case for those home PC users.

Second, time-sharing UNIX operating systems
and Windows95 operate di�erently. Unlike UNIX,

1

Windows95 was designed to be backward compati-
ble with old software applications including old MS-
DOS applications and 16-bit Windows applications.
For instance, Windows95 uses an improved version
of the MSDOS-FAT format �le system, and Win-
dows95 also supports several di�erent memorymod-
els. Windows95 is not a true preemptive operating
system nor is it a secure operating system, and it
is not as stable as larger time-sharing systems as
well. [Schu95] [Oney96] [Petz96] [Nort97] We will
further discuss Windows95 and its �le system, vir-
tual machine, memory system and process schedul-
ing in the next major section.

Third, time-sharing systems and PC system do
not always share the same type of application soft-
ware. Large time-sharing system applications are
more likely to be scienti�c computation oriented or
enterprise server software. The most popular UNIX
workstation testing workload are the SPEC bench-
mark suite [Spec98] and TPC database benchmark
suite [TPC98]. PC software applications are more
likely to be graphic user interface (GUI) oriented,
personal information processing intended, and more
interactive with the users. MS-Word and Lotus-123
are such examples.

Finally, hardware and software developers of
workstation and mainframe computers often em-
phasize such issues as performance, capacity and
reliability. In comparison, PC developers are more
concerned with cost, convenience, power consump-
tion, etc.

For this project, we have designed and devel-
oped a Windows95 PC system tracer, WMonitor,
which collects traces of user and �le system activ-
ity. In this part of the project, our objective has
also been to characterize the PC workload. Our
tracing guideline is to achieve a reasonable compro-
mise among the requirements of comprehensiveness,
exibility, minimumuser interference and simplicity
of analysis.

The selection of users traced will have a signif-
icant impact on the characteristics of the workload
collected. In this paper, we report on traces col-
lected from 29 real users, including engineers, sci-
entists, managers, home users and school students,
using a variety of system con�gurations. Since we
are interested in PC workload characteristics, which
include those of users and �le systems, our trace
events include user inputs, application switches, and
�le system calls.

The rest of this paper is organized as follows:
Section 2 discusses and compares some previous
related research. Section 3 discusses our tracing

methodology, our tracer design implementation, as
well as the tracer installation and experiments. We
give information about the users and the systems
being traced in the same section. Section 4 dis-
cusses the description and the statistics of the traces
that we collected. The trace description is followed
by the discussion of the tracer overhead and limi-
tations. Finally, section 5 summarizes our tracing
and gives the directions of our future work. In the
appendices, we provide an overview of Windows95
and a more detailed discussion of the trace formats.

2 Related Work

In this section, we discuss some previous related
system tracing work. We concentrate on related
work by these others and others at Berkeley, but
cite some other work as well; this is a small fraction
of the dozens to hundreds of trace based system
studies. We also briey highlight the major di�er-
ences and similarities between those related tracers
and our Windows95 tracer.

2.1 Tracing UNIX Workstations and
Mainframe Computers

Da Costa [Cost85] presented a BSD 4.2 UNIX
�le system tracing package. See also [Zhou85].
Ousterhout et al [Oust85] [Bake91] traced the
Sprite distributed �le system via kernel instrumen-
tation. In most cases, UNIX tracers were imple-
mented via modifying the UNIX �le system kernel.
Zivkov et al. [Zivk96] used several sets of main-
frame computer traces to characterize disk refer-
encing patterns and study disk caching. Their DB2
disk reference traces were collected from IBM DB2
customer sites using DB2PM, an IBM DB2 per-
formance monitoring package, and GTF, an IBM
general tracing package. The IMS disk referencing
traces were generated from IMS online system log
�les. The GCOS traces were collected by instru-
menting the GCOS operating system.

The above projects were all primarily focused on
the �le systems of time-shared multi-user computer
systems. Similarly to our Windows95 �le system
tracing, these �le system tracing projects were also
done at the logical level, and �le system call func-
tion names and logical addresses were recorded with
time stamps. Most sets of traces were similar to our
traces, which cover the �le system activities over a
period of a few days to one week. Our tracing is dif-
ferent fromother tracing projects in that our targets

2

are single user PC systems, and our tracing does not
need to modify the kernel code of Windows95.

Hanson et al [Hans85] used a modi�ed UNIX
C Shell to trace the user inputs in the UNIX shell
command environment. She also combined UNIX
accounting information with the user input data
in her research on UNIX shell usage characteriza-
tion. The command line user interface has largely
been replaced by the graphical user interface in a
modern operating system environment, such as MS-
Windows, MacOS and OpenWin. Compared to
Hanson's UNIX shell usage tracing, our Windows
tracing also collects information on mouse inputs
and window switches in addition to the keyboard
inputs.

Ruemmler [Ruem93] used a kernel-level trace
facility built into HP-UX to trace physical disk I/Os
and described the direct disk access patterns. In
comparison, ourWindows95 tracing does not collect
information on computer system activities at the
physical level, such as the disk drive direct I/Os
studied in [Ruem93].

2.2 Tracing PC systems

Douglis et al [Doug94] traced the �le system
level disk activities of Apple Powerbook computers.
Lorch et al [Lorc97] traced and pro�led the sys-
tem resource usage on Power-PC systems with two
tracing tools: \StatePro�ler" and \PowerMeasure".
These are both MacOS speci�c.

Li et al [Li94] traced the �le system level disk ac-
tivities of DOS/Windows-3.1. Zhou et al [Zhou96]
also traced the user and disk activities of Windows-
3.1. These tracing tools used the DOS TSR (termi-
nate and Stay Resident) technique, which is rarely
used in Window95. In Windows95, TSR programs
can only run from a DOS prompt. The roles of
TSR programs have been replaced by virtual device
drivers. Lee et al [Lee98] traced and characterized
several Windows applications under Windows NT
on the x86 processor. They used a binary instru-
mentation engine, Etch, for the x86-Windows NT in
their trace collection. Instruction set level desktop
application performance was studied from the per-
spectives of computer architecture. These desktop
applications were contrasted to the programs in the
integer SPEC95 benchmark suite.

Intel Corporation [Inte97] developed a Win-
dows \PowerMonitor" to monitor the Windows sys-
tem device drive access and the processor activities.
The implementation of Intel's \PowerMonitor" has
taken advantage of the features of a performance

counter inside Intel's Pentium processors. Similar
to Intel's \PowerMonitor", Chen et al [Chen96] pre-
sented a Windows tool which studies the Pentium
processor's performance. These two Pentium PC
tools are primarily used to monitor the processor
activities. They only provide pro�ling information.

Microsoft also provides a system performance
monitor tool with Window95, \System Monitor",
or \SysMon" [Chon95]. It provides very rich per-
formance metrics on a variety of system resources:
�le system read/write, virtual memory page faults,
swap�le use, disk cache, processor usage, free mem-
ory, thread usage, etc. In comparison, our Win-
dows95 tracer only monitors the logical level �le
system calls and user input activities. However,
Windows95 \SysMon" has a major disadvantage,
like Intel \PowerMonitor", is it is a real-time mon-
itor with no data capture capability.

Other relevant PC pro�ling and tracing tools in-
clude Intel's VTune [Inte98], TracePoint Technol-
ogy's HiProf [Trac98], and Rational Software's Vi-
sual Quantify [Rati98]. The VTune tool collects,
analyses, and provides Intel Architecture-speci�c
software performance data from the system-wide
view down to a speci�c module, function, and in-
struction in the application codes. HiProf provides
detailed pro�ling information on applications built
with Microsoft's Visual Basic as well as Visual C++
to run on Windows. Visual Quantify is a perfor-
mance pro�ling tool for Windows application and
software component performance analysis.

3 Methodology

In order to obtain a valid set of traces which can
appropriately represent personal computer work-
load characteristics, three major tracing issues need
to be addressed: �rst, what information should be
monitored and recorded; second, how to trace Win-
dows95 and get all the information we need; third,
what types of users and machines should be traced.

3.1 Tracing Objects

In this subsection, we discuss what data we
collect and why. This tracing project was begun
with three end-uses in mind for the data. First,
we are studying power management in portable
computer systems (see e.g. [Lorc97]), and we
wanted to collect those activities reecting certain
aspects of power consumption: user activity and
and disk activity. Second, we are interested in ex-
tending some of our previous studies in disk caching

3

[Zivk96] [Smit85] to PC-type systems. Third, we
are also interested in characterizing the PC work-
load, which is the focus of the work described in
this paper. A separate paper, which concentrates
solely on workload analysis and characterization,
and which goes well beyond what is presented here,
is available as [Zhou99].

As we discussed earlier, we expect that the work-
load we observe on the PC will di�er from previ-
ously studied systems: the operations of personal
computer systems are more tightly coupled with
user activities (for instance, there are almost no
batch or background jobs in PC workloads); the PC
workload is more bursty and more GUI oriented;
and Windows95 usually does not behave in an opti-
mized way because it was designed to support both
32-bit Windows applications and old MS-DOS as
well as 16-bit Windows applications.

Our traces include two parts: user activity
traces and �le system traces. User activity traces
consist of user keyboard input traces, user mouse
input traces and active application software traces,
i.e. the traces of user-input-focused windows where
the user mouse inputs and keyboard inputs are ac-
cepted. Since the virtual memory swapping of Win-
dows95 is implemented on top of the �le system,
our �le system traces also include virtual memory
swapping information. Our �le system traces con-
tain logical �le system accesses; physical addresses
could be derived with �le maps.

In addition to satisfying the requirement of ob-
taining valid traces, our tracing should also min-
imize tracing overhead and any interference with
the user, and the trace data should be easy to use
in analysis. We recognize that these requirements
conict with each other. In our tracing design and
implementation, we believe that a reasonable com-
promise has been achieved.

3.2 Tracing Windows95

In this section, we describe how we use Win-
dows95 standard system services to obtain the user
activity traces and �le system traces. We will use
one �gure and several examples to illustrate the way
our tracer, WMonitor, works. In appendix I, we
provide a description of the Windows95 operating
system; a reader not familiar with the appropriate
Microsoft software may wish to read that section
�rst.

3.2.1 WMonitor, the Windows95 tracer

Our Windows95 system tracing relies on two
standard Windows OS features: our user activity
tracing relies on the Windows message hook proce-
dure support, and our �le system tracing relies on
Windows95's installable �le system support.

For user activity tracing, we rely on the fact that
windows inter-process communication heavily de-
pends on Windows message passing. User applica-
tion processes accept user inputs, such as mouse ac-
tions and keystrokes, in the form of Windows mes-
sages generated by the Windows OS. Windows hook
is a mechanism by which a function can intercept
user input messages or system event messages be-
fore they reach an application. The function can
act on events, modify, or discard them. Functions
that receive event messages are called �lter func-
tions and are classi�ed according to the type of
event message they intercept. For instance, a �l-
ter function might want to receive all keyboard or
mouse event messages. For Windows to call a �lter
function, the �lter function must be attached to a
Windows hook, such as a keyboard hook. Windows
provides the API of SetWinodwsHookEx and Un-

hookWindowsHookEx to the users to maintain and
access �lter functions. Attaching one or more �lter
functions to a hook is known as setting a hook. If
a hook has more than one �lter function attached,
a chain of �lter functions is maintained in the Win-
dows OS kernel. The most recently attached func-
tion is at the beginning of the chain.

Three Windows message hooks are used:
WM KEYBOARD, WM MOUSE, and WM CBT
(Computer Based Training), to monitor keyboard
inputs, mouse inputs, and switches of user-input-
focused window, respectively. Since WMonitor mes-
sage �lter functions will be mapped into the logi-
cal address spaces of other applications, to which
the messages are sent, the WMonitor message �l-
ter functions need to be implemented in a dynamic
linked library (DLL). Regular Windows EXE appli-
cations can be mapped into only one logical address
space.

For �le system tracing, we rely on the fact that
Windows95 allows third party software and hard-
ware vendors to write their own File System Drivers
(FSDs) for their products as part of Windows95's
�le system. These FSDs are in the format of Win-
dows virtual device drivers (VxDs). This �le system
support is also called Windows95's installable �le
system support. These installable �le system VxDs
can be dynamically loaded into the Windows95 ker-
nel. All �le system calls will be visible to the instal-

4

lable �le system VxDs. A �le system call will be
processed by an installable �le system VxD which
claims to process this call. Our �le system tracer is
written as such an installable �le system VxD. How-
ever, it does not claim any processing responsibility
except examining each �le system call.

Figure 1 shows the three major WMonitor mod-
ules and related system blocks. It also illustrates
the control ow of tracing events. These three parts
of WMonitor are:

� WM-VFS.vxd { a Windows95 installable �le
system virtual device driver which monitors
the �le system calls;

� MsgHK.dll - a dynamic linked library format
module which includes a mouse message hook
procedure, a keyboard hook procedure, and a
window switch message hook procedure;

� WMonitor.exe - a Windows95 32-bit applica-
tion which contains a tracer console module
(the WMonitor graphic user interface), a trac-
ing message processing module, a bu�er man-
agement and online analysis module, and a
WM-VFS user level call-back procedure.

Applications
User

WinEvnt Hook Entry

KeyBD Hook Entry
Mouse Hook Entry

... ...

... ...

Wm-vfs.vxd

..

.

CallBack Proc
FSVxD UserLevel

Trace Msg
Processing

Win95 Installable File System

PC Users

File System Calls

post msgs to msg queue

Windows Message Queue Message Hook Chain

WMonitor.exe
MsgHK.dll

Trc Analysis
Buffer Mgmt WM Console

& WM Init

KBHkProc

MsHkProc
WinHkProc

WIN95 Kernel

WIN95 User APP

Figure 1: Windows95 Tracing Tool WMonitor Module

and Related System Block Diagram

For the example of a mouse input: after a user
inputs a mouse click, Windows95 will generate a
mouse input message and put it into the Windows
mouse message queue. Before this message reaches
the current user-input-focused window, the WMon-
itor mouse message hook procedure has examined
this message. A mouse tracing message will be
generated from the original mouse message by the
WMonitor message hook procedure. The mouse
tracing message will be posted to the WMonitor

tracing message processing module where this trac-
ing message is processed. In the case of a �le sys-
tem call: after an application makes a �le system
call, and before the installable �le system manager
sends the call to a �le system driver which will pro-
cess it, WM-VFS.vxd will read this call and gen-
erate a user level procedure call back to WMoni-
tor.exe. This WMonitor user level procedure will
post a corresponding �le system tracing message to
the WMonitor tracing message processing module
where this tracing message is processed similarly to
the mouse tracing message. Every �le system call
due to WMonitor trace dumping, which is referred
to as a tracer �le system call in the rest of this paper,
is also recorded for the tracer overhead analysis.

It is very important that the tracer does not
a�ect the workload and regular user behavior.
WMonitor is so designed that it will be automati-
cally initiated upon the start of Windows95. There
is no need for the users being traced to operate the
tracer, since it runs in the background. WMoni-
tor's trace bu�er is less than 1 MB. As the reader
will see in Table 1, all the PCs being traced have at
least 16MB main memory and su�cient disk space.
Therefore, WMonitor's �le system calls have little
impact on the regular user activities.

WMonitor is written in C++ and x86 assembly
language. Microsoft Visual C++ 2.0 and Microsoft
Drive Development Toolkit (MS-DDK) for Win-
dows95 are our tracer development tools. We also
referred to Walter Oney's Windows95 VxD sample
code. [Oney96] WMonitor consists of 57K lines of
C++ and assembly language code. WMonitor was
developed at Intel Corp. when the author worked
there as a summer intern.

3.3 Machines and Users Studied

Di�erent PC users perform very di�erent jobs.
Laptop PC users may also behave di�erently from
Desktop PC users. It is very di�cult to de�ne who
are the \typical" PC users and what is the \typical"
PC workload. We've attempted to collect as large
a number of user traces as possible, over as wide
a range of user types and machine types, includ-
ing both laptop and desktop PCs. The users being
traced include engineers, managers, assistants, stu-
dents, home PC users, and some others. The work-
load being traced includes software development,
computer aided design, logical synthesis and sim-
ulation, document writing, Web browsing, remote-
dialup, PC game playing, etc.

Our Windows95 tracer was installed on a few

5

home PCs and a number of industry PCs in several
corporate sites including Intel Corp., Sony Corp.,
Toshiba Corp., and Fujitsu Corp. 29 sets of traces
are discussed here. Each set of traces was collected
from a separate PC machine/user over the period
of a few days to a few weeks. Since the portion of
the time that each machine was powered on varied a
great deal, our tracing time for each user also varies
a lot.

Table 1 lists the pro�le information of the ma-
chine and user being traced. We show both cal-
endar time and tracing time. The calendar time
for each user/machine is measured by the number
of hours between the date/time of the �rst record
and that of the last record. The tracing time for
each user/machine is measured by the number of
hours when the machine was both powered on and
the tracer enabled. \Ratio(Trc/Cal)" is the ratio of
tracing time to calendar time. \TrcEvent Count" in
the table illustrates the total number of trace events
for each user/machine being traced. We also give
the average numbers (arithmetic mean value of the
sample trace set of 29 traces) and standard devi-
ations for the calendar time, the tracing time, the
tracing time ratio, and the trace event count in the
same table.

4 Trace Description

In this section, we explain the trace �le for-
mat and the collected traces. First we describe the
traces; details of the trace formats are in Appendix
II. Second, we provide some overall trace statistics.
Third, we consider tracing overhead. In the end, we
discuss the limitations of our tracing work.

4.1 WMonitor trace �les

There are two types of trace �les: system ac-
tivity pro�le log �les and system activity trace
record data �les. WMonitor system pro�le log
�les are named as \WM001.log", \WM002.log",
..., \WM999.log". WMonitor trace record �les
are named as \WM001.dat", \WM002.dat", ...,
\WM999.dat". 001, 002, ..., 999 are the three-digit
trace sequence numbers. Each sequence number
corresponds to a contiguous period of time when
the traced PC is powered on and WMonitor is en-
abled. Both types of trace �les are ASCII format
text �les.

4.1.1 WMonitor system pro�le logs

System activity pro�le log �les record the fol-
lowing information: USER ID, StartDate, Start-
Time, StopDate, StopTime, TotalSectionTime,
and activity pro�ling information. The Start-
Date/StartTime and StopDate/StopTime are the
calendar date/time when WMonitor starts and
stops instrumenting the system activities, respec-
tively. TotalSectionTime is the total trace calendar
time in seconds between start time and stop time.
Pro�ling information records the number of tracing
events in each tracing interval; the default tracing
interval is 5 minutes. The interval can be set by
modifying the LOG INTERVAL record in WMoni-
tor initialization �le \WMonitor.ini". The pro�led
trace events include keyboard events, mouse events,
window switch events, �le system read events, �le
system write events, �le system open events, �le
system close events, �le system seek events, �le sys-
tem delete events, �le system directory call events,
�le attribute events, paging read events, paging
write events, other �le system call events, and to-
tal tracing events. The last activity pro�ling infor-
mation record is the total numbers for each type
of pro�led tracing events. The format of date
record is MM:DD:YY. The format of time record
is HH:MM:SS. All the numbers in the log �les are
decimal numbers.

The following �le is a WMonitor system pro�le
log example:

USER_ID: 380

StartDate: 08/07/97

StartTime: 17:37:41

Time Keybd Mouse WinEvnt FRead FWrite ... Total

17:42:41 409 251 23 7556 1056 ... 27699

17:47:41 89 33 8 422 73 ... 2005

17:52:41 131 0 0 0 0 ... 131

17:57:41 0 0 0 1 0 ... 2

18:02:41 238 6 0 0 0 ... 244

... ...

Total: 894 339 41 7983 1129 ... 30177

StopDate: 08/07/97

StopTime: 18:16:05

Total_Section_Time: 1704 seconds

If the users are only interested in the system ac-
tivity pro�ling information, and the details of each
tracing event can be neglected, the log �les are suf-
�cient enough to serve this purpose, and thus trace
record data �les can be disabled. By disabling trace
record data �les, the tracer overhead and trace disk
space usage are greatly reduced, and the system ac-
tivity statistics and pro�ling information can also
be obtained more directly and quickly. For example,
if tuning the standard workloads in system bench-
marking is the only tracing goal, the log �le should

6

Num-
ber

Brand Model Type Mem
-ory

Disk
(C:/D:/E:)

Calendar
-Time

Tracing
-Time

Ratio
(Trc/Cal)

TrcEvent
-Count

Comp
-any

User-Type

1 Toshiba Protégé-610 laptop 16M 687M 199.5 h 30.96 h 16% 1116999 Intel Engineer/Hdware.
2 Toshiba Protégé-610 laptop 16M 687M 1028.2 h 54.77 h 05% 1990876 Other HomeUser/Pilot
3 Digital HiNote-UltraII laptop 64M 1372M 344.2 h 116.47 h 34% 8122170 Fujitsu Director
4 Fujitsu Lifebk-v655tx laptop 48M 1293M 503.5 h 153.50 h 30% 4753461 Fujitsu Manager
5 Fujitsu Lifebk-v655tx laptop 48M 1293M 719.3 h 195.21 h 27% 4619375 Fujitsu Manager
6 Fujitsu Lifebk-v655tx laptop 48M 1293M 185.1 h 36.74 h 20% 654949 Fujitsu Manager
7 Fujitsu Lifebk-v655tx laptop 48M 1293M 201.5 h 46.16 h 23% 1129639 Fujitsu Engineer/IC
8 Fujitsu Lifebk-v655tx laptop 48M 1293M 215.5 h 60.97 h 28% 605928 Fujitsu Engineer/Docmnt.
9 Fujitsu Lifebk-v655tx laptop 48M 1293M 715.1 h 179.68 h 25% 4188428 Fujitsu Engineer/Cad
10 Toshiba Pentium-PC laptop 24M 500M 215.3 h 15.13 h 07% 165920 Toshiba Engineer/IC
11 Toshiba Satellite-110ct laptop 24M 775M 215.0 h 36.93 h 17% 613989 Toshiba Engineer/Docmnt.
12 PC Pentium-120 desktop 24M 500M/4G 128.5 h 21.22 h 17% 1216834 Intel HomeUser/Engnr
13 PC Pentium-90 desktop 32M 1.2G 86.3 h 19.63 h 23% 648849 Intel Researcher
14 Dell Dimention-133 desktop 32M 1547M 972.4 h 81.91 h 08% 1447485 Other HomeUser/Studnt.
15 Compaq Prolinea-5150 desktop 16M 2G 430.5 h 40.28 h 09% 3648197 Sony Engineer/Sftware.
16 Sony PCV-120 desktop 64M 2G/2G 374.2 h 27.82 h 07% 2603819 Sony Engineer/Sftware.
17 Sony PCV-120 desktop 64M 2G/2G 438.6 h 120.38 h 27% 4246332 Sony Engineer/Sftware.
18 AST MS-T 5166 desktop 64M 2G/2G/1G 459.7 h 51.60 h 11% 9415271 Sony Engineer/Sftware.
19 Gtw2k P5-166 desktop 64M 1.5G 377.8 h 307.98 h 82% 9475388 Sony Engineer/Hdware.
20 Sony PCV-120 desktop 32M 2G 380.3 h 352.98 h 93% 10053795 Sony Engineer/Video
21 Sony PCV-120 desktop 32M 2G 378.7 h 100.96 h 27% 2041658 Sony Manager
22 Sony P55c desktop 32M 2G/2G/1.6G 191.8 h 56.90 h 30% 9166259 Sony Engineer/Sftware.
23 Toshiba Pentium-PC desktop 24M 500M/500M 216.1 h 52.30 h 24% 5240669 Toshiba Assistent
24 Toshiba Pentium-PC desktop 48M 500M/500M 230.8 h 29.96 h 13% 2482814 Toshiba Engineer/CAD
25 Toshiba Pentium-PC desktop 64M 1.2G 215.6 h 46.27 h 21% 954125 Toshiba Engineer/Progmer
26 Toshiba Pentium-PC desktop 48M 1G 238.1 h 59.49 h 25% 1776593 Toshiba Engineer/Progmer
27 Toshiba Pentium-PC desktop 24M 500M/1.5G 188.6 h 42.02 h 22% 5332521 Toshiba Engineer/Docmnt
28 Toshiba Pentium-PC desktop 48M 1.2G 596.1 h 49.17 h 08% 8067977 Toshiba Engineer/CAD
29 Toshiba Pentium-PC desktop 48M 500M/500M 216.8 h 56.82 h 26% 2316542 Toshiba Clerk
Average (arithmetic mean) 367.7 h 84.3 h 24.4% 3727478

Standard deviation 238.9 82.6 19.2% 3154425

Table 1: Pro�le Data for Machines and Users Traced

be su�cient.

4.1.2 WMonitor trace record data �les

Trace record data �les record the following data:
USER ID, StartTime, StopTime, and the trace
records. The StartTime and StopTime read the
Windows95 internal millisecond counter when the
WMonitor starts and stops instrumenting the sys-
tem activities. The Windows95 internal millisecond
counter is the elapsed (integer) time in milliseconds
since the Windows95 system's most recent start.
Each trace record includes four data �elds: time
stamp, trace type, function name, and information
detail. We will further discuss the trace record
structure in Appendix II. We can determine the cal-
endar date and time for StartTime, StopTime and
each trace record based on the time-stamp and the
readings of StartTime record and StartDate record
in the corresponding WMonitor system pro�le log
�le.

The following �le is a WMonitor trace record
data �le example:

USER_ID: 761

StartTime: 9E9C4F

Time Type Funct Details

130 3 OPEN C: [223] \DAT\WMONITOR.INI

0 3 WRITE C: [223] 93

0 3 CLOSE C: [223]

0 3 SEEK C: [2A8] 4B400:B

0 3 READ C: [2A8] 200

A 2 [e54] C:\WMONITOR\BIN\WMONITOR.EXE

0 3 READ C: [271] 1000 MM

0 3 FATTR C: \WINDOWS\SYSTEM\MFC40LOC.DLL

0 3 FDOPN C: \WMONITOR\BIN*.*

DB 0 K_DN 11

96 0 K_UP 91

0 3 FLCKS C: [26B]

0 3 RENAM C: \DAT\DATA.ZIP \RECYCLED\DC0.ZIP

0 3 DIR C: QLGD \WMONITOR\BIN\MSGHK.DLL

0 3 DELET C: \RECYCLED\DESKTOP.INI

0 1 START_MV

9E 1 STOP_MV

... ...

Stop_Time: 1D41D3C

With detailed information and time stamps for
every trace event available, WMonitor trace record
data �les can be used in comprehensive workload
analysis and trace driven simulation. Except for
the calendar date and time information, WMonitor

7

system activity pro�ling information log �les can be
reproduced from the trace record data �les.

Detailed information on the trace records is
found in Appendix II.

4.2 Trace Statistics

Item Statistics

Number of Users 29
Number of Trace Files 1546
Total Data Size 2762 M bytes
(compressed data) 180.7 M bytes
Total Records 103,461,579
Total Tracing Time 2,443.6 hours
Total Active Time: 1,505.6 hours
(idle time<60 sec)

Table 2: Trace Data Overall Statistics for 29 Traces

Table 2 describes the trace size. As shown in
the table, the average size of the compressed trace
per user is about 6M bytes. WMonitor does not
compress the trace. The archived traces �les were
compressed with WinZip. The tracing time is de-
�ned as the duration during which the traced PC is
powered on and WMonitor is enabled. The average
tracing time per user is 52 hours. The PC users are
active during 62% of the tracing time. We de�ne a
user as \active" if one or more tracing events have
taken place during the past 60 seconds.

Total Rec#(std�) Percent Rec#/hour

KeyRec 89864 (75611) 2.57% 1637.9
MouseRec 92387 (108497) 2.64% 1271.0
WinRec 3999 (3389) 0.11% 63.9
FSysRec 3227K (2774K) 92.57% 47121.8
MSwapRec 72702 (105648) 2.08% 1314.4
Total 3486K 100% 51408.8

Table 3: Trace Data Breakdown Statistics (\Rec#" is

record number, \std�" is the standard deviation.)

Table 3 describes the frequency of tracing
events. The data shown in the table are
the arithmetic mean values of the 29 users'
traces. File system trace records account for
92.6 percent of the total number of trace records.
\KeyRec", \MouseRec", \WinRec", \FSysRec"
and \MSwapRec" in the table represent keyboard
trace record, mouse trace record, window switch
trace record, �le system trace record, and Win-
dows95 virtual memory swapping �le system call

trace record, respectively. In this table and the
rest of the paper, we will use the term \�le sys-
tem calls" for simplicity whenever we discuss the
regular �le system calls; this does not include the
memory swapping and tracer �le system calls. The
PC users input by means of mouse devices as fre-
quently as by keyboard. The PC users switch from
one user-input-focused window, i.e. a foreground
Windows process, to another window as often as
about once per minute.

Category APPLICATION (exe,dll)

WindowsSystem EXPLORER, SHELL32,
COMDLG32, WINHELP,
MPRSERV, ...

MsO�ce/GrpWare WINWORD, ACCESS,
POWERPNT, EXCEL,
COREL70, ...

EngineerTool MSDEV, DDRAW, ...
MiscTool NOTEPAD, CALC, ...

PHOTOSHOP, WINZIP,
ACRORD32, ...

Browser NETSCAPE, IEXPLORE
DosApplication MASM, QUICKEN, ...

Table 4: Traced Application Categories

From the user activity traces, we are able to
�lter out the names of the most frequently accessed
Windows applications. We divide these applications
into six categories, which are illustrated in Table 4.

Table 5 shows the 35 most frequently run ap-
plications (\APPLICATION"). We determine the
most frequented run applications by the total time
(in seconds/hour) each application was traced to be
running (\TIME"). Note that since we don't actu-
ally collect CPU traces or OS scheduler traces, we
use the active window as the indication of which
process is active. This leads to some errors (see
[Zhou99] for a further discussion of this issue), but
we believe that they are minor. In the same ta-
ble, we also show the average number of times each
application was invoked per hour (\Invoked"), the
average numbers of user keyboard/mouse inputs per
hour (\KeyEvnt"/\MouseEvnt"), the average num-
ber of �le system calls per hour (\FSCall"), and
the average number of memory swapping �le sys-
tem calls per hour (\MmSwap").

Figure 2 shows the measured idle behavior in
PC systems. The Y axis on the left is the system
idle time given a certain tracing event interval on X
axis. For example, the �gure shows that if all the
idle periods of 1 second to 2 seconds are added up,
a PC system idles 376 second in total per hour. For
another example, if all the idle periods of 1 minute

8

APPLICATION TIME Invoked KeyEvnt MouseEvnt FSCall MmSwap

SCREEN-SAVER 978.26 0.71 0.4 205.8 92056.0 921.2
MSDOS-PROMPT 472.03 20.84 1588.4 3849.1 96143.1 2025.7
EXPLORER.EXE 295.31 10.47 818.3 5762.3 189544.3 6914.6
WINWORD.EXE 227.23 2.71 2669.8 1992.8 72541.5 3018.6
EUDORA.EXE 216.15 1.09 188.5 245.8 8802.2 78.5
MSDEV.EXE 215.72 3.18 333.6 184.8 11064.1 407.1
XVISION.EXE 172.70 0.65 786.0 25.0 5643.0 30.6
NETSCAPE.EXE 167.86 1.54 679.8 2412.9 71988.9 3042.5
SHDOCVW.DLL 139.78 2.10 179.7 1732.3 89917.8 2139.8
EXCEL.EXE 90.72 2.00 709.5 3189.7 93416.5 1906.6
XVL.EXE 76.23 0.32 283.3 87.9 1816.4 19.8
SPTNET32.EXE 66.24 1.39 117.9 18.4 227.3 4.5
POWERPNT.EXE 66.02 0.54 579.0 1625.2 46954.4 3047.3
NOTEPAD.EXE 44.14 0.58 1698.5 2972.2 34740.5 1329.8
EUDORA32.DLL 36.60 0.86 216.4 260.0 16557.8 26.5
HIRAMAIL.EXE 33.48 0.46 0.2 74.2 79.8 0.3
MSOFFICE.EXE 23.41 0.40 1.7 804.0 79919.8 3812.5
WINBIFF.EXE 20.77 0.64 248.9 70.7 52.3 1.1
BRYCE2.EXE 18.40 1.94 6.7 75.8 1841.2 54.4
TELNET.EXE 18.09 0.18 541.6 135.7 4342.6 157.4
RDD.EXE 12.71 0.53 7.6 146.1 3911.6 198.5
COMCTL32.DLL 12.33 1.22 278.7 5355.0 112844.3 2954.8
SUPERTAG.EXE 11.75 0.31 301.4 191.0 646.6 15.6
BPCAP.EXE 11.43 0.06 1.5 56.6 4427.8 88.2
PREMIERE.EXE 11.21 0.63 4.8 95.1 4297.8 58.1
WINHLP32.EXE 11.18 0.70 459.5 8335.2 142248.8 5054.0
SIDEKICK.DLL 11.04 0.06 47.8 12.7 5330.8 65.8
TSTCON32.EXE 10.63 1.29 6.0 140.7 3869.8 15.4
X.EXE 10.60 0.15 138.0 18.3 485.2 3.7
COMDLG32.DLL 9.87 0.85 1077.2 6585.8 108540.3 3338.8
SHELL32.DLL 9.39 2.18 700.4 5342.3 441804.0 11974.6
WINPROJ.EXE 8.65 0.04 10.0 24.2 2709.1 2.1
MSWORKS.EXE 7.89 0.36 136.5 111.8 537.7 41.4
MAILNEWS.DLL 7.40 0.15 687.5 434.3 6491.2 361.3
MPRSERV.DLL 6.04 0.15 1678.9 3821.0 64637.7 988.3

Table 5: The Most Frequently Used Applications (\APPLICATION" is the application name, \TIME" is the total seconds

each application was traced per hour, \INOVKED" is the count of number of times each application was invoked per hour,

\KeyEvnt/MouseEvnt/FSCall/MmSwap" are the counts of di�erent events per hour.)

to 2 minutes are added up, a PC system idles 156
seconds in total per hour. The Y axis on the right
is the percentage of cumulative system active time
in the total tracing time. For example, if we set the
tracing event interval to 1 second, a PC system is
considered to be active for about 43% of the total
tracing time. In this case, the system enters idle
state from active state, if there is no tracing event
taking place within one second after the previous
tracing event has completed.

Table 6 gives the percentages of the top 13 most
frequently invoked Windows95 �le system calls.
The percentages are calculated using the following
formula:

((
29X

user=1

FunctionCallCount

AllFSCallCount
)=29) � 100%

Function Name Percentage

SEEK 31.64%
READ 24.59%
FINDNEXT 12.18%
WRITE 5.83%
FINDOPEN 4.56%
FINDCLOSE 4.28%
FILEATTRIB 3.74%
OPEN 3.30%
CLOSE 3.14%
GETDISKINFO 3.09%
IOCTL16DRIVE 2.01%
FILETIMES 1.29%
DIR 1.01%

Table 6: Most Used File System Calls

9

724

233231

376

125

187

128
100

222

156
123

198

110
76

52

116

6
0

100

200

300

400

500

600

700

800

1/8 s 1/2 s 2s 8s 32s 2m 8m 32m 2h Intervals

Id
le

 T
im

e
(s

ec
on

ds
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e

A
ct

iv
et

im
e

P
er

ce
nt

ag
e

idle-time

active-time percentage

Figure 2: System Idle Time Distribution

3.1% 2.2%
4.7%

11.7%

5.8%

2.1% 1.3%

34.7%

13.0%

7.4%

11.8%

5.1%

50.1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

0 2 8 32 128 512 2k 8k 32k 128k 512k
bytes

pe
re

nt
ag

e

operating times

operating bytes

Figure 3: Read File System Call Block Size vs. Access

Times and Total Bytes Read

1.1%

4.8%

7.1%

2.3%

4.7%

8.5%

14.8%

5.3%

2.6%
1.7%

5.5%

25.9%

1.2%

27.4%

5.9%
6.9%

1.7%

4.4%

19.1%
18.4%

0%

5%

10%

15%

20%

25%

30%

0 2 8 32 128 512 2k 8k 32k 128k 512k
bytes

pe
rc

en
ta

ge

operating times

operating bytes

Figure 4: Write File System Call Block Size vs. Access

Times and Total Bytes Written

where FunctionCallCount is the count of a
certain �le system function calls of one user,
AllFSCallCount is the total count of �le system
calls of this user.

Table 7 shows the number of bytes per hour ac-
cessed by the �le system calls of READ, WRITE,
virtual memory READ, virtual memory WRITE,
and the percentage of total bytes accessed by each,
respectively.

Function Bytes per hour Percentage

FS Read 31183 K 71.58%
FS Write 5154 K 11.83%
MemSwap Read 4176 K 9.58%
MemSwap Write 3051 K 7.00%

Table 7: File System Tra�c

The next two �gures, Figure 3 and Fig-
ure 4, show the block size distributions and total
read/write bytes for READ and WRITE �le system
calls. For example, as shown in Figure 3 50.1% of
the bytes were transfered as part of the blocks with
size of 2049 to 4096 bytes, and 34.7% �le READ
calls are with these block sizes.

As can be seen from these �gures, most block
sizes are intermediate, 4KB being the most popular.
Since both the Windows95 virtual memory page size
and the FAT-32 cluster size are 4K bytes, software
designers tend to also use 4KB as the �le read or
write bu�er size.

Figure 5 shows how frequently a PC �le is ac-
cessed (with an "OPEN" �le system call) in a 10-
hour period. The X axis represents the number of
accesses to one �le in 10 hours. The Y axis on the
left represents the number of �les that have been ac-
cessed the number of times given on the X axis, and
the Y axis on the right represents the percentage of
such �les out of the total number of �les. For ex-
ample, there were about 10 �les that were accessed
("opened") an average of 16 times per 10 hours. It is
intersting to note that an average of 74.8% of the to-
tal PC �les have only been accessed once during 10
hours. Only 0.55% or 32 �les are accessed 50 times
or more during the same time period. In fact, a few
�les were accessed several hundreds times. Some
were even accessed a few thousand times. Such
a �le can be a graphic �le, a initialization infor-
mation �le, a temporary cache �le, or even a user
speci�c �le. Some examples of these popular �les
are: CONTROL.INI, EUDORA.INI, SYSTEM.INI,
UNIMATIC.INI, NPROTECT.LOG, LMOS.TMP,
SCROLLBU.TMP, USER.BIN, M0CP9ESI.GIF,

10

GABENCHMARKS.PPT, USR04993.

4394

32

74.8%

0.55%
0.1

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50
AccessPer10Hours

nu
m

. o
f f

ile
s

0%

10%

20%

30%

40%

50%

60%

P
er

ce
nt

ag
e

Number of Files
Percentage

Figure 5: File Access (OPEN) Distribution (There are

negative bars in the �gure, i.e. some numbers are less

than 1. This is because we are showing the number of

accesses per 10 hours. Some �les were accessed less than

once per 10 hours on average.)

4.3 Tracing Overhead

Because we do not trace the processor activ-
ity and the user inputs are very sparse, �le system
tracing dominates our trace. Two types of trac-
ing overheads exist: �rst, monitoring and generat-
ing the trace record; second, dumping the bu�ered
trace records to the hard drives. Every single trace
record is generated by only a few tens of lines C
code. Compared to the regular �le system function
processing time, the overhead for generating the
trace records is not signi�cant enough to be consid-
ered. Therefore, the WMonitor overhead measure-
ment will focus on trace record dumping, i.e. �le
system call counts contributed by the tracer versus
the non-tracing counts of regular �le system calls.

Statistics

Tracer FS Operation Counts 86175
Regular FS Operation Counts 3227379
Tracer FS Overhead 2.66%
Standard Deviation of Overhead 0.351%
90% Con�dence Interval (2.55%, 2.76%)

Table 8: Tracer Operation Overhead

Table 8 shows the tracer overhead and the 90
percent con�dence interval (over the 29 samples).

4.4 Limitations of the study

We note the following caveats and limitations in
our tracing and analysis:

� Lack of processor activity information. We
studied system activity based only on �le sys-
tem, virtual memory and user activities. Our
system idleness did not consider processor sta-
tus, i.e. whether the processor was busy pro-
cessing a task, or the processor was in an idle
instruction loop, or a \HLT" (halt) instruc-
tion was active. We did not collect the pro-
cessor status trace, nor did we collect the Win-
dows process/thread trace.

� The dependency on Windows messaging:
User input tracing events are time stamped
when the input message gets removed from
the user-input-focused window rather than
when it is generated. The �le system traces
are time stamped when the �le system trace
messages are processed.

� Lack of �le system caching information.

It is di�cult to estimate the system performance
in the absence of processor and caching informa-
tion. Processor activities were not collected since
the original motivation for this tracer was to study
power management of/at the user interface and the
I/O system.

Since most of our analyses have used time granu-
larities (e.g. 1/4 second) much larger than the time
stamp quantum (.001 second), the lack of �ner res-
olution of the time stamp should not be a problem.
Even for detailed I/O studies, the .001 second quan-
tum should be su�cient.

In addition, the diversity of PC workload and
the user level burstyness shown in our traces make
straightforward arithmetic mean values insu�cient
for detailed analysis. Further detailed PC workload
studies and analysis breakdown into di�erent work-
load categories are needed.

5 Summary and Future work

In this project we have presented a personal
computer system tracer and we have discussed some
major issues in personal computer system tracing.
A set of PC user and �le system traces have been
collected from a variety of PC users. The traces
collected can be used in a number of ways to pro-
vide insights to various aspects of personal com-
puter system and user behaviors. The traces can

11

be used in benchmark development as well as for
trace driven simulation for di�erent system resource
management algorithm studies, �le caching studies
and power management analysis.

As an extension to this work, the proces-
sor activity pro�ling and system resource man-
agement could be integrated with our Windows95
tracer. The features of the Pentium processor's
performance counter make the above proposal fea-
sible. Another alternative solution is to follow
what Microsoft "SYSMON" does, and use "Win-
dows95's performance metrics stored under the key
HKEY DYN DATA/PerfStats/StatData with the
Windows95 standard Registry API. Given informa-
tion about the processor activity and other system
resource usage, we could establish a more complete
PC user and system model. We would be able to
analsis the processor activities, and how processors
react to the user activities in a Windows environ-
ment.

We have presented some general statistics of
PC users and systems in this paper. A much
more extensive analysis of the workload appears in
[Zhou99]. Related and more detailed trace data is
currently being collected fromWindowsNT systems
at UC Berkeley by Jay Lorch. Future projects will
use the data collected in these two projects for stud-
ies of disk and I/O system optimization, disk design,
and power management.

6 Acknowledgments

The Authors would like to thank Intel Corp.,
for its technical support during the tracer develop-
ment. The authors also thank Intel Corp., Toshiba
Corporation., Fujitsu Microsystems Inc. and Sony
Research Laboratories for running the tracer on a
number of their machines. The authors owe spe-
cial thanks to Takashi Miura, Gerry Atterbury, and
Act Ratanakul for their help in trace data collec-
tion. Tushar Patel and Dennis Reinhardt at Intel
Corp. were especially helpful during the tracer de-
velopment and trace collection. Many other people
deserve thanks as well for sacri�cing their valuable
time and system resources during the trace collec-
tion.

Bibliography

[Bake91] Baker, M., Hartman, J., Kupfer, M.,
Shirri�, K., Ousterhout, J.: Measurements
of a Distributed File System Proceedings

of the 13th ACM Symposium on Operating
Systems Principles, Jul. 1991, 1-15.

[Chen96] Chen, J., Endo, Y., Chan, K., Mazieres, D.,
Dias, A., Seltzer, M., and Smith, M.: The
Measured Performance of Personal Com-
puter Operating Systems. ACM Transac-
tions on Computer Systems., Vol. 14, No.
1, Feb. 1996, 3-40.

[Chon95] Chong, H.: The Design and Tuning of
Microsoft Windows 95. Proceedings of
the 21st International Conference for the
Resource Management and Performance
Evaluation of Enterprise Computer Sys-
tems, Nashville, TN, Dec. 1995, 938-949.

[Cost85] Da Costa, H.: A File System Tracing Pack-
age for Berkeley UNIX. Technical Report
of Computer Science Division (EECS),
University of California at Berkeley, No.
UCB/CSD-85-235 , Jun. 1985.

[Doug94] Douglis, F., Kaashoek, F., Marsh, B.,
C�aceres, R., Li, K., Tauber, J. Storage Al-
ternatives for Mobile Computers. Proceed-
ings of the First USENIX Symposium on
Operating Systems Design and Implemen-
tation, Monterey, CA, Nov. 1994, 25-37.

[Gold74] Goldberg, R.: Survey of Virtual Machine
Research. IEEE Computer , Jun. 1974, 34-
45.

[Hans85] Hanson, R.: A Characterization of the Use
of The UNIX C Shell. Technical Report
of Computer Science Division (EECS),
University of California at Berkeley, No.
UCB/CSD-86-274 , Dec. 1985.

[Inte97] Intel Corp.: Intel Power Monitor. Avail-
able as URL http://www.intel.com/ial/
ipm/.

[Inte98] Intel Corp.: VTune Performance Enhance-
ment Environment. Available
at URL http://support.intel.com/support/
performancetools/vtune/.

[Lee98] Lee, D., Crowley, P., Baer, J., Anderson,
T., and Bershad, B.: Execution Character-
istics of Desktop Applications on Windows
NT. The 25th Annual International Sym-
posium on Computer Architecture., Jul.
1998, 27-38.

[Li94] Li, K., Kumpf, R., Horton, P., Anderson,
T. A Quantitative Analysis of Disk Drive
Power Management in Portable Comput-
ers. Proceedings of the 1994 Winter
USENIX Conference, San Francisco, CA,
Jan. 1994, 279-291.

[Lorc97] Lorch, J., Smith, A.: Energy Consump-
tion of Apple Macintosh Computer. Tech-
nical Report of Computer Science Division
(EECS), University of California at Berke-

12

ley, No. UCB/CSD-97-961 , Jun. 1997, to
appear, IEEE MICRO.

[Nort97] Norton, P., Mueller, J.: Peter Norton's
Complete Guide to Windows95, Second
Edition, 0-672-31040-6, Sams Publishing,
Indianapolis, IN, 1997.

[Oney96] Oney, W.: System Programming for Win-
dows95 , Microsoft Press, Redmond, WA,
1996.

[Oust85] Ousterhout, J., Da Costa, H., Harrison,
D., Kunze, J., Kupfer, M., Thompson, J.:
A Trace-Driven Analysis of the UNIX 4.2
BSD File System. Proceedings of the 10th
Symposium on Operating System Princi-
ples, Orcas Island, WA, Dec. 1985, 15-24.

[Petz96] Petzold, C.: Programming Windows95 ,
Microsoft Press, Redmond, WA, 1996.

[Rati98] Rational Software Corp.: Visual Quantify.
Available at URL http://
rational4.rational.com/products/visualq/.

[Ruem93] Ruemmler, C., Wilkes, J.: UNIX Disk Ac-
cess Patterns. Proceedings of the Winter
1993 USENIX Conference, San Diego, CA,
Jan. 1993, 405-420.

[Schu95] Schulman, A.: Unauthorized Windows95:
A Developer's Guide to Exploring the
Foundations of Windows Chicago, IDG
Books, 1995.

[Smit81] Smith, A.: Long Term File Migration: De-
velopment and Evaluation of Algorithms.
Communications of the ACM , Val. 24, No.
8, Aug. 1981, 521-532.

[Smit85] Smith, A.: Disk Cache-Miss Ratio Analy-
sis and Design Considerations. Proceedings
of the 5th annual Symposium on Computer
Architecture, Apr. 1985, 242-248.

[Smit94] Smith, A.: Trace Driven Simulation in
Research on Computer Architecture and
Operating Systems. Proceedings of the
Conference on New Directions in Simula-
tion for Manufacturing and Communica-
tions, ed. Moriton, Sakasegawa, Yoneda,
Fushimi, Nakano, Tokyo, Japan, Aug.
1994, 43-49.

[Spec98] The Standard Performance Evaluation
Corporation: Frequently Asked Ques-
tions (FAQ). Available as URL http://
open.specbench.org/spec/faq/

[TPC98] Transaction Processing Performance Coun-
cil: Frequently Asked Questions (FAQ).
Available as URL http://www.tpc.org/
faq general.html

[Trac98] TracePoint
Technology Inc.: HiProf. Available at URL
http://www.tracepoint.com/.

[Zhou85] Zhou, S., Da Costa, H., Smith, A.: A
�le System Tracing Package for Berkeley

UNIX. Proceedings of USENIX Conference
and Exhibition, Portland, Jun. 1985, 407-
419.

[Zhou96] Zhou, M., Smith, A.:
A Windows I/O Tracing Package for Note-
book PC Power Management. Available as
URL http://djinn.cs.berkeley.edu/mzhou/
paper/tracer.ps.

[Zhou99] Zhou, M. and Smith, A.: Analysis of
Personal Computer Workloads. Computer
Science Technical Report, UC Berkeley,
submitted for publication, Jan. 1999.

[Zivk96] Zivkov, B., Smith, A.: Disk Caching in
Large Databases and Timeshared Systems.
Technical Report of Computer Science Di-
vision (EECS), University of California
at Berkeley, No. UCB/CSD-96-913 , Sep.
1996.

Appendix I: Overview of Win-

dows95

In this appendix, we summarize some major charac-
teristics of the Windows95 operating system.

Windows95 is a 32-bit protected-mode operating
system designed to run 16-bit and 32-bit application
programs on Intel architecture based personal comput-
ers. Windows95 uses the VFAT format �le system, a
version of MS-DOS FAT �le system with long �lename
support. Windows95 provides up to 4 gigabyte virtual
memory. The actual virtual memory size depends on
the physical memory and swap space available. Win-
dows95 supports preemptive multitasking of Windows-
based and MS-DOS-based applications. Windows95
runs only on PCs based on Intel architecture processors,
80386s or more advanced models. Windows95 does not
attempt to provide a secure environment in which pro-
gram and data can be insulated from another program's
inattentive or intentional misbehavior.

A1.1 Windows95 virtual machine

The general concept of virtual machines dates back
to early IBM mainframe computers and the work by
Robert Goldberg. [Gold74] The virtual machines in
the PC world were created when the early versions of
Windows needed to support multiple MS-DOS applica-
tions and Windows applications running at the same
time. [Oney96] [Petz96] A virtual machine created by
software reacts to application programs the same way
a real machine does, which enables the MS-DOS pro-
grams to own the keyboard, the mouse, the display
screen, the processor, and the user's attention as if they
were running on their own dedicated hardware. Specif-
ically, in the kernel of the Windows95 operating sys-
tem, a Virtual Machine Manager (VMM) manages all

13

virtual machines. The VMM works with Virtual Device
Drivers (VxDs) to simulate hardware devices and to pro-
vide system services to applications and to each other.
There is at least one virtual machine running on a Win-
dows95 system, the system virtual machine, which runs
all Windows applications and the Windows95 system
itself. One or more MS-DOS virtual machines running
MS-DOS applications can co-exist on a Windows95 sys-
tem.

A1.2 Windows95 memory model

Generally speaking, Windows95 supports three dif-
ferent memory models: Windows3.1 protected-mode
segmented memory model, WindowsNT at memory
model, and Virtual-86 model. In the protected-mode
segmented memory model, the processor uses a selec-
tor (which points to a segment descriptor entry in the
memory descriptor table) and an o�set pair to refer-
ence a memory location. The virtual memory is divided
into segments of up to 64KB each. In the at mem-
ory model, there is only one segment which contains all
the programs. Virtual memory with a two-level page
table paging scheme is used where each 32-bit address
is split into three �elds: page table directory pointer,
page table pointer, and page o�set. Each page frame
is 4K bytes. In the virtual-86 mode, 20-bit addresses
yield only 1MB of address space. A segment/o�set pair
is used to generate the 20-bit memory address.

A1.3 Windows95 processes and
threads

Each Windows application occupies a process that
consists of a dedicated address space and one or more
threads of execution. Each thread corresponds to a se-
quence of program steps and the evolving state of pro-
cessor registers and system objects associated with that
sequence. Windows95 uses a priority-based scheme to
preemptively multi-task threads.

Windows95 supports three types of applications:
Windows 32-bit application programs, Windows 16-bit
application programs, and MS-DOS application pro-
grams. Both 32-bit and 16-bit Windows application
programs run on the system virtual machine while each
MS-DOS application programs run on a separate MS-
DOS virtual machine. The system virtual machine has
one process for each program, and each 32-bit Windows
program can consist of more than one thread. The addi-
tional virtual machines are for MS-DOS programs, and
each contains exactly one process and one thread.

The 32-bit Windows programs adopt the at mem-
ory model, wherein all code and data can be addressed
in a single segment covering all of the virtual memory.
The 16-bit Windows programs use the Windows3.1 seg-
mented memory model, in which available virtual mem-
ory is subdivided into segments of up to 64 KB each.
The 16-bit Windows programs load segment selectors

into the processor's segment registers to access more
than 64 KB of memory. The 32-bit programs partici-
pate in preemptive multitasking under the overall con-
trol of the scheduling subsystem of the virtual machine
manager, while the 16-bit Windows applications must
cooperatively multi-task amongst themselves { from this
point of view, sometimes Windows95 is not viewed as
a preemptive multitasking system. MS-DOS program
multitasking depends on the scheduling among di�er-
ent virtual machines.

Most of the time, one or a few windows are asso-
ciated with one Windows program. Similarly to the
UNIX foreground process, a user-input-focused window
in Windows is the foreground window to which the user
input will be posted.

A1.4 Window95 �le system

Windows95 uses an installable �le system manager
(IFS manager), the highest layer in the �le system, to
handle all �le system calls from Windows 32-bit appli-
cations, Windows 16-bit applications and MS-DOS ap-
plications. We will discuss IFS in the next subsection
in more detail. The IFS manager calls on �le system
drivers (FSDs) to support di�erent �le system formats.
The �le system formats currently supported by Win-
dows95 include FAT-16 (File Allocation Table with 16
bit entries), FAT-32 (32 bit FAT entry version of FAT,
used in the OSR2 (OEM Service Release 2) version of
Windows95 and Windows98 and the CD-ROM �le sys-
tem. The FSDs in turn talk to disk drivers which inter-
face with the hardware directly.

A FAT (including FAT-16 and FAT-32) format disk
consist of a BOOT sector, a �le allocation table, a root
directory, and a cluster section. BOOT stores the ba-
sic information about the disk and for the use of system
boot. The root directory stores the information describ-
ing each �le entry in the top level directory. The disk
cluster section is divided into separated clusters. The
notion of a cluster, which is a contiguous collection of
disk sectors, was introduced as the allocation unit. Each
FAT table entry is used to maintain the status of a disk
cluster, and the number of FAT table entries is equal
to the number of the clusters on a disk. A FAT table
is organized as a linear array containing multiple one-
way linked lists. One list corresponds to a �le or sub-
directory. The FAT entry location of the head of each
list is stored in the root directory or a sub-directory. In
a FAT �le system, sub-directories are stored as regular
�les.

FAT-16 uses a �xed FAT table size (32KB), 16-bit
FAT table entries, and variable cluster sizes. FAT-16
supports up to 2GB per logical hard drive. A hard
drive larger than 2GB needs to be partitioned into a
few logical hard drives for a FAT-16 format �le system.
For example, FAT-16 uses 32KB cluster for a 2GB hard
drive, 16KB cluster for a 1GB hard drive, ... , 4KB clus-
ter for a 128MB hard drive, etc. Di�erent from FAT-16,

14

FAT-32 uses a variable FAT table size, 32-bit FAT table
entries, and a �xed cluster size (4KB). It supports up
to a 2TB hard drive. Our target systems all use the
FAT-16 format �le system for their hard drives.

The FAT �le system used in Windows95 �le system
is called VFAT, virtual FAT { an improved version of the
old MS-DOS FAT format �le system plus long �lename
support. Similar to FAT, VFAT also can be classi�ed
as VFAT-16 and VFAT-32. The VFAT �le system has
two �le names for each �le, a DOS-8.3 format �lename
(maximum 8 bytes for the �le name and maximum 3
bytes for the �le name extension) and Windows95 spe-
ci�c long �lenames which can be as long as 256 bytes.

A1.5 Windows95 Installable File Sys-
tem and IFS Calls

The �le systems of both Windows3.1 and MS-DOS
depend on MS-DOS's INT21 code to manage �les on
disk. Since MS-DOS INT21 is not reentrant, multi-
ple processes cannot simultaneously perform �le sys-
tem calls without proceeding one at a time through
this critical section. Windows95 relies on the Installable
File System Manager to solve this problem and support
asynchronous I/Os. All �le system calls of Windows 32-
bit applications, Windows 16-bit applications and MS-
DOS applications go to the IFS manager. These �le
system calls include the accesses to the memory swap
�le as well. IFS manager calls on FSDs to implement
diverse �le systems like FAT and the CD-ROM �le sys-
tem. The FSDs talk to disk drivers which interface with
the hardware components such as hard drive and op-
pies directly.

The IFS manager exports a number of virtual
device driver level services for use by other parts
of the system. These IFS services and Windows95
virtual device driver's dynamic loading, which was
designed for plug-and-play, allows third party soft-
ware and hardware vendors to write their own de-
vice drivers as part of Windows95 �le system. One
of the most important services provided by IFS man-
ager is the IFS Mgr InstallFileSystemApiHook service.
IFS Mgr InstallFileSystemApiHook takes the address of
the user VxD hook procedure as an argument, and
it returns the address of another hook procedure. A
VxD hook procedure is a VxD procedure which will be
trigged when the hook-targeting system service is in-
voked. All the VxD hook procedures should chain the
call instead of just processing it to give other poten-
tial hooks their chance to examine each request to the
targeted system services. Internally, the IFS manager
maintains its own list of API hooks so that the users
can add and remove the hooks in any order.

There are 31 most commonly used Windows95 in-
stallable �le system calls generated by IFS manager.
These calls are our �le system tracing targets. Next we
give the names and explanation of these installable �le
system calls.

� FS ReadFile transfers data from the �le to a mem-
ory bu�er. The memory bu�er can be �lled
asynchronously using one or more I/O requests.
In a regular FSD implementation, Windows95
VCACHE facilities should be used to maintain
a cache of disk records to minimize the physical
I/O.

� FS WriteFile transfers data from a memory bu�er
to the �le. A cache of disk-sector-sized bu�ers
containing the data should be maintained and
the physical write operations should be performed
asynchronously.

� FS FileSeek is an advisory service that allows an
FSD to optimize its prefetches of a �le. This func-
tion is advisory because the read and write func-
tions both supply a �le position that overrides
anything recorded by the FSD.

� FS OpenFile takes indicated actions to open a �le
which matches the parsed pathname.

� FS CloseFile ushes any output bu�ers to disk,
deletes internal structures related to the �le, and
generally cleans up after a series of operations on
an open �le.

� FS CommitFile ushes bu�ered data of a �le han-
dle to disk.

� FS EnumerateHandle enumerates �le handle in-
formation.

� FS HandleInfo gets and sets information for a �le
by the �le handle.

� FS LockFile locks or unlocks a byte range in a �le
by the �le handle.

� FS FileDateTime sets or retrieves the timestamps
which associate with an open �le. There are three
Windows95 �le timestamps: creation time, last-
modi�ed time, and last-accessed time.

� FS DeleteFile deletes the �les whose parsed path-
name appears in the request pathname.

� FS Dir performs a function on a directory. Direc-
tory functions include creating, deleting, checking
for the existence of a directory, or converting a di-
rectory name between its long-name form and its
8.3 form.

� FS DirectDiskIO is called by IFS manager to han-
dle MS-DOS INT 25h and INT 26h (absolute disk
read and write) requests.

� FS DirectVolumeAccess performs direct volume
(�le system storage resource logical unit) accesses.

� FS ConnectNetResource connects or mounts a
network resource.

� FS DisconnectResource is the function to take the
actions required when one of the FSD volumes is
unloaded or deleted.

� FS FileAttributes gets or sets the attributes of a
�le.

� FS FindChangeNotifyClose and
FS FindNextChangeNotify search for �le change
noti�es on a certain disk drive.

15

� FS FindFirstFile, FS FindNextFile
and FS FindClose go together to implement a
normal �le search. FS FindFirstFile initiates a
�le search that can include wildcards, and cre-
ates a context handle. FS FindNextFile contin-
ues the search with the context handle until no
more matches are possible. FS FindClose closes
the context handle.

� FS FlushVolume ushes any pending output data
to the device.

� FS GetDiskInfo retrieves information about the
free space on a disk drive.

� FS GetDiskParms returns the real-mode address
of the MS-DOS disk parameter block.

� FS Ioctl16Drive performs an I/O control opera-
tion on the volume.

� FS QueryResourceInfoprovides basic information
about the �le system to the IFS manager.

� FS RenameFile renames one or more �les. Wild-
cards in the source name can be speci�ed by the
user.

� FS SearchFile is the MS-DOS equivalent of the
FS FindFirstFile family of functions.

� FS TransactNamedPipe performs named pipe op-
erations.

� FS UNCPipeRequest performs UNC path based
named pipe operations.

Appendix II: WMonitor trace

record data �les

Trace record data �les record the following data:
USER ID, StartTime, StopTime, and the trace records.
The StartTime and StopTime read the Windows95 in-
ternal millisecond counter when the WMonitor starts
and stops instrumenting the system activities. The
Windows95 internal millisecond counter is the elapsed
(integer) time in milliseconds since the Windows95 sys-
tem's most recent start. Each trace record includes four
data �elds: time stamp, trace type, function name, and
information detail. We further discuss the trace record
structure in next subsection. All numbers are hexadec-
imal numbers except the number in USER ID record
in a trace record data �le. One trace record spans ex-
actly one text line with the return and line-feed charac-
ters, 0D and 0A in ASCII code, as the line separator.
We can determine the calendar date and time for Start-
Time, StopTime and each trace record based on the
time-stamp and the readings of the StartTime record
and the StartDate record in the corresponding WMon-
itor system pro�le log �le.

The following �le is a WMonitor trace record data
�le example:

USER_ID: 761

StartTime: 9E9C4F

Time Type Funct Details

130 3 OPEN C: [223] \DAT\WMONITOR.INI

0 3 WRITE C: [223] 93

0 3 CLOSE C: [223]

0 3 SEEK C: [2A8] 4B400:B

0 3 READ C: [2A8] 200

A 2 [e54] C:\WMONITOR\BIN\WMONITOR.EXE

0 3 READ C: [271] 1000 MM

0 3 FATTR C: \WINDOWS\SYSTEM\MFC40LOC.DLL

0 3 FDOPN C: \WMONITOR\BIN*.*

DB 0 K_DN 11

96 0 K_UP 91

0 3 FLCKS C: [26B]

0 3 RENAM C: \DAT\DATA.ZIP \RECYCLED\DC0.ZIP

0 3 DIR C: QLGD \WMONITOR\BIN\MSGHK.DLL

0 3 DELET C: \RECYCLED\DESKTOP.INI

0 1 START_MV

9E 1 STOP_MV

... ...

Stop_Time: 1D41D3C

With detailed information and time stamps for ev-
ery trace event available, WMonitor trace record data
�les can be used in comprehensive workload analysis
and tracing driven simulations. Except for the calendar
date and time information, WMonitor system activity
pro�ling information log �les can be reproduced from
the trace record data �les.

A2.1 WMonitor trace record structure

Each trace record in a WMonitor trace record data
�le includes up to four data �elds: time stamp, trace
type, function name, and detail information. The trace
record data �elds are separated by the character of
ASCII code 09. Each trace record contains up to 539
bytes. When a trace record reaches its maximum length,
two full Windows95 long �le pathnames, each of 256
bytes, are included.

The time stamp records the time when a traced
event triggers a WMonitor procedure. The incremen-
tal time stamp is used to reduce the record size. The
absolute time stamp can be derived by accumulating
the incremental time stamps and then adding the Start-
Time. The granularity of time stamp is one millisecond.
The upper limit of this time stamp is 0xFFFFFFFF.

Trace type can have one of the following four values:

� 0 { keyboard input event

� 1 { mouse or other pointing device input event

� 2 { user-input-focused window switch event

� 3 { �le system call event

Table 9 also lists all trace record types in a WMoni-
tor trace record data �le. Di�erent types of trace records
interpret the function name �eld and detail information
�eld di�erently, which we will discuss in the following
two sub-sections.

A2.2 User activity trace record

There are three types of user activity trace records:
keyboard input record, mouse input record and user-

16

Trace type Explaination Data �eld

USER ID user id user-identi�cation
StartTime start time trace-starting-time�

Stop Time stop time trace-stopping-time�

0 keyboard input keyboard-event key-scancode
1 mouse input mouse-event
2 window switch [window-handle] application-name
3 �le system call see Table 10

Table 9: WMonitor Trace Records(� is the Windows internal milisecond counter readings when tracing starts/stops.)

function name detail information �eld IFS call name

READ diskdrive fhandle1 bytes vm opt2 FS ReadFile

WRITE diskdrive fhandle bytes vm opt FS WriteFile

FDNXT diskdrive handle3 FS FindNextFile

FCNNT diskdrive FS FindNextChangeNotify

SEEK diskdrive fhandle bytes position4 FS FileSeek

CLOSE diskdrive fhandle FS CloseFile

COMMT diskdrive fhandle FS CommitFile

FLCKS diskdrive fhandle FS LockFile

FTMES diskdrive fhandle FS FileDateTime

PIPRQ diskdrive FS TransactNamedPipe

HDINF diskdrive fhandle FS HandleInfo

ENMHD diskdrive FS EnumerateHandle

FNDCL diskdrive handle3 FS FindClose

FCNCL diskdrive FS FindChangeNotifyClose

CNNCT diskdrive FS ConnectNetResource

DELET diskdrive �lename FS DeleteFile

DIR diskdrive method5 �lename FS Dir

FATTR diskdrive �lename FS FileAttributes

FLUSH diskdrive FS FlushVolume

GDSKI diskdrive FS GetDiskInfo

OPEN diskdrive fhandle �lename FS OpenFile

RENAM diskdrive �lename1 �lename2 FS RenameFile

SEARC diskdrive �lename FS SearchFile

QUERY diskdrive FS QueryResourceInfo

DISCN diskdrive FS DisconnectResource

UNCPR diskdrive FS UNCPipeRequest

IOC16 diskdrive FS Ioctl16Drive

GDSPR diskdrive FS GetDiskParms

FDOPN diskdrive �lename FS FindFirstFile

DSDIO diskdrive FS DirectVolumeAccess

Table 10: File System Call Records (fhandle1 is the �le handle in the format of \[hex-number]". vm opt2 is the virtual

memory operation indicator which can be null (i.e. \ "), or one of \PG" or \MM". handle3 of FDNXT and FNDCL is

the �le searching context handle. position4 can be one of \begin", \end", or \current". method5 can be one of \mkdir",

\rmdir", \chechdir", \query8.3dir", or \querylongdir".)

17

input-focused window switch record.

� keyboard input record: For a keyboard input
event, the function name is either \K DN" (press-
ing a key) or \K UP" (releasing a key). The 1
byte (7 valid bits) key scan code is stored in the
detail information �eld. The 8th bit of this byte
indicates the status of the key being accessed: 1
{ up and 0 { down.

For example, if the input is a capital ASCII
\K", four keyboard trace events are recorded:
0x2A (scan code of \left shift") K DN, 0x25 (scan
code of \k") K DN, 0xA5 (scan code of \k" +
0x80) K UP, and 0xAA (scan code of \left shift"
+ 0x80) K UP, where \left shift" K DN and
\left shift" K UP are not generated if Caps Lock
is in function.

� mouse input record: For a mouse input event,
the function name can be one of the follow-
ing mouse events: L DWN (pressing the left
mouse button), L UP (releasing left mouse but-
ton), L CLK (double clicking the left mouse but-
ton), M DWN (pressing middle mouse button),
M UP (releasing middle mouse button), M CLK
(double clicking middle mouse button), R DWN
(pressing right mouse button), R UP (releas-
ing right mouse button), R CLK(double clicking
right mouse button), START MV(starting mov-
ing the mouse), and STOP MV(stopping moving
the mouse). The detail information �eld is empty
for the mouse input event case.

� user-input-focused window switch record: For a
window switch event, the window handle and the
application software full pathname are stored in
the function name �eld and detail information
�eld, respectively.

A2.3 File system call trace record

Table 10 gives a list of �le system function call
names, the corresponding detail information �elds, and
installable �le system call names. We discussed the in-
stallable �le system calls previously.

File system call trace records include both regu-
lar �le access call records and memory swap �le access
call records. Memory swap �le access call records are
mapped memory reads, mapped memory writes, mem-
ory paging reads, or memory paging writes. Memory
swap �le access records distinguish themselves from reg-
ular �le access records by the last two bytes in the detail
information �eld: either \MM" (Mapped Memory) or
\PG" (memory PaGing).

18

