
Lazy Threads: Compiler and Runtime Structures for
Fine-Grained Parallel Programming

by

Seth Copen Goldstein

B.S.E. (Princeton University) 1985
M.S.E. (University of California{Berkeley) 1994

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor David E. Culler, Chair

Professor Susan L. Graham

Professor Paul McEuen

Professor Katherine A. Yelick

Fall 1997

1

Abstract

Lazy Threads: Compiler and Runtime Structures for Fine-Grained Parallel Programming

by

Seth Copen Goldstein

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David E. Culler, Chair

Many modern parallel languages support dynamic creation of threads or require

multithreading in their implementations. The threads describe the logical parallelism in the

program. For ease of expression and better resource utilization, the logical parallelism in

a program often exceeds the physical parallelism of the machine and leads to applications

with many �ne-grained threads. In practice, however, most logical threads need not be

independent threads. Instead, they could be run as sequential calls, which are inherently

cheaper than independent threads. The challenge is that one cannot generally predict which

logical threads can be implemented as sequential calls. In lazy multithreading systems each

logical thread begins execution sequentially (with the attendant e�cient stack management

and direct transfer of control and data). Only if a thread truly must execute in parallel

does it get its own thread of control.

This dissertation presents new implementation techniques for lazy multithreading

systems on conventional machines and compares a variety of design choices. We develop an

abstract machine that makes explicit the design decisions for achieving lazy multithread-

ing. We introduce new options on each of the four axes in the design space: the storage

model, the thread representation, the disconnection method, and the queueing mechanism.

Stacklets, our new storage model, allows parallel calls to maintain the invariants of se-

quential calls. Thread seeds, our new thread representation, allows threads to be stolen

without requiring thread migration or shared memory. Lazy-disconnect, our new discon-

nection method, does not restrict the use of pointers. Implicit and Lazy queueing, our two

new queueing mechanisms, eliminate the need for explicit bookkeeping. Additionally, we

develop a core set of compilation techniques and runtime primitives that form the basis for

the e�cient implementation of any design point.

We have evaluated the di�erent approaches by incorporating them into a compiler

for an explicitly parallel extension of Split-C. We show that there exist points in the design

space (e.g., stacklet, thread seeds, lazy-disconnect, and lazy queueing) for which �ne-grained

2

parallelism can be e�ciently supported even on distributed memory machines, thus allowing

programmers freedom to specify the parallelism in a program without concern for excessive

overhead.

iii

Contents

List of Figures vii

List of Tables xi

1 Introduction 1

1.1 Motivation : 1
1.2 The Goal : 3
1.3 Contributions : 6
1.4 Road Map : 6

2 Multithreaded Systems 8
2.1 The Multithreaded Model : 8
2.2 Using Fork for Thread Creation : 11
2.3 De�ning the Potentially Parallel Call : 11
2.4 Problem Statement : 13

3 Multithreaded Abstract Machine 14
3.1 The Multithreaded Abstract Machine (MAM) : : : : : : : : : : : : : : : : : 15

3.1.1 Threads : 16
3.1.2 Processors and MAM : 17
3.1.3 Threads Operations : 20
3.1.4 Inlets and Inlet Operations : 22
3.1.5 Thread Scheduling : 24
3.1.6 Discussion : 26

3.2 Sequential Call and Return : 27
3.3 MAM/DF|Supporting Direct Fork : 27

3.3.1 The MAM/DF Scheduler : 29
3.3.2 Thread Operations in MAM/DF : 30
3.3.3 Continuation Stealing : 33
3.3.4 Thread Seeds and Seed Activation : : : : : : : : : : : : : : : : : : : 35
3.3.5 Closures : 40
3.3.6 Discussion : 41

3.4 MAM/DS|Supporting Direct Return : 41
3.4.1 MAM/DS Operations : 44

CONTENTS iv

3.4.2 Discussion : 49
3.5 The Lazy Multithreaded Abstract Machine (LMAM) : : : : : : : : : : : : : 50
3.6 Disconnection and the Storage Model : 51

3.6.1 Eager-disconnect : 52
3.6.2 Lazy-disconnect : 54

3.7 Summary : 55

4 Storage Models 57

4.1 Storing a Thread's Internal State : 58
4.2 Remote Fork : 59
4.3 Linked Frames : 59

4.3.1 Operations on Linked Frames : 60
4.3.2 Linked Frame Timings : 60

4.4 Multiple Stacks : 62
4.4.1 Stack Layout and Stubs : 62
4.4.2 Stack Implementation : 64
4.4.3 Operations on Multiple Stacks : 65
4.4.4 Multiple Stacks Timings : 69

4.5 Spaghetti Stacks : 71
4.5.1 Spaghetti Stack Layout : 72
4.5.2 Spaghetti Stack Operations : 72
4.5.3 Spaghetti Stack Timings : 74

4.6 Stacklets : 76
4.6.1 Stacklet Layout : 76
4.6.2 Stacklet Operations : 76
4.6.3 Stacklet Stubs : 78
4.6.4 Compilation : 78
4.6.5 Timings : 79
4.6.6 Discussion : 79

4.7 Mixed Storage Model : 80
4.8 The Memory System : 81
4.9 Summary : 82

5 Implementing Control 84

5.1 Representing Threads : 84
5.1.1 Sequential Call : 84
5.1.2 The Parallel Ready Sequential Call : : : : : : : : : : : : : : : : : : : 85
5.1.3 Seeds : 86
5.1.4 Closures : 87
5.1.5 Summary : 88

5.2 The Ready and Parent Queues : 88
5.2.1 The Ready Queue : 88
5.2.2 The Parent Queue : 89
5.2.3 The Implicit Queue and Implicit Seeds : : : : : : : : : : : : : : : : : 89
5.2.4 The Explicit Queue and Explicit Seeds : : : : : : : : : : : : : : : : : 91

CONTENTS v

5.2.5 Interaction Between the Queue and Suspension : : : : : : : : : : : : 93
5.3 Disconnection and Parent-Controlled Return Continuations : : : : : : : : : 94

5.3.1 Compilation Strategy : 96
5.3.2 Lazy-disconnect : 97
5.3.3 Eager-disconnect : 97

5.4 Synchronizers : 98
5.5 Lazy Parent Queue : 100
5.6 Costs in the Seed Model : 101

5.6.1 The Implicit Parent Queue : 102
5.6.2 The Explicit Parent Queue : 103
5.6.3 The Lazy Parent Queue : 104

5.7 Continuation Stealing : 105
5.7.1 Control Disconnection : 105
5.7.2 Migration : 106

5.8 Integrating the Control and Storage Models : : : : : : : : : : : : : : : : : : 107
5.8.1 Linked Frames : 107
5.8.2 Stacks and Stacklets : 107
5.8.3 Spaghetti Stacks : 108

5.9 Discussion : 110

6 Programming Languages 111

6.1 Split-C+threads : 111
6.2 Example Split-C+threads Program : 112
6.3 Thread Extensions to Split-C : 115

6.3.1 Fork-set statement : 115
6.3.2 Pcall Statement : 116
6.3.3 Fork statement : 116
6.3.4 Start Statement : 116
6.3.5 Suspend Statement : 117
6.3.6 Yield Statement : 118
6.3.7 Function Types : 118
6.3.8 Manipulating Threads : 118

6.4 Split-Phase Memory Operations and Threads : : : : : : : : : : : : : : : : : 119
6.5 Other Examples : 120

6.5.1 Lazy Thread Style : 120
6.5.2 I-Structures and Strands : 122

6.6 Split-C+Threads Compiler : 125
6.7 Id90 : 128

7 Empirical Results 129
7.1 Experimental Setup : 130
7.2 Compiler Integration : 130
7.3 Eager Threading : 131
7.4 Comparison to Sequential Code : 134

7.4.1 Register Windows vs. Flat Register Model : : : : : : : : : : : : : : 134

CONTENTS vi

7.4.2 Overall Performance Comparisons : : : : : : : : : : : : : : : : : : : 135
7.4.3 Comparing Memory Models : 135
7.4.4 Thread Representations : 139
7.4.5 Disconnection : 143
7.4.6 Queueing : 145

7.5 Running on the NOW : 147
7.6 Using Copy-on-Suspend : 152
7.7 Suspend and Steal Stream Entry Points : 153
7.8 Comparing Code Size : 153
7.9 Id90 Comparison : 154
7.10 Summary : 155

8 Related Work 157

9 Conclusions 160

A Glossary 163

Bibliography 168

vii

List of Figures

1.1 Examples of potentially parallel calls. : 4

2.1 One example implementation of a logically unbounded stack assigned to each

thread. The entire structure is called a cactus stack. : : : : : : : : : : : : : 9
2.2 Logical task graphs. : 12

3.1 The syntax of the formal descriptions. : 15
3.2 Formal de�nition of a thread as a 7-tuple. : : : : : : : : : : : : : : : : : : : 16
3.3 Formal de�nition of a processor as a 4-tuple. : : : : : : : : : : : : : : : : : 17
3.4 Formal de�nition of the MAM as a 5-tuple. : : : : : : : : : : : : : : : : : : 18
3.5 Example translation of a function into psuedo-code for the MAM. : : : : : 19
3.6 The thread exit instruction. : 20
3.7 The yield instruction. : 21
3.8 The suspend operation. : 21
3.9 The fork operation for MAM. : 21
3.10 The send instruction. : 23
3.11 The ireturn instruction. : 24
3.12 The legal state transitions for a thread in MAM. : : : : : : : : : : : : : : : 25
3.13 The enable instruction. : 25
3.14 Describes how an idle processor gets work from the ready queue. : : : : : : 25
3.15 Rede�nition of the machine and thread for MAM/DF. : : : : : : : : : : : : 29
3.16 The legal state transitions for a thread in the MAM/DF without work stealing. 30
3.17 The fork operation under MAM/DF. : 31
3.18 The dfork operation under MAM/DF transfers control directly to the forked

child. : 31
3.19 The dexit operation under MAM/DF transfers control directly to the parent. 32
3.20 The suspend operation under MAM/DF for a lazy thread. : : : : : : : : : : 33
3.21 The new state transitions for a thread in MAM/DF using continuation stealing. 34
3.22 Formal semantics for stealing work using continuation stealing. : : : : : : : 34
3.23 Three possible resumption points after executing dfork. : : : : : : : : : : : 35
3.24 Example thread seed and seed code fragments associated with dforks. : : : 36
3.25 Work stealing though seed activation. : 38

LIST OF FIGURES viii

3.26 Example translation of a function into psuedo-code for the MAM/DF using

thread seeds. : 38
3.27 Example of seed activation. : 39
3.28 The seed return instruction is used to complete a seed routine. : : : : : : : 39
3.29 Example translation of a function into psuedo-code for the MAM/DS using

thread seeds. : 43
3.30 Rede�nition of a thread for MAM/DS. : 43
3.31 A pseudo-code sequence for an lfork with its two associated return paths. 45
3.32 The lfork operation in MAM/DS. : 46
3.33 The lreturn operation in MAM/DS when the parent and child are connected

and the parent has not been resumed since it lforked the child. : : : : : : 46
3.34 The suspend operation in MAM/DS. : 47
3.35 The lreturn operation when the parent and child have been disconnected by

a continuation stealing operation. : 48
3.36 The lreturn operation in MAM/DS when a thread seed in the parent has

been activated. : 49
3.37 The lfork operation in LMAM with multiple stacks. : : : : : : : : : : : : : 51
3.38 Eager-disconnect used to disconnect a child from its parent when a linked

storage model is used. : 52
3.39 An example of eager-disconnect when the child is copied to a new stack. : : 52
3.40 An example of eager-disconnect when the parent portion of the stack is copied

to a new stack. : 53
3.41 The suspend operation under LMAM/MS and LMAM/S using child copy for

eager-disconnect. : 53
3.42 An example of how a parent and its child are disconnected by linking new

frames to the parent. : 55
3.43 The suspend operation for LMAM/MS and LMAM/S using lazy-disconnect. 55
3.44 The lfork operation under LMAM/MS using lazy-disconnect after a thread

has been disconnected from a child. : 56

4.1 A cactus stack using linked frames. : 59
4.2 A cactus stack using multiple stacks. : 62
4.3 Layout of a stack with its stub. : 63
4.4 Allocating a sequential call or an lfork on a stack. : : : : : : : : : : : : : : 65
4.5 Allocating a new stack when a fork is performed. : : : : : : : : : : : : : : : 66
4.6 Disconnection using child-copy for a suspending child. : : : : : : : : : : : : 68
4.7 Disconnection caused by seed activation. : 68
4.8 Disconnection caused by continuation stealing. : : : : : : : : : : : : : : : : 69
4.9 Two examples cactus stacks using spaghetti stacks. : : : : : : : : : : : : : : 71
4.10 Allocation of a new frame on a spaghetti stack. : : : : : : : : : : : : : : : : 72
4.11 Deallocating a child that has run to completion. : : : : : : : : : : : : : : : 73
4.12 Deallocating a child that has suspended but is currently at the top of the

spaghetti stack. : 73
4.13 Deallocating a child that has suspended and is in the middle of the stack. : 74
4.14 A cactus stack using stacklets. : 76

LIST OF FIGURES ix

4.15 The basic form of a stacklet. : 77
4.16 The result of a sequential call which does not overow the stacklet. : : : : : 77
4.17 The result of a fork or a sequential call which overows the stacklet. : : : : 77
4.18 A remote fork leaves the current stacklet unchanged and allocates a new

stacklet on another processor. : 78

5.1 Pseudo-code for a parallel ready sequential call and its associated return

entry points. : 86
5.2 Example of a closure and the code to handle it. : : : : : : : : : : : : : : : : 87
5.3 An example of a cactus stack split across two processors with the implicit

parent queue embedded in it. : 90
5.4 Example of when a fork generates a thread seed, and when it does not. : : : 90
5.5 Example of how an explicit seed is stored on the parent queue. : : : : : : : 92
5.6 A comparison of the di�erent implementations of suspend depending upon

the type of parent queue. : 93
5.7 Example implementation of two lforks followed by a join. : : : : : : : : : : 95
5.8 Each fork-set is compiled into three code streams. : : : : : : : : : : : : : : : 96
5.9 An example of applying the synchronizer transformation to two forks followed

by a join. : 99
5.10 The table on the left shows how a seed is represented before and after con-

version. The routines that aid in conversion are shown on the right. : : : : 101
5.11 Example implementation of a parallel ready sequential call with its associated

inlets in the continuation-stealing control model. : : : : : : : : : : : : : : : 105
5.12 A parallel ready sequential call with its associated steal and suspend routines,

helper inlets, and routines for handling thread migration. : : : : : : : : : : 106
5.13 A local-thread stub that can be used for either stacks or stacklets. : : : : 108
5.14 Code fragments used to implement a minimal overhead spaghetti stack. : : 109

6.1 An implementation of the Fibonacci function in Split-C+threads. : : : : : : 113
6.2 The new keywords de�ned in Split-C+threads. : : : : : : : : : : : : : : : : 114
6.3 New syntax for the threaded extensions in Split-C+threads. : : : : : : : : : 114
6.4 Example uses of forkset. : 115
6.5 Implementation of I-structures in Split-C+threads using suspend. : : : : : 123
6.6 The ow graph for the sequential and suspend code-streams for a forkable

function compiled with an explicit parent queue, the stacklet storage model,

lazy-disconnect, and thread seeds. : 126

7.1 The grain micro-benchmark. : 132
7.2 Improvement shown by lazy multithreading relative to eager multithreading. 132
7.3 Memory required for eager and lazy multithreading. : : : : : : : : : : : : : 133
7.4 Slowdown of uniprocessor multithreaded code running serially over GCC code.136
7.5 Average slowdown of multithreaded code running sequentially on one pro-

cessor over GCC code. : 137
7.6 Comparison of the three memory models. : : : : : : : : : : : : : : : : : : : 138

LIST OF FIGURES x

7.7 Comparison of continuation stealing and seed activation when all threads run

to completion. : 140
7.8 The execution time ratio between the continuation-stealing model and the

thread-seed model when the �rst pcall of the fork-set suspends. : : : : : : : 141
7.9 Comparing the e�ect of which of the ten pcalls in a fork-set suspends. : : : 142
7.10 Comparing thread representations as the percentage of leaves that suspend

increases. : 142
7.11 Comparison of eager and lazy disconnection when all the threads run to

completion. : 143
7.12 Comparison of eager and lazy disconnection as the number of leaves suspend-

ing changes. : 144
7.13 Comparison of eager and lazy disconnection when the �rst pcall in a fork-set

with two (or ten) pcalls suspends. : 144
7.14 Comparison of the three queueing methods|explicit, implicit, and lazy|for

grain when all threads run to completion. : : : : : : : : : : : : : : : : : : : 146
7.15 Comparison of the queueing mechanisms as the number of threads suspending

increases. : 146
7.16 Speedup of grain on the NOW relative to a version compiled with GCC on

a single processor. : 147
7.17 A breakdown of the overhead when running on one processor of NOW. : : : 148
7.18 Speedup of lazy threads (stacklets, thread seeds, lazy disconnection, and

explicit queue) on the CM-5 compared to the sequential C implementation

as a function of granularity. : 149
7.19 The e�ect of reducing the polling frequency. : : : : : : : : : : : : : : : : : : 149
7.20 Speedup of grain for the explicit and lazy queue models. : : : : : : : : : : : 150
7.21 Speedup of an unbalanced grain where there is more work in the second

pcall of the fork-set. : 151
7.22 Speedup of an unbalanced grain where there is more work in the �rst pcall

of the fork-set. : 151
7.23 Speedup and e�ciency achieved with and without copy-on-suspend. : : : : 152
7.24 The amount of code dilation for each point in the design space. : : : : : : : 154
7.25 Which points in the design space are e�ective and why. : : : : : : : : : : : 155

xi

List of Tables

2.1 Comparison of features supported by di�erent programming systems. : : : : 9

4.1 Times for the primitive operations using linked frames. : : : : : : : : : : : : 61
4.2 Times for the primitive operations using multiple stacks. : : : : : : : : : : : 70
4.3 Times for the primitive operations using spaghetti stacks. : : : : : : : : : : 75
4.4 Times for the primitive operations using stacklets. : : : : : : : : : : : : : : 79
4.5 Times for the primitive operations using a sequential stack for purely sequen-

tial calls, stacklets for potentially parallel and suspendable sequential calls

with moderate sized frames, and the heap for the rest. : : : : : : : : : : : : 80

5.1 The cost of the basic operations using an implicit parent queue. : : : : : : : 103
5.2 The cost of the basic operations using an explicit parent queue. : : : : : : : 104
5.3 The cost of the basic operations using an lazy parent queue. : : : : : : : : : 104

7.1 Comparison of basic thread operations using library packages versus compiler

integration. : 131
7.2 Comparison of grain compiled by GCC for register windows and for a at

register model. : 134
7.3 The minimum slowdowns relative to GCC-compiled executables for the dif-

ferent memory models and where in the design space they occur for a grain

size of 8 instructions. : 135
7.4 Dynamic runtime in seconds on a SparcStation 10 for the Id90 benchmark

programs under the TAM model and lazy threads with multiple strands. : : 155

1

Chapter 1

Introduction

1.1 Motivation

As parallel computing enters its adolescence its success depends in large part on

the performance of parallel programs in the non-scienti�c domain. Typically these pro-

grams are less structured in their control ow, resulting in irregular parallelism and the

increased need to support multiple dynamically created threads of control. Hence, the suc-

cess of parallel computing hinges on the e�cient implementation of multithreading. This

dissertation shows how to e�ciently implement multithreading on standard architectures

using novel compilation techniques, making it possible to tackle a broad class of problems

in modern parallel computing. The goal of this thesis to present and analyze an e�cient

multithreading system.

Many modern parallel languages provide methods for dynamically creating mul-

tiple independent threads of control, such as forks, parallel calls, futures, object methods,

and non-strict evaluation of argument expressions. These threads describe the logical par-

allelism in the program, i.e., the parallelism that would be present if there were an in�nite

number of processors to execute the threads. The language implementation maps the dy-

namic collection of threads onto the set of physical processors executing the program, either

by providing its own language-speci�c scheduling mechanisms or by using a general threads

package. These languages stand in contrast to languages with a single logical thread of con-

trol, such as High Performance Fortran [38], or a �xed set of threads, such as Split-C [15]

and MPI [21], which are typically targeted to scienti�c applications.

CHAPTER 1. INTRODUCTION 2

There are many reasons to have the logical parallelism of the program exceed the

physical parallelism of the machine, including ease of expression and better resource uti-

lization in the presence of synchronization delays, load imbalance, and long communication

latency [44, 63]. When threads are available to the programmer they can be used to cleanly

express multiple goals, co-routines, and parallelism within a single program. Threads can

be used by the programmer or compiler to hide the communication latency of remote mem-

ory references. More importantly they can be used to hide the potentially long latency

involved in accessing synchronizing data structures or other synchronization constructs.

Load balance can also be improved when many threads are distributed among fewer pro-

cessors on a parallel system. Finally, the semantics of the language or the synchronization

primitives may allow dependencies to be expressed in such a way that progress can be made

only by interleaving multiple threads, e�ectively running them in parallel even on a single

processor [45].

To support unbounded logical parallelism, regardless of the language model, the

underlying execution model must have three key features. First, the control model must

allow the dynamic creation of multiple threads with independent lifetimes. Second, the

model must allow switching between these threads in response to synchronization events

and long-latency operations. Third, since each thread may require an unbounded stack,

the storage model is a tree of stacks, called a cactus stack [29]. Unfortunately, a paral-

lel call or thread fork is fundamentally more expensive than a sequential call because of

the storage management, data transfer, control transfer, scheduling, and synchronization

involved. Much previous work has sought to reduce this cost by using a combination of

compiler techniques and clever runtime representations [16, 36, 44, 48, 49, 53, 57, 61, 63],

or by supporting �ne-grained parallel execution directly in hardware [3, 34, 50]. These ap-

proaches, among others, have been used in implementing parallel programming languages

such as ABCL [65], CC++ [13], Charm [35], Cid [48], Cilk [7], Concert [36], Id90 [16, 49],

Mul-T [39], and Olden [12]. In some cases, the cost of the fork is reduced by severely re-

stricting what can be done in a thread. Lazy Task Creation [44], implemented in Mul-T,

is the most successful in reducing the cost of a fork. However, in all of these approaches, a

fork remains substantially more expensive than a simple sequential call.

CHAPTER 1. INTRODUCTION 3

1.2 The Goal

Our goal is to support an unrestricted parallel thread model and yet reduce the

cost of thread creation and termination to little more than the cost of a sequential call

and return. We also want to reduce the cost of switching and scheduling threads so that

the �ne-grained parallelism needed to implement unstructured parallel programs will not

adversely a�ect the overall performance of these programs.

We observe that �ne-grained parallel languages promote the use of small threads

that are often short lived, on the order of a single function call. However, the advantages

of �ne-grained parallelism can be overwhelmed by the overhead of creating a new thread,

which is inherently a more complex and expensive operation than sequential call. Fortu-

nately, logically parallel calls can often be run as sequential calls. For example, once all

the processors are busy, there may be no need to spawn additional work, and in the vast

majority of cases the logic of the program permits the child to run to completion while

the parent is suspended. Thus, a parallel call should be viewed as a potentially parallel

call|that is, a point in the computation where an independent thread may, but will not

necessarily be created. The problem is that in general when the thread is created there is

no way to know whether it will complete without suspending or if it will need to run in

parallel with its parent.

In Figure 1.1 we show three examples of forks that are potentially parallel calls. In

Figure 1.1a fork fib(n) is a potentially parallel call because if all the processors are busy

�b(n) can run to completion while the invoker is suspended. In Figure 1.1b, the the thread

created by fork consumer(queue) can run to completion if the the shared queue, q, is never

empty and getItem(q) never suspends. However, it is a potentially parallel call because if

the queue becomes empty the thread running consumer will suspend and it needs to run in

parallel with a thread that �lls up the shared queue. The last fork of task in Figure 1.1c is a

potentially parallel call because if iptr points to another processor, then the get operation

(i = *iptr;) can suspend causing the thread running task to suspend. If, iptr points to a

location on the same processor as is running the thread, then the operation will complete

immediately, in other words, it can run to completion in serial with its parent.

We implement a potentially parallel call almost exactly like a stack-based sequen-

tial call to exploit the fact that most such calls complete without suspending. This is

di�erent than a typical implementation which assumes all parallel calls will run in paral-

CHAPTER 1. INTRODUCTION 4

1 int fib(int n)

2 {

3 int x,y;

4

5 if (n <= 2) return 1;

6 forkset {

7 // control leaves forkset when all forks in forkset have completed.

8 x = fork fib(n-1);

9 y = fork fib(n-2);

10 }

11 return x+y;

12 }

(a) fork fib(n)

1 void consumer(SharedQueue q)

2 {

3 int item;

4

5 while ((item = getItem(q)) != END)

6 {

7
.
.
.

8 }

9 }

(b) fork consumer(queue)

1 void task(int global* iptr)

2 {

3 int x;

4

5
..
.

6 i = *iptr;

7
.
..

8 }

(c) fork task((int global *)&i)

Figure 1.1: Examples of potentially parallel calls.

lel. The typical implementation allocates a child frame on the heap, stores the arguments

into the frame, schedules the child. Later the child is run, stores its results in its parent

frame, schedules the parent, and returns the child frame to the heap store. We, on the

other hand, implement the potentially parallel call as a parallel-ready sequential call. We

call our overall approach lazy threads. The call allocates the child frame on the stack of the

parent, like a sequential call. As with a sequential call, control is transferred directly to

the child (suspending the parent), arguments are transferred in registers, and, if the child

returns without suspending, results are transferred in registers when control is returned to

the parent. Moreover, even if the child suspends, the parent is resumed and continues to

execute without copying the stack. Instead, the suspending child assumes control of the

parent's stack, and further children called by the parent are executed on stacks of their

own. In other words, the suspending child steals the thread out from under its parent. If

work is needed by another processor, the parent can be resumed to spawn children on that

processor.

CHAPTER 1. INTRODUCTION 5

The key to an e�ective implementation of lazy threads is to invoke the child|and

suspend the parent|without performing any bookkeeping operations above those required

by a sequential call and yet allow the parent to continue before its lazy child completes. In

order to reach this goal we need to pay attention to four components of the invocation and

suspension processes.

� How the thread state is stored. We investigate four storage models: linked frames,

multiple stacks, spaghetti stacks, and stacklets.

� How work in the parent is represented. We study three di�erent representations for

work in the parent: thread seeds, closures, and continuations.

� How work is enqueued so it can later be found. We investigate three queuing methods:

implicit queues, explicit queues, and lazy queues.

� How the child and parent are disconnected so that the parent may continue before

the child completes. We study two disconnection methods: eager-disconnect and

lazy-disconnect.

The advantage of lazy threads is that when they run sequentially (i.e., when they

run to completion without suspending), they have nearly the same e�ciency as a sequential

call. Yet the cost of elevating a lazy thread into an independent thread of control is close

to that of executing it in parallel outright.

Unlike previous approaches to lazy parallelism, e.g. load-based inlining and Lazy

Task Creation [44], our code-generation strategy avoids bookkeeping operations like cre-

ating task descriptors, initializing synchronization variables, or even explicitly enqueueing

tasks. Furthermore, our approach does not limit the class of legal programs as opposed

to some previous approaches, e.g, [7, 19, 63]. Through careful attention to the program

representation, we pay almost nothing for the ability to elevate a sequential call into a full

thread on demand. This contrasts with previous approaches to lazy parallelism based on

continuation stealing in which the parent continues in its own thread, forcing stack copies

and migration.

CHAPTER 1. INTRODUCTION 6

1.3 Contributions

The main contribution of this thesis is the development of a set of primitives that

can be used to compile �ne-grained parallel programs e�ciently.

� We introduce new memory management primitives, called stacklets and stubs, to more

e�ciently manage the cactus stack.

� We introduce new control primitives, called thread seeds and parent-controlled return

continuations, to reduce the cost of scheduling and synchronizing threads.

� We analyze, for the �rst time, the four dimensional design space for multithreaded

implementations: (1) The storage model (linked frames, multiple stacks, spaghetti

stacks, and stacklets), (2) the thread representations (continuations, thread seeds,

and closures), (3) the queue mechanism (implicit, explicit, or lazy), and (4) the dis-

connection method (eager or lazy). We show how each point in the space can be

implemented using the same set of primitives.

� Using the techniques presented in this thesis, we reimplement several earlier ap-

proaches, allowing us to compare for the �rst time the di�erent points in the design

space in the same environment.

� We develop a new parallel language, Split-C+threads, which is one of the source

languages for our experiments.

� We develop a compiler for a new multithreading language, Split-C+threads, a multi-

threaded extension of Split-C, by implementing our compilation framework in GCC.

� We implement a new back-end of the Id90 compiler, a second source language for

our experiments, which produces signi�cantly faster executables than previous ap-

proaches.

1.4 Road Map

Chapter 2 de�nes the type of multithreaded systems on which this thesis focuses.

Chapter 3 presents an abstract multithreaded machine which embodies the principal con-

cepts behind these systems. We use the abstract machine to explore the four axes of the

CHAPTER 1. INTRODUCTION 7

design space: storage models, disconnection methods, thread representations, and queueing

methods. In Chapter 4 we describe the implementations of the di�erent possible storage

models and how they a�ect the overall e�ciency of multithreading. In Chapter 5 we describe

the mechanisms used by the di�erent control models and show how they interact with the

storage models. Chapter 6 describes the two source languages, Split-C+threads and Id90,

used in our experiments and the techniques used in their compilation. Chapter 7 presents

experimental results which compare the di�erent multithreaded implementations using our

compilation techniques and the mechanisms introduced in Chapters 4 and 5. Chapter 8

discusses related work. Finally, Chapter 9 contains a summary and concluding remarks. A

glossary of special terminology used in this dissertation can be found in Appendix A.

8

Chapter 2

Multithreaded Systems

In this chapter we de�ne the scope of the multithreaded systems that we study in

this dissertation. We begin by de�ning the attributes of a multithreaded system. We then

describe the language constructs for thread creation and de�ne the potentially parallel calls

which can be optimized by our system.

2.1 The Multithreaded Model

A multithreaded system is one that supports multiple threads of control, where

each thread is a single sequential ow of control. We classify multithreaded systems into

three categories: limited multithreading systems, virtual software processor systems, and

virtual hardware processor systems. Limited multithreading systems are those that support

multiple threads of control, but in which each thread must run to completion or a thread

does not have an unbounded stack. This thesis concerns itself primarily with virtualizing a

software processor, i.e., a multithreaded system in which each thread is a virtual processor

with its own locus of control and unbounded stack, but which does not support preemption.

A thread in a virtual hardware processor system is a virtual processor in every sense, i.e.,

each thread has its own locus of control, an unbounded stack, and supports preemption.

There are �ve features that such a system must support to virtualize a hardware

processor:

� Creation: It must be able to create new threads dynamically during the course of

the program. This is in direct contrast to the single-program multiple-data (SPMD)

CHAPTER 2. MULTITHREADED SYSTEMS 9

System Features
Dynamic Pre-
creation Lifetime Suspension Stack emption

Split-C [15] no �xed no Unbounded no

Cilk [8] Yes < parent no N/A no

Filaments [19] Yes < parent no N/A no

C-Threads [14] Yes independent yes �xed no

NewThreads [42] Yes independent yes �xed no

Chorus [54] Yes independent yes �xed no

Solaris Threads [56] Yes independent yes �xed yes

Nexus [22] Yes independent yes �xed yes

Lazy Threads Yes independent yes unbounded no

Table 2.1: Comparison of features supported by di�erent programming systems. N/A

indicates a feature which is not applicable. In particular, in systems which do not support

suspension, threads always run to completion. Thus each thread does not need its own

unbounded stack; all threads can share a single stack.

B

C

A

D

E

F G

Figure 2.1: One example implementation of a logically unbounded stack assigned to each

thread. The entire structure is called a cactus stack.

programming model where the number of threads is �xed throughout the life of a

program (e.g., in Split-C [15] and Fortran-77+MPI [21]).

� Lifetime: Each thread may have an independent lifetime. If the lifetime of a thread

is limited to the scope of its parent or is �xed for the duration of the program, then

there are types of programs, described in Section 2.3, which cannot be represented.

� Stack: Each thread has a logically unbounded stack. Many multithreaded systems

limit the size of a thread's stack (Chorus [54], QuickThreads [37], etc.), which in turn

restricts the kinds of operations that a thread may perform. In contrast, we provide

a logically unbounded stack. This does not require that the stack be implemented in

CHAPTER 2. MULTITHREADED SYSTEMS 10

contiguous memory. Figure 2.1 shows a logically unbounded stack implemented by

linking heap-allocated frames for each function to the frame of the invoking function.

Empirically this structure is tall and thin, so we call it a cactus stack [29].

� Suspension: Threads may suspend and later be resumed. This implies that they can

interact with (and depend on) each other. Systems that do not support suspension

(e.g. Cilk [7] and Filaments [19]) severely restrict the set of programs that can be

expressed. For instance, these systems cannot use threads in producer/consumer

relationships.

� Preemption: A thread may be preempted by another thread. Some multithreaded

systems also allow preemption of threads, which allows fair scheduling of threads.

Without preemption, threads may never get a chance to execute and without some

thought programs can become livelocked. While preemption is essential for operating

system tasks it is less important for application programs.

If a system supports preemption, then a thread is not guaranteed to run inde�nitely.

In fact, the operating system may at any time remove a thread from its processor and

start another thread. This is possibly the most controversial feature of multithreaded

systems. While required in systems where threads are competing for resources, it may

be a burden in systems that support multithreading among cooperating threads. In

the former case, if threads are nonpreemptive, then one thread could block competing

threads from ever executing. In the latter case, however, preemption is not needed to

guarantee that a thread will run. For example, a thread that is computing a result

needed by other threads will always get to run because the threads needing the result

will eventually block. In addition, if preemption exists, then explicit action is required

to ensure atomicity of operations. In the absence of preemption a thread makes

all decisions as to when it can be interrupted, so atomicity is easier to guarantee.1

However, care must be taken to avoid constructs like spinlocks.

In the multithreaded systems we consider, logical parallelism is independent of

physical parallelism. A multithreaded system does not specify whether the individual

1On a distributed memory machine, where local memory is owned by a processor and one processor

cannot access another processor's local memory, atomicity is easily provided by ignoring the network. On

shared memory machines this is harder, but for nonpreemptive systems, compilation techniques can provide

atomicity when required.

CHAPTER 2. MULTITHREADED SYSTEMS 11

threads are run on many hardware processors, on a single hardware processor by time-

slicing, or on a hardware-multithreaded machine.

In short, a multithreaded system supports the dynamic creation of threads, each

of which is suspendable, has an independent lifetime, and has a possibly unbounded stack.

In addition, the system may allow threads to be preempted. In this thesis we are concerned

with virtualizing the processor for a single cooperating task and thus we concentrate on

multithreaded systems that do not support preemption. Our multithreaded system is aimed

at application programs and not operating system tasks.

2.2 Using Fork for Thread Creation

Many constructs have been developed to create and manage multiple threads of

control, such as forks, parallel calls, futures, active objects, etc. These constructs may be

exposed to the programmer in library calls, as in P-Threads [33], or as part of the language,

as in Mul-T [39] and Cilk [7], or, they may be hidden from the programmer but used by

compiler to implement the language, as in Id90 [46].

Fork is the fundamental primitive for creating a new thread. When executed it

creates a new thread, which we call the child thread, that runs concurrently with the thread

that executed the fork, which we call the parent thread. While there are many methods to

synchronize these threads, the most common is a join. The join acts as a barrier for a group

of threads. When they have all executed the join, they join to become a single thread. All

but one of the participating threads cease to exist after control has passed the point of the

join. We call the threads that are synchronized by a single join a fork-set.

All of the other methods for creating threads can be implemented by means of

fork. Henceforth, we use fork and parallel call interchangeably, and only they are mentioned

explicitly.

2.3 De�ning the Potentially Parallel Call

In this section we de�ne the potentially parallel call by looking at the three kinds

of threads that can be created in a multithreaded system: downward, upward, and daemon

threads. This thesis concerns itself mainly with optimizing the potentially parallel call that

CHAPTER 2. MULTITHREADED SYSTEMS 12

(a) (b) (c)

1
2

3

4

5

Only downward threads. Downward threads and one
upward thread, thread 3.

Downward threads and one
daemon thread, thread 5.

6

Figure 2.2: Logical task graphs. Node 1 is a downward thread. Node 3 is an upward thread.

Node 3 is a child of node 2. Node 6 is the youngest ancestor alive at the time of node 3's

death. Node 5 is a daemon thread. Node 6 is a root thread.

creates a downward thread. We also show how threads that ultimately require concurrency,

including upward and daemon threads, can be implemented e�ciently.

The logical task graph represents the interaction among all of the threads created

during the life of a multithreaded program. Each node in the graph represents a thread.

The directed edges represent the transfer of control between threads (See Figure 2.2). Each

node has an edge to each of its children and to the youngest ancestor that is alive at its

death. If no outgoing edge exists for a node, then the thread it represents was still executing

at the end of the program. If no incoming edge ends at a node, then it is a root thread, i.e.,

one of the threads created at program startup. There can be more than one root thread.

By distinguishing three kinds of threads|downward, upward, and daemon|we

are able to precisely de�ne the potentially parallel call. A downward thread is one that

terminates before its parent terminates, its ancestor edge points to its parent. All the

threads in Figure 2.2.a are downward threads. An upward thread is one which terminates

after its parent terminates.2 For example, thread 3 in Figure 2.2.b is an upward thread,

indicated by the upward edge going from thread 3 to thread 6, an ancestor other than its

parent. A daemon thread is one which is not a root thread, but is still alive at the end of the

program, i.e. has no outgoing edges.3 For example, in Figure 2.2.c, thread 5 is a daemon

thread.

When there are neither upward threads nor daemon threads created during an

execution, the logical task graph equals its transpose, i.e., every edge participates in a

2The name \upward" comes about since the characteristics of upward threads mirror those of upward

funargs.
3The name \daemon" is borrowed from Java [26].

CHAPTER 2. MULTITHREADED SYSTEMS 13

simple cycle of length two. In this case, the only synchronization primitive needed for

control is the join primitive. If a downward thread does not suspend, then the fork that

created it could have been replaced with a sequential call. In other words, downward threads

are those created by potentially parallel calls.

On the other hand, daemon and upward threads require that independent threads

be created even if none of them suspend.4 The creation of these threads always incurs the

cost of a fork. Daemon and upward threads are not created with potentially parallel calls,

but with parallel calls.

2.4 Problem Statement

This thesis presents a design space for implementing multithreaded systems with-

out preemption. We introduce a su�cient set of primitives so that any point in the design

space may be implemented using our new primitives. The primitives and implementation

techniques that we propose reduce the cost of a potentially parallel call to nearly that of

a sequential call, without restricting the parallelism inherent in the program. Using our

primitives we implement a system (in some cases a previously proposed system) at each

point in the design space.

4Similar to tail recursion elimination, some upward threads can be treated as downward threads. If

an upward thread is to be joined with one of its ancestors, then before it terminates it must be given a

continuation to the ancestor with which it will join. If the parent is a downward thread and creates a child

thread as its last operation, it can give the child the parent's own return continuation and then terminate

itself. In other words, the parent can wait for its child to complete before returning itself. For this reason,

we treat the apparently upward child thread as a downward thread.

14

Chapter 3

Multithreaded Abstract Machine

In this chapter we describe the primitives needed to e�ciently implement poten-

tially parallel calls on a multithreaded system. We divide these primitives into two classes:

storage primitives and control primitives. Storage primitives are used to manage the thread

state and to maintain the global cactus stack. Control primitives are used to manage control

ow through thread creation, suspension, termination, etc. These primitives support the

potentially parallel call without restricting parallelism, yet bring the cost of thread creation

and termination down to essentially the cost of the sequential call and return primitives.

As we formalize the multithreaded system, we introduce the abstract primitives

that will be used in our implementations. We discuss the thread representation mechanisms:

threads, closures, thread seeds, and continuations. We present the two basic methods for

disconnecting a lazy thread from its parent and elevating the child to an independent thread:

eager-disconnect and lazy-disconnect. We then formalize the four basic storage models that

can be used to store thread state: linked frames, multiple stacks, stacklets, and spaghetti

stacks. The di�erent queueing methods are discussed in Chapter 5.

Our exposition proceeds from a basic machine (MAM) to one which e�ciently

executes potentially parallel calls (LMAM) in four steps. We begin by formalizing a basic

multithreaded abstract machine (MAM).We next show how to make forks similar to calls by

introducing a direct fork operation (MAM/DF). Next we introduce an abstract machine that

makes the termination operation similar to the return mechanism (MAM/DS). Finally, we

incorporate more e�cient storage management into a lazy multithreaded abstract machine

(LMAM). This last abstract machine has all the primitives necessary for e�cient potentially

parallel calls.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 15

<> Used to enclose a tuple.

inst[ip] The instruction at address ip.

� Indicates that the �eld has no valid value.

[) Represents a sequence which has been de�ned only on the values given,
but which can expand in�nitely, e.g., a stack.

> Can be any value of the correct type.

? Used for �elds with a null value.

�x The contents of memory location x.

rx Register number x.

x y x is assigned the value y.

x � y x is de�ned to be y.

x = y x has the value y.

Figure 3.1: The syntax of the formal descriptions.

While there are many ways to distribute work among processors we focus on work

stealing. Work stealing is a method of \pulling" work, i.e., threads, to idle processors.

One of the focuses of this work is the representation of threads that are assigned to idle

processors. We shall describe two methods of work stealing: continuation stealing and seed

activation. Both continuation stealing and seed activation continue work in the parent while

its child is still alive. Continuation stealing resumes the parent by resuming the parent's

current continuation. Seed activation resumes work generated by the parent, the work is a

child thread that would have been created if the parent's continuation had been stolen and

the parent immediately executed a fork.

This chapter introduces a substantial amount of new terminology. The reader may

want to refer to the glossary in Appendix A. It is suggested that on �rst reading the formal

de�nitions and rewrite rules be skipped.

3.1 The Multithreaded Abstract Machine (MAM)

In this section we de�ne a multithreaded abstract machine (MAM) and the com-

ponents that make up all multithreaded systems, e.g. threads and processors. In MAM

each thread operation is implemented in the most naive and direct manner possible. This

will serve as the basis for the re�nements required to make multithreading more e�cient.

It also models the multithreaded systems as implemented in much of the previous work.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 16

Thread := hip; sp; tp; �; s; ip; li

Where ip is valid when the thread is not running and represents the address to
continue at in the thread.

sp is valid when the thread is not running and represents the current
stack pointer for the thread.

tp is a pointer to its parent thread. If it has no parent thread (the case
with daemon threads) then it is �.

� represents the current thread status. � 2 fready; running; idleg. At
any instance a thread can be in only one state.

s is the thread's stack.

ip is the thread's return inlet, an instruction address. It points to the
inlet used to return results to the parent. This �eld combined with tp

compromise the return register. Inlets are de�ned in Section 3.1.4.

l is either unlocked (�) or locked (
). A thread is locked to allow certain
operations to be carried out atomically.

Figure 3.2: Formal de�nition of a thread as a 7-tuple. The return register is broken down

into its two components, the parent thread and the inlet address (�elds three and six

respectively). The state of the thread is included in the 7-tuple. Finally, a lock bit is

included.

3.1.1 Threads

In this work a thread is a locus of control that can perform calls to arbitrary

nesting depth, suspend at any point, and fork additional threads. Threads are scheduled

independently and are non-preemptive.

Each thread has an associated instruction pointer (ip), stack pointer (sp), stack

(s), and return register(tp and ip). The instruction pointer points to the next instruction

to be executed in the thread. The stack pointer points to the top of the thread's stack and

the end of the current activation frame. The return register is used to return results to the

parent and contains a continuation to an inlet in the thread's parent.1

The general registers are associated with the processor, not the thread. In partic-

ular, the general registers used to carry out the computation must be explicitly saved (or

restored) when a thread exits (or is entered).

The formal de�nition of a thread, as shown in Figure 3.2, di�ers from the descrip-

tion in the previous paragraph to facilitate the de�nition of the operational semantics of

1Inlets are de�ned in Section 3.1.4.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 17

Processor := hip; sp; t; Ri

Where ip is the instruction pointer.

sp is the stack pointer.

t is the thread being executed by the processor. If no thread is being exe-
cuted, then the thread executes the dispatch thread, which is indicated
by the ip �eld having the address wait.

R is the set of general-purpose registers, fr1; r2; : : :g.

Figure 3.3: Formal de�nition of a processor as a 4-tuple.

the MAM. In particular, each thread has an associated lock ag (l) and state �eld (�).

The lock ag is used to describe which thread and inlet operations must execute atomically

with respect to other operations. The state �eld is used to describe the scheduling status

of a thread: running indicates that the thread is assigned to a processor and currently

executing, ready indicates that the thread is on the MAM ready queue and can be assigned

to a processor, and idle indicates that the thread is neither running or ready. These states

and thread scheduling transitions are fully described in Section 3.1.5.

Of course, any data from the thread needed for the operation of MAM can be

stored in the thread's stack. We represent the thread as a separate tuple in order to make

the rewrite semantics easier to understand.

3.1.2 Processors and MAM

A processor is the underlying hardware that threads execute on; it is what the

threads are virtualizing. Each processor has an instruction pointer (ip), a stack pointer

(sp), a running thread (t), and a set of general-purpose registers (R). The thread currently

running on the processor has access to all the registers in R. We represent a processor as a

4-tuple as shown in Figure 3.3. Notice that the processor does not have a stack associated

with it, but a stack pointer. The stack which is pointed to by sp is the one contained in t.

MAM is composed of a single global address space2 (M and S) which is accessible

by all threads, a set of (possibly only one) processors (P), and a ready queue (Q). The ready

queue contains the set of threads that are ready to execute, i.e., those in the ready state.

Despite its name, the ready queue is not necessarily a queue and nothing in the semantics

2The address space may be composed of distributed or shared memory.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 18

Machine := hP; T;Q; S;Mi

Where P is the set of processors.

T is the set of all threads.

Q is the ready queue. This is the set of threads in the ready state.

S is the set of currently allocated stacks. Each s 2 S can grow in�nitely.
(
[
s2S

s) �M and 8s; t 2 S; s \ t = ;.

M is the entire global memory, including the heap and all of the stacks.

Figure 3.4: Formal de�nition of the MAM as a 5-tuple.

of MAM depends on it having any particular structure. It may also be distributed among

the processors. We use the terms \enqueue" and \dequeue" to mean add to or remove

from a data structure without requiring that the element be added at (or removed from) a

particular location in the data structure. We represent the MAM formally as a 5-tuple as

shown in Figure 3.4.

The code for a program on MAM is divided into two classes: codeblock and inlet.

The codeblock code performs the actual work of the threads. The inlet code, described in

Section 3.1.4, is the portion of the program that performs inter-thread communication. The

program text is divided in this manner to highlight the fact that the codeblock code carries

out the computation in the program while the inlet code is generated by the compiler to

handle the communication.

We concern ourselves here with the instructions that a�ect multithreading. The

instructions that may appear in a codeblock are fork, exit, suspend, yield, and send3.

These instructions create, terminate, suspend, yield, and send data to a thread, respectively.

The inlet instructions are recv, enable, and ireturn, which handle incoming communica-

tion to a thread. Standard instructions (e.g., arithmetic, logical, memory, control transfer,

etc.) may be used in either codeblock or inlet code.

In order to give the reader an overview of how the individual instructions work

together we now present an example program with a translation for the MAM. The reader

is not expected to understand all the details of the individual instructions. Figure 3.5 shows

an example translation of a simple function with two forks and a join. The �rst 9 lines are

3There is no explicit join instruction, as join is synthesized from more basic instructions.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 19

int function()
{

int a,b,c;

a = fork X();
b = fork Y();
join;
c = a+b;
return c;

}

1: function:
2: set synch=2
3: fork inlet1 = X()
4: fork inlet2 = Y()
5: suspend
6: // enable will restart here.
7: add c = a + b
8: send t p, i p, c

9: exit

10:inlet1:
11: recv a
12: add synch = synch - 1
13: cmp synch, 0
14: be enab
15: ireturn
16:
17:inlet2:
18: recv b
19: add synch = synch - 1
20: cmp synch, 0
21: be enab
22: ireturn
23:
24:enab:
25: enable
26: ireturn

Codeblock Code

Inlet Code

Figure 3.5: Example translation of a function with two forks into psuedo-code for the MAM.

tp is the parent thread. ip is the parent inlet.

the codeblock code. They handle all the operations in the user code except for receiving

the results from the spawned children. Lines 10{26 are the inlet code, which consists of

two inlets. Each handles the result from a child thread and also schedules the thread when

appropriate.

The join is accomplished by setting a synchronization variable, synch, to the num-

ber of forks in the fork-set, in this case 2 (in Line 2). When the children return they

decrement the synchronization variable (in Lines 12 and 19) and, if the variable is zero,

they enable the thread (in Line 25), indicating that the join has succeeded.

The function starts by setting the synchronization variable, and then the forks

are performed followed by a suspend, which causes the runtime system to spawn another

thread that is ready to run, i.e., a thread in the ready state. When the two children �nish,

the codeblock is resumed at Line 7. The thread �nishes by sending the result, c, to an inlet,

ip, of its parent thread, tp. The parent thread and inlet are both stored in the thread state

when the thread is created.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 20

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = exit

and t � h�; �; tp; running; s; i; �i

hP; T 0; Q; S0;M i where p � hwait; �; �; �i
and T 0 � T � ftg
and S0 � S � fsg

Figure 3.6: The thread exit instruction.

Each fork speci�es the inlet that will be invoked when the child thread issues the

send instruction. For example, inlet1 on Line 10 is executed when the �rst child (the one

executing the function X) �nishes. The inlet stores the result into a as speci�ed in the recv

instruction on Line 11. Next the synchronization variable is decremented and tested against

zero. If it is not zero, the inlet ends with an ireturn on Line 15. If the synchronization

variable is zero, then both threads have �nished and the codeblock can continue. The thread

is made ready to run with by the enable in Line 25.

3.1.3 Threads Operations

In addition to standard sequential operations, there are four thread operations

that can be performed by a thread: fork, exit, yield, and suspend. fork creates a

new thread. exit terminates a thread and frees all the resources associated with it (see

Figure 3.6). yield allows a thread to give up its processor by placing itself on the ready

queue (see Figure 3.7). suspend causes a thread to give up its processor and marks the

thread as idle (see Figure 3.8). There is no intrinsic join operation, nor is there any intrinsic

operation for testing the status of a thread, but both can be synthesized.

fork creates and initializes a new thread (see Figure 3.9). fork has two mandatory

arguments, the start-address and the inlet-address, and an optional list of parameters that

is passed to the new thread.4 We call the thread executing the instruction the parent thread

and the newly created thread the child thread. When fork executes, the child thread's ip is

set to the start-address and its sp is set to the base of its newly allocated stack. It is placed

on the ready queue, and its parent continuation is set to the return continuation speci�ed

4A more general model, such as TAM, separates thread creation from the passing of arguments. In the

more general model, fork can only create the thread. send instructions are then used later to pass the new

thread its arguments. TAM requires this more general model [16].

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 21

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = yield

and t � h�; �; tp; running; s; i; �i
and t0 2 Q

and t0 � hip0; sp0; t0
p
; ready; s0; i0; �i

hP; T;Q0; S;M i where p � hip0; sp0; t0; �i
and t � hip+ 1; sp; tp; ready; s; i; �i
and t0 � h�; �; t0

p
; running; s0; i0; �i

and Q0 � Q� ft0g [ftg

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = yield

and Q = ;
hP; T;Q; S;M i where p � hip+ 1; sp; t; �i

Figure 3.7: The yield instruction. The �rst rule applies when there is at least one other

thread that is ready to run. The second rule applies when there are no other threads in the

ready queue; it is e�ectively a NOP.

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = suspend

and t � h�; �; tp; running; s; i; �i

hP; T;Q; S;M i where p � hwait; �; �; �i
and t � hip+ 1; sp; tp; idle; s; i; �i

Figure 3.8: The suspend operation. A new thread is scheduled on the processor by the Idle

operation (See Section 3.1.5.

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = fork i = adr(arg

1
; arg

2
; : : : ; arg

n
)

and t � h>;>;>;running;>;>; �i
hP; T 0; Q0; S0;M i where p � hip+ 1; sp; t; Ri

and T 0 � T [ftnewg
and Q0 � Q [ftnewg
and S0 � S [fsnewg
and tnew � hadr; snew + n; t; ready; snew; i; �i
and snew � [arg

1
; arg

2
; : : : ; arg

n
)

Figure 3.9: The fork operation for MAM.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 22

in the fork. If there are any arguments passed to the child thread, they are put at the base

of the child thread's stack. The sp is set to the �rst free location in the child thread's stack.

The child thread enters the ready state. Finally, control is passed to the next instruction

in the parent thread.

In MAM, there are no intrinsic synchronization instructions. Instead, synchroniza-

tion instructions are synthesized from the primitives of MAM. Since we are concentrating

on downward threads, the most important synchronization instruction is join, which syn-

chronizes a parent with a set of children that it forked. The parent continues only after

all of its children have reached the join, i.e., when they have all completed. To implement

this, each time a parent forks a child (or a set of children), it increments a counter variable

called a join counter. The inlet that the parent passes to its child decrements the same join

counter, making the parent ready (with enable) if the counter is zero.5 The join operation

is thus a test on the join counter. If it is not zero, then the parent will suspend.

3.1.4 Inlets and Inlet Operations

Inlets and their associated instructions generalize the data transfer portion of the

sequential return instruction for threads. A conventional sequential return instruction im-

plicitly performs two tasks. It transfers control from the child to the parent and it transfers

results from the child to the parent in the processor registers. The calling convention spec-

i�es which processor registers (maybe just one) contain the results to be returned to the

parent. The code executed in the parent by the return instruction (the code following the

call that invoked the child that is issuing the return) may use these results immediately, or

it may store them in the activation frame for later use. Just as a sequential call has a code

fragment that follows it, in MAM each fork is associated with an inlet.

An inlet is a code fragment that processes data received from another thread, which

sends the data to the inlet with a send instruction.6 We call the thread that issues the send

the sending thread and the thread to which the data is sent the destination thread. Because

data and control are not transferred simultaneously the inlet typically has to perform some

synchronization task in addition to storing the data in the destination thread.

5This works because inlets run atomically with respect to each other and the codeblock instructions.
6Of course, inlets may be used to receive data other than results from another thread. They are a general

mechanism that enables one thread to communicate with another.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 23

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = send t0; adr; arg

1
; arg

2
; : : : ; arg

n

and t � h�; �; �; running; �; i; �i
and t0 2 T

and t0 � h>;>;>;>; s0;>; li
and l = �
and inst[adr] = recv slot1; slot2; : : : ; slotn

hP; T;Q; S;M i where p � hadr + 1; sp+ 2; t0; Ri
and s0

[slotx] arg
x
8x; 1 � x � n

and �sp ip

and �(sp+ 1) t

and l

Figure 3.10: The send instruction.

The inlet is run in the sender's thread, but it a�ects the destination thread's state.

In other words, a new thread of control is not started for the inlet. Although an inlet runs in

the sender's thread (and therefore on the sender's processor) it can be viewed as preempting

the destination thread. Thus, thread operations like fork cannot appear in an inlet. Inlets

run atomically with respect to the destination thread and other inlets.

MAM de�nes four instructions that are speci�cally aimed at inlets: send, recv,

ireturn, and enable. send transfers values to another thread. recv is always the �rst

instruction in an inlet; it indicates where the data values speci�ed in the corresponding

send are stored in the destination thread's frame. ireturn is used to return control from

the inlet routine back to the sending thread. Finally, enable places an idle thread in the

ready queue (if it is not already there).

Typically a thread in MAM ends with a send followed by an exit. The send

transfers the data from the child to its parent. This invokes an inlet which stores the data

from the child into the parent frame and then performs a synchronization operation. If the

inlet determines that the parent should be placed on the ready queue, then it executes an

enable. The inlet ends with an ireturn which transfers control back to the parent. The

exit then terminates the child thread.

send speci�es the destination thread, the inlet to execute, and the data to be sent

to the destination thread. As shown in Figure 3.10, a send must be matched with a recv

at the inlet address. recv and send must have the same number and types of arguments.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 24

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = ireturn

and t � h>;>;>;>;>;>; li
and l =

and �(sp� 2) = ip0

and �(sp� 1) = t0

hP; T;Q; S;M i where p � hip0; sp� 2; t0; Ri
and l �

Figure 3.11: The ireturn instruction.

In other words, a send/recv pair is used by threads in place of the processor registers

used by sequential return to transfer data from the child to the parent. send carries out

several operations atomically. First, it locks the destination thread to prevent other inlets

and codeblock instructions from executing for the destination thread.7 It then saves the

sender's thread and ip on the sender's stack. Next it stores the arguments of send in the

appropriate slots of the destination thread's stack, as speci�ed by recv. Finally, it sets the

sender processor's ip to the instruction following the recv. send may appear only in a

codeblock.8

After recv completes, the inlet continues to execute instructions which may access

the destination thread's state. Among these may be enable (see Figure 3.13) and ireturn.

ireturn returns control from the inlet back to the sender's thread, unlocking the destination

thread in the process (see Figure 3.11). ireturn may only appear in an inlet.

3.1.5 Thread Scheduling

During the life of a thread, it may be in one of three states: ready, running, or

idle. A ready thread is one that the scheduler may run when there is a processor available.

A running thread is one that is currently assigned to a processor. An idle thread is waiting

on some event to become ready. The state transitions for a thread are shown in Figure 3.12.

7For readers familiar with active messages [62] the setting of a lock may be confusing. The use of a lock

is strictly to facilitate the de�nition of the rewrite rules. In fact, the lock is implicit on networked machines

because inlets, by construction, run atomically with respect to threads and other inlets.
8To avoid unnecessary complexity, without loss of generality, in the de�nition of MAM we disallow inlets

from issuing send instructions. In particular, if inlets are allowed to issue sends then some mechanism is

needed to prevent deadlock. See [62] for a discussion on allowing inlets to issue sends and how it relates to

distributed memory machines.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 25

Running

Ready Idle

Created by parent

Selected by scheduler

Returned to parent

Enabled by inlet

Suspend

Yield

Figure 3.12: The legal state transitions for a thread in MAM.

hP; T;Q; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = enable

and t � hip0; sp0; tp; �; s; i;
i

hP; T;Q0; S;M i where p � hip+ 1; sp; t; Ri
and t � hip0; sp0; tp; �

0; s; i;
i

and �0 �

�
ready if � = idle

� otherwise

and Q0 �

�
Q [ftg if � = idle

Q otherwise

Figure 3.13: The enable instruction, which is always executed in an inlet. This instruction

is a NOP if t is not in the idle state.

hP; T;Q; S;M i where p 2 P

and p � hwait; �; �; �i
and t 2 Q

and t � hip; sp; tp; ready; s; i; �i

hP; T;Q0; S;M i where p � hip; sp; t; �i
and t � h�; �; tp; running; s; i; �i
and Q0 � Q� ftg

Figure 3.14: Describes how an idle processor gets work from the ready queue.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 26

When an idle thread becomes enabled, i.e., when some thread sends a message to

one of its inlets which executes enable, it becomes a ready thread by being placed on the

ready queue (see Figure 3.13). When a processor is idle, it steals work out of the ready queue

by retrieving a thread from the ready queue (see Figure 3.14). The processor's ip and sp are

then loaded with the thread's ip and sp. The processor continues to execute instructions

from its running thread until the thread suspends (becomes idle), yields (becomes ready,

placing itself on the ready queue), or exits. When the thread exits it frees its stack and

ceases to exist.

3.1.6 Discussion

The abstract machine described here is the basis for most multithreaded systems

that exist today. It can be implemented on a physical machine in many ways. In one

such implementation, each thread is described by a data structure that contains the three

special-purpose registers (ip, sp, and parent) and a pointer to a stack. A thread is mapped

onto a processor by loading the ip and sp into the processor's ip and sp, and if necessary

the registers are loaded from the register save area. Before a thread gives up the processor,

the registers are saved in the register save area, and likewise the ip and sp are saved.9

The fork operation creates a thread data structure, allocates a new stack, initializes the

registers, and places the thread on the ready queue. The ready queue can be implemented

as a queue, bag, or stack|the choice of the ready queue implementation is beyond the

scope of this thesis. The other thread operations are easily implemented.

This naive implementation of MAM satis�es the requirements of a multithreaded

system, but it is more costly than necessary since it treats every potentially parallel call as

a fork of an independent thread. There are four areas of potential ine�ciency:

� There may be many unnecessary enqueue and dequeue operations. For example, when

a parent forks a thread and immediately executes a join operation, the child is put

on the ready queue and the parent suspends whereupon the child is pulled o� the

ready queue and �nally executed. Logically, however, the child could have been run

immediately.

� The processor registers are not used for transferring data, arguments on call, and

results on return between parent and child. This last ine�ciency arises because MAM

9The description does not mandate a particular register save policy.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 27

separates the transfer of data (the arguments in a fork or the results in a send) from

the transfer of control (the actual execution of the child or parent).

� The registers may be unnecessarily saved and restored. For example, the system loads

registers when the thread starts even though none are active.

� The thread may not need an entire stack.

3.2 Sequential Call and Return

Before considering a more e�cient abstract machine, let us review sequential call

and return. Observe that the e�ciency of a sequential call derives from two cooperating

factors. First, the parent is suspended upon call, and all of its descendants have completed

upon return. Second, data and control are transferred together on call and return. The �rst

condition implies that storage allocation for the activation frames involves only adjusting

the stack pointer. The second condition means that arguments and return values can be

passed in registers and that no explicit synchronization is required.

When a sequential call is executed, it passes its child a return address which is a

continuation to the remaining work in the parent. In fact, since the parent can not continue

until its child returns, the return address is a continuation to the rest of the program.

When a sequential return is executed it returns control to its parent through the

return address. We can easily change the destination address because it is stored in memory.

This indirect jump provides the only signi�cant exibility in the sequential call-and-return

sequence, and we exploit it to realize a fork (and later a thread return) which behaves like

a sequential call (and return).

3.3 MAM/DF|Supporting Direct Fork

In this section we present a multithreaded abstract machine with direct fork

(MAM/DF), which eliminates two of the ine�ciencies present in MAM when a child runs

to completion. First, we eliminate extra scheduling, enqueueing, and dequeueing operations

by directly scheduling the child on invocation and directly scheduling the parent when the

child terminates. Second, we transfer data and control simultaneously to the child, so that

we can use registers when a parent invokes a child. The key di�erence between MAM and

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 28

MAM/DF is that MAM/DF introduces a new way to create a thread: the dfork instruction.

A dfork does not create an independent thread, but rather a lazy thread. In this section

we de�ne lazy threads and introduce the three possible new representations for threads:

continuations, thread seeds, and closures.

The MAM/DF dfork behaves more like a sequential call, transferring control di-

rectly to its child on call, and receiving control when the child exits. When a parent forks a

child, instead of creating a new independent thread for the child and placing it on the ready

queue, it places itself on a parent queue and immediately begins execution of the child in a

lazy thread on its processor. When a child completes without suspending, it returns control

of the processor to its parent, which continues execution at the instruction after the fork,

just as if the fork had been a sequential call.

MAM/DF keeps MAM's fork and exit instructions, and adds dfork and dexit,

the direct scheduled versions of fork and exit. fork and exit are used to create and

terminate upward and daemon threads. dfork and dexit are used for downward threads;

dfork implements a potentially parallel call, and dexit terminates it.

Threads created by dfork are called lazy threads. A lazy thread is not independent

on creation, but can become independent in one of three ways. First, it may suspend.

Second, it may yield. Third, an idle processor may choose to \steal" the parent, running

the parent concurrently with the child. In all three cases the relationship between the parent

and child changes so that both may run concurrently as independent threads. When a lazy

thread becomes independent, it or its parent (or both) must be modi�ed to reect the fact

that the child will no longer be returning to a waiting parent.

When a child thread is a lazy thread we say that it is connected to its parent. If,

through suspend, yield, or a steal operation, it becomes an independent thread, we say

that it is disconnected. A thread started by fork is also an independent thread. In the rest

of the dissertation we use the terms independent thread and lazy thread when the context

is not su�cient to disambiguate our use of the word \thread."

Even though dfork transfers control directly to its child, we must allow for the fact

that control may return to the parent before the child has completed, e.g., the child may

suspend on a synchronization event. Thus, MAM/DF must be exible enough to start a

lazy thread which is expected to run to completion but instead suspends before doing so. To

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 29

Machine := hP; T;Q; Z;S;Mi

Where Z is the parent Queue.

Thread := hip; sp; tp; �; s; i; f; li

Where � represents the current thread status.
� 2 fready; running; idle; is-child; has-childg.

f is a ag, either true or false, that indicates whether the thread is connected
to its parent (true) or is an independent thread (false).

Figure 3.15: Rede�nition of the machine and thread for MAM/DF. All elements not explic-

itly de�ned remain the same as in MAM (See Figure 3.3).

handle this, MAM/DF has a parent queue in addition to the ready queue.10 Furthermore,

threads have an additional �eld (the connected ag) and can take on two additional states

(is-child and has-child). See Figure 3.15 for a description of the changes to the Machine

and Thread tuples.

In the Section 3.3.2 we describe the new operations in MAM/DF and signi�cant

changes to the original MAM operations. In Section 3.3.1 we outline the new schedul-

ing methodology. In Sections 3.3.3 and 3.3.4 we address thread representations and new

methods of work stealing.

3.3.1 The MAM/DF Scheduler

In MAM/DF threads may be scheduled by other threads or by the general sched-

uler. There are two queues of threads that are ready to run: a ready queue and a parent

queue. The ready queue, as in MAM, has threads in the ready state. These are scheduled

the same way they are scheduled in MAM using a rule similar to the MAM rule in Fig-

ure 3.14, which assigns a thread in the ready queue to an idle processor.11 Threads in the

parent queue are all in the has-child state and are connected to the child they last invoked

with a dfork. Threads in the parent queue are scheduled either directly by an operation

(suspend, yield, or dexit), or through work stealing.

10The parent queue, despite its name, need not be a queue and nothing in the semantics of MAM/DF

requires it to have any particular structure.
11The change in the MAM rule is to add the disconnect ag to the Thread tuples.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 30

Is-Child

T

Has-Child

T

child exited

created by parent (dfork)

Returned to parent (dexit)

Ready

Running

Has-Child

Idle

F

F

F F

child exited

Creates child
(dfork)

Creates child
(dfork)

created by parent (fork)

Returned to parent

Enabled by inlet

suspend

yield

scheduled by
general scheduler

suspend

yield

Figure 3.16: The legal state transitions for a thread in the MAM/DF without work stealing.

Each node in the graph represents a valid state and the value of the connected ag. The

solid lines indicate transitions due to the execution of an instruction. The dashed line

indicates a transition caused by an outside inuence, in this case the general scheduler.

Figure 3.16 shows the state transitions for a thread. Only threads in the is-child

and running states are actually assigned to processors and executing. Threads in the

has-child state are on the parent queue, while threads on the ready state are on the

ready queue. Essentially, MAM/DF separates the running state of MAM into two states

(running and is-child) and the ready state of MAM into three states (ready, has-child

with connected ag true, and has-child with connected ag false).

If a child is created by dfork, then unless it suspends or yields it will remain on

the left of the diagram, continuously moving between is-child and has-child. Once a

thread becomes independent, it moves to one of the states on the right of the diagram. Only

a thread in running or is-child can return to its parent. This is because only threads in

these states are actually executing on a processor.

3.3.2 Thread Operations in MAM/DF

In MAM/DF, fork creates a new independent thread just as it did in MAM.

However, as shown in Figure 3.17, the connected ag is set to false to indicate that the

thread is independent and will not return control directly to its parent. We sometimes refer

to fork as an eager fork since it always creates an independent thread.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 31

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = fork i = adr(arg

1
; arg

2
; : : : ; arg

n
)

hP; T 0; Q0; Z; S0;M i where p � hip+ 1; sp; t; Ri
and tnew � hadr; snew + n; t; ready; snew; i; false; �i
and snew � [arg

1
; arg

2
; : : : ; arg

n
)

and T 0 � T [ftnewg
and Q0 � Q [ftnewg
and S0 � S [fsnewg

Figure 3.17: The fork operation under MAM/DF.

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = dfork i0 = adr(arg

1
; arg

2
; : : : ; arg

n
)

and t � h�; �; tp; �; s; i; f; �i
and � 2 frunning; is-childg

hP; T 0; Q; Z0; S0;M i where p � hadr; snew; tnew; Ri
and t � hip+ 1; sp; tp; has-child; s; i; f; �i
and tnew � h�; �; t; is-child; snew; i

0; true; �i
and rx arg

x
; 8x;� x � n

and T 0 � T [ftnewg
and S0 � S [fsnewg
and Z0 � Z [ftg

Figure 3.18: The dfork operation under MAM/DF transfers control directly to the forked

child.

The new dfork operation, shown in Figure 3.18, creates and then transfers control

directly to a new child, a lazy thread. It does so by loading the arguments of the fork into

the processor registers, saving a pointer to the parent thread on the parent queue, and then

assigning the processor to the newly created child thread. The state of the new thread is

is-child and its connected ag is set to true, indicating that it is connected to and can

return control directly to its parent. The state of the parent becomes has-child indicating

that it is no longer executing and is on the parent queue.

This abstract machine assumes a caller save protocol for saving registers. It is

assumed that before the dfork is executed there were instructions that saved the active

registers in the parent's stack. Upon return the registers will be restored. It should be

noted that in order for the de�nition of this machine to make sense, there must be signi�cant

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 32

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = dexit

and t � h�; �; tp; is-child; s; i; true; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; has-child; sp; ip; fp; �i

hP; T 0; Q; Z0; S0;M i where p � hipp; spp; tp; Ri
and tp � h�; �; tp

p
; �; sp; ip; fp; �i

and � �

�
is-child if fp = true

running otherwise

and T 0 � T � ftg
and S0 � S � fsg
and Z0 � Z � ftpg

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = dexit

and t � h�; �; tp; running; s; i; false; �i

hP; T 0; Q; Z; S0;M i where p � hwait; �; �; �i
and T � T 0 � ftg
and S � S0 � fsg

Figure 3.19: The dexit operation under MAM/DF transfers control directly to the parent.

The �rst rule applies when the child completes without suspending, i.e., while still in the

is-child state. The second rule applies when the thread has been disconnected from its

parent.

compiler interaction. For example, a thread started by fork puts its arguments on the stack,

while a thread started by dfork puts them in registers.

The dexit operation exits the thread and returns control from a child thread to

its parent (see Figure 3.19). If the child thread is in the is-child state (the parent has to

be in the has-child state), it is terminated and the parent thread is restarted on the same

processor without any intervening operations by the general scheduler. The parent thread

returns to the state it was in before the dfork of the child. This state is either running or

is-child, depending upon the state of the parent's connected ag. If the child thread is

in the running state, dexit behaves like exit;12 it deallocates the thread's resources, but

invokes the general scheduler on the processor.

12Recall that in MAM/DF control and data are passed simultaneously only on call. On return data is

returned with a send and control with dexit.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 33

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = suspend

and t � h�; �; tp; is-child; s; i; true; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; has-child; sp; ip; f; �i

hP; T;Q; Z0; S;M i where p � hipp; spp; tp; �i
and t � hip+ 1; sp; tp; idle; s; i; false; �i
and tp � h�; �; tp

p
; �; sp; ip; f; �i

and � �

�
is-child if f = true

running otherwise

and Z0 � Z � ftpg

Figure 3.20: The suspend operation under MAM/DF for a lazy thread.

suspend and yield also behave di�erently depending upon whether the thread

executing them is in the is-child or running state. If the thread is in the running state,

the MAM versions of these operations apply. (See Figures 3.7 and 3.8.) If, however, the

thread is in the is-child state, the child and parent threads must be disconnected. After

a lazy thread suspends or yields, it becomes independent of its parent, and the parent may

execute another dfork. Since a parent cannot have two children that expect to schedule the

parent directly when they return, the suspending child is changed so that when it returns

it will not schedule the parent directly. This change is indicated by setting the connected

ag to false (see Figure 3.20).

3.3.3 Continuation Stealing

Continuation stealing is one of two methods by which a thread in the parent queue

can resume execution before its child completes. The other, seed activation, is described

in the next section. Continuation stealing resumes execution of a parent at its current

continuation and breaks the connection between a parent and its child. In other words,

it turns the child into an independent thread, removes the parent from the parent queue,

and then resumes the parent at its current ip. Figure 3.21 shows the state transitions for

MAM/DF when continuation stealing is used to e�ect work stealing.

The continuation that is stolen is the same one that the child would have used

had it returned to the parent with dexit. This continuation exists because the child was

started with dfork, which puts a pointer to the parent on the parent queue. The ip and

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 34

Parent Stolen

Is-Child

T

Has-Child

T

child exited

created by parent (dfork)

Returned to parent (dexit)

Ready

Running

Has-Child

Idle

F

F

F F

child exited

Creates child
(dfork)

Creates child
(dfork)

Returned to parent

Enabled by inlet

suspend

yield

scheduled by
general scheduler

suspend

yield

Parent Stolen

created by parent (fork)

Figure 3.21: The new state transitions for a thread in MAM/DF using continuation stealing.

Here we highlight the new transitions introduced when a thread's continuation is stolen.

hP; T;Q; Z; S;M i where p 2 P

and p � hwait; �; �; �i
and tc � hipc; spc; t; has-child; sc; ic; true; �i
and t 2 Z

and t � hip; sp; tp; has-child; s; i; f; �i

hP; T;Q; Z 0; S;M i where p � hip; sp; t; �i
and tc � hipc; spc; t; running; sc; ic; false; �i
and t � h�; �; tp; �; s; i; f; �i

and � �

�
is-child if f = true

running otherwise

and Z0 � Z � ftg

Figure 3.22: The rule for stealing work using continuation stealing when the child of the

stolen thread is not currently running, i.e., the child is in the has-child state.

sp �elds in the parent thread are the continuation. If the child returns after the parent is

stolen, it exits without scheduling the parent because it is now an independent thread.

Figure 3.22 shows the semantics of a continuation stealing operation when the child

of the stolen thread is not currently running on the processor.The resulting con�guration

is very similar to the con�guration of a parent after a child has suspended. The e�ect of

continuation stealing is similar to that of a child suspending, i.e., the parent migrates. The

main di�erence is that the child remains on its processor while the parent (and its ancestors)

will now be scheduled on what was the idle processor.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 35

1 dfork foo(: : :);

2
.
.
. sequential code

case a: sequential code

1 dfork foo(: : :);

2 dfork bar(: : :);

3
.
.
.

case b: another dfork

1
.
.
.

2 dfork foo(: : :);

3 join

case c: a join

Figure 3.23: Three possible resumption points after executing dfork foo.

Any thread in the parent queue can be scheduled using continuation stealing.

However, not all of them have useful work to perform. There are three di�erent situations,

shown in Figure 3.23, that the parent can be in when it is stolen. In the �rst two cases the

parent will execute useful work, either by the sequential code as in case (a) or by creating

a new thread in case (b). In case (c), however, it will suspend immediately after being

scheduled because the join fails.

3.3.4 Thread Seeds and Seed Activation

A thread seed represents the work in a parent thread that can be forked o� into

a new thread. When a parent forks a child it leaves behind a thread seed which is a

continuation up to the next fork in the parent. Seed activation is used by a processor looking

for work, i.e., an idle processor. The idle processor �nds a parent in the parent queue; which

means that the parent has a descendant that is currently executing on a processor. The

processor running the parent's descendant is interrupted and begins to activate the thread

seed, i.e., it executes the continuation previously left behind in the parent, which forks the

next child in the parent. This new child is picked up by the idle processor, the one that

initiated the seed activation. In other words, seed activation is a method of making progress

in the program by causing a thread in the parent queue to create a new thread. The new

thread can then be stolen by another processor. As described below, seed activation uses

thread seeds to instantiate nascent threads. A thread seed is the �rst part of a continuation

to the rest of the program. It is the part that spawns a new thread.

Nascent Threads

A nascent thread is a thread that is ready to start execution, but has not yet done

so. Nascent threads exist because dfork causes control to be transferred from the parent

even when the parent has more work that it can perform, i.e., the instructions after the

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 36

dfork foo()
a:

dfork bar()
b:

dfork baz()

join

a_steal:
// steal code fragment following 1st dfork

fork bar()
sreturn

b_steal:
// steal code fragment following 2nd dfork

fork baz()
sreturn

find(a) = a_steal

find(b) = b_steal

There is no seed for the last dfork.

Stacks for
threadt.

context
pointer

main code
pointer

The thread seed after
threadt executes
dfork foo() .

sp

threadt: <a, sp , tp, has-child , s, ip, f, ⋅>

Figure 3.24: Example thread seed and seed code fragments associated with dforks. The

thread seed shown is simply the �rst two �elds of the thread tuple after thread t executes

dfork foo(). Note that the code, if any, represented by the ellipsis is copied to the steal

fragments.

return continuation. Informally, threads that would have been created in MAM, but have

not yet been created in MAM/DF, are nascent threads. Formally, a nascent thread is a

thread in the logical task graph which is a younger sibling of a thread started by dfork.13

For example, dfork bar() and dfork baz() are nascent threads after the execution of dfork

foo() in Figure 3.24.

Thread Seeds

A thread seed consists of a continuation to the rest of the program and one or

more partial continuations. A partial continuation is a continuation not to the rest of the

program, but only to the portion of the program up to the next fork. It is given by a pointer

to a context (i.e., an activation frame) and a set of related code pointers where each of the

code pointers can be derived at link time from a single code pointer. The code pointer

used to derive the other code pointers in the seed is the main code pointer. The main code

pointer is a continuation to the rest of the program. The derived code pointers are partial

continuations that point to code that is a copy of the code at the main code pointer up to

and including the main code pointer. In other words, a thread seed can be viewed as a set

of continuations where each continuation in the set has the same context and each of the

code pointers in the set can be derived from the main code pointer. Or, more concretely, it

is a set of entry points in a function, each of which performs a di�erent, but related, task.

13A thread s is a sibling of thread t if s and t have the same parent. s is a younger sibling of t if t was

created before s.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 37

In MAM/DF the thread seed is represented by a pointer to a thread. The thread's

sp is the context and the thread's ip is the main code pointer from which all the other code

pointers in the thread seed can be derived. Figure 3.24 shows the thread tuple, and the

portion of it that is the thread seed that represents the nascent thread that will be created

by dfork bar().

There is a thread seed for every dfork that has at least one dfork between it and

its associated join (See Figure 3.24). Each thread seed in MAM/DF has two code pointers.

The main code pointer points to the instruction following its dfork. This is the ip that

the parent is set to after executing the dfork associated with the thread seed. Thus, the

main code pointer for a thread seed is the same instruction pointer that would be saved by

a sequential call instruction. In fact, the creation of a thread seed at runtime is nothing

more than saving the return address of the call to the child thread. The second code pointer

points to a code fragment for seed activation, called the steal code fragment. The steal code

fragment is used to create the new work upon a work stealing request.

Figure 3.24 has a section of a codeblock which includes the steal fragments for

the thread seeds associated with the �rst and second forks. The function find(), which is

computed at compile or link time, returns the derived code pointers from the main code

pointer. This function can be as simple as address arithmetic.

Seed Activation

The key characteristic of seed activation is that a nascent thread is elevated into an

independent thread in the context of its parent. This contrasts with continuation stealing,

where the parent itself is resumed. With continuation stealing the parent is migrated as

opposed to seed activation where the new thread is migrated.

Seed activation (see Figure 3.25) takes several steps. We describe the procedure

with reference to Figures 3.26 and 3.27. First a thread is chosen (tp in Figure 3.27) and

temporarily removed from the parent queue. The thread then begins executing, not at

its current ip, but at the seed routine pointed to by the second code pointer, computed

by find(ip) in Figure 3.25. The seed routine starts at Line 27 of Figure 3.26. This is

state 2 in Figure 3.27. The processor that executes the seed routine is the one currently

executing the lazy thread descended from the thread that owns the seed. (In the example,

processor p is executing tX , the �rst child of tp.) In other words, the idle processor causes

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 38

hP; T;Q; Z; S;M i where p 2 P

and p � hwait; �; �; �i
and prun 2 P

and prun � hiprun; sprun; trun; Ri
and trun � h�; �;>; is-child;>;>; true; lruni
and lrun = �
and tc � h>;>; t; has-child;>;>; true; �i
and t 2 Z

and t � hip; sp; tp; has-child; s; i; f; �i
and t = ancestor(trun)

and tc 6= trun

hP; T;Q; Z0; S;M i where p � < steal; �; �; � >

and prun � hseed(ip); sprun + 2; t; Ri
and �sprun iprun

and �(sprun + 1) trun

and t � h�; sp; tp; has-child; s; i; f; �i
and Z0 � Z � ftg
and lrun =

Figure 3.25: Work stealing though seed activation.

int function()
{

int a,b,c;

a = fork X();
b = fork Y();
join;
c = a+b;
return c;

}

1: function:
2: set synch=2
3: dfork inlet1 = X()
3a: // code, if any, between dforks
4: dfork inlet2 = Y()
5a: cmp synch,0
5b: be continue
5c: suspend
6: continue: // enable will restart here.
7: add c = a + b
8: send t q, i q, c

9: dexit

10: inlet1:
11: recv a
12: add synch = synch - 1
13: cmp synch, 0
14: be enab
15: ireturn
16:
17: inlet2:
18: recv b
19: add synch = synch - 1
20: cmp synch, 0
21: be enab
22: ireturn
23:
24: enab:
25: enable
26: ireturn

Codeblock Code
Inlet Code

27: X_steal:
27a: // duplicate of code in 3a
28: fork inlet2 = Y()
29: sreturn continue

find(4)=27

Figure 3.26: Example translation of a function with two forks into psuedo-code for the

MAM/DF using thread seeds. tq is the parent thread. iq is the parent inlet.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 39

1 MAM/DF hP [fpg; T; Q; Z [ftpg; S;Mi

p hip; sp; tX ; Ri

tp h4; spp; tq; has-child; sp; iq; fp; �i

tX h�; �; tp; �X ; sX ; 10; true; �i

2 MAM/DF hP [fpg; T; Q; Z; S;Mi

p h27; sp+ 2; t; Ri
tp h4; spp; tq; has-child; sp; iq; fp;
i

tX h�; �; tp; �X ; sX ; 10; true; �i

3 MAM/DF hP [fpg; T [ftnewg; Q; Z; S[fsnewg;Mi

p h29; sp+ 2; t; Ri
tp h4; spp; tq; has-child; sp; iq; fp;
i

tX h�; �; tp; �X ; sX ; 10; true; �i

4 MAM/DF hP [fpg; T [ftnewg; Q; Z; S[fsnewg;Mi

p hip; sp; tX ; Ri

tp h5a; spp; tq; has-child; sp; iq; fp;
i

tX h�; �; tp; �X ; sX ; 10; true; �i
tnew h�; �; tp; running; snew; 17; false; �i

Figure 3.27: Example of seed activation assuming tX is executing function X on processor p.

The numbers in the �rst �eld of the thread tuple represent the instruction pointer associated

with the line numbers in Figure 3.26. State 1 occurs right before work stealing happens.

State 2 is right after work stealing occurs. In this case, find(4) = 27. State 3 is after the

fork occurs in line 28. State 4 is after the sreturn has executed.

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp0; t; Ri
and inst[ip] = sreturn ip

new

and t � h�; sp; tp; is-child; s; i; f; li
and �(sp0 � 2) = ip0

and �(sp0 � 1) = t0

and t0 � h�; �;>; is-child;>;>; true; l0i
and l0 =

hP; T;Q; Z 0; S;M i where p � hip0; sp0 � 2; t0; Ri
and t � hip

new
; sp; tp; has-child; s; i; f; li

and l0 �
and Z0 � Z [ftg

Figure 3.28: The seed return instruction is used to complete a seed routine.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 40

a running processor to be interrupted. The seed routine executes and forks o� a new child,

which is mapped to the idle processor though the MAM idle rule (See Figure 3.14). Finally,

the sreturn at the end of the seed routine executes, which returns the parent thread to

the parent queue and sets the parent thread's ip to the instruction following the dfork

associated with the seed routine that was executed.

The seed routine �nishes by executing an sreturn (See Figure 3.28). sreturn

returns control of the processor to the descendant that was interrupted and also returns

the thread to the parent queue, updating the ip of the thread to reect the fact that it

has made progress. When the parent is next resumed, either by its child (through dexit,

suspend, yield) or by another steal request, it will continue execution at the point after

the dfork of the nascent thread it just activated.

Seed activation requires support from the compiler in two ways. First, the compiler

must construct the seed routines and the find() function for every dfork. Second, it must

create two entry points for every thread, one for dfork and one for fork. Because fork

creates the child, stores the arguments, and then continues in the parent, the fork entry

point loads the arguments from the stack into registers and then continues at the dfork

entry point, which assumes that the arguments are in registers. Two entry points are

necessary because a routine which will be dforked in the main computation path may be

forked from a seed routine.

3.3.5 Closures

The main drawback to thread seeds, as compared to continuation stealing, arises

when an dfork is followed by sequential code (case (a) in Figure 3.23). The sequential

code cannot be represented by a thread seed, so if a dfork starts the �rst thread, the total

amount of parallelism available is reduced. In order to solve this problem we introduce

another representation for a thread: the closure.

We introduce a new fork operation, cfork, that creates a closure, which becomes an

independent thread when executed. The closure contains the necessary data (the instruction

pointer and arguments speci�ed in the fork instruction) to start the thread later. Closures

are enqueued on a separate closure queue.

If a single fork is followed by sequential code (which can run in parallel with the

forked child), we use cfork to create a closure instead of creating a lazy thread or an

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 41

independent thread. When the join is reached, one of two things happens to the closure

created for the child. The closure created by the cfork may have been stolen by another

processor, in which case the the join fails, or succeeds depending on the child's completion.

Otherwise the closure is still awaiting execution, in which case the join fails and the closure

is instantiated.

3.3.6 Discussion

MAM/DF eliminates some of the overhead of multithreading by allowing a parent

thread to schedule its child thread directly. This reduces scheduling costs by avoiding a

general-purpose enqueue and dequeue and reduces memory costs by allowing arguments to

be passed in registers. It also exposes the di�erent policies allowed for work representing

threads that can be stolen: continuations, thread seeds, and closures.

Seed activation in MAM/DF creates an independent thread, leaving a parent's

pre-existing child still connected to the parent. We could have chosen to disconnect the

pre-existing child and create the new child with a dfork. This more closely parallels what

must happen with continuation stealing, where the pre-existing child is disconnected from

the parent and the parent continues, which causes new children to be created with lazy

threads. We have chosen to use fork in seed activation for reasons discussed in Chapter 5.

MAM/DF still has scheduling ine�ciencies. A child cannot return control and

data simultaneously to its parent. Instead, as in MAM, a child must return the results

through an inlet and then return control with dexit. Furthermore, if both children execute

sequentially, i.e., they are never disconnected from their parent, we perform unnecessary

synchronization. We now de�ne a machine that allows us to eliminate this overhead.

3.4 MAM/DS|Supporting Direct Return

In this section we modify our multithreaded abstract machine to allow a thread

to directly schedule its child on creation and its parent on return. This optimization allows

control transfer between threads to more accurately mimic that of sequential call and thus,

when the semantics allow, to obtain similar e�ciency. In particular, registers can be used

to transfer both arguments and results.

We present new MAM/DS mechanisms which grant a lazy thread that runs to

completion the ability to return results when it returns control to its parent. The major

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 42

di�erence between MAM/DS and MAM/DF is that in MAM/DS the thread exit operation,

lreturn, can specify return results, which will be transferred in registers directly to the

parent as the thread exits. This change makes lazy thread exit similar to a sequential return

instruction. The creation of lazy threads also changes. In MAM/DS lfork creates a lazy

thread and it di�ers from dfork in that an inlet is not speci�ed. Instead, the instruction

following the lfork is implied as the inlet, just as in a sequential call.

To understand the rami�cations of these changes we need to analyze the actions

carried out on return from a child thread. A return operation consists of three independent

operations. First, it must return the results to its caller. Second, it must update the

synchronization status in the parent (which may have multiple outstanding children). Third,

it must ensure that the parent restarts at the proper continuation address. In MAM and

MAM/DF the �rst two steps are carried out by invoking an inlet on the parent thread. The

third step is achieved because the parent maintains an ip which is the address at which it

will restart when control is transferred to it, either from the general scheduler, from a work

stealing request, or directly from the child.

If we compare these three independent operations to the sequential return instruc-

tion, we see that a return instruction combines all three actions into a single operation. It

returns control to the parent at its return address passing results in registers. The instruc-

tions at the return address act as the inlet and save the results in the parent context. Then

it continues to execute instructions in the parent. There is no synchronization step, since

sequential calls always run to completion. The return address acts as both the inlet address

and the continuation address.

Figure 3.29 shows a translation of a function with two forks into psuedo-code for

MAM/DS using thread seeds. Lines 1{7a are executed when both children run to comple-

tion. The child created in line 3 (4) returns to line 3a (4a). No explicit synchronization is

performed, and arguments and results are transferred directly in registers.

If the �rst child, X, suspends, control is transferred to line 30. This code fragment,

lines 30{40, sets up the synchronization counter (line 31), changes X's inlet address (line

32), forks Y, and then handles Y's return (lines 34{40). The synchronization counter is set

here because the order of return for the two children is no longer known. For the same

reason, X's inlet is changed to inlet1 where it stores its result and performs synchronization

on return. The reader should convince herself that whatever the order of X's and Y's return,

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 43

int function()
{

int a,b,c;

a = fork X();
b = fork Y();
join;
c = a+b;
return c;

}

1: function:
3: lfork slot0 = X()
3a: store a <- result
4: lfork slot1 = Y()
4b: store b <- result
6: continue:
7: add c = a + b
7a: lreturn c

10:inlet1:
11: recv a
12: add synch = synch - 1
13: cmp synch, 0
14: be enab
15: ireturn
16:
17:inlet2:
18: recv b
19: add synch = synch - 1
20: cmp synch, 0
21: be enab
22: ireturn
23:
24:enab:
25: enable
26: ireturn

Codeblock Code
Inlet Code

30:X_suspend:
31: set synch=2
32: set slot0 <- inlet1
33: lfork inlet2 = Y()
34: store b <- result
35: add synch = synch - 1
36:join:
37: cmp synch,0
38: be continue
39: suspend
40: goto continue

41: X_steal:
42: set synch=2
43: set slot0 <- inlet1
44: fork inlet2 = Y()
45: sreturn join

find(3a, suspend) = 30
find(3a, steal) = 38

Steal
stream

Suspend
stream

Figure 3.29: Example translation of a function with two forks into psuedo-code for the

MAM/DS using thread seeds. slot0 and slot1 are slots in the thread's activation frame

used to hold inlet addresses. result is the register used to pass results from callees to

callers.

Thread := hip; sp; tp; �; s; i; f; li

Where i is either an inlet address or an index into the parents inlet return vector.

Figure 3.30: Rede�nition of a thread for MAM/DS. All elements not de�ned remain the

same as in MAM/DF.

the proper synchronization is performed and eventually lines 6{7a will be executed, �nishing

the function.

If a steal request arrives while X is executing, the steal code fragment (lines 41{45)

is executed. This code fragment activates the seed for Y as an independent thread, also

setting up synchronization and changing X's inlet address.

From the previous example we see that in MAM/DS each potentially parallel call

has two associated return paths, one for the case when the child runs to completion, and

the other for the case when the child has been disconnected from the parent. If the child

runs to completion, it can use a mechanism similar to a sequential return, i.e., it returns to

the instruction following the fork. If disconnected the inlet approach of MAM is used.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 44

To support this dual-return strategy in MAM/DS, we introduce indirect inlets.

An indirect inlet is simply an inlet invoked through an indirect jump. The key behind this

change is that the indirect inlet address can be changed by the parent to reect the parent's

current state. We rede�ne the return register in a thread to be a pointer to an indirect inlet

address (See Section 3.4.1). We also rede�ne the find() mapping: find(adr, type) maps

the ip at adr to a code pointer determined by type: one of suspend or steal.

Thread seeds in MAM/DS have three code pointers: the main code pointer, the

suspend code pointer, and the steal code pointer. When thread seeds are used to represent

the nascent threads, find maps the thread's ip, the main code pointer of the thread seed,

to one of two code pointers: find(ip, suspend) returns the suspend code pointer and

find(ip, steal) returns the steal code pointer.

When continuations are used to represent the remaining work in a thread, find

maps the ip in a thread into the continuation that will be stolen. In this case, find ignores

the second argument.14

3.4.1 MAM/DS Operations

MAM/DS replaces dfork with lfork and dexit with lreturn. lfork, like dfork,

creates a lazy thread and transfers control directly to the new thread. lreturn simultane-

ously returns control and data from the child to its parent when possible.

Indirect Inlets

The main challenge in implementing MAM/DS is to support two di�erent return

paths (one for return when the child is connected to the parent and one for return when

the parent and child have been disconnected) with a single instruction. Instead of passing

(to the child) the address of the inlet the child should invoke upon return, lfork passes

the child the address of a location in the parent's frame which contains the inlet address.

We call this location the indirect inlet address. Thus inlet invocation is performed via an

14By using a mapping function to derive the continuation to be stolen from the ip, we blur the distinction

between continuation stealing and seed activation. In previous work, the actual continuation to be stolen

is posted on a queue [44], so that two di�erent continuations need to be saved: one used by the child for

return, and one used by the system for suspension and work stealing. The mapping function eliminates the

need for two continuations and allows us to focus on the more important di�erence between continuation

stealing and seed activation, viz., how they treat the connection between the parent and child.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 45

lfork i = routine(args)
rtc_inlet:

store results
continue:

more code
...

suspend_label:
setup synchronization
goto continue

inlet_after_suspend:
store results
perform synchronization
ireturn

indirect inlet address ← rtc_inlet

indirect inlet address ← inlet_after_suspend

convertReturn(rtc_inlet) = inlet_after_suspend
find(rtc_inlet,suspend) = suspend_label

side effect ofsuspend

side effect oflfork

Figure 3.31: A pseudo-code sequence for an lfork with its two associated return paths.

If the child runs to completion, it returns to rtc inlet. Otherwise, it runs the suspend

routine and later returns to inlet after suspend. This example uses continuation stealing.

indirect jump through the indirect inlet address.15 The key behind this change is that the

indirect inlet address can be changed by the parent to reect the parent's current state.

When the child is invoked, its indirect inlet address is set to the address of an

inlet that behaves like the code after a sequential call. (See inlet rtc inlet in Figure 3.31.)

If the child runs to completion, no synchronization is performed, and the inlet, rtc inlet

runs when the child returns control to the parent, storing the results and continuing. If the

parent is resumed before the child returns (e.g., the child suspends), then the indirect inlet

address is changed (by the routine at suspend_label) to contain a new inlet. The new inlet,

inlet_after_suspend in Figure 3.31, stores the results and then performs the necessary

synchronization. The inlet used after a child suspends must end with an ireturn. This

ensures that control is transferred to the proper place when the inlet �nishes.

Changes to Support Indirect Inlets

To support this new return mechanism many of the operations in MAM/DF are

changed to manipulate the indirect inlet addresses: lfork passes its child an indirect inlet

address, send can take an indirect inlet address, lreturn uses the indirect inlet address for

return, suspend changes the indirect inlet stored in the indirect inlet address, and a work

stealing request also changes the indirect inlet. lfork (see Figure 3.32) sets the indirect

15There is a unique indirect inlet address for each outstanding child. The number of indirect inlet addresses

in a thread's frame is the maximum, over all joins in the thread, of the number of children that the join is

synchronizing.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 46

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = lfork i0 = adr(arg

1
; arg

2
; : : : ; arg

n
)

and t � h�; �; tp; �; s; i; f; �i
and � 2 frunning; is-childg

hP; T 0; Q; Z0; S0;M i where p � hadr; snew; tnew; Ri
and T 0 � T [ftnewg
and S0 � S [fsnewg
and Z0 � Z [ftg
and t � hip+ 1; sp; tp; has-child; s; i; f; �i
and tnew � h�; �; t; is-child; snew; i

0; true; �i
and rx arg

x
; 8x; 0 � x � n

and v[i0] pc+ 1

Figure 3.32: The lfork operation in MAM/DS.

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = lreturn arg

1
; arg

2
; : : : ; arg

n

and t � h�; �; tp; is-child; s; i; f; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; has-child; sp; ip; fp; vp; �i

and vp[i] = ipp

hP; T 0; Q; Z0; S0;M i where p � hipp; spp; tp; Ri
and tp � h�; �; tp

p
; �p; sp; ip; fp; vp; �i

and �p �

�
is-child if fp = true

running otherwise

and T 0 � T � ftg
and S0 � S � fsg
and Z0 � Z � ftpg
and rx arg

x
; 8x; 1 � x � n

Figure 3.33: The lreturn operation in MAM/DS when the parent and child are connected

and the parent has not been resumed since it lforked the child.

inlet address to point at a code fragment immediately following the lfork. This is where

a thread that runs to completion will return. send can either transfer data to an inlet

speci�ed by an address or to an inlet speci�ed by an indirect inlet address.

The actions undertaken by lreturn vary according to the state of the child and

the parent. If the child runs to completion and its parent has never had work stolen from

it, lreturn mimics a sequential return (see Figure 3.33). It reclaims the resources of the

thread executing the lreturn and returns results (in registers) and control to its parent by

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 47

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = suspend

and t � h�; �; tp; is-child; s; i; true; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; has-child; sp; ip; fp; vp; �i

hP; T;Q; Z 0; S;M i where p � hseed(ipp; suspend); spp; tp; �i
and t � hip+ 1; sp; tp; idle; s; i; false; �i
and tp � h�; �; tp

p
; �; sp; ip; fp; vp; �i

and � �

�
is-child if fp = true

running otherwise

and Z0 � Z � ftpg
and vp[i] convertReturn(ipp)

Figure 3.34: The suspend operation in MAM/DS.

invoking the inlet at its indirect inlet address. Thus, when lreturn returns from a child

that executed to completion, the indirect inlet address acts like the return address in a

sequential call. We discuss the other two cases for lreturn below.

suspend (see Figure 3.34) resumes the parent at the continuation indicated by

find(ip, suspend). The reason we cannot continue at the parent's ip, as we did in

MAM/DF, is that the code immediately following the lfork is the return inlet, which

cannot be executed until the child thread actually exits. In addition to resuming the

parent, suspend also changes the indirect inlet address for the parent's outstanding lazy

child to an inlet that receives results for children that have suspended (See Figure 3.31).

The work stealing operations, like suspend, also change the indirect inlet address for the

parent's outstanding lazy child.

Resuming the Parent

When continuation stealing is used to resume the parent, the parent and child

are disconnected and the parent continues at the point in the codeblock that follows the

lfork's associated inlet. (See Figure 3.31.) When the child �nally returns to the parent, it

cannot resume the parent, since the parent was already resumed when its continuation was

stolen. Instead, lreturn runs the inlet in the indirect inlet address and frees the thread's

resources, including the processor. Since the inlet ends with ireturn we can ensure that

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 48

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = lreturn arg

1
; arg

2
; : : : ; arg

n

and t � h�; �; tp; running; s; i; f; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; �p; sp; ip; fp; vp; �i

hP; T 0; Q; Z; S0;M i where p � hvp[i]; spp + 2; tp; Ri
and tp � hipp; spp; tp

p
; �p; sp; ip; fp; vp;
i

and T 0 � T � ftg
and S0 � S � fsg
and rx arg

x
; 8x; 1 � x � n

and �sp wait

and �(sp+ 1) �

Figure 3.35: The lreturn operation when the parent and child have been disconnected by a

continuation stealing operation.

the processor is idled by making ireturn go to the general scheduler, represented by the

address wait in Figure 3.3516.

If seed activation is used to get work from the parent, then the routine at the

suspend (or steal) code pointer will activate the nascent thread that the seed represents.

After the nascent thread has been activated the parent's ip will point to the next thread

seed, not to the inlet immediately following the lfork that activated the thread. The reason

that the parent's ip does not point to the activated thread's inlet is that the parent can

next be resumed either by one of its outstanding children or by a work stealing request.

We can see that once a parent has activated a seed all of its children must be started with

inlets that store their results, perform synchronization, and then continue in the parent at

its current ip. Thus we lose some of the bene�t of lreturn for threads that were activated

from seeds. Though we pass the results from the child to the parent in registers, they may

immediately be stored in the parent frame.

The behavior of lreturn for a thread whose parent has activated a seed ensures

that when the inlet executes ireturn, the parent will continue at the proper point, which is

the parent's current ip. It achieves this by placing the parent thread and ip on the parent

thread's stack before executing the inlet. When the inlet executes ireturn, the parent will

continue at the proper point (see Figure 3.36).

16The rules in Figure 3.14, Figure 3.22, and Figure 3.25 cause a processor with a ip of wait to get work

from the ready queue, from the parent queue by continuation stealing, and from the parent queue by seed

activation respectively.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 49

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = lreturn arg

1
; arg

2
; : : : ; arg

n

and t � h�; �; tp; is-child; s; i; f; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; has-child; sp; ip; fp; vp; �i

and vp[i] 6= ipp

hP; T 0; Q; Z0; S0;M i where p � hvp[i]; spp + 2; tp; Ri
and tp � hipp; spp; tp

p
; �p; sp; ip; fp; vp; �i

and �p �

�
is-child if fp = true

running otherwise

and T 0 � T � ftg
and S0 � S � fsg
and Z0 � Z � ftpg
and rx arg

x
; 8x; 1 � x � n

and �sp ipp

and �(sp+ 1) tp

Figure 3.36: The lreturn operation in MAM/DS when a thread seed in the parent has been

activated.

3.4.2 Discussion

MAM/DS allows a potentially parallel call that runs to completion to take advan-

tage of the sequential call and return mechanisms without limiting parallelism. It transfers

control and data simultaneously on both invocation and termination.

This machine also clari�es the distinction between continuation stealing and seed

activation. When continuation stealing is used to continue the parent before its child re-

turns, the connection between the parent and the child is broken. This causes the child

to use the two-step return process of an independent thread; lreturn behaves like a send

followed by an exit.

When seed activation is used to continue the parent, it becomes a slave to its

children. In other words, each of its returning children causes it to activate a thread seed

until no more remain. When no more thread seeds remain, subsequent returning children

fail at the join until the last child returns. When the last child returns it continues the

parent after the join.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 50

3.5 The Lazy Multithreaded Abstract Machine (LMAM)

With the lazy multithreaded abstract machine (LMAM) we complete our goal of

a multithreaded abstract machine that can execute a potentially parallel call with nearly

the e�ciency of a sequential call. In LMAM an lfork starts a new lazy thread on the

same stack as its parent thread. Combined with the direct scheduling of threads on call and

return introduced in MAM/DS, this allows us to transfer arguments to the child in registers,

allocate the child's frame on the stack of the parent, and, if the thread runs to completion,

return the results in registers. In this section we introduce the two disconnection methods

and the four storage models.

If a thread needs to run concurrently with its parent (because the child executes

a suspend or the parent is stolen), then an independent thread is created for the child.

This involves disconnecting the control between the parent and child and disconnecting the

stack, i.e., creating a new stack so the child (or parent) can continue. The disconnection

operation depends on the underlying storage model used to implement the cactus stack.

There are four storage models that we consider: linked frames, multiple stacks,

stacklets, and spaghetti stacks. We divide the storage models into two broad classes: linked

storage models and stack storage models. In the linked storage models, linked frames and

spaghetti stacks, links between frames are explicit. Every thread frame has an explicit link

to its parent. In these models disconnection is easy because, in some sense, the threads

already have their own \stacks." In the stack storage models, multiple stacks and stacklets,

the links between the frames can be implicit or explicit. The implicit links are between

lazy threads and their parents. They are implicit since the parent of a lazy thread can be

found by doing arithmetic on a stack pointer. The explicit links are between the stacks of

the independent threads.

By �xing the storage model for threads, LMAM also dictates how the indirect

inlet address is implemented. The indirect inlet address is stored in the same slot of the

parent's activation frame used for a sequential call's return address. The link between a

child thread and its parent is the pointer from the child to the indirect inlet address in the

parent that the child will use to return to the parent. In other words, the return register

is the link from a child to a parent. If this link is implicit, then the return register is never

stored explicitly.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 51

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = lfork i0 = adr(arg

1
; arg

2
; : : : ; arg

n
)

and t � h�; �; tp; �; s; i; f; �i
and � 2 frunning; is-childg

hP; T 0; Q; Z0; S;M i where p � hadr; sp+ F; tnew; Ri
and T 0 � T [ftnewg
and Z0 � Z [ftg
and t � hip+ 1; sp; tp; has-child; s; i;>; �i
and tnew � h�; �; t; is-child; s; i0; true; �i
and rx arg

x
; 8x; 0 � x � n

and v[i0] pc+ 1

and F � size of child frame

Figure 3.37: The lfork operation in LMAM with multiple stacks.

We thus have two operational semantics for LMAM. The �rst describes LMAM im-

plemented with linked frames or spaghetti stacks; since the cactus stack is maintained with

links, this semantics mirrors that of MAM/DS. The second describes LMAM implemented

with multiple stacks or stacklets.

3.6 Disconnection and the Storage Model

When a lazy thread is elevated to an independent thread it must be disconnected

from its parent. There are two disconnection methods: eager and lazy. Eager-disconnect

allows the parent to invoke children on its abstract stack in exactly the same manner as

it did before it had a disconnected child. Lazy-disconnect leaves the current abstract stack

untouched and forces the parent to allocate new children di�erently than it did before it

had a disconnected child.

In order to understand the di�erence between lazy- and eager-disconnect consider

two of the actions taken by an lfork in LMAM (see Figure 3.37). First, it saves the indirect

inlet address in the child's return register. This acts as the link between the child thread

and its parent. Second, it creates an activation frame for the child. Because the lfork

operation always stores the indirect inlet address in the same slot of the parent we will have

to copy the disconnected child's indirect inlet address to a new slot. This allows the parent

to invoke its children in the same manner independent of whether it has a disconnected

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 52

Child

indirect inlet address

Parent

Child

indirect inlet address

Parent

Eager-disconnect

empty

empty

Figure 3.38: Eager-disconnect used to disconnect a child from its parent when a linked

storage model is used. In this case only the indirect inlet address needs to be \copied."

Parent

Child Disconnect

Free Space

Parent

Free Space

Child

Free Space

Grandparent Grandparent

New Stack

Figure 3.39: An example of eager-disconnect when the child is copied to a new stack.

child. Thus, there must be a separate slot in the activation frame for dfork in a fork-set.

The child's return register also has to be updated. We call this method eager-disconnect

(See Figure 3.38). Of course, in the stack storage models eager-disconnect also has to copy

the child's activation frame onto another stack.

If we leave the child's indirect inlet address in its original place, then any future

child invoked by the parent has to link to another slot in the parent's frame for its indirect

inlet address. Lazy-disconnect does not copy the indirect inlet address. It also does not

copy the child's activation frame, even in the stack storage models.

3.6.1 Eager-disconnect

For all storage models, eager-disconnect copies the child's indirect inlet address

to another slot in the parent's frame. In addition, in the stack models it must split and

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 53

Parent

Child Disconnect

Free Space

Grandparent

Child

Free Space

Unusable

Parent

Free Space

Grandparent

New Stack

Figure 3.40: An example of eager-disconnect when the parent portion of the stack is copied

to a new stack.

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = suspend

and t � h�; �; tp; is-child; s; i; true; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; has-child; sp; ip; fp; vp; �i

hP; T;Q; Z 0; S0;M i where p � hseed(ipp; suspend); spp; tp; �i
and t � hip+ 1; snew + sp� s; tp; idle; snew; i; false; �i
and tp � h�; �; tp

p
; �; sp; ip; fp; vp; �i

and � �

�
is-child if fp = true

running otherwise

and Z0 � Z � ftpg
and vp[i] convertReturn(ipp)

and S0 � S [fsnewg
and snew[x] �(s + x) 8x; 0 � x � (sp� s)

and M [a=a0
] where s � a < sp

and a0
= a+ s� snew

Figure 3.41: The suspend operation under LMAM/MS and LMAM/S using child copy for

eager-disconnect.

copy the stack. Eager-disconnect by child- or parent-copying causes the stack to be split

and a portion of it to be copied to a newly allocated stack at the time of disconnection.

Child-copying copies the portion of the stack used by the child to a newly allocated stack

(See Figure 3.39). Parent-copying copies all but the child's frame to a newly allocated stack

(See Figure 3.40).17 In either case, since we copy the local data to a new location, we

must either forbid pointers to data in a frame or scan memory and update any pointers

to the region being copied. Eager-disconnect is currently employed by most lazy thread

systems. [12, 44, 57].

17We can also copy only some of the parent's ancestors and leave behind frames which forward data to

the new location.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 54

The suspend operation in Figure 3.41 is an example of child-copying that splits

the stack. In addition to changing the state of the child and parent, updating the indirect

inlet address, and scheduling the parent, it allocates a new stack and copies the data for

the child thread to the new stack.

The advantage of eager-disconnect is that the price is paid only once, at the time

of the disconnect operation. The disadvantage is that in the stack storage models this one

time cost can be quite high, and even more importantly, pointers to data in a frame cannot

be passed to other threads.

3.6.2 Lazy-disconnect

Lazy-disconnect, a new method introduced in this thesis, logically disconnects the

parent and child without requiring any copying at the time of disconnection. It allows us

to use pointers to data in a frame without requiring that we scan memory to update them

at disconnect time. Lazy-disconnect is the analog of lazy invocation. Just as a lazy thread

call does not eagerly create a new thread, lazy-disconnect does not eagerly separate a child

and parent, instead causing the parent to create a new stack for its future children in the

same fork-set.

The lazy method does not perform any stack operations in any of the storage

models when disconnection occurs, but instead incurs the cost of allocating a new stack

for every fork or call made by the parent after it has been disconnected from its child. In

other words, lazy-disconnect causes the memory model to devolve into the linked-frame

model after a parent has been disconnected from its child. When the logical tree of stacks is

cactus-like, having the parent create new stacks for each future child is not onerous, as the

children are able to invoke their children using the more e�cient stack- or stacklet-based

calls.

In short, lazy-disconnect performs disconnection without copying either the child

or the parent. Instead, the child steals the stack, causing all future allocation requests in

the parent to be ful�lled by allocating a new stack (See Figure 3.42).

To support this method of disconnection, we change the de�nition of the stack to

be a pair consisting of top and the former stack, htop; [)i. top points to the highest location

used in the stack itself.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 55

Parent

Child Disconnect

Free Space

Grandparent

New Stack

Parent

Child

Free Space

Grandparent

Free Space

A New Child

Figure 3.42: An example of how a parent and its child are disconnected by linking new

frames to the parent.

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; �i
and inst[ip] = suspend

and t � h�; �; tp; is-child; s; i; true; �i
and tp 2 Z

and tp � hipp; spp; tp
p
; has-child; s; ip; fp; vp; �i

and s � hsp; datai

hP; T;Q; Z0; S;M i where p � hseed(ipp; suspend); spp; tp; �i
and t � hip+ 1; sp; tp; idle; s; i; false; �i
and tp � h�; �; tp

p
; �; s; ip; fp; vp; �i

and � �

�
is-child if fp = true

running otherwise

and Z0 � Z � ftpg
and vp[i] convertReturn(ipp)

Figure 3.43: The suspend operation for LMAM/MS and LMAM/S using lazy-disconnect.

When top equals sp, then lfork works as it does in LMAM/DS. After disconnec-

tion, top does not equal sp (see Figure 3.43). In this case, lfork must allocate a new stack

for the child thread (see Figure 3.44).

3.7 Summary

This chapter culminates with the description of a lazy multithreading abstract

machine which eliminates all of the unnecessary overhead found in MAM when potentially

parallel calls run to completion.

� There are no enqueue, dequeue, or scheduler operations when lfork is used to create

a lazy thread.

CHAPTER 3. MULTITHREADED ABSTRACT MACHINE 56

hP; T;Q; Z; S;M i where p 2 P

and p � hip; sp; t; Ri
and inst[ip] = lfork i0 = adr(arg

1
; arg

2
; : : : ; arg

n
)

and t � h�; �; tp; �; s; i; f; �i
and � 2 frunning; is-childg
and s � < >; data >
and > 6= sp

hP; T 0; Q; Z0; S0;M i where p � hadr; datanew + F; tnew; Ri
and T 0 � T [ftnewg
and Z0 � Z [ftg
and t � hip+ 1; sp; tp; has-child; s; i;>; �i
and tnew � h�; �; t; is-child; snew; i

0; true; �i
and rx arg

x
; 8x; 0 � x � n

and v[i0] pc+ 1

and snew � < datanew + F; datanew >

and datanew � [)

and S0 � S [fsnewg
and F � size of child frame

Figure 3.44: The lfork operation under LMAM/MS using lazy-disconnect after a thread has

been disconnected from a child.

� Processor registers are used to transfer arguments to the child and results back to the

parent.

� Unnecessary register saves and restores are eliminated since the thread is never sched-

uled by the general scheduler except when it has previously suspended.

� Lazy threads do not require there own stack.

� No synchronization operations are performed between the parent and its children

when the children are scheduled sequentially.

57

Chapter 4

Storage Models

This chapter describes the di�erent concrete implementations for the storage por-

tion of the abstract machine presented in the last chapter. We investigate four storage

models for a global cactus stack: linked frames, multiple stacks, spaghetti stacks, and

stacklets. Although the storage model and the control model interact, we delay a detailed

discussion of this interaction until the next chapter. We explain how each model maintains

the logical global cactus stack, how it allocates, deallocates, and disconnects frames, and

what trade-o�s it introduces. There are four kinds of calls, sequential, lazy fork, fork, and

remote fork, each of which maps onto a di�erent kind of allocation request in each storage

model.

For each storage model we discuss four trade-o�s: allocation e�ciency, internal

fragmentation, external fragmentation, and ease of implementation. Of these, the most

important is the cost of allocating and deallocating an activation frame for the four di�er-

ent types of calls. Internal fragmentation, caused by leaving unused space within the basic

allocation unit, is also important. Less important is external fragmentation, which results

from allocating activation frames in di�erent regions of the memory space. Finally, imple-

mentation details make certain storage-model variations impractical on some machines.

The models fall into two broad categories: linked storage models and stack storage

models. The linked storage models include the linked frames and spaghetti stack models,

which represent the parent-child relationship between lazy threads with explicit links. The

stack storage models include the multiple stacks and stacklets models, which represent the

parent-child relationship between lazy threads implicitly. Another view is that these four

models are span a spectrum of possible implementations with linked frames on one end

CHAPTER 4. STORAGE MODELS 58

and multiple stack on the other. In between, spaghetti stacks and stacklets o�er di�erent

compromises, with spaghetti stacks being closer to linked-frames and stacklets closer to

multiple stacks.

4.1 Storing a Thread's Internal State

In this section, we discuss storage requirements for a thread's state variables, its

ip, indirect inlet addresses for its disconnected children, and its portion of the ready queue.

In the previous chapter, we made an arti�cial distinction between the thread's

stack and its state, i.e. its ip, sp, parent pointer, and return register. In fact, when a

thread is not running it stores the thread state in its stack. A lazy thread also has state,

although it may not have its own stack. It does, however, always have a base frame on some

stack. It is in this base frame that we store the lazy thread's state.

Since all threads, lazy or independent, have a unique base frame, we use the address

of the base frame to identify a thread. We sometimes �nd it convenient simply to refer to

a thread by its frame.

In all of the memory models presented, each activation frame includes a �eld to

store the thread's ip. Recall that a thread's ip is the address of the instruction at which it

will begin operation when it is next scheduled, either by the scheduler or by an outstanding

child. The return register is made up of the parent pointer and the indirect inlet address

in the parent.1 For lazy threads and sequential calls, this is the return address of the child,

which is the same as the inlet address.

As discussed in Section 3.6, there must be a su�cient number of slots in the

activation frame to hold the indirect inlet address of children that may be disconnected.

In eager-disconnect, the slots are used to store the indirect inlet addresses for disconnected

children. In lazy-disconnect the slots are used to store the indirect inlet addresses of children

invoked after disconnection.

In the concrete implementation of LMAM we distribute the ready queue among the

independent threads. Since the ready queue can include each independent thread at most

once, it can be implemented by allocating a �xed number of frame slots per independent

thread. We implement the ready queue as p linked lists, where p is the number of processors

in the system. Thus we allocate one slot per thread activation frame and one ready queue

1Section 5.3 discusses the rationale for splitting the return register between the parent and the child.

CHAPTER 4. STORAGE MODELS 59

B

C

A

D

E

F G

Figure 4.1: A cactus stack using linked frames. Each frame has an explicit link to its parent

pointer per processor. Since lazy threads can become independent we also reserve a slot in

each lazy thread activation frame.

To summarize, every model requires that an ip, an indirect inlet address, and a

slot for the ready queue be stored in each activation frame. For reasons given in Chapter 5,

the return register is not directly realized. The parent pointer is included in the activation

frame only in the linked frames and spaghetti stacks models. The sp is not stored in the

thread's state in concrete implementations of any of the models.

4.2 Remote Fork

Remote fork, used only on distributed memory machines, is handled by sending

messages to the remote processor, which performs the allocation request and deposits the

arguments into the newly allocated frame. Since local fork has exactly the same storage

requirements as remote fork, we discuss only local fork in this chapter.

4.3 Linked Frames

We �rst discuss mapping the cactus stack onto linked frames. This approach is

the simplest and as we shall see the least attractive. It is also the most commonly used,

e.g. in Cilk [7], Id90 [25], and Mul-T [39].

The cactus stack is represented explicitly by the links between the frames, as shown

in Figure 4.1. Each activation frame, whether it is the start of a new thread or a sequential

call, is allocated in a separate heap-allocated frame. The link between a child and its parent

is explicitly part of the activation frame.

CHAPTER 4. STORAGE MODELS 60

The linked-frames mapping imposes an expensive allocation and deallocation op-

eration on every call and return. It produces no internal fragmentation, but can, produce

external fragmentation, which can have negative e�ects on the processor cache and TLB,

since frames related by control may be in completely di�erent areas of the memory system.

4.3.1 Operations on Linked Frames

When using linked frames, all of the allocation requests (fork, lfork, and call)

are treated uniformly. We allocate a child frame and link it to its parent frame. exit,

lreturn, and return free the frame and return it to a pool of unused frames, which may be

reused for subsequent allocation requests. Since each activation frame is physically separate

from every other, disconnecting a lazy thread from its parent never requires copying.

The linked-frame mapping is simple to implement. However, it does nothing to

optimize for the most frequent operations, the sequential call and the potentially parallel

call that completes without suspension.

4.3.2 Linked Frame Timings

Here we discuss the cost of the basic operations. We present instruction counts

whenever possible and cycle counts for library operations. We divide the instructions into

three categories: memory reference instructions, branch instructions, and register-only in-

structions. We contend that on modern processors the most important metric is memory

reference instructions. Thus, we try to minimize the number of memory reference instruc-

tions. In the case where we depend on a library call to do some of the work, we measure

the cycle count to allow application to other processors. In all cases, we are concerned

only with the costs of storage management; control costs are covered in the next chapter.

In particular, we do not include the costs of manipulating the indirect inlet address on

disconnection, since it depends on the queuing method chosen (See Section 5.6).

The timings are presented in Table 4.1. The �rst two lines of the table contain the

cost of performing a sequential call and return in C.2 This is used as a comparison against

which we can judge the e�ectiveness of the linked-frame model. The next two lines show the

cost of performing a sequential call in the linked-frame model. We then show the storage

costs of allocating, scheduling, and freeing a thread. The allocation cost does not include

2In all cases we give the cost of a call with no arguments and a return with no results.

CHAPTER 4. STORAGE MODELS 61

Instruction Count
Operation Memory Branch Register

C call 0 0 1
C return 0 0 1

Sequential call 4 1 4
Sequential return 4 0 2

Create thread from pool 4 1 4
Schedule thread 0 0 0
Free thread 3 0 1

Create lazy thread 4 1 4
Lazy return 4 0 2
Eager-disconnect 0 0 0
Create lazy thread
after lazy-disconnect 4 1 4

Table 4.1: Times for the primitive operations using linked frames. These times do not

include any control costs. They assume frames are allocated from a pool of frames and do

not include the cost of a malloc.

the cost of performing a malloc to allocate the thread. Instead, our allocation policy is to

put freed frames in a pool of frames which can be reused. We assume that requests satis�ed

in the pool dominate those that are not in the pool and thus do not include the cost of

doing a malloc.3 Finally, we show the storage costs for lazy threads.

As we see from the table, the linked-frame model imposes a signi�cant penalty on

sequential calls over that of a traditional stack model. Furthermore, sequential calls have no

advantage over forks. While lfork has no special advantage over fork in terms of storage,

it also has no extra cost in the case when the child is disconnected from the parent.

Like call, return is also signi�cantly more expensive than the traditional stack

model. lreturn is more expensive than exit because it includes the cost of loading the

frame pointer for the parent frame in addition to freeing the frame.

The data bears out the reasoning that the linked-frame model is not very e�cient

for sequential and potentially parallel calls. In addition, it creates external fragmentation.

In spite of these problems, it is used often because it is easy to implement.

3This operation could be made more e�cient by using a heap pointer as suggested in [2]. However,

Appel's method requires garbage collection or a reclamation method that makes the resulting cactus stack

look very similar to our spaghetti stacks.

CHAPTER 4. STORAGE MODELS 62

B

C

A

D

E

F

G

Figure 4.2: A cactus stack using multiple stacks. There are only explicit links from the

stubs at the base of a stack to the parent of the thread in the base frame of the stack.

4.4 Multiple Stacks

The next approach we discuss is that of mapping the cactus stack onto multiple

stacks. Each thread is assigned its own contiguous stack. The cactus stack is maintained

with explicit links between stacks and implicit links within each stack (See Figure 4.2). The

link between a lazy thread and its parent is implicit because a lazy thread is allocated on

the same stack as its parent. The parent pointer is not stored, but is calculated by doing

arithmetic on the stack pointer.

The main advantage of this approach is that an allocation request for call and

lfork has the same cost as a sequential call in a single threaded system. The disadvantages

are that it limits the number of threads in the system due to the large size of each stack,

creates internal fragmentation, and increases the cost of creating an independent thread.

Multiple stacks have never to our knowledge been used in a lazy multithreaded sys-

tem, but variations of the multiple stacks approach has been used in many thread packages,

including pthreads [33], NewThreads [37], and Solaris Threads [56], and in some languages,

e.g. Cid [48]. All of these systems �x the size of the stack and none provides protection

against stack overows.

4.4.1 Stack Layout and Stubs

Each stack in the multiple stacks approach is divided into two regions: the stub and

the frame area (See Figure 4.3). The stub contains thread-speci�c data and maintains the

global cactus stack by linking the individual stacks to each other. The frame area contains

the activation frames of children invoked by either sequential calls or lforks. Thus, the

CHAPTER 4. STORAGE MODELS 63

bottom frame’s return address

Free Space

stub handler address

bottom frame’s parent pointer
Stub Area

Frame Area

slot for savingsp

Figure 4.3: Layout of a stack with its stub.

cactus stack is maintained both explicitly, with links from the stack stubs to the parent

thread of the bottom frame in the frame area, and implicitly, between lazy threads in the

frame area.

The stack stub serves to maintain the explicit links needed between threads. It

also stores an ip that can be accessed by the thread above it on the stack. When the thread

returns, instead of testing its own state, it does an lreturn that assumes that the thread

is lazy and is still connected to its parent. lreturn invokes the stub routine pointed to by

the stub's ip. This routine, using the data in the stub's frame, then performs the necessary

operations to return to the thread's parent.

The stack stub maintains information common to all the activation frames on its

stack. When none of the threads on the stack are running, the stub contains the sp for the

stack. The sp stored in the stub is loaded into the processor's sp when any of the threads

in the stack are scheduled by the general scheduler. Every activation frame can calculate

the stub for the stack on which it lives.4 The stub also contains the parent pointer for

the bottom frame in the stack. Since all other threads on the stack are descendants of the

bottom frame, this is the only explicit link needed.

Stubs allow every thread, lazy or independent, to use the sequential return mech-

anism of lreturn even though a cactus stack is being used. The stack stub stores all the

data needed for the bottom frame to return to its parent. When a new stack is allocated,

the parent's return address and stack pointer are saved in the stub and a return address to

the stub handler is given to the child. When the bottom frame in a stack executes a return,

it does not return to its caller. Instead it returns to the stub handler. The stub handler

4This can easily be accomplished by �xing the size of a stack to be a power of two and using an exclusive-or

and logical-and instruction.

CHAPTER 4. STORAGE MODELS 64

performs stack deallocation and, using the data in the stack stub, carries out the necessary

actions to return control to the parent, e.g. setting the sp to the parent's stack.

There are two di�erent stub handlers in the multiple stacks model: the local-fork

stub handler, which performs the actions described in the previous paragraph, and the

remote-fork stub handler. The remote-fork stub handler uses indirect active messages [62]

to return data and control to the parent's message handler, which in turn is responsible for

integrating the data into the parent frame and indicating to the parent that its child has

returned.

4.4.2 Stack Implementation

Since we do not have in�nite memory in which to allocate stacks, we must decide

how to simulate a virtually in�nite stack. Many thread packages do this by allocating a

relatively small (on the order of 4k-16k) �xed stack for each thread. This works well for

some programs on some data sets but not at all for those that use a great deal of automatic

data or have deeply nested routines. There are, however, many programs which, because

the stack size depends upon the input data set, require large stacks.

Problems occur because these thread packages have no stack overow detection.

Stack overow is especially problematic in multithreaded systems. If stacks are adjacent, a

thread that overows will write to the base of another thread's stack, which causes errors

to occur when the other thread is scheduled and �nally returns to the frame at the base of

its stack. Even if the stacks are not adjacent, the error caused by a stack overow may not

surface until later in the program's execution.

Stack overow protection can be added in one of three ways. First, sequential calls

can check for stack overow, which makes this model exactly like stacklets (See Section 4.6).

Second, a guard page can be allocated for each stack. Third, a guard page can be created

dynamically whenever a thread is scheduled. The latter two methods require that stacks

be allocated on page boundaries and be multiples of the system page size. If a static guard

page is allocated, then a page is wasted for each stack. With the dynamic method, the cost

of switching to a new thread is raised substantially.5

5Guard pages require that the operating system allow the user to change the write protection of a page

in memory, which is not supported on some machines. It is probably for this reason that thread packages

do not support overow detection.

CHAPTER 4. STORAGE MODELS 65

Parent

Free Space

stub

Parent

Free Space

stub

Child

lfork child
or

call child

Figure 4.4: Allocating a sequential call or an lfork on a stack.

If there is already a copying garbage collector in the system, we can use it to avoid

allocating large �xed regions. Instead, we can allocate a small stack and set a guard. When

the stack overows, we reallocate it to a larger region, copying the data, and adjusting any

pointers to the data in the stack as appropriate. Of course, pointer adjustment would have

to happen across the entire address space.

Without garbage collection, we have three di�erent ways to implement multiple

stacks. The �xed scheme allocates a small �xed stack per thread. The �xed scheme with

static guard pages associates a static guard page to each stack. The �xed scheme with

dynamic guard pages sets the guard page on each stack when the thread associated with

it is running. The �rst scheme can be implemented using standard memory allocation

primitives like malloc. The latter schemes require the ability to manipulate the read/write

permissions of virtual pages.

4.4.3 Operations on Multiple Stacks

In this section, we discuss the implementation of the operations using multiple

stacks. The multiple stacks model exploits the fact that each thread has its own stack.

Sequential call and lazy fork both allocate the child frame on the stack of its parent. As

a result, when a lazy thread needs to become independent, we must perform some kind of

operation to disconnect the parent and child threads.

Allocation

The allocation operation for call or lfork allocates the child frame on the same

stack as the caller. The operation is carried out by the child frame by adjusting the sp (See

Figure 4.4).

CHAPTER 4. STORAGE MODELS 66

Parent

Free Space

stub

fork child

Parent

Free Space

stub

Child

Free Space

stub

Figure 4.5: Allocating a new stack when a fork is performed.

The fork operation requires that a new stack be allocated and linked to the caller's

stack (See Figure 4.5). The actual allocation requests will di�er depending upon which stack

scheme is used, but they are similar in all cases. If there is a free stack which has been

allocated already, it is reused. Otherwise, a new stack area is allocated from the system

using the appropriate library call, i.e., malloc or mmap, and if a static guard page is being

used, it is set.

Deallocation

When a lazy thread (or sequential call) exits (or returns), it deallocates its frame

area by adjusting the sp. When a thread exits, it returns its stack to the free pool of stacks.

Scheduling

Unlike the linked-frame representation, the multiple stacks model requires work

to be performed whenever a thread is scheduled. In particular, the dynamic guard page

scheme requires that the page above the stack be set so that if an overow occurs, it will

cause a fault. When a thread suspends, exits, or yields, the guard page is unprotected. In

addition, in all the schemes the sp has to be set from the stub data.

Disconnection

Since a lazy thread is allocated on the same stack as its parent, if the lazy thread

suspends it must be converted into an independent thread. This process requires that

the parent and child each have its own logical stack. We now discuss the two options for

disconnection; lazy and eager, identi�ed in Section 3.6.

CHAPTER 4. STORAGE MODELS 67

The lazy method avoids copying (and allows pointers to automatic variables6)

by forcing all subsequent allocations by the parent onto new stacks. This means that

subsequent sequential calls and lazy forks will always allocate a new stack for their frames.

Since a suspending child is left unchanged, the ip that a parent presents to its future

children must reside in a separate slot in the frame.

Eager-disconnect is signi�cantly harder to implement than lazy-disconnect. When

we copy an activation frame, we must be careful not to invalidate any pointers to the copied

frames. Even if we disallow pointers to automatic variables within a frame, we must correctly

maintain the pointers that comprise the cactus stack and the ready queue. Although we can

update parent pointers that are on the local processor relatively inexpensively, updating

remote parent pointers is costly and can lead to race conditions which are di�cult and

expensive to alleviate. To ensure that frames with remote children are not copied, we force

any frame with a remote child to live at the bottom of a stack (creating a new stack if

necessary) and enforce the invariant that the bottom frame in a stack is never copied.

This invariant implies that when a lazy thread suspends or yields, it must be

disconnected from its parent by copying itself and its descendants to a new stack. This

child-copying may require updating local pointers but never remote pointers. Since child-

copying is used whenever a lazy thread suspends or yields, we also have the invariant that

whenever a child suspends it is at the top of the stack.

Child-copying creates a new stack for the children copied and a stub to link the

new child stack to the parent stack. The resulting con�guration is exactly the same as if

the bottom child of those copied had been eagerly forked.

When a child suspends and its parent is not on the parent queue, the suspend

transfers control to an ancestor of the child, forcing many frames to be copied at once. The

pointers to each of these frames will have to be updated. Figure 4.6 shows the e�ects of

two suspend operations. In the �rst, the parent is on the parent queue and one frame is

copied. In the second, the parent is not on the parent queue, forcing multiple copies.

The implementation of eager-disconnect di�ers depending upon the control model.

When seed activation is used to steal work, a thread having its seed stolen is copied to a

new stack to ensure that it is the bottom frame. Figure 4.7 shows the e�ect of activating a

seed from a lazy thread.

6An automatic variable is one local in scope to a function, not to be confused with memory local to a

processor.

CHAPTER 4. STORAGE MODELS 68

B

A

stub

B

stub

A

stub

D suspends and is
copied to a new

stack.

C suspends when B
has no wortk. C and
B are copied to a new

stack. C’s parent
pointer is updated.

Newly allocated stack.

Newly allocated stack.

B

A

stub

D

stub

Free Space

C

D
Free Space

Free Space

C

D

stub

Free Space

Free Space

Free Space

C

Figure 4.6: Disconnection using child-copy for a suspending child. First D suspends, and

then C suspends. When C suspends, B is not on the parent queue, so control is passed to

A. This forces both B and C to be copied.

B

A

stub

B

stub

A

stub

B has a seed stolen.

Newly allocated stacks.

Free Space

C

D

stub

Free SpaceFree Space

Free Space

C

Figure 4.7: Disconnection caused by seed activation also uses child-copy. Thread B has a

seed stolen, causing it to be copied to new stack to maintain the invariant that a thread

with a remote child is at the bottom of a stack.

CHAPTER 4. STORAGE MODELS 69

B

A

stub

stub

A

stub

B is stolen by
another processor.

Newly allocated stacks.

Free Space

C

B

stub

Free SpaceFree Space

Free Space

C

Forwarding
frame for B

Figure 4.8: Disconnection caused by continuation stealing. B migrates to a new processor

leaving behind a forwarding frame.

Since continuation stealing results in migration, we need to ensure that a forward-

ing frame is left behind after the frame is copied (See Figure 4.8). When a child of the

stolen frame returns, the forwarding frame sends the results to the parent's new location.

When the stolen thread completes, it sends its results back to the forwarding frame, which

returns to the stolen frame's parent and then exits.

4.4.4 Multiple Stacks Timings

As the timings in Table 4.2 show, the multiple stack mapping introduces no over-

head for sequential calls, lforks, or forks. However, when independent threads are needed,

a signi�cant overhead is incurred. For all schemes the cost of creating, suspending, and free-

ing a thread includes the cost of the stub used to link the thread to its parent. Notice that

even though stubs are used, the cost of using threads in the multiple stack model is about

the same as that in the linked-frame model (See Table 4.1).

Overow protection introduces the largest overhead in the multiple stacks model.

The dynamic scheme is clearly unacceptable because the call to protect the page on all

scheduling operations costs four orders of magnitude more than any other operation. The

static guard page avoids this problem at the cost of wasting memory and increasing the cost

of allocating a stack from the system. Timing malloc and mprotect is imprecise at best.

CHAPTER 4. STORAGE MODELS 70

Instruction Count
Operation Memory Branch Register System

C call 0 0 1 0
C return 0 0 1 0

Sequential call 0 0 1 0
Sequential return 0 0 1 0

Create thread from pool 5 1 1 0
Suspend thread (�xed) 2 1 0 0
Suspend thread (dynamic) 2 1 0 6600
Schedule thread (�xed) 0 0 0 0
Schedule thread (dynamic) 0 0 0 6600
Free thread (�xed) 3 1 3 0
Free thread (dynamic) 3 1 3 6600

Create lazy thread 0 0 1 0
Lazy return 0 0 1 0
Eager-disconnect(n-word frame) 2n+6 12 30 0
Create lazy thread
after lazy-disconnect 5 1 1 0

Table 4.2: Times for the primitive operations using multiple stacks. These times do not

include any control costs. They assume stacks are allocated from a pool of stacks and

exclude the cost of a malloc and mmap. \Fixed" denotes the �xed and static guard schemes.

\Dynamic" denotes the dynamic guard page scheme. System calls are included as cycle

counts. The eager-disconnect cost is the minimum cost.

When a static guard page is used, however, it increases the cost of allocating a new stack

by at least 30%.

The other signi�cant increase in cost imposed by the multiple stacks model is due

to eager-disconnect. Eager-disconnect causes at least 2n memory references, where n is

the size of the frames copied. In addition, all pointers to the frames have to be updated,

including the pointers in the ready queue and the links from parents to their children.

Although sequential and potentially parallel calls are e�ciently implemented in

the multiple stacks model, the ine�ciencies inherent to supporting overow protection and

eager-disconnect make it a less than ideal candidate for a storage model. It introduces both

internal and external fragmentation, and it is non-portable.

CHAPTER 4. STORAGE MODELS 71

B

C

A

D

E

F

G

B

C

A

D

E

F

G

Figure 4.9: Two examples of how the cactus stack could be represented using spaghetti

stacks. In the �rst, the cactus stack is local to a single processor. In the second it is split

across processors.

4.5 Spaghetti Stacks

Spaghetti stacks are a compromise between the fork-centric linked-frame approach

and the call-centric stack approach. By removing the requirement that all free space in a

stack be above the current frame, the cactus stack can be implemented in a single stack.

This means that no storage related disconnection operations are needed when a lazy thread

becomes independent.

The use of a single interwoven stack for multiple environments was �rst introduced

by Bobrow and Wegbreit [10]. It has since been used in a more simpli�ed form in Olden [12]

and in implementing functional languages [31]. In all cases, it has been accompanied by a

garbage collector to perform compaction.

In a spaghetti stack, every allocation request is ful�lled by allocating space at the

top of the stack. A frame in the middle of the stack can exit, however, and create free space

in the middle of the stack. The spaghetti stack model thus requires a method to reclaim

this fragmented freed space. It also requires that the global cactus stack be maintained

explicitly, with links between every child and its parent (See Figure 4.9).

Unlike the linked-frame and multiple-stack approaches, in which each frame (or

stack) is associated with a thread, spaghetti stacks are assigned to processors in the system

so that each processor has its own spaghetti stack. The global cactus stack is maintained

with global pointers between child frames on one processor and their parent frames on

remote processors.

CHAPTER 4. STORAGE MODELS 72

Parent

Free Space

lfork child,
call child,

or,
fork child

top

other frames

Parent

Free Space
top

other frames

Child

Figure 4.10: Allocation of a new frame on a spaghetti stack.

The main advantage of spaghetti stacks over multiple stacks is that no storage

related disconnection operation is needed. In addition, allocation requests are relatively

inexpensive compared to the linked-frame approach. The disadvantages are that it can

be expensive to reclaim freed space and that internal fragmentation can consume a lot of

memory.

4.5.1 Spaghetti Stack Layout

In addition to the stack pointer and frame pointer used in a single-threaded system,

a spaghetti stack requires a top pointer (top), which points to the �rst free word above the

last word used in the stack, i.e., the location to which sp would point in a traditional stack.

The cactus stack is maintained by links in each frame on the stack. A link from

parent to child, even for sequentially called children, is required because the child frame

may not be adjacent to its parent (See Figure 4.9).

4.5.2 Spaghetti Stack Operations

Allocation

The allocation operation is identical for call, lfork, and fork. The child allocates

space for its frame by adding to top (See Figure 4.10). It saves the current sp in the base

of its frame and then sets the sp to the top of its frame and the fp to the base of its frame.

Remote fork allocates the remote stub in the same manner and then performs a local fork

to allocate the thread.

CHAPTER 4. STORAGE MODELS 73

Parent

Free Space

dealloction of a
child that ran to

completion.

top

other frames

Parent

Free Space
top

other frames

Child

Figure 4.11: Deallocating a child that has run to completion.

Parent

Free Space

dealloction of a
child that previously

suspended.

top

other frames

Parent

Free Space
top

other frames

Child

Free Space

Figure 4.12: Deallocating a child that has suspended but is currently at the top of the

spaghetti stack.

Deallocation

When a child returns or exits, it attempts to deallocate its frame. There are three

possibilities: the child has run to completion, the child has suspended and is at the top of

the stack, or the child has suspended and is not at the top of the stack.

If the child has run to completion, then it must be at the top of the spaghetti

stack.7 In this case, it deallocates its frame by setting top to the base of its frame (See

Figure 4.11).

If the child previously suspended but is currently at the top of the stack, it checks

the area below it to see if it is active or free. If it is active, then it sets top to the base of

its frame. If the area below it has been marked as free, then it sets top to the base of the

free area (See Figure 4.12).

If the child is not at the top of the stack, then it can mark the frame as free, but

it cannot actually reclaim the space, since there are active frames above it in the stack. In

7This is only true if work distribution is performed by work stealing. If remote fork is used to create

threads on other processors on a distributed memory machine, then we must consider additional cases.

CHAPTER 4. STORAGE MODELS 74

dealloction of a child
that previously sus-

pended. Deallocation
coalesces free space.

Parent

Free Space
top

other frames

Child

Free Space

Parent

Free Space
top

other frames

Free Space

Figure 4.13: Deallocating a child that has suspended and is in the middle of the stack. The

child coalesces any free space below it into its frame.

this case, the child marks its frame as free and checks to see if the frame below it is free. If

the frame below is free, then both frames are merged into one free area. Later, when the

frame above it exits, it will deallocate itself and the current frame (including any of the

frames with which it was merged) as described in the previous paragraph (See Figure 4.13).

Whenever a frame is not at the top of the stack and is attempting to deallocate

itself, it must have a suspended frame above it. This invariant lets us use PCRCs, as

described in Section 5.3, to eliminate any reclamation overhead for frames that run to

completion. In other words, if a frame runs to completion, it need not perform any checks,

but can blindly set top to the base of its frame.

4.5.3 Spaghetti Stack Timings

As Table 4.3 shows, spaghetti stacks are a good compromise between linked frames

and multiple stacks. In all cases, they are less expensive than linked frames, and all thread

operations are cheaper on spaghetti stacks than on multiple stacks.

Sequential call and lfork on a spaghetti stack incurs the cost of saving a link to

its parent, but it avoids allocation from a pool, which is expensive. It is only slightly more

expensive than a sequential call on a stack.

The thread operations shown here include the cost of using a stub for independent

threads and lazy threads invoked after either eager- or lazy-disconnect. Stubs allow us to

reclaim the memory in the spaghetti stack without having to perform a test on every return.

CHAPTER 4. STORAGE MODELS 75

Instruction Count
Operation Memory Branch Register

C call 0 0 1
C return 0 0 0

Sequential call 1 0 2
Sequential return 1 0 1

Create Thread 3 0 4
Schedule Thread 0 0 0
Free Thread 3 1 3

Create Lazy Thread 1 0 2
lazy return 1 0 3
Eager-disconnect 0 0 0
Create lazy thread
after disconnect 3 0 4

Table 4.3: Times for the primitive operations using spaghetti stacks. These times do not

include any control costs.

CHAPTER 4. STORAGE MODELS 76

B

C

A

D

E

F

G

Figure 4.14: A cactus stack using stacklets.

4.6 Stacklets

Stacklets, introduced in [24], e�ect a di�erent compromise between the linked-

frame and stack approaches. Whereas spaghetti stacks incur extra cost when a function

returns (to handle reclamation of free space), stacklets maintain a stack invariant, but incur

extra cost on function call, to check for overow.

A stacklet is a region of contiguous memory on a single processor that can store

several activation frames. Unlike spaghetti stacks, each stacklet is managed like a sequential

stack. As in the stack model, the global cactus stack is maintained implicitly (between

frames in a single stacklet) and explicitly (with links between stacklets) (See Figure 4.14).

4.6.1 Stacklet Layout

Each stacklet is divided into two regions, the stub and the frame area. The stub

contains data that maintain the global cactus stack by linking the individual stacklets to

each other. The frame area contains the activation frames (See Figure 4.15).

4.6.2 Stacklet Operations

Stacklets exploit the fact that each independent thread begins at the base of a

new stacklet while lazy threads are allocated on the same stacklet as their parent. Thus,

lazy thread forks and sequential calls both perform a sequential allocation. A sequential

allocation is one that requests space on the same stack as the caller. The child performs

the allocation and determines whether the new frame �ts in the current stacklet. If it does,

sp is updated appropriately (See Figure 4.16). If not, a new stacklet is allocated and the

child frame is allocated on the new stacklet (See Figure 4.17).

CHAPTER 4. STORAGE MODELS 77

Stub

Frame
Area

free
space

a frame

running
frameAddress to enter stub routine

Storage for parent’s return address

Storage for sp

Storage for parent pointer

sp

Figure 4.15: The basic form of a stacklet.

Stub

free
space

a frame

parent
sequential
call

Stub

free
space

a frame

parent

child
sp

sp

Figure 4.16: The result of a sequential call which does not overow the stacklet.

Stub

free
space

a frame

parent

Stub

child

retadr

overflow
Stub

a frame

parent

top

unused
free
space

fork
or

sequential call
with overflow

sp sp

Figure 4.17: The result of a fork or a sequential call which overows the stacklet.

An eager fork also causes the child to be allocated on a new stacklet. We can either

run the child in the new stacklet immediately or schedule the child for later execution. In

the former case, sp points to the child stacklet (See Figure 4.17). In the latter case, the sp

remains unchanged after the allocation.

CHAPTER 4. STORAGE MODELS 78

Stub

free
space

a frame

parent
remote call

Stub

free
space

a frame

parent

Stub

free
space

child
remote

& of retcont

sp sp

sp

Figure 4.18: A remote fork leaves the current stacklet unchanged and allocates a new

stacklet on another processor.

For a remote fork, there are no stacklet operations on the local processor. Instead,

a message is sent to a remote processor with the child routine's address and arguments (See

Figure 4.18).

The overhead in checking for stacklet overow in a sequential call is three register-

based instructions and a branch (which will usually be successfully predicted). If the stacklet

overows, a new stacklet is allocated. This cost is amortized over the many invocations that

will run in the stacklet.

4.6.3 Stacklet Stubs

As with multiple stacks, stacklet stubs are used to link the individual stacklets

that form the global cactus stack. The stub handler performs stacklet deallocation and,

using the data in the stacklet stub, carries out the necessary actions to return control to

the parent.

4.6.4 Compilation

To reduce the cost of frame allocation even further, we construct a call graph

which enables us to determine for all non-recursive function calls whether an overow check

is needed [27]. Each function has two entry points, one that checks stacklet overow and

another that does not. If the compiler can determine that no check is needed, it uses

the latter entry point. This analysis may insert code to perform a stacklet allocation to

guarantee that future children will not need to perform any overow checks.

CHAPTER 4. STORAGE MODELS 79

Instruction Count
Operation Memory Branch Register

C call 0 0 1
C return 0 0 1

Sequential call 0 1 5
Sequential call (overow) 5 1 5
Sequential return 0 0 1

Create Thread from pool 5 1 6
Schedule Thread 0 0 0
Free Thread 5 1 1

Create lazy thread 0 1 5
Create lazy thread (no check) 0 0 1
lazy return 0 0 1
Eager-disconnect(n-word frame) 2n+6 12 30
Create lazy thread
after lazy-disconnect 5 1 6

Table 4.4: Times for the primitive operations using stacklets. These times do not include

any control costs. They assume stacklets are allocated from a pool of stacks and exclude

the cost of a malloc.

4.6.5 Timings

Stacklets, like spaghetti stacks, o�er a compromise between linked frames and

multiple stacks. As seen in the timings in Table 4.4, sequential call and lfork behave

similarly and require no memory references. However, when a stacklet overows, or a new

thread is created, we must create a new stacklet from the pool which costs slightly more

than creating a new linked frame. Like multiple stacks, eager-disconnect is expensive.

We reject the use of guard pages to detect static overow because the cost of taking

an overow fault is 60,000 cycles. The use of guard pages reduces the cost of sequential call

and lfork by one branch and four register instructions. Thus, for the guard page scheme

to pay o� an overow would have to be rarer than once every 12,000 calls.

4.6.6 Discussion

The main disadvantage of stacklets is that if a frame is at the top of a stacklet,

each of its children must be allocated on a new stacklet. This boundary case is similar to the

overow case when using register windows. We can reduce the probability that this occurs

CHAPTER 4. STORAGE MODELS 80

Instruction Count
Operation Memory Branch Register

C call 0 0 1
C return 0 0 1

Sequential call 0 0 1
Sequential return 0 0 1

Create Thread (stacklet) 5 1 6
Schedule Thread 0 0 0
Free Thread (stacklet) 5 1 1

Create lazy thread (stacklet) 0 1 5
Create lazy thread (stacklet - no check) 0 0 1
lazy return (stacklet) 0 0 1
Create lazy thread
after lazy-disconnect 5 1 6

Create thread or lazy thread (heap) 4 1 4
Free thread (heap) 3 0 1

Lazy return (heap) 4 0 2

Table 4.5: Times for the primitive operations using a sequential stack for purely sequential

calls, stacklets for potentially parallel and suspendable sequential calls with moderate sized

frames, and the heap for the rest. These times do not include any control costs. They

assume stacklets and heap-allocated frames are allocated from a pool and exclude the cost

of a malloc.

by increasing the size of each stacklet. Additionally, the compiler optimization mentioned

in Section 4.6.4 eliminates many of the places where this boundary case can occur.

4.7 Mixed Storage Model

In all of the memory models except the multiple stacks model, sequential call

and lfork cost more than a sequential call on a stack. For this reason we propose a �fth

alternative, the mixed storage model, which combines a stack with stacklets and linked

frames in a single system. In such a system, activation frames can be stored on the stack,

a stacklet, or a heap, depending upon the type of call and the requirements of the child.

The compiler chooses the least expensive storage mechanism for each activation frame. The

least versatile and least expensive method is to use a stack, which is available only for

purely sequential calls, i.e., for calls that can never suspend. The most expensive method

is to store each frame in a heap-allocated memory segment. A heap-allocated frame store

requires a link from child to parent, which is implicit when using a stack.

CHAPTER 4. STORAGE MODELS 81

Between these two extremes, we use stacklets for frames that are allocated by forks.

A stacklet combines the e�ciency of a stack with the exibility of heap-allocated frames for

those frames that are or may become independent threads of control. This method allows

us to assign to each thread its own logically unbounded stack without having to manage

multiple stacks or require garbage collection. Our compilation strategy allows us to use

a sequential stack for sequential activation frames, stacklets for small to moderately sized

thread frames, and the heap for large thread frames.

4.8 The Memory System

Here we specify the possible memory hierarchies of the concrete implementation

of the abstract machine. While we can implement LMAM on either a shared memory

machine (SMM) or a distributed memory machine (DMM, either an MPP or a NOW),

the underlying memory system will signi�cantly a�ect the implementation and cost of the

di�erent mechanisms described here. There are three main areas of impact: locks, thread

migration, and split-phase operations.

Many of the operations described have to be performed atomically. For instance,

lreturn must remove the parent from the parent queue and return control to the parent

atomically. If it does not, a steal operation may steal the parent thread from the parent

queue at the same time. On a DMM using Active Messages [62], the steal operation is only

initiated when the network is polled for a message. Since we control when the network is

polled, we avoid the explicit manipulation of locks. On an SMM one of three approaches

must be used: (1) the parent queue must be locked on every lfork and lreturn, (2) multiple

queues maintained, or (3) active messages for work stealing requests simulated [55].8 With

all but the last technique, SMM implementations will introduce signi�cant overhead.

On an SMM, it is easy to migrate a thread, while on a DMM the migration of

threads requires sending all of the data in the thread's frame across the network. Since local

pointers are not valid on another processor, we require either that all pointers be global or

that no pointers be placed in the frame. When seed activation is used to represent nascent

threads there is an alternative, for it is easy to \migrate" a nascent thread. A nascent

8The only synchronization point is the bu�er used to store the steal requests. However, when a steal

request is inserted into the bu�er the processor inserting the message is by de�nition idle.

CHAPTER 4. STORAGE MODELS 82

thread has no data associated with it except its arguments.9 Thus, when a nascent thread

is activated, it can be activated either locally or remotely.

Finally, on a DMM, split-phase memory operations are often used to hide the

network latency. A split-phase read operation consists of two messages: a request and a

response. The request must specify the address of the remote location and the address of

the local destination. The response then stores the value into the local destination. If we

allow child- or parent-copying disconnection, then the local destination may change between

the request and response if the destination is in a frame that is copied due to disconnection.

Thus on a DMM, neither child- nor parent-copying can be used unless we forbid thread

operations during split-phase operations.

In the remaining chapters, we will focus on distributed memory multiprocessors.

For this reason we will look only at systems that do not allow thread migration and perform

lazy-disconnect. We will also generally skirt the issue of atomicity since we can easily

guarantee it by polling the network controlling when handlers are permitted to execute.

4.9 Summary

In this chapter we have investigated �ve storage models for implementing thread

state. The multiple stacks model is the most expensive for thread operations and the least

for lazy thread and sequential operations. However, since we do not use garbage collection

it does not provide an in�nite logical stack per thread. For this reason we will not study it

further.

Of the remaining four models, linked frames are the most expensive for sequential

operations and moderately e�ective for thread operations. The mixed model, stacklets, and

spaghetti stacks strike a compromise between sequential and thread operations.

In all cases, the timings we have presented depend heavily on integrating thread

operations directly into the compiler. By integrating knowledge of the storage model into

the compiler we are able to construct a function prolog and epilog that is tailored to the

speci�c model being used. This is carried even further for the mixed model, where the size

of the function's activation frame determines whether it is heap-allocated, stack-allocated,

or stacklet-allocated. Furthermore, we discussed how the underlying memory model of the

machine a�ects how atomicity is achieved.

9If an argument is a pointer it has to be a global pointer.

CHAPTER 4. STORAGE MODELS 83

In all cases we have ignored the e�ects that the di�erent thread representations

and queuing methods impose on the storage model. We consider these e�ects in the next

chapter.

84

Chapter 5

Implementing Control

In this chapter, we present the control portion of a concrete implementation of

the abstract machinery introduced in Chapter 3 for the support of a lazy thread fork. We

begin with the thread seed model and present the di�erent means of invoking threads and

representing nascent threads. We then explore the di�erent ways in which nascent threads

can be queued and dequeued. This leads us into a discussion of the implementation of

disconnection. Before proceeding to discuss the continuation-stealing model, we show how

to reduce the cost of synchronization and how to use lazy parent queues.

5.1 Representing Threads

As we saw in Chapter 3, the inclusion of a lazy thread fork requires that threads,

or potential threads, be represented in many forms. What would have been a thread in

MAM can begin life as a nascent thread, become a lazy thread, and even be transformed

(by disconnection) into an independent thread. In this section we describe the concrete

representations of nascent threads (as thread seeds and closures) and the implementation

of an lfork (as a parallel ready sequential call).

5.1.1 Sequential Call

Although a sequential call does not start a new thread, it is the basis upon which

we build all the representations for lazy threads. In this chapter, we are concerned mainly

with the transfer of control between parent and child. For a sequential call, the child begins

CHAPTER 5. IMPLEMENTING CONTROL 85

executing by saving its return address.1 Instead of storing the return address in the child

frame, the child stores the return address at a �xed o�set from the top of the parent stack

frame. The key feature we exploit is that the return address is in the same relative location

in every parent frame.

The child returns to the parent by doing an indirect jump through the location that

contains the return address. We exploit the exibility of the indirect jump to implement

lfork as a sequential call.

5.1.2 The Parallel Ready Sequential Call

The parallel ready sequential call implements the abstract lfork operation. It

starts its child thread, a lazy thread, with a sequential call. The child stores its return

address, just as a sequentially called child does, in the parent's frame. The child returns to

the parent using the sequential return instruction.

To support disconnection, every return address has associated with it the addresses

of two seed routines. These routines, find(adr, susp) and find(adr, steal) (See Sec-

tion 3.4), are used to handle child suspension and the receipt of a work stealing request,

respectively. There are many alternative implementation strategies for associating the seed

routines with the return address: inserting a jump table or addresses between the call and

normal return, de�ning �xed o�sets, and a central hash table, to name a few. In all cases,

given a return address, the seed routines should be easily computed, and if they are not

needed they should not interfere with sequential execution.

For exibility and ease of implementation, we insert jump instructions into the

seed routines between the call instruction and code that is executed when the child returns.

Figure 5.1 shows a sample instruction sequence for a parallel ready sequential call. Every

thread codeblock begins with an adjustment to the return address just as in the Sparc.

This adjusted return address points to the code immediately following the seed routines

associated with the lfork that invoked it (See the prolog code in Figure 5.1).

The decision between implementations of the find() functions should be based on

the cost of adjusting the return address, the cost of �nding the seed routines, whether branch

prediction is used on return, and the behavior of the cache. An ideal implementation allows a

seed routine to be found and executed quickly without interfering with sequential execution.

1Leaf functions are not required to store their return address, but for the purposes of this discussion we

assume they do.

CHAPTER 5. IMPLEMENTING CONTROL 86

...
call child // lfork child
jmp steal-fragment
jmp suspend-fragment
... // return here

retadr = retadr + 2 // function prolog
save retadr in a frame slot
// codeblock for child
...
...
load retadr from frame slot // function epilog
jmp retadr

A sample lfork instruction sample function prolog/epilog

Figure 5.1: Pseudo-code for a parallel ready sequential call and its associated return entry

points.

As the sequential case occurs more frequently than �nding a seed, an implementation should

favor non-interference over �nding the seed.

Inserting a jump table between the call and return requires the return address

to be adjusted on every call and allows the seed routines to be found by doing address

arithmetic. This is a particularly good method on architectures like the Sparc, which allow

the return address to be adjusted as part of the return instruction, making the adjustment

free. However, if the processor predicts return \branches" based on the address of the call

instruction, then adjusting the return pointer causes a misprediction on return, increasing

the cost of a sequential return. The inserted table also causes the sequential code to be

larger, possibly leading to an increased instruction cache miss rate.

An alternate method to implement find() is for the compiler/linker to construct a

hash table that maps return addresses to appropriate seed routines. This method produces

no interference with sequential calls; the return address does not need to be manipulated and

the code size is not increased. It does, however, increase the cost of �nding seed routines.

A more complicated approach is to place the seed routines at a large �xed o�set

from the return address. This method does not interfere with the sequential call, and the

seed routines can be found simply by using address arithmetic. However, the compiler/linker

must interleave unrelated code and seed routines in order not to waste code space.

5.1.3 Seeds

A thread seed represents a nascent thread. It is a pair of pointers, a frame pointer

and a code pointer. The addresses of the suspend and steal routines can be derived from

the code pointer.

A seed is activated by loading the frame pointer and executing one of the routines

associated with the code pointer. The suspend routine creates a new lazy thread. The steal

CHAPTER 5. IMPLEMENTING CONTROL 87

fork X(a,b);
a = 5;
join;

1: synch = 1
2: c = allocate closure(cseed)
3: store a into c
4: enqueue c
5: store a <- 5
6: cmp synch, 0
7: be continue
8: suspend
9: continue:

10:cseed:
11: jmp on_suspend
12: jmp on_steal
13:on_suspend:
14: setupfp from closure
15: loada from closure intotemp
16: free closure
17: lfork X(a,b)
18: goto continue

code-pointer

frame-pointer

slot for ‘a’

Closure created in
line 2

Figure 5.2: Example of a closure and the code to handle it.

routine starts a new independent thread and then exits. Both routines update the parent

thread state to reect the seed's activation.

The arguments used to start the nascent thread, if any, are stored in the parent

thread frame, i.e., the frame pointed to by the frame pointer in the seed. These arguments

cannot be modi�ed between enqueuing and activating the seed. If the program can modify

the arguments, a closure is used instead of a seed to represent the thread.

5.1.4 Closures

We use a closure when the arguments to the fork of a nascent thread may change

in the parent between the time the fork is represented as a nascent thread and the time

that the nascent thread is instantiated (See Figure 5.2). It consists of two pointers, a code

pointer and an environment pointer. The code pointer, like the code pointer in a seed, is

used to derive the suspend and steal routines which activate the closure.

The environment is a heap-allocated region of memory that contains the argu-

ments, and a pointer to the frame that created the closure. The mutable arguments are

placed in the environment. Any arguments guaranteed not to change are left in the frame.

When a closure is activated, the activation routine uses the frame pointer in the

environment to change the state of the parent thread. The environment and possibly the

CHAPTER 5. IMPLEMENTING CONTROL 88

frame are used as the source of the arguments to the new thread. The closure is freed when

the new thread is created.

5.1.5 Summary

In the seed model we have two ways to represent nascent threads (seeds and

closures) and one way to execute a lazy thread (the parallel ready sequential call). It is no

coincidence that the return address of a parallel ready sequential call is a code pointer that

could be used for a seed. In fact, we have also arranged for the code pointer to be stored

in the parent's frame. The result is that the child has a pointer to a location which stores

the code pointer. In other words, the child has a thread seed to the remaining work in the

parent.

In the next section, we discuss the ways in which work (threads, thread seeds, and

closures) is queued, found, and then executed in the system. Since closures are queued and

dequeued in the same manner as thread seeds, we only discuss thread seeds. We show how

thread seeds and parallel ready sequential calls interact and a�ect the parent queue and its

representations.

5.2 The Ready and Parent Queues

The abstract machine has two queues of threads that are ready to run: the ready

queue and the parent queue. The former contains threads in the ready state, which are

scheduled by the general scheduler. The latter contains threads that have passed control to

a child, i.e., threads in the has-child state.

5.2.1 The Ready Queue

In order to bound the amount of memory that the ready queue consumes, we

distribute it among the activation frames. Any data structure that allows us to do this

would be su�cient, and we choose to represent the ready queue as a linked list exhibiting

LIFO behavior. Thus, the ready queue is maintained for each processor by a global register

which points to the �rst ready frame. Each frame in turn points to the next frame in the

ready queue.

CHAPTER 5. IMPLEMENTING CONTROL 89

Our implementation does not depend on the data structure chosen to represent

the ready queue. This is important because the data structure can have a signi�cant e�ect

on execution time and storage requirements [9, 17]. The e�ect of the data structure for the

ready queue is orthogonal to the goals of this thesis.

5.2.2 The Parent Queue

Unlike the ready queue, which is involved with independent threads only, i.e.,

threads that have already suspended and need to be scheduled, the parent queue holds

nascent threads. More precisely, lfork requires that nascent threads in the parent be

represented by enqueuing the parent thread on the parent queue. This means that we have

to pay more attention to the cost of enqueuing and dequeuing, or we lose the bene�t of lazy

threads.

A thread seed can be enqueued on either an implicit queue (See Section 5.2.3) or

an explicit queue (See Section 5.2.4). When a thread seed is implicitly enqueued we call it

an implicit seed, and when it is explicitly enqueued we call it an explicit seed.

Whether implicit or explicit, the parent queue, is implemented here as a stack.

Thus, when an item is enqueued on the parent queue, it is placed at the top of the parent

queue. Furthermore, dequeue removes the most recently enqueued item.

5.2.3 The Implicit Queue and Implicit Seeds

Parallel ready sequential call uses the call mechanism itself to implicitly enqueue

the parent's seed as it transfers control to the child. The seed is enqueued in the parent

frame by the act of calling the child. When an implicit queue is used, we establish the

invariant that a child always returns control to its parent, even if it suspends. This allows

us to use the return address produced by the parallel ready sequential call as the parent's

thread seed, embedding the parent queue in the cactus stack (See Figure 5.3).

The implicit queue is thus woven throughout the activation frames and managed

implicitly through the call and return operations, eliminating the cost of managing the

queue whenever the child runs to completion. We call a return address enqueued by a

parallel ready sequential call an implicit seed. When a fork that is translated into a parallel

ready sequential call is followed by another fork, the implicit seed created by the �rst of

CHAPTER 5. IMPLEMENTING CONTROL 90

Processor A Processor B

The running thread on a processor.

A thread on the parent queue with a thread seed..

A thread in theready , or idle state.

A thread in thehas-child
state with no work.

Figure 5.3: An example of a cactus stack split across two processors with the implicit parent

queue embedded in it. The threads on the parent queue are guaranteed to be ancestors of

the currently running thread.

fork X();

fork Y();

join;

Implicit thread seed created

Implicit seed created which
transfers control to the parent.
(A “No Work” seed.)

Figure 5.4: Example of when a fork generates a thread seed, and when it does not.

these two forks is a thread seed (See Figure 5.4).2 If the code following the parallel ready

sequential call does not contain a fork, then the implicit seed is used only to transfer control

from the frame in which it resides to the frame's parent

The return address of the child thread, stored in the parent's frame, is an implicit

seed that can be activated by either a suspending child or a work stealing request. On

suspension, a child returns control to its parent, not at the return address, but to the seed

routine for suspension, i.e. find(ip, suspend). This removes the parent from the implicit

parent queue and starts the suspend routine, which activates the seed and starts the next

thread. If a work-stealing request occurs, it �nds the implicit seed by searching the stack

for a thread seed. Only the frames from the running thread to the root of the cactus stack

need to be searched. All the other threads must either be idle or ready, which means they

2The parallel call does not have to immediately follow the parallel ready sequential call. It only must

precede a join.

CHAPTER 5. IMPLEMENTING CONTROL 91

cannot have any nascent threads. When it �nds an implicit seed that is a thread seed, it

invokes the steal routine, found in the seed's frame. Since an implicit seed is stored in the

frame that will invoke the nascent child thread, the seed itself is represented by a single

word.

There are two drawbacks to an implicit queue, both of which derive from the fact

that it contains only seeds created by parallel ready sequential calls. First, an implicit

seed may be created even when there is no nascent thread in the parent. For example,

the last lfork before a join creates an implicit seed that indicates that the parent has no

threads available. In this case, the suspend routine causes the parent to suspend, recursively

invoking its parent's suspend routine. Likewise, the steal routine for such an implicit seed

invokes its parent's steal routine in search of a nascent thread to activate. The entire path

from the currently executing child to the root may have to be scanned to verify that there

are no nascent threads to invoke. The other disadvantage is that implicit seeds can only

be created for nascent threads that follow a parallel ready sequential call. This means

that parallel loops must be turned into loops of function calls, and that the sequential

code following a lone fork must be encapsulated in a function call. Despite these two

disadvantages, implicit seeds are useful because they cost nothing to enqueue, a side e�ect

of invoking the lazy thread that precedes them.

5.2.4 The Explicit Queue and Explicit Seeds

An explicit queue is a data structure separate from the cactus stack that contains

thread seeds. A thread seed on such a queue is called an explicit seed. An explicit queue

solves the two problems of implicit queues by enqueuing the parent thread on an explicit

parent queue. When an explicit parent queue exists, a suspending thread or a work stealing

request may immediately �nd work by removing a seed from the parent queue.

Of course, explicit seeds may be enqueued on the parent queue at any time, not

just when a parallel ready sequential call is made. This makes them useful not only for

avoiding the stack walking needed by implicit seeds, but also for handling parallel loops

and the case of a lone fork followed by sequential code. In order to handle parallel loops,

we enqueue a seed before the loop starts which points to a routine which will fork o� an

iteration of the loop. After the seed routine creates the new thread, it replaces the seed in

the queue. When the loop is �nished, it removes the seed. The lone fork is represented as a

CHAPTER 5. IMPLEMENTING CONTROL 92

...
goto steal-fragment
goto suspend-fragment

explSeed: // normal return continues here
...

steal-fragment:
sp = sp - offset
// steal routine continues here

...

Parent Queue

offset

The code associated with an explicit seed.
A thread frame

Figure 5.5: Example of how an explicit seed is stored on the parent queue. The parent

queue contains a pointer to a location in the thread's frame. The location contains a code

pointer from which the seed routines can be derived. When invoked, the seed routines

calculate the thread frame's stack pointer based on the o�set, known at compile time, from

the location to the frame's top.

nascent thread and enqueued by the parent before it starts executing the sequential code. If

no other processor has activated the seed when the parent reaches the join, it activates the

seed and then continue. In this way, we never limit the parallelism in the original program,

even though we are using seed activation as the underlying control model.

We implement the explicit queue as a �xed array that is managed by two global

registers: front and back pointers.3 We enqueue new seeds onto the front of the queue. If

the seed is enqueued due to a parallel ready sequential call, then when the call returns it

will pop the seed o� the queue. If instead the child suspends, we also pop the seed o� the

front of the queue. On the other hand, a steal request takes a seed from the back of the

queue. This allows work to be stolen from lower down in the cactus stack, and thus the

work is more likely to be larger-grained.

An explicit seed is a single pointer which points to a slot in the frame of the thread

that created it. The slot in the frame contains the code pointer from which the seed routines

can be derived. For example, if seeds are represented by a jump table (See Figure 5.1), then

the the code pointer for an explicit seed points to the instruction after the second jump

(See Figure 5.5). The seed routines are invoked with the address of the seed itself, from

which it is possible to calculate the base of the frame.

3Though this appears to �x the size of the queue, it can be dynamically expanded if needed. In any case,

empirical results show a small queue, on the order of 100 words, is su�cient for most programs.

CHAPTER 5. IMPLEMENTING CONTROL 93

Implicit Queue Explicit Queue

Suspend: goto (*retadr)-1 goto (*popSeed())-1

Implicit Seed:
goto steal-routine
goto suspend-routine
// continue

Explicit Seed:
goto steal-routine
goto suspend-routine
popSeed()

No Work Seed:
goto (*retadr)-2
goto (*retadr)-1
// continue

Figure 5.6: A comparison of the di�erent implementations of suspend depending upon the

type of parent queue. Empty entries indicate that no such seed exists for the model. The

units of address arithmetic are words.

5.2.5 Interaction Between the Queue and Suspension

The implementation of the suspend operation depends upon which representation

of the parent queue we choose. If an implicit queue is used, then the child always returns to

its parent, which then decides which nascent thread to activate. If only the explicit queue

is used, then the child immediately transfers control to its youngest ancestor with work,

i.e. to the frame pointed to by the thread seed at the front of the queue. Figure 5.6 shows

how suspend is implemented and what kinds of seeds are used depending upon the type of

queue in the implementation.

When we have an implicit queue in the system, the child always returns to the

parent, which means that sometimes the child returns to a thread that has no nascent

threads. In this case, the seed left behind by the parallel ready sequential call that invoked

the child is like the \No Work Seed" in Figure 5.6. As we can see from the �gure, this seed

recursively suspends the parent to its parent.

If we have only an explicit queue, then a child can never return to a parent without

nascent threads. This is because such a parent would not push a seed on the queue in the

�rst place.

We cannot use both queues in the system at the same time. The reason is that

a child would never know if its parent is enqueued implicitly, and thus would always have

to return to its parent. Yet if the parent enqueued a seed explicitly, it would not know if

it was reached via an explicit dequeue (so that its seed is no longer on the explicit queue)

CHAPTER 5. IMPLEMENTING CONTROL 94

or from a child suspending (with its seed still on the queue). While this could be �xed by

setting and testing a ag, a more basic problem is that there is no explicit handle to the

implicit queue. If for some reason a thread is scheduled which is not the child of the top

parent on the implicit queue, then we lose the link to the implicit queue, possibly resulting

in deadlock. In Section 5.5 we show how a lazy parent queue can be built which combines

the best features of both the explicit and implicit queues.

5.3 Disconnection and Parent-Controlled Return Continu-

ations

Disconnection is a key component of a lazy multithreaded system. It allows a

thread to start a child as a lazy thread and later, if necessary, to disconnect from it, turning

the child into an independent thread. In this section, we introduce the key mechanism that

allows us to perform disconnection, parent-controlled return continuations, and discuss the

di�erences between lazy-disconnect and eager-disconnect.

The address that a parallel ready sequential call gives its child acts like a sequen-

tial return address in that it acts as both the inlet address and the continuation address

for the parent. When the child suspends, we need to break this bond between inlet and

continuation addresses. In terms of the abstract machine, the parent must have a valid ip

(its continuation), and the indirect inlet address for its child must be updated.

Three facts help us in this task. First, disconnection occurs only when the parent

is resumed (by suspension or by a work stealing request). Second, the return instruction

is an indirect jump, which we perform through a location in the parent frame. Third, as

discussed in Section 3.4, every parallel ready sequential call has associated with it two inlets:

one for normal return and one for return after disconnection.

When the parent disconnects from its child, it must change the indirect inlet

address for the child. It does this by changing the return address for the child to its post-

disconnection inlet. Since the parent controls the return continuation for the child, we

call this mechanism parent-controlled return continuations (pcrcs). Later, when the child

completes, it will run the inlet that reects the fact that it has been disconnected from its

parent. We are not done yet, since when the inlet returns, we must then continue execution

in the parent at its current (at the time of return) ip.

CHAPTER 5. IMPLEMENTING CONTROL 95

x = lfork foo(arguments);
y = lfork bar(arguments);
join;

load arguments for foo
call foo
jump foo_steal
jump foo_susp

ret: save return value to x
load arguments for bar
// lfork bar

cont: // join is a nop
...

foo_susp:
retAdr = post_dis_ret
resumeAdr = checkcont
join_counter = 2
// fork bar
suspend

post_dis_ret:
save return value to x
join_counter--
jump *resumeAdr

checkcont:
if (join_counter) suspend
jump cont

retAdr

resumeAdr

●
●

●

x

●
●

●

Frame layout

Source

ret

●
●

●

?

●
●

●

post_dis_ret

cont

●
●

●

?

●
●

●

Before disconnection

After lazy-disconnection

Psuedo-code for implementation

Figure 5.7: Example implementation of two lforks followed by a join. It shows the state of

the thread frame before and after disconnection. It also shows the frames upon execution

of the code up to the dashed arrows.

We call the ip at which we continue the resume address. The resume address is

stored in a predetermined �eld in the parent's frame. It is used only when a parent has been

disconnected from its child. Thus, when disconnection occurs two things happen. First,

the parent changes the pcrc to reect the new inlet to be used by the child. Second, the

parent stores a continuation that reects the new state of the parent in its resume address

�eld. The resume address now points to the code following the seed it is activating.

In other words, some action caused the parent to disconnect itself from its child.

This action causes the parent to instantiate the nascent thread in the parent. When the child

�nally does return to the parent, we do not want it executing the lfork of the instantiated

nascent thread. Instead it begins execution at the resume address.

Figure 5.7 shows an implementation of the lfork operation with its associated

pcrc manipulation instructions under lazy-disconnect. If the child created by the lfork

foo() runs to completion, it returns to ret, stores the return value to x, and then forks

bar(). Before disconnection, no synchronization operations are performed. Also, the return

address is both the inlet run (storing the return value x) and the continuation address (ip

in the abstract machine).

After disconnection (in this case the code shown is for the child suspending), we see

that the inlet used by the child has been changed to post dis ret, explicit synchronization

is performed, and the resumeAdr �eld in the frame is set to cont. In other words, the

CHAPTER 5. IMPLEMENTING CONTROL 96

fork X();
fork Y();
fork Z();
join;

call X
jmp X_susp
jmp X_steal
// X returns here
call Y
jmp Y_susp
jmp Y_steal
// Y returns here
call Z
jmp noWork_susp
jmp noWork_steal
// Z returns here

continue:
// after join

X_susp:
set synch=3

lfork_Y:
set resumeAdr <- lfork_Z
call Y
jmp Y_susp1
jmp Y_steal1
// Y returns here
set synch = synch - 1
jmp *resumeAdr

Y_susp:
set synch=2

lfork_Z:
set resumeAdr <- join
call Z
jmp noWork_susp
jmp noWork_steal
// Z returns here
set synch = synch - 1
jmp *resumeAdr

join:
cmp synch,0
be continue
suspend

X_steal:
set synch=3

fork_Y:
set resumeAdr <- lfork_Z
fork Y // inlet=Y_inlet
return

Y_inlet:
set synch = synch - 1
cmp synch,0
bne skip
enable

skip:
return

Y_steal:
set synch=2

fork_Z:
set resumeAdr <- join
fork Z // inlet=Z_inlet

Source code

Sequential Code Stream Steal Code StreamSuspendCode Stream

Figure 5.8: Each fork-set is compiled into three code streams. The code fragments shown

here do not include indirect inlet address manipulation.

return address is now simply an indirect inlet address and the ip in the abstract semantics

is now represented by the resumeAdr �eld.

A by-product of lazy-disconnect is that after disconnection, the parent thread

continues to execute all the remaining lforks before the next join di�erently than if no

disconnection had occurred. This is because after disconnection, any progress in the parent

has to be reected in its resume address. Thus, the code for the second fork to the matching

join in a series of forks has to be duplicated.

5.3.1 Compilation Strategy

The compilation strategy is to create three di�erent code streams for each fork-set

(See Figure 5.8): sequential, suspend, and steal. The sequential code-stream handles the

case when all the parallel ready sequential calls run to completion. In this stream, each

lfork is implemented as a call followed by the appropriate thread seed. The join operation

is of course not implemented since no synchronization is needed if none of the calls is ever

disconnected from the parent.

The suspend code-stream is entered when one of the original lazy threads suspends.

In this stream, each lfork is also implemented as a call followed by a thread seed. Unlike the

sequential stream, synchronization is performed explicitly, and after the lazy thread returns

we �nd the next location to execute by jumping through the resumeAdr �eld. When this

CHAPTER 5. IMPLEMENTING CONTROL 97

stream is entered, the suspending call will setup the synchronization counter and also modify

its indirect inlet address to point to an explicit inlet (as in Figure 5.7). The join is explicitly

implemented in this stream.

The steal code-stream is entered when a steal request arrives during execution of

one of the parent's children. The steal routine is executed, which forks o� the next child.

This causes all future lforks to be executed in the suspend stream. Since this stream is

only entered via a steal request, there is no provision for forked children to return and

execute anything other than their inlet. The future children are started when the currently

outstanding child �nishes and jumps through the resumeAdr �eld.

A slight optimization involves checking the number of outstanding children before

activating a seed. If all the children have completed, then it continues execution back in

the original sequence of code. If there are outstanding children, then it activates the seed

with the post-disconnection code.

5.3.2 Lazy-disconnect

Lazy-disconnect is mainly a way to avoid thread frame copying when threads are

disconnected from their parents. However, it also has an e�ect on the control model, since

the frame slot in a child's parent that holds its return address is never moved.

If the parent has been disconnected, its return address �eld contains the inlet for

the �rst child from which it was disconnected. Any further children that are invoked must

have their own return address �elds. Thus each seed activation is assigned a unique �eld in

the frame to store the return address. Even though this �eld is never changed, we use it so

that the child may return with a return instruction.4 This eliminates the need for a child

to determine how it was invoked, making concrete implementation of the abstract machine

simpler than the rewrite rules would seem to indicate. The inlets for such children adjust

the stack pointer in the same manner as an explicit seed routine (See Figure 5.5).

5.3.3 Eager-disconnect

When eager-disconnect is used, we copy the the disconnecting child's return ad-

dress to a new slot, so that additional children can use the regular return address. This

4The children started in the duplicated code stream are invoked lazily, but their inlets always end with

a jump through the resume address. Thus we never have to change their return addresses.

CHAPTER 5. IMPLEMENTING CONTROL 98

means that a parent has to maintain a pointer to its connected child. The parent uses

this pointer to change the child's pointer to the return address in the parent slot. Fig-

ure 3.38 shows the con�guration before and after disconnection using eager-disconnect with

the linked-frames storage model.

The result of eager-disconnect is that the return address for a thread, even one

invoked in the suspend code-stream, can change locations. Eager-disconnect also increases

the cost of the parallel ready sequential call in the linked storage models, since we have

to store a pointer from the parent to the child. The pointer is used to update the parent

pointer in the child to reect the new location of the child's return address.

5.4 Synchronizers

In this section we describe a compiler optimization, synchronizer transformation,

which eliminates synchronization costs for forks and joins by always combining synchro-

nization with return, even for disconnected threads. While there is no synchronization cost

when all the forked children of a parent run to completion, we do incur synchronization

costs once any one of them causes disconnection. We can minimize this synchronization

cost by extending the use of pcrcs with judicious code duplication and by exploiting the

exibility of the indirect jump in the return instruction.

A synchronizer is an inlet which implicitly performs synchronization. The idea is

to change the return address of a child to reect the synchronization state of the parent. In

this way, neither extra synchronization variables nor tests are needed. The amount of code

duplicated is small since we need to copy only the inlet code fragments. Here we describe

the synchronizer transformation for two forks followed by a join.

In the previous section we showed how to encode the inlet address and continuation

address in the return address for the parallel ready sequential call. The return address for

a child was changed at most once by the parent if the child suspended. Here we extend

the encoding to include the synchronization state of the parent. If none of the children

suspends, then each will return, and the parent will call the next child until the last child

returns and the parent executes the code following the join.

If any child suspends, then not only must the inlet for that child change to reect a

new continuation address, but each subsequent fork must be supplied a return continuation

that indicates that there is an outstanding child. Furthermore, when a child that previously

CHAPTER 5. IMPLEMENTING CONTROL 99

pcrc(X) ←inlet_X1
Call X

inlet_X1.susp:
pcrc(X) ←inlet_X3

pcrc(Y) ←inlet_Y2
Fork Y

inlet_X1.ret:

pcrc(Y) ←inlet_Y1
Call Y

inlet_Y1.susp:
suspend();

inlet_Y1.ret:
done:

continue after join

inlet_X2.susp:
suspend();

inlet_X2.ret:
goto done;

inlet_X3.susp:
suspend();

inlet_X3.ret:
pcrc(Y) ←inlet_Y1
suspend();

inlet_Y2.susp:
suspend();

inlet_Y2.ret:
pcrc(X) ←inlet_X2
suspend();

Main program text
Auxiliary inlets which
handle synchronization.

lfork X
lfork Y
Join
continue after join

Inlets which handle return
and suspension.

Figure 5.9: An example of applying the synchronizer transformation to two forks followed

by a join. Each inlet, i, is represented by two labels, a suspension label (i.susp) and a return
label (i.ret). In the pseudocode, we expose the operations that set a child's return address.

pcrc(X) denotes the return address for the child X.

suspended returns, it must update the return continuations for each of the outstanding

children to reect the new synchronization state. In the worst case this can require O(n2)

stores for n forks. The synchronizer transformation also requires O(2n) synchronizers for n

forks. For this reason we apply the synchronizer transformation only when n = 2.

In the case where two forks are followed by a join, the transformation is straight-

forward and cost-e�ective. As shown in Figure 5.9, the synchronization transformation

generates �ve inlets for two forks: the �rst two (in the middle of the �gure) are used when

no suspension occurs, and the last three (at the right of the �gure) are used when suspension

does occur.

There are three cases to consider for the fork of X. First, if it returns without

suspending, it returns to an inlet (inlet X1) that starts the fork of Y. Second and third, if

it has suspended, then when it returns, either the second call will have been completed, or

it will still be executing. In the former case its inlet (inlet X2) should continue with the

code after the join. In the latter, it should suspend the parent (inlet X3).

There are two cases to consider for the second fork, the fork of Y. Either X has

completed when it returns, or X's thread is outstanding. If X has completed, then the inlet

(inlet Y1) continues with the code after the join. If X's thread is still outstanding, then the

inlet (inlet Y2) changes the pcrc for X to inlet X2 and suspends the parent.

CHAPTER 5. IMPLEMENTING CONTROL 100

When no suspensions occur, inlets X1 and Y1 are executed, and the runtime cost

of synchronization is zero. If the �rst fork suspends, it starts the second fork with inlet

Y2 and sets its own inlet to X3. If X (Y) returns next, it sets the inlet for Y (X) to inlet

Y1 (X2), which allows the last thread that returns to execute the code immediately after

the join without performing any tests. In this case, the runtime synchronization cost is two

stores, which is less than the cost of explicit synchronization. This optimization allows us

to use the combined return address of a sequential call, even after disconnection.

5.5 Lazy Parent Queue

Before leaving seed activation and examining how we implement LMAM using

continuation stealing, we revisit the representations for the parent queue. We have shown

that there are advantages to the explicit seed queue, but it imposes a higher cost on threads

that run to completion. Here we show how pcrcs allow us to combine the advantages of

an explicit queue with the less expensive implicit queue in the same system.

The basic idea is that every seed starts o� as an implicit seed. Then if a work

stealing request arrives or a child suspends to a parent with no nascent threads, the sys-

tem converts the current implicit seed queue into an explicit one. The resulting explicit

queue maintains the same ordering of threads as that in the implicit queue, i.e., the oldest

ancestor's seed is at the bottom of the queue. After this conversion, the implicit queue is

empty, so the possibility of losing a handle to it if we transfer to another thread does not

arise. Further, when a thread that was in the current implicit queue suspends, it obtains

work from the explicit queue rather than traversing the tree to �nd work. In addition, a

work stealing request can easily obtain work from the bottom of the newly created explicit

queue.

Figure 5.10 shows how a seed is converted from an implicit seed into an explicit

one. If a work stealing request arrives, it checks the explicit queue. If it is empty, the

system invokes the steal entry point for the seed at the top of the implicit queue, which

causes the convert-routine to start. The convert routine traverses the implicit queue,

converting each thread's seed to its explicit version. When the root of the cactus stack or

an already converted thread is encountered, the recursion unwinds, and the newly created

explicit seeds are stored in the order they would have been stored if explicit seeds had been

used from the start. When all have returned, if the explicit queue is not empty, the steal

CHAPTER 5. IMPLEMENTING CONTROL 101

Before Conversion After Conversion

Suspend: goto (*retadr)-1 goto (*retadr)-1

Seed for a
nascent thread:

 goto convert_routine
 goto suspend_routine
rest: // continue

goto steal_routine
goto suspend_routine
popSeed()
goto rest

Seed when no
nascent thread
exists in thread:

 goto convert_routine
 goto conv_and_suspend
rest: // continue

return
// not used
popSeed()
goto rest

convert_routine:
convert_flag = true
call parent’sconvert_routine
push converted seed
change pcrc to new seed
return

steal_routine:
if (convert_flag == true) return
// activate seed

conv_and_suspend:
call convert_routine
goto (*popSeed())-1

Figure 5.10: The table on the left shows how a seed is represented before and after conver-

sion. The routines that aid in conversion are shown on the right.

entry point is invoked for the seed at the bottom of the queue. Otherwise it reports that

there is no work. Likewise, if a child suspends and its parent has no nascent threads, it

invokes the conv-and-suspend routine, which converts the implicit queue into an explicit

one and then jumps to the top seed on the queue.

This entire scheme hinges on the use of pcrcs. Before conversion, the return

address points to the preconverted implicit seed. After conversion, the return address of

each converted child points to the converted explicit seed.

Once the conversion routine invokes a parent that has already been converted, we

terminate the stack walk. Since we never pull seeds o� the middle of the implicit queue, we

know that once we have reached a seed that has already been converted, we have converted

the entire implicit queue. As shown in Figure 5.3, the entire implicit queue is in one branch

of the cactus stack.

The lazy parent queue also allows us to plant an explicit seed. The only caveat

is that if we plant an explicit seed, we must convert the implicit queue below it into an

explicit one.

5.6 Costs in the Seed Model

In this section we present the control related costs of performing the basic oper-

ations of thread creation, suspension, etc. in light of the various options presented in this

chapter. Our main metric is the extra cost of an lfork above that of a traditional sequential

CHAPTER 5. IMPLEMENTING CONTROL 102

call, e.g., a C function call. Since a lazy thread may end up suspending, we also de�ne a

secondary cost, the disconnection cost, as the incremental cost of converting a lazy thread

call into an independent one rather than creating it as an independent thread ab initio.

There are three parts to the cost of an lfork: creation, linkage, and instantia-

tion. Creation cost is the cost of creating the nascent form of the thread. Linkage is the

cost of enqueuing the representation so that it can later be found and instantiated. The

instantiation cost is the cost of turning the representation into an executing thread. We

also compare lfork to a sequential call and to an eager fork.

As in our discussion about the storage model, we include the costs of lfork,

lreturn, suspend, disconnection, and lfork after disconnection. We break down our

analysis by the parent queue representation: implicit, explicit, or lazy. We further break

down the di�erences by the kind of disconnection|lazy or eager|used to transform lazy

threads into independent ones.

We describe the costs of the operations in terms of m, the cost of a memory

instruction, b, the cost of a branch, r, the cost of a register-only instruction, and d, the

number of frames traversed before a thread seed is found.

5.6.1 The Implicit Parent Queue

When the parent queue is implicit the creation and linkage costs of an lfork are

always zero, since the seeds are created and enqueued implicitly, by calling the child. The

overhead for an lreturn is also zero.

The cost of suspension has two components. First, a seed must be located. Second,

the parent must be disconnected from its child. Finding a seed requires d indirect jumps,

each of which jumps to the suspend routine and loads the proper frame pointer,5 which

results in a total of d(m+ 2b+ r) operations. When a work-stealing request arrives, it too

must �nd a seed and perform a disconnection operation, all of which takes exactly the same

amount of time as suspension.

Regardless of the disconnection method used, a synchronization counter must be

initialized and a return address must be stored for the child, taking 2m+ 2r steps. During

lazy-disconnect, no other steps are performed. In eager-disconnect, we also have to change

the child's pointer to the return address, incurring an additional cost of 2m+ r.6

5Loading the frame pointer is either a register or memory operation, depending on the storage model.
6Recall that we are only counting the control portion of the eager-disconnect operation.

CHAPTER 5. IMPLEMENTING CONTROL 103

Disconnection Model
Operation lazy eager

lfork 0 0

lreturn 0 0

suspend d(m+ 2b+ r) d(m+ 2b+ r)

disconnection 2m+ 2r 4m+ 3r

lfork after disconnect 6m+ 3r + b 7m+ 3r + b

Table 5.1: The cost of the basic operations using an implicit parent queue. The cost of

lfork also includes the costs of running its inlet on return. m is the cost of a memory

reference. b is the cost of a branch. r is the cost of a register operation. d is the number of

frames checked before work is found.

lforks after disconnection require setting a resume address and updating a syn-

chronization counter before invoking the child with a parallel ready sequential call, incurring

a cost of 3m + 2r. On return, the inlet must also update synchronization and then �nish

by jumping through the resume address, incurring a cost of 3m+ 1r+ b. These results are

summarized in Table 5.1.

5.6.2 The Explicit Parent Queue

When the explicit parent queue is used, an lfork costs more than in the implicit

queue because of the linkage cost. Every seed has to be enqueued, which costs 1m + 1r,

assuming the head of the seed queue is kept in a register. However, suspend and work

stealing can �nd a thread seed in O(1) time. Dequeuing a seed is a stack pop (and throw

away) operation which takes 1r instructions. When a lazy thread runs to completion, it has

an overhead of 1m+ 2r for the push and pop operations.

The cost of disconnection remains the same as that in the implicit queue model.

An lfork after disconnection, however, incurs an additional cost of r for enqueuing the seed.

The enqueue operation lacks a memory reference because the parent must have its seed on

the queue if it is executing an lfork after disconnection. Since the seed model requires that

all future executions of the parent begin with a jump through the resume address, the seed

which is already on the queue is su�cient to represent the remaining nascent threads in the

parent. The enqueuing of a seed after disconnection is e�ectively an \unpop" operation.

The costs of the basic operations using the explicit parent queue are summarized

in Table 5.2.

CHAPTER 5. IMPLEMENTING CONTROL 104

Disconnection Model
Operation lazy eager

lfork 2m+ 2r 2m+ 2r

lreturn 0 0

suspend m+ r + 2b m+ r + 2b

disconnection 2m+ 3r 4m+ 3r

lfork after disconnect 6m+ 4r + b 7m+ 4r+ b

Table 5.2: The cost of the basic operations using an explicit parent queue.

Disconnection Model
Operation lazy eager

lfork 0 0

lreturn 0 0

suspend before convert d(5m+ 4b+ 6r) d(5m+ 4b+ 6r)

suspend after convert m+ b+ r m+ b+ r

disconnection 2(m+ r) 4m+ 3r

lfork after disconnect 6m+ b+ 4r 7m+ b+ 4r

Table 5.3: The cost of the basic operations using an lazy parent queue.

5.6.3 The Lazy Parent Queue

The lazy parent queue has the same linkage costs as the implicit queue model, but

on average the same suspension costs as the explicit queue model (See Table 5.3). When a

thread suspends, it �rst invokes the conversion routine which walks down the tree, causing

all thread seeds which represent nascent threads to be enqueued on the explicit queue until

it reaches the root of the tree or a seed that has already been converted. Then the original

thread executes the suspend by doing an explicit dequeue. The convert operation requires

d(5m+4b+6r) operations, which includes checking the convert ag, saving a new seed into

the converted parent, executing the calls and returns to descend and ascend the tree, and

�nally saving the new seed on the queue. After disconnection the model behaves exactly like

the explicit queue model. This is because a disconnected thread has already been converted

to the explicit queue.

CHAPTER 5. IMPLEMENTING CONTROL 105

call child // lfork child
jump steal_routine
jump suspend_routine
store results // return here
...

after_join:

suspend_routine:
retAdr = post_dis_ret
join_counter = 1
disconnect frames
goto continue_parent

post_dis_ret:
store results
join_counter--

join:
if (join_counter) suspend
jump after_join

A parallel ready sequential call with its
return inlet.

The associated suspend_routine. It
continues the parent in the duplicated
immediately after the call tochild .

The associated post-disconnection inlet.
Note that it goes directly to the join instead
of jumping through a resume address.

Figure 5.11: Example implementation of a parallel ready sequential call with its associated

inlets in the continuation-stealing control model.

5.7 Continuation Stealing

We now address how to implement the control of the abstract machine LMAM

when using continuation stealing instead of seed activation. We use the same basic mech-

anisms, e.g., a parallel ready sequential call, multiple return entry points, and pcrcs, to

implement the continuation-stealing model. The main di�erence is that the continuation-

stealing model lacks representations for nascent threads. Instead, when disconnection oc-

curs, execution continues with the remainder of the parent.

Every series of forks followed by a join is, as in the seed model, duplicated: One

series handles the case when no disconnection occurs, and the other handles the forks that

occur after disconnection. The only exception to this rule is when a single fork is followed by

a large portion of sequential code. In this case, we do not duplicate the code, but explicitly

synchronize. The reason for this exception is that we see no advantage to duplicating

lengthy sections of code to save only four memory operations and a single test.

5.7.1 Control Disconnection

A parallel ready sequential call, as in the seed activation model, is associated with

three return entry points: one for stealing, one for suspension of the child, and one for

normal return. If a child suspends, it invokes its parent through the suspension entry point.

This causes the pcrc to be changed so that when the child returns, i.e., when it completes,

it returns to its post-disconnection inlet. It then disconnects the parent from its child and

continues execution in the parent.

CHAPTER 5. IMPLEMENTING CONTROL 106

call child // lfork child
jump steal_routine
jump suspend_routine
store results // return here
...

after_join:

suspend_routine:
retAdr = post_dis_ret
join_counter = 1
migrated = false
disentangle frames
goto continue_parent

post_dis_ret:
if (migrated) {

send results to new location
 suspend }
store results
join_counter--

join:
if (join_counter) suspend
jump after_join

A parallel ready sequential call with its
return inlet.

The associated suspend_routine. It con-
tinues the parent in the duplicated imme-

diately after the call tochild .

The associated post-disentanglement inlet.
It goes directly to the join instead of jumping

through a resume address.

steal_routine:
migrated = true
disentangle frames
send frame to newlocation
return

recv_result:
store results
retAdr = forward2parent
enable
return

forward2parent:
load results
return

The associated steal-routine. It sets the
migrated flag and then ships the frame to its

new processor.

When the frame completes, it returns its
results to this inlet.; which places the

frame on the ready queue.

When the frame is scheduled it runs this rou-
tine, which returns the results to the thread’s

parent.

Figure 5.12: A parallel ready sequential call with its associated steal and suspend routines,

helper inlets, and routines for handling thread migration.

Unlike the seed model, however, continuation stealing does not require us to store

a resume address in the parent's frame. With continuation stealing, the parent continues

executing after disconnection, so the continuation address for the parent is actually found

in the processor's program counter. Instead of resuming the parent at a resume address,

the post-disconnection inlet jumps directly to the join. If there are children outstanding,

the join fails and the parent suspends, continuing execution in its parent (See Figure 5.11).

Note that even if the parent of a suspended child has no nascent thread, it begins execution

as a running thread.

5.7.2 Migration

In the seed model once a thread has been started on a processor it remains on that

processor. Only nascent threads are migrated between processors. Thus a parent always

knows if its children are remote and can customize its return inlet to handle a remote

communication. Since there are no nascent threads in the continuation-stealing model,

independent threads must migrate among processors to satisfy a work-stealing request.

Aside from the storage related costs, the main e�ect of this is that child threads may

migrate without the intervention or knowledge of the parent.

CHAPTER 5. IMPLEMENTING CONTROL 107

When a thread migrates to another processor, the frame that used to hold this

thread remains behind. It is used to forward results from its outstanding children to the

migrated thread and to forward the result received from the migrated frame to its parent.

To implement this forwarding function we use a combination of pcrcs and a ag.

When a thread is migrated to another processor it may have outstanding children

on the current processor. These children must have their results forwarded to the migrated

frame on the new processor. The code fragments suspend-routine and post-dis-ret in

Figure 5.12 show how this is handled. suspend-routine sets the migrated ag to false,

indicating that no migration has taken place. The steal-routine sets the migrated ag to

true and then migrates the frame. When the child returns, it uses the post-dis-ret inlet.

This inlet �rst checks the migrated ag. If it is true, it sends the data to the new frame.

Otherwise, it behaves normally. When the thread itself completes, it sends a message with

the data back to its original frame, which causes recv-results to execute. recv-results

stores the results and enqueues the frame on the ready queue. When the frame is run, it

returns to its parent as if it were completing normally. Thus a parent does not have to

notify its children when it migrates.

5.8 Integrating the Control and Storage Models

We have now described all the control mechanisms used to implement LMAM. In

this section we relate these with the storage models presented in the previous chapter.

5.8.1 Linked Frames

Since the linked-frames mapping uses only explicit links, there are no special needs

imposed by this mapping on the control model.

5.8.2 Stacks and Stacklets

Both stacks and stacklets have implicit and explicit links between activation frames,

which require us to use stubs to construct the global cactus stack. There are several stub

routines required by both control models. The two most important stubs assist in return-

ing control and data from the child at the bottom of the frame area to its parent. When

the child is local, it uses the local-thread stub, which simply �nds the parent frame and

CHAPTER 5. IMPLEMENTING CONTROL 108

jump steal-routine
jump suspend-routine

local-thread:
sp = parentSp
top = parentTop // only with stacklets
jump *retAdr

steal-routine:
if (convert-flag == true) return
sp = parentSp
top = parentTop
jump (*retAdr)-2

susend-routine:
sp = parentSp
top = parentTop

Frame Area

retAdr

parentSp

parentTop

local-thread

stub frame

Figure 5.13: A local-thread stub that can be used for either stacks or stacklets.

invokes the proper inlet in the parent. When the child is on a di�erent processor from its

parent, it uses the remote-thread stub, which sends the data to the parent's processor.

The local-thread stub's return address is similar to the implicit seed planted by

a parent with no nascent threads in it. In other words, it returns control to the proper

return entry point in the parent depending on what return entry point the child uses to

enter the stub (See Figure 5.13).

A remote-thread stub's return address is similar to a converted implicit seed

planted by a parent with no nascent threads. Since the stub has no local parent, it transfers

control to the general scheduler if its child suspends. Unlike the local-thread stub, the

remote-thread stub is a custom routine created by the compiler for each codeblock. This

is because it must both marshal the arguments from the parent and send the results back

using active messages customized for the routine in question.

Both kinds of stubs indicate that the thread at the bottom of the frame area is an

independent thread. Thus if we are using a lazy parent queue, the conversion routine will

not proceed past the stub.

5.8.3 Spaghetti Stacks

A spaghetti stack presents special implementation challenges because of the need

to limit the cost of reclaiming space on the stack. Since we do not have a garbage collector,

we must reclaim the space as part of executing the program. Here we show how pcrcs can

CHAPTER 5. IMPLEMENTING CONTROL 109

call child // lfork child
jump steal_routine
jump suspend_routine
sp = psp // return here
...

suspend_routine:
top = sp
...

suspend_stub:
jump steal_routine
jump suspend_routine
coalesce frames
psp = parentSp
jump (*psp-1)
...

A parallel ready sequential call with
the start of its return inlet and the start

of its suspend_routine.

The stub used by frames that have
suspended.

// function prologue
*top = sp
...
// function epilogue
psp = base of frame
jump (*psp - 1)

*top = sp
*(top+1) = return_stub
top += 2
sp = top
call child // local fork
jump steal_routine
jump suspend_routine
sp = psp

The function prologue and epilog.

A local fork operation. It reserves
space for and fills in the stub. Upon

return,top is not reset as it is with an
lfork .

parentSp

suspend_stub
stub

Other Frames

Parent Frame

Child Frame

State of the spaghetti
stack after the child has

executed a suspend
operation.

return_stub:
jump steal_routine
jump suspend_routine
psp = parentSp
top = sp-2
jump (*psp-1)
...

The stub used by frames before
suspension.

Free Space

Figure 5.14: Code fragments used to implement a minimal overhead spaghetti stack. On

the left is the invocation routine for lfork and the function prolog and epilog. The stack

in the middle shows the result of a parent forking a child. The routines to support suspend

and subsequent forks are the right.

lower the reclamation cost to that of a stack when children run to completion, and we show

how to keep the cost low when they suspend.

The scheduling policy of LMAM on a distributed memory machine implies that

when a child runs to completion, it will be at the top of the spaghetti stack. Furthermore,

a parallel ready sequential call is always made from a thread that is at the top of the stack.

Thus there is no need to store a link between a child and its parent if the child is invoked

by a parallel ready sequential call. Figure 5.14 shows code for a parallel ready sequential

call that takes advantage of this invariant. For children that run to completion, the only

additional overhead is the use of a temporary register, psp, which is needed to calculate the

size of the frame by the coalesce routines. (The size of a frame is (sp� psp) at the time of

return.)

When a thread suspends, top must be set, since sp no longer points to the top of

the spaghetti stack. This setting of top occurs in the parent's suspend routine, since we

know, because of pcrcs, that the suspend routine is executed only on the �rst suspension

of a child. Once a child has suspended, it can no longer reclaim the space for its frame on

exit. However, since the function epilogue does not touch top, it will not reclaim the space

CHAPTER 5. IMPLEMENTING CONTROL 110

in any case. Instead, reclamation is handled either by the post-disconnection inlet for the

child, or upon the return of the frame above it (which will have a stub since it must have

been started with a fork.)

A child invoked by a fork needs a link to its parent. This is provided in a stub,

which is created by the parent as part of the fork operation (See routine at the right in

Figure 5.14). The stub for such a routine is initially set to return-stub, which reclaims the

space for the child upon exit. If, however, the child suspends, it changes the stub routine

to suspend-stub, which coalesces the frames and frees them if they are at the top of the

stack.

In short, by relying on the invariants created by our representation of the abstract

parent queue, and the implementation of the lfork, fork, and suspend operations, we are

able to reduce the cost of using a spaghetti stack to within one register move more than

that of a normal stack for parallel ready sequential call.

5.9 Discussion

This chapter has introduced the mechanisms and compilation strategy needed to

implement the control necessary to realize the lazy multithreaded abstract machine pre-

sented in Chapter 3. The four main mechanisms are the parallel ready sequential call, the

pcrc, the realization of the find function, and the realization of the parent queue. Addi-

tionally we presented a method of eliminating synchronization costs with synchronizers.

The importance of these mechanisms combined with the compilation strategy of

creating three code streams for each fork-set is the convergence of the implementations

independent of the policy decisions (i.e., thread seeds vs. continuations, eager-disconnect

vs. lazy-disconnect, implicit vs. explicit vs. lazy queue). The three code streams combined

with the above mechanisms allow for the elimination of all synchronization costs whether or

not thread seeds or continuations are used to represent the remaining work in a parent of a

lazy thread. Furthermore, all bookkeeping operations can be avoided when lazy threads run

to completion if an implicit or lazy queue is used to queue thread seeds or continuations.

In fact, we �nd that the policy decisions have less impact then would appear to be the case

from previous literature because we have used the appropriate implementation techniques.

111

Chapter 6

Programming Languages

In this chapter we describe two very di�erent parallel programming languages for

which we have implemented compilers that use the lazy threads model described in this

dissertation: Split-C+threads and Id90. Split-C+threads, developed by the author, is an

explicit parallel language based on Split-C [15], itself based on the imperative language C.

Id90 [5] is an implicitly parallel functional programming language based on the dataow

model of computation.

6.1 Split-C+threads

Split-C+threads is a multithreaded extension to Split-C. Before introducing the

thread extensions in Split-C+threads we briey describe the features of Split-C that a�ect

our extension and the compilation of Split-C+threads.

Split-C is a parallel extension of C intended for high performance programming

on distributed memory multiprocessors. Split-C, like C, has a clear cost model that allows

the program to be optimized in the presence of the communication overhead, latency, and

bandwidth inherent on distributed memory multiprocessors. It follows a SPMD model,

starting a program on each of the processors at the same point in a common code image.

Split-C provides a global address space and allows any processor to access an object

anywhere in that space, but each processor owns a portion of the global address space. The

portion of the global address space that a processor owns is its local region. Each processor's

local region contains the processor's entire stack and a portion of the global heap.

CHAPTER 6. PROGRAMMING LANGUAGES 112

Two pointers types are provided, reecting the cost di�erence between local and

global accesses. Global pointers reference the entire address space, while standard pointers

reference only the portion owned by the accessing processor.

Split-C includes a split-phase assignment operator, :=. Split-phase assignment al-

lows computation and communication to overlap. The := operator initiates the assignment,

but does not wait for it to complete. The sync statement waits for all outstanding split-

phase assignments to complete. Thus the request to get a value from a location (or put a

value into a location) is separated from the completion of the operation.

The last attribute of Split-C that we are concerned with is the signaling store,

denoted by :-. Store updates a global location, but does not provide any acknowledgement

of its completion to the issuing processor. Completion of a collection of such stores is

detected globally using all_store_sync, executed by all processors, or locally by store_sync.

Split-C+threads extends Split-C by allowing a programmer to move between the

SPMD model and a multithreaded programming model. When a Split-C+threads program

starts, it begins in the SPMD mode of Split-C. However the programmer may at any time

initiate multithreading with the all_start_threads construct. When all of the threads

have terminated, the program does an implicit barrier among all the processors and again

re-enters the SPMD model of Split-C.

We begin our speci�cation of Split-C+threads with a simple example and then

proceed to describe the syntax and semantics of the new operators and how they interact

with the Split-C global address space memory model.

6.2 Example Split-C+threads Program

In this section we present an example Split-C+threads program for naively com-

puting the nth Fibonacci number (See Figure 6.1). This example shows how to start a

multithreaded segment in a Split-C program, how to declare a function that can become an

independent thread, and how to invoke these threads in parallel.

The program starts execution with the invocation of splitcthreads_main() (on

Line 19) which is the main entry point for all Split-C+threads programs. All processors as-

sign x the value of the �rst argument. Then on Line 26, they all reach the all_start_threads

call, which indicates the beginning of a multithreading portion of the program. There is

CHAPTER 6. PROGRAMMING LANGUAGES 113

1 #include <threads.h>

2

3 forkable int fib(int n)

4 {

5 int i;

6 int j;

7

8 if (n <= 2)

9 return 1;

10

11 forkset {

12 pcall i = fib(n-1);

13 pcall j = fib(n-2);

14 }

15 return i+j;

16 }

17

18 int

19 splitcthreads_main(int argc, char** argv)

20 {

21 int x;

22 int r;

23

24 x = atoi(argv[1]);

25

26 all_start_threads(0) r = fib(x);

27 onproc(0)

28 printf("fib of %d = %d", x, r);

29 return 0;

30 }

Figure 6.1: An implementation of the Fibonacci function in Split-C+threads.

an implicit barrier before and after the all_start_threads statement. The argument, 0, to

the all_start_threads statement causes only processor 0 to start executing the fib call.

Instead of executing the call in the all_start_threads statement, the rest of the

processors enter the main thread-scheduling loop, which schedules ready threads. If there

are no ready threads, then it attempts to \steal" a thread from the parent queue of another

processor. The default behavior is to attempt to get work from a random processor.

Processor 0 begins by executing a call to the function fib on Line 3. The function

is given the type modi�er forkable to indicate that it can become an independent thread.

If n is greater than 2, then the function in turn creates two new logical threads with the

pcall statements. The fork-set statement introduces a synchronization block which can

contain pcall statements. A pcall statement indicates that the call on the right hand side

can be executed in parallel. Execution will not continue out of the forkset block until all

CHAPTER 6. PROGRAMMING LANGUAGES 114

all start threads suspend
�xed Thread
forkable ThreadId
forkset yield
pcall

Figure 6.2: The new keywords de�ned in Split-C+threads.

stmt ! forkset stmt (6.1)

j pcall pcall-expression ; (6.2)

j pcall (�xed) pcall-expression ; (6.3)

j pcall-expression ; (6.4)

j fork (maybe-proc-expr) pcall-expression ; (6.5)

j all start threads (maybe-proc-expr) pcall-expression ; (6.6)

j suspend ; (6.7)

j yield ; (6.8)

pcall-expression ! lvalue assign-op function-name (arg-list) ; (6.9)

j function-name (arg-list) ; (6.10)

maybe-proc-expr ! expr (6.11)

j � (6.12)

expr ! ThreadId (6.13)

type-quali�er ! forkable (6.14)

type ! Thread (6.15)

(6.16)

Figure 6.3: New syntax for the threaded extensions in Split-C+threads.

the pcalls in the fork-set complete. In this case there are two pcalls in the fork-set. After

the fork-set completes, i.e., the two threads are joined with the parent, the thread returns

a value and terminates.

CHAPTER 6. PROGRAMMING LANGUAGES 115

1 forkset {

2 pcall i=fib(n-1);

3 pcall j=fib(n-2);

4 }

(A)

1 forkset {

2 for (i=0; i<n; i++)

3 pcall sum+=sum(args);

4 }

(B)

1 forkset {

2 pcall x = one();

3 if (flag) pcall two();

4 baz();

5 pcall z = three();

6 }

(C)

Figure 6.4: Example uses of forkset.

When the original call to fibmade in the all_start_threads statement completes,

then all the processors are signaled that the multithreading section has completed and a

barrier will be performed after which they will all continue, SPMD style, with the next

statement. Note that the value of the call is only returned on processor 0.

6.3 Thread Extensions to Split-C

The main di�erence between Split-C and Split-C+threads is that Split-C+threads

has an explicit parallel call, or fork operation, pcall. Scheduling capabilities are provided

by suspend and yield statements and some library calls. In this section we describe the basic

syntax and semantics of these statements. The new keywords de�ned in Split-C+threads

are in Figure 6.2. The new syntax introduced in Split-C+threads is in Figure 6.3.

6.3.1 Fork-set statement

The fork-set statement introduces a statement block that can contain any state-

ment, including pcalls and forks, all of which must complete before control passes out

of the block. The fork-set statement can only appear in a function that has been declared

forkable (See Section 6.3.7). The statements are executed in the order in which they appear

in the program text.

Figure 6.4 shows some example uses of forkset. In Figure 6.4A, two threads

created by pcall are joined with their parent before control continues past the fork-set

statement. In Figure 6.4B, n threads are created, one at a time by each iteration of the

for statement. The enclosing forkset joins all of the n threads with the parent thread. In

Figure 6.4C, �rst a thread is started to execute one(), then the if statement is executed,

CHAPTER 6. PROGRAMMING LANGUAGES 116

followed by a sequential call to baz. When baz completes the last pcall will execute. The

fork-set joins all of the threads created before continuing in the parent.

6.3.2 Pcall Statement

The pcall statement initiates a potentially parallel call as a lazy thread. Every

pcall must be in the scope of a fork-set statement. The function called must be declared

forkable (See Section 6.3.7).

There are three variants of the pcall statement. The pcall in Rule 6.2 of Figure 6.3

creates a lazy thread which may be instantiated locally or stolen by another processor. This

variant of pcall is a concrete representation of an lfork.

In Rule 6.3, the keyword fixed is used to indicate that the lazy thread started

cannot be stolen by another processor. The rationale behind a pcall which creates a lazy

thread that cannot be stolen is so programmers can initiate threads which have arguments

which are pointers to local data in threads. Although the thread cannot be stolen, it can

still suspend or help to hide latency.

Rule 6.4 describes a sequential call to a forkable function. This call, although run

sequentially, can suspend. If a thread invoked with the last rule suspends, it also causes its

parent to suspend.

6.3.3 Fork statement

The fork statement creates an independent thread. The programmer may specify

the processor on which the thread is created or leave it to the runtime system to place the

thread. In all cases the new thread is created eagerly.

fork can be used to create downward threads (by placing it in a forkset), upward

threads, or daemon threads. In the latter two cases, the programmer has to construct her

own synchronization mechanism from the Split-C+threads primitives. The programmer

must be careful to detect the termination of the child. Otherwise all_start_threads may

complete before the child thread itself terminates (See Section 6.3.4).

6.3.4 Start Statement

When the all_start_threads statement (See Rule 6.6) is invoked, an implicit

barrier is performed, and then the program begins executing in multithreading mode. Before

CHAPTER 6. PROGRAMMING LANGUAGES 117

this, and after control returns to the statement following this statement, the program is in

SPMD mode. If a processor is speci�ed by this statement, then only the processor speci�ed

receives an active thread; the other processors enter the scheduling loop and attempt to

steal work. If no processor is speci�ed, then all the processors invoke the code in the

pcall-expression.

The use of all_start_threads allows a programmer to construct mixed-mode pro-

grams. The program can switch back and forth between SPMD and multithreaded modes of

execution. Since all_start_threads allows every processor to start a function, some a�nity

between data and threads can be created by starting functions on local data.

The multithreaded portion of the program started by all_start_threads comes

to an end when the function it calls completes. Control passes to the next statement in

the program after all the processors have completed their work and executed a barrier. If

only a single processor was started (i.e., an argument was speci�ed to all_start_threads)

then it noti�es the other processors that each of them should exit its scheduling loop and

perform a barrier. If all of the processors were started, then each enters a barrier when the

function it invoked �nishes.

Since the only synchronization built in is the join mechanism in the fork-set

statement, the programmer must include a check that threads started with fork com-

plete before returning from the function invoked by all_start_threads. In other words,

all_start_threads does not check to make sure that threads created by fork terminate

before it completes.

6.3.5 Suspend Statement

The suspend statement (See Rule 6.7) causes the current thread to release the

processor and become idle. The next thread run is from the parent queue, or if no threads

are in the parent queue, it is a thread from the ready queue. Which ready thread is run on

the processor depends on the scheduling policy and the control model of the compiler. The

default scheduling policy is for the last thread enqueued on the ready queue to be the next

one scheduled. If both the parent and ready queues are empty, the processor will initiate a

work stealing request.

CHAPTER 6. PROGRAMMING LANGUAGES 118

6.3.6 Yield Statement

The yield statement (See Rule 6.8) causes the current thread to release the pro-

cessor and be placed on the ready queue. If there is a nascent thread on the parent queue

it is run next. If the parent queue is empty, then a thread from the ready queue is run. If

no other threads are available, then the thread executing the yield continues to execute.

6.3.7 Function Types

In order to distinguish between functions that can form threads and those that

are guaranteed to run to completion we introduce a new type modi�er, forkable. It is only

used to qualify function types. A function that has type modi�er forkable may be used in

a pcall expression (See Rule 6.9).

If a function is not forkable, i.e. it is sequential, then it may not use any of the

extensions presented here except the start statement (See Rule 6.6). It is a runtime error

for a sequential function that has a forkable ancestor on the stack to execute the start

statement. A forkable function may not use barrier or any expressions involving signaling

stores (:-).

A forkable function that takes local pointers as arguments may only be invoked

by one of the pcall statements in Rule 6.3 or Rule 6.4. This is to ensure that a thread with

local pointers does not start on a processor other than the one on which those pointers are

valid.

6.3.8 Manipulating Threads

The programmer can also construct her own synchronization primitives. ThreadId

always evaluates to a pointer to the current thread. It has type Thread. The function

enq(Thread x) will enqueue thread x on the ready queue. The current implementation of

Split-C+threads does not allow the programmer to declare any variables of type Threadwhen

eager-disconnect is in use for the stacklet memory model. The reason for this limitation is

that when threads are disconnected, the activation frame of a thread may be moved, which

in turn changes the thread's identi�er. In other words, ThreadId may not remain the same

over the life of the thread for eager-disconnect under stacklets.

CHAPTER 6. PROGRAMMING LANGUAGES 119

6.4 Split-Phase Memory Operations and Threads

One of the main advantages of Split-C is that it allows the programmer to hide the

latency of remote references with split-phase assignments. Such an assignment is initiated

with one operation (e.g, := or :-) and concludes with another (e.g., sync or all_store_sync).

When there is at most one thread per processor this works quite well. However, when there

is more than one thread per processor we must examine split-phase assignment more closely.

all_store_sync must be abandoned in this case.1 The basis for the operation of

these signaling stores is that all the threads in the system are participating in the operation.

At the very least it requires the ability for all the threads in the system to execute a barrier.

This allows the synchronization counters to be reset. Then all the threads in the system

perform some operations, including the store operation, and �nally they all wait until all

the stores have completed.

With the split-phase assignment operators there are two possible semantics. When

the sync operation occurs and the outstanding assignments have not yet completed the pro-

cessor can either spin or suspend. If it spins, then it will wait for the operations to complete

before proceeding in the current thread. This closely matches the Split-C semantics, and

threads will not interfere with each other. If, on the other hand, the processor suspends,

which will allow the latency of the remote operation to be hidden by running another thread,

then each thread must have its own synchronization counter. If they did not have unique

counters, then an outstanding operation from one thread could cause another to wait even

though its operation had completed. In practice the latency is low enough that this only

occurs if the second thread initiates a split-phase assignment that is local to the processor

on which it executes.

We choose to have a processor suspend if a sync is executed when there are out-

standing stores. Additionally we choose to have a unique counter per thread for split-phase

operations.

1store synch can still be used.

CHAPTER 6. PROGRAMMING LANGUAGES 120

6.5 Other Examples

Here we present two additional examples of Split-C+threads programs. The �rst

shows how lazy threads can a�ect the style of programming. The second points out a

de�ciency in Split-C+threads.

6.5.1 Lazy Thread Style

Lazy Threads reduce the overhead of the thread call, but do not in and of them-

selves eliminate parallel overhead even if each thread runs to completion. We de�ne parallel

overhead as the overhead introduced into an algorithm which enables it to run in parallel.

As we shall now see there are ways to reduce parallel overhead.

In this example we show how to implement the nqueens program without parallel

overhead. The nqueens program �nds all the placements of n queens on an nxn chess board.

It recursively places a queen in a row and then forks o� a thread to evaluate the placements

in the remaining portion of the chess board. The key function in a sequential version is

below:

1 int

2 try_row (int* path, int n, int i)

3 {

4 int j, sum;

5

6 if (i>=n) return 1; // one successful placement

7

8 sum = 0;

9 for (j=0; j<n; j++) {

10 if (safe (path, i, j)) { // can we put a queen in square i,j?

11 path[i] = j;

12 sum += try_row (path, n, i+1);

13 }

14 }

15 return sum;

16 }

This loop tries to place a queen in every row j for the column i that this thread

is responsible for. path[i] is the row number of the queen in column i. safe(path, i, j)

checks to see if a queen may be placed in square i,j given the previous placements in path.

This code cannot be turned into a correct parallel program simply by making the

call in Line 12 into a pcall. If that were the only change, then di�erent threads would

overwrite inconsistent values into path. Each thread needs its own logical copy of path.

CHAPTER 6. PROGRAMMING LANGUAGES 121

Furthermore, we would also need to make path a global pointer so that the try_row thread

could be stolen by another processor.

The correct, but costly approach, is to make a copy of path before every pcall.

We also make path a global pointer and if path points to a remote processor, then we

use bulk_get to copy the data from the remote processor onto the processor running the

function. However this is intolerably ine�cient, particularly since we know that most of the

pcalls will run to completion on the processor that invoked them.

Instead, at the start of the function we test to see if MYPROC, the processor in which

the thread is running, is the same as the parent's processor. If they are the same, no copy

is made. If they are not we need to get the data from the parent anyway, so we make a new

copy.

1 forkable int

2 try_row (int* global path, int n, int i)

3 {

4 int j, sum;

5 int* lpath;

6

7 if (i>=n) return 1;

8

9 if (toproc (path) != MYPROC) { // stolen thread{copy path

10 int* new_path = (int*) malloc (n * sizeof (path[0]));

11 bulk_get (new_path, path, i * sizeof (path[0]));

12 lpath = new_path;

13 } else

14 lpath = (int*)path;

15

16 sum = 0;

17 forkset {

18 for (j=0; j<n; j++) {

19 if (safe (lpath, i, j)) {

20 lpath[i] = j;

21 pcall (1) sum += try_row ((int* global)lpath, n, i+1);

22 }

23 }

24 }

25 return sum;

26 }

We have reduced the parallel overhead by copying the shared data only when an

independent thread is created by a remote fork operation. However, this example depends on

the fact that neither try_row nor safe ever suspend. If either suspend, then an independent

thread will be started on the same processor as its parent and the copy will never be

performed. In fact, a thread can suspend when a child is stolen and does not return by the

CHAPTER 6. PROGRAMMING LANGUAGES 122

time the join is reached; the thread with the outstanding child will suspend to its parent.

Since threads can suspend the code above will not work unless the compiler inserts a copy

operation in the suspend routine.

The general strategy is for any disconnection to cause a copy of the local data to

be made. We call this strategy copy-on-fork. In the future, we plan to explore language

extensions and compiler analysis that will make this transformation automatic, even in the

case of suspension.

6.5.2 I-Structures and Strands

I-structures, �rst introduced in Id90, are write-once data structures useful in a

variety of parallel programs [6]. They provide synchronization between the producer and

the consumer on an element by element basis. The two operations de�ned on I-structures

are ifetch and istore, which respectively get and store a value to an istructure element. If

an ifetch attempts to get the value of an empty element, the ifetch defers until an istore

stores a value into the element.

We can implement I-structures using the suspension mechanism in Split-C+threads

as shown in Figure 6.5. When an ifetch attempts to read the value of an empty element, the

ifetch thread is enqueued on the deferred list of that element. Later when an istore stores

a value into that element, it enqueues all the threads in the deferred list onto the ready

queue. ifetch must be a forkable function since it can suspend. istore is not a forkable func-

tion since it cannot suspend and does not perform any pcalls. One nice thing about this

implementation is that it uses the ifetch activation frame to construct the list of deferred

elements.

Although I-structures are easily implemented in Split-C+threads, their full power

cannot be exploited. For example in the code fragment below we would like to be able to

execute the second set of ifetches even if one of the �rst two suspends.

1 x = ifetch(A, i);

2 y1 = ifetch(B1, i);

3 z1 = x * y1;

4 y2 = ifetch(B2, i); // want to continue here

5 z2 = x * y2;

6 z3 = y1 * y2;

We can arrange for such behavior by invoking each ifetch with a pcall and putting

the entire sequence in a fork-set.

CHAPTER 6. PROGRAMMING LANGUAGES 123

1 typedef struct deferlist* DeferList;

2

3 struct deferlist // list of readers waiting for a store

4 {

5 Thread t;

6 DeferList next;

7 };

8

9 typedef struct // the structure of an istructure element

10 {

11 int value;

12 int flag; // TRUE when full, FALSE when empty

13 DeferList deferred;

14 } Element, *Istructure;

15

16 forkable int // return the value of i[index]

17 ifetch(Istructure i, int index)

18 {

19 DeferList d;

20

21 if (i[index].flag) return i[index].value;

22 // the element is empty so defer

23 d.t = ThreadId;

24 d.next = i[index].deferred;

25 i[index].deferred = &d;

26 suspend;

27 return i[index].value;

28 }

29

30 void istore(Istructure i, int index, int value)

31 { // i[index] value

32 DeferList* d;

33 DeferList* dnext;

34

35 if (i[index].flag) abort();

36 i[index].value = value;

37 i[index].flag = TRUE;

38 for (d = i[index].deferred; d != NULL; d=dnext)

39 {

40 dnext = d->next;

41 enq(d->t);

42 }

43 }

Figure 6.5: Implementation of I-structures in Split-C+threads using suspend. When allo-

cated the elements of an I-structure are initialized have their ags set to FALSE and the

deferred �eld set to NULL.

CHAPTER 6. PROGRAMMING LANGUAGES 124

1 forkset {

2 x = pcall ifetch(A, i);

3 y1 = pcall ifetch(B1, i);

4 y2 = pcall ifetch(B2, i);

5 }

6 z1 = x * y1;

7 z2 = x * y2;

8 z3 = y1 * y2;

Although this works for the simple example above, it requires that all three fetches

complete before we can begin computing, even though we could start computing when any

two of x, y1 or y2 were returned. If the function to compute z1, z2, or z3 were more complex,

this could be a signi�cant penalty.

A solution to this problem, borrowed from TAM [16], is to allow for logically

parallel execution within a function. We extend Split-C+threads to allow a function to

have multiple strands. A strand is simply a ow of control within a thread that cannot

suspend and may depend on other strands.2 Each strand is identi�ed by a unique integer.

Furthermore, a strand may have a condition speci�ed which determines which other strands

must have completed before it is allowed to run. The syntax of the strand statement follows.

stmt ! strand (strand-id strand-condition) stmt (6.17)

strand-id ! integer-constant (6.18)

j � (6.19)

strand-condition ! when logical-expr (6.20)

j � (6.21)

(6.22)

If strands were in Split-C+threads we could solve our ifetch problem as follows:

1 strand (1) x = ifetch(A1, i);

2 strand (2) y1 = ifetch(B1, i);

3 strand (3) y2 = ifetch(B2, i);

4 strand (when 1 && 2) z1 = x * y1;

5 strand (when 1 && 3) z2 = x * y2;

6 strand (when 2 && 3) z3 = y1 * y3;

2For those familiar with TAM, a strand is slightly more powerful than a TAM thread because it can

branch, but is otherwise the same as a TAM thread.

CHAPTER 6. PROGRAMMING LANGUAGES 125

6.6 Split-C+Threads Compiler

Split-C+threads is compiled using a modi�ed GCC compiler. The compiler is

based on one which was already modi�ed in two ways: it could compile Split-C, and it

produced abstract syntax trees for the entire function instead of for a single statement [64],

making the compilation process much simpler.

Our compiler �rst analyzes the structure of the pcalls to determine what code

needs to be duplicated and what optimizations can be applied to each fork-set. The opti-

mizations we currently perform are centered around eliminating synchronization operations.

After the AST pass is complete, RTL is generated. We added several new RTL expressions,

the three most important being fork, seed, and reload expressions. The fork expression is

used to represent the pcalls. The seed expression is used to construct the thread seeds that

come after a fork. The reload expression indicates which registers need to be loaded when

a thread is resumed. We also added new instruction templates in the machine de�nition

�les. Finally, the function prolog and epilog code is tailored to each storage model.

The synchronization optimization is aimed at removing the necessity for increment-

ing a synchronization counter before a pcall is made in the suspend or steal code-streams.

During construction of the AST, it is recognized that the pcalls are consecutive, and thus

we do not need to increment a synchronization counter for each pcall in the suspend stream.

Instead, the code executed on entering the suspend code-stream sets the synchronization

counter to the number of threads that remain to be completed, i.e., the number of pcalls

to be executed plus one for the suspending pcall. If the fork-set contains conditional or

loop statements, then the synchronization counter is incremented before each pcall in the

suspend stream.

The most interesting challenge in implementing the compiler was to perform cor-

rectly the ow analysis and register allocation in the presence of forks, which can branch

to one of three addresses: return, suspend, and work stealing. Our primary goal was to

introduce no new operations in the sequential portion of the code. In order to achieve this,

we ensure that during data ow analysis the non-sequential code-streams do not inuence

the sequential code-stream. To guarantee that liveness analysis is correct and minimal for

the non-sequential code streams, we construct phantom ow links between basic blocks to

represent the potential ow of control.

CHAPTER 6. PROGRAMMING LANGUAGES 126

call one(x-1)

call three(x-3)

call two(x-2)

return a+b+c

1

2

3

4

increment parent
queue

8

store result into b
synchronize
jmp *resumeAdr

7

lfork two(x-2)
6

store result into c
synchronize
jmp *resumeAdr

11

lfork three(x-3)
10

suspend routine for
call one

5

suspend routine for
call two

9

join

17

replacement seed
for call one

12

replacement seed
for call two

14

inlet for call two

15

inlet for call one

13

suspend indirect
jump

16

forkable int f(int x)
{

int a,b,c;

forkset {
pcall a = one(x-1);
pcall b = two(x-2);
pcall c = three(x-3);

}
return a+b+c;

}

Source code

epilog

prolog

10

Figure 6.6: The ow graph for the sequential and suspend code-streams for a forkable

function compiled with an explicit parent queue, the stacklet storage model, lazy-disconnect,

and thread seeds. The dashed lines indicate phantom control ow links.

CHAPTER 6. PROGRAMMING LANGUAGES 127

A avor of the compilation process can be seen by examining Figure 6.6, which

shows the control ow graph for a simple function with a fork-set consisting of three consec-

utive forks. Blocks 1{4 show the sequential code-stream, and Blocks 5{17 show the suspend

code-stream. The steal code-stream is omitted so that the example �ts on one page, but it

follows an analogous structure to the suspend code-stream.

The �rst thing to note is that the three calls are not, as expected, in the same

basic-block. If the calls had truly been sequential, then the control ow links to the suspend

code-stream would not exist. However, since each call can potentially transfer control to

the suspend code-stream, a pcall always ends a basic block. This is an artifact of our desire

reuse the infrastructure of the GCC compiler as much as possible. We represent the possible

control transfer out of the sequential code-stream by a thread seed RTL expression, which

contains a jump table to three addresses: one for sequential return (which points to the

following instruction), one for suspension (which points to the suspend routine for the call

in question), and one for steal requests (which points to the steal routine).

The most important rami�cation of the control ow links from the sequential

stream to the other streams is that liveness analysis causes all the variables used in the

other streams to be marked as live at the beginning of the function. This is because GCC

does not see how the variables are set due to the strange control ow out of a call expression.

We eliminate this e�ect by blocking data ow information from the other code streams back

to the sequential stream. This works for two reasons. First, we know that once another

code stream is entered then the sequential stream is abandoned until the join. The dark

rectangles in Figure 6.6 indicate the blocking of the data ow information. Second, we

construct \phantom" ow links within the other streams to ensure that the minimum set

of live variables required at the join point are correctly maintained.

There are two kinds of phantom ow links. The �rst, indicated by the dashed lines

in Figure 6.6 are used to indicate the set of possible destinations of an indirect jump. The

second, indicated by dotted lines, are used to indicate the set of potential destinations that

can be reached during execution.

In GCC, if an indirect jump is encountered in the RTL, then every labeled in-

struction is considered to be a possible destination. This is unnecessarily conservative since

we know the possible destinations of each of the indirect jumps (which are always jumps

through the resume address). Thus we augmented the RTL expression for jump expressions

CHAPTER 6. PROGRAMMING LANGUAGES 128

to include a set of possible destinations. This improves code quality by limiting the number

of variables considered live.

The second kind of phantom link is included to increase the number of variables

considered to be live. Consider how thread seeds operate. Once a function has entered the

sequential or steal code-streams, the destination of a jump through a resume address in an

inlet (for example in block 7) can be any of the remaining pcalls or the join depending on

which of the outstanding pcalls have been started (for example block 8 or 17). In order to

make sure that the register allocator correctly saves the live variables and restores them on

return, we must ensure that the compiler believes that at the time of the lfork (for example

block 6) the next possible block to be executed will be any of the following calls or the join

(for example blocks 8 or 17). For this reason we add phantom links from the lfork blocks

to each of the other lforks and the inlets of the call that created them.

The compiler takes several options to allow us to compile code for the di�erent

memory models, the di�erent parent queue implementations, the di�erent work stealing

models, and the di�erent disconnection methods. In addition it can produce code for either

sequential or parallel machines.

6.7 Id90

Id90 is an implicitly parallel language with synchronizing data structures. For the

purposes of this dissertation its three salient features are that it is non-strict, it is executed

leniently, and, it has synchronizing data structures. Non-strictness means that a function

can be started before it has received all of its arguments. Lenient execution means that a

function is evaluated in parallel, with its arguments evaluated as much as data dependencies

permit [59]. Synchronizing data structures, like I-structures, require signi�cant overhead.

These three features combine to require a mechanism like strands.

Id90 was originally implemented on custom data ow machines [4, 51] and later on

conventional processors by compiling to abstract machines like TAM [16] and P-RISC [47].

Our Id90 compiler translates Id90 into TL0, which is the instruction set for a

Threaded Abstract Machine (TAM). TL0 is then translated to C with extensions to support

lazy threads with strands.

129

Chapter 7

Empirical Results

One of the goals of this thesis is to compare fairly the ideas behind di�erent

multithreaded systems. To achieve this, we evaluate the points in the design space using

executables produced by the same compiler and compilation techniques.

We �rst examine the bene�ts of integrating thread primitives into the compiler,

as opposed to using a thread library. Compiler integration yields at least a twenty-�ve{fold

improvement over thread libraries. We next examine the di�erence between eager and lazy

threads, showing that lazy multithreading is always more e�cient than eager threads. The

rest of the chapter compares the di�erent points in the design space of lazy multithreading.

We begin our analysis of the design space by showing how the di�erent models

perform when running code on a single processor. Even when running on a multiprocessor

this is an important case because when the logical parallelism in the program is unneces-

sary the potentially parallel calls will be executed sequentially. A successful lazy threading

system should execute such code without loss of e�ciency relative to a sequentially com-

piled program. We examine every point in the design space: 36 di�erent models composed

from three storage models (linked frames, spaghetti stacks, and stacklets), two thread rep-

resentations (continuations and thread seeds), two disconnection methods (lazy-disconnect

and eager-disconnect), and three queue mechanisms (implicit, explicit and lazy). In our

comparisons we focus on how the di�erent policy decisions on each axis interact to form a

complete system.

Each axis is assessed for its performance on multithreaded code that runs serially

and then on multithreaded code that requires parallelism. We then examine the behavior

of lazy threads on a distributed memory machine, the Berkeley NOW. Our last experiment

CHAPTER 7. EMPIRICAL RESULTS 130

looks at how lazy threads improve the performance of Id90 codes. A summary of the

e�ectiveness of these models is shown in Figure 7.25 at the end of the chapter.

With the exception of the comparison between lazy threads and eager threads all

performance numbers are comparisons between lazy threads as compiled by Split-C+threads

and sequential programs compiled by GCC. Thus, uniprocessor results are reported as

slowdowns and multiprocessor results as speedups. In the comparison between eager and

lazy threads, we report speedups for lazy threads over eager threads.

7.1 Experimental Setup

To evaluate the di�erent approaches to lazy threading we ran several micro-

benchmarks compiled by the Split-C+threads compiler for both uni- and multiprocessors.

The micro-benchmarks allow us to isolate the behavior of the di�erent components of a

lazy threading system. The uniprocessor machines are used to analyze the behavior of the

individual primitives. The multiprocessor experiments are used to validate the quality of

the complete system in a real parallel environment.

For the uniprocessor experiments we use the Sun UltraSparc Model 170 worksta-

tions (167 Mhz, 128 MB memory, 512 KB L2 cache) running Solaris 2.5. For our parallel

experiments, we use the Berkeley NOW system [18] running the GAM active message

layer [40]. The Berkeley NOW is a cluster of Sun UltraSparc 170 workstations (running

Solaris 2.5) with Myricom \Lanai" network interface cards connected by a large Myricom

network [11]. The round-trip message time using GAM is 24.6�s. Since GAM does not

support interrupts, the NIC must be polled to determine if a message has arrived. The

cost of a poll operation when there is no message is .7�s, or the equivalent of 230 Sparc

register-based instructions.

7.2 Compiler Integration

This work di�ers from previous work on multithreading in that thread operations

are integrated into the compiler instead of being library calls. This improves performance,

as shown in Table 7.1, at the cost of a slight reduction in portability. The fork+join time

is the time it takes for the parent to fork and join on a single thread that does nothing but

CHAPTER 7. EMPIRICAL RESULTS 131

C-Threads (�s) NewThreads (�s) Split-C+threads(�s)

fork+join 129.0 86.0 1.09

context switch 30.0 1.15

Table 7.1: The performance of basic thread operations made with library calls (using C-

threads and NewThreads packages) versus having them integrated into the Split-C+threads

compiler. Times are in microseconds on a 167Mhz UltraSparc.

return. The context switch time is the time it takes for one thread to suspend and another

to begin execution.

Performance improves mainly because every call to a library function in a package

must handle the general case, whereas Split-C+threads can customize each call to the con-

text in which it appears. For instance, a context switch in a thread with no other statements

does not have any live registers at the time of suspension, so a compiler implementation

does not have to save any registers. On the other hand, a library call has no knowledge of

the context of a call, so it must store every register at the time of suspension. This e�ect

is ampli�ed on the Sparc architecture, since the entire register window set, not just the

registers, must be saved.

When multithreading functionality is integrated into the compiler, every call per-

forms exactly the work required by the operation. This results in a performance increase

of at least 25 times over library implementations of multithreading.

7.3 Eager Threading

We now compare a compiler-integrated eager thread implementation to a lazy

thread implementation within Split-C+threads. We use the micro-benchmark grain, shown

in Figure 7.1 and �rst used by Mohr, Kranz, and Halstead [44]. The grain benchmark

creates 2depth threads. The leaf threads then perform grainsize � 6 + 8 instructions. We

can vary grainsize to detect when the overhead due to multithreading becomes insigni�cant.

The smaller the grain size is, the better the system performs on �ne-grained programs.

Figure 7.2 shows the speedup of lazy threading relative to eager threading for

grain with di�erent grain sizes as the percentage of leaf threads suspending increases. We

see that lazy threading is always more e�cient than eager threading, even for large grain

sizes, and even when all the threads suspend. For small grain sizes (<50 instructions), we

CHAPTER 7. EMPIRICAL RESULTS 132

1 #include <threads.h>

2

3 forkable int grain(int depth, int grainsize)

4 {

5 int i,j;

6

7 if (n < 1)

8 {

9 int i;

10 int sum = 0;

11 for (i=1; i<grainsize; i++)

12 sum = sum + 1;

13 return sum;

14 }

15

16 forkset {

17 pcall i = grain(n-1, grainsize);

18 pcall j = grain(n-1, grainsize);

19 }

20 return i+j;

21 }

Figure 7.1: The grain micro-benchmark.

Performance of Lazy Threading Versus Eager Threading

1

1.5

2

2.5

3

3.5

0% 20% 40% 60% 80% 100%
Percent of Leaves Suspending

S
pe

ed
up

14
608
1208
2408
4808
9608

Grain size in Sparc
Instructions

Figure 7.2: Improvement shown by lazy multithreading (heap storage model, thread ac-

tivation, lazy-disconnect, and explicit queue) over eager multithreading for the micro-

benchmark grain for di�erent grain sizes (in Sparc instructions) with di�erent percentages

of leaf threads suspending and resuming after all leaves have been created.

CHAPTER 7. EMPIRICAL RESULTS 133

Memory Usage

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08
0%

0.
00

1%

0.
01

%

0.
1%

1.
0%

10
.0

%

10
0.

0%

Percentage of leaves suspending

M
em

or
y

U
se

d
(B

yt
es

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
at

io
 E

ag
er

/L
az

y

Eager

Lazy

Ratio

Allocation Requests

1

10

100

1000

10000

100000

1000000

0.
00

0%

0.
00

1%

0.
01

0%

0.
10

0%

1.
00

0%

10
.0

00
%

10
0.

00
0%

Percentage of leaves suspending

A
llo

ca
tio

n
R

eq
ue

st
s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
at

io
 E

ag
er

/L
az

y

Eager

Lazy

Ratio

Figure 7.3: Memory required and allocation requests not satis�ed by the pool manager to

store thread state for eager and lazy multithreading as a function of the number of leaves

suspending.

see improvements of over 300%. For large grain sizes (>6000 instructions), we see modest

improvements of 4{7%. Even when the lazy threads are disconnected from their parents

and have to run independently (as is the case when they suspend), we see improvements

of between 4% and 28% depending upon the grain size. In no case is eager multithreading

faster than lazy threading. The dips in speedup at 25% and 50% are an artifact of how the

benchmark chooses threads to suspend. At the 50% point, every parent of a leaf thread

suspends because one of its children always suspends. At 25%, every grandparent of a leaf

thread suspends.

In this and in all the benchmarks, the ready queue is actually a LIFO stack, so the

�rst thread put on the ready queue is the last scheduled. For this benchmark a leaf suspends

after placing itself on the ready queue. Thus, the suspended leaves are not scheduled until

the last leaf thread is created.

When parallelism is not needed (and thus none of the leaves suspend), the lazy

threading system uses half the memory that the eager system uses, since the children are

not created until they are run (See Figure 7.3). However, as soon as the children begin to

suspend, we �nd, as expected, that the memory requirements are essentially the same in

the lazy and the eager systems when heap-allocated frames are used.

When this benchmark is run on a single processor, the lazy system never uses

more memory than the eager system. However, there are cases when the eager system uses

CHAPTER 7. EMPIRICAL RESULTS 134

Grain Size Register Windows Flat slowdown

8 82.7 115.7 1.40
14 95.9 131.9 1.38
68 172.5 192.8 1.12
608 645.6 667.2 1.02
6008 5384.0 5403.5 1.00

Table 7.2: Comparison of grain compiled by GCC for register windows and for a at register

model. Grain size is in Sparc instructions. Times are in microseconds.

less memory than the lazy system, even though both systems schedule threads depth-�rst.

Since the eager threading system always schedules children from the ready queue, suspended

frames that are enabled by a remote processor are scheduled before all the lazy children

are created. In this benchmark, this would result in the enabled children �nishing before

all the leaves were created, thus reclaiming the memory they used. In all cases, the lazy

threading system creates all the leaves before any of the enabled leaves on the ready queue

are run. Thus, under certain conditions, some programs can consume less memory under

an eager threading system.

7.4 Comparison to Sequential Code

Perhaps the most important measure of success for any lazy threading system is

the speed of a program when all of the potentially parallel calls run serially. If a lazy

threading system performs well on this test, then programmers or language implementors

can parallelize wherever possible without concern about threading overhead. Further, when

all the potentially parallel calls run serially they could have been written as sequential calls,

and we can compare the program to a similar program compiled by a sequential compiler. In

this section, we compare grain compiled with di�erent options by our lazy thread compiler

to grain compiled with GCC.

7.4.1 Register Windows vs. Flat Register Model

Before comparing programs generated by the lazy threads compiler to those gen-

erated by GCC, we need to isolate the e�ects of register windows on the Sparc. The

lazy threads compiler does not use register windows, so we make our comparisons to code

produced by GCC for the at register model (the -mat option of GCC). As shown in

CHAPTER 7. EMPIRICAL RESULTS 135

Grain Heap Spaghetti Stacklet
Model Model Model

8 Seed-Copy-Lazy 1.96 Seed-Link-Lazy 1.20 Cont-Copy-Lazy 1.15
14 Seed-Copy-Lazy 1.81 Seed-Link-Lazy 1.14 Seed-Link-Impl 1.10
68 Cont-Copy-Impl 1.60 Seed-Link-Lazy 1.10 Cont-Copy-Lazy 1.10
608 Seed-Link-Impl 1.17 Seed-Link-Lazy 1.03 Cont-Copy-Lazy 1.03
6008 Seed-Copy-Impl 1.02 Seed-Link-Lazy 1.00 Cont-Copy-Lazy 1.00

Table 7.3: The minimum slowdowns relative to GCC-compiled executables for the di�erent

memory models and where in the design space they occur for a grain size of 8 instructions.

Table 7.2, the code produced for the at register model is less e�cient than the register

window model. There are two reasons for this ine�ciency: the at model uses callee save

and the prolog/epilog code requires more memory operations. Since callee save is in e�ect,

more register save/restore operations occur in the at register model. The at register

model also requires an additional two stores and two loads per function invocation than the

equivalent code compiled for register windows. In retrospect, we should have optimized the

code produced for GCC's at model before introducing the lazy thread modi�cations. In

the rest of this chapter we compare the lazy thread code to the at register model.

7.4.2 Overall Performance Comparisons

Figure 7.4 shows the slowdown of each of the models for di�erent grain sizes. As

expected, we see little di�erence between the models at large grain sizes (> 6000 instruc-

tions) and large di�erences at small grain sizes (< 100 instructions). When all the threads

run to completion, as in this case, the two biggest factors are the memory model and the

queueing method. The linked-frame memory model is signi�cantly slower than the other

memory models, running at half their speed for small grain sizes. The other major factor is

the use of the explicit queueing method, which increases overhead by 5{50% independently

of the other choices in the design space.

7.4.3 Comparing Memory Models

The most important improvement introduced by lazy threads is the use of stack-

like structures to store thread state. As Figure 7.5 shows, the overhead of the linked-frames

model, when averaged over the other twelve points in the design space, is a factor of two to

�ves times more than that of the other memory models. This occurs for two reasons: frame

CHAPTER 7. EMPIRICAL RESULTS 136

Uni-processor Multithreaded Slowdown for Grain of 8

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

6

grain sizes

S
lo

w
do

w
n

HCEE HCEI HCEL HCLE HCLI HCLL HSEE HSEI HSEL HSLE HSLI HSLL

PCEE PCEI PCEL PCLE PCLI PCLL PSEE PSEI PSEL PSLE PSLI PSLL

SCEE SCEI SCEL SCLE SCLI SCLL SSEE SSEI SSEL SSLE SSLI SSLL

Linked Frame

Spaghetti Stacks Stacklets

Uni-processor Multithreaded Slowdown for Grain of 68

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

68

grain sizes

S
lo

w
do

w
n

HCEE HCEI HCEL HCLE HCLI HCLL HSEE HSEI HSEL HSLE HSLI HSLL

PCEE PCEI PCEL PCLE PCLI PCLL PSEE PSEI PSEL PSLE PSLI PSLL

SCEE SCEI SCEL SCLE SCLI SCLL SSEE SSEI SSEL SSLE SSLI SSLL

Linked Frame

Spaghetti Stacks Stacklets

Uni-processor Multithreaded Slowdown for Grain of 608

1.0

1.1

1.2

1.3

608

grain sizes

S
lo

w
do

w
n

HCEE HCEI HCEL HCLE HCLI HCLL HSEE HSEI HSEL HSLE HSLI HSLL

PCEE PCEI PCEL PCLE PCLI PCLL PSEE PSEI PSEL PSLE PSLI PSLL

SCEE SCEI SCEL SCLE SCLI SCLL SSEE SSEI SSEL SSLE SSLI SSLL

Linked Frame

Spaghetti Stacks Stacklets

Uni-processor Multithreaded Slowdown for Grain of 6008

1.0

1.1

6008

grain sizes

S
lo

w
do

w
n

HCEE HCEI HCEL HCLE HCLI HCLL HSEE HSEI HSEL HSLE HSLI HSLL

PCEE PCEI PCEL PCLE PCLI PCLL PSEE PSEI PSEL PSLE PSLI PSLL

SCEE SCEI SCEL SCLE SCLI SCLL SSEE SSEI SSEL SSLE SSLI SSLL

Linked Frame Spaghetti Stacks Stacklets

Figure 7.4: Slowdown of uniprocessor multithreaded code running serially over GCC code.

The four letter abbreviations specify the memory model (H{Linked frame, P{Spaghetti, S{

Stacklets), the thread representation (C{Continuations, S{Thread Seeds), the disconnection

model (E{Eager, L{Lazy), and the queue model (E{Explicit, I{Implicit, and L{Lazy). Note

the di�erent scales of the Y axis on each of the four graphs.

CHAPTER 7. EMPIRICAL RESULTS 137

Memory Model Average Overhead

1.00

1.20

1.40

1.60

1.80

2.00

2.20

8 14 68 608 6008
Instructions

S
lo

w
do

w
n

Linked frames
Spaghetti
Stacklets

Figure 7.5: Average slowdown of multithreaded code running sequentially on one processor

over GCC code. The slowdown is the average of all points in the design space for each

memory model.

allocation is more expensive, and the child must perform a memory operation in order to

�nd its parent.

The di�erence between spaghetti stacks and stacklets is less pronounced. Stacklets

are slightly more e�cient than spaghetti stacks because the overow check is less expensive

than saving and restoring a link between the child and the parent. However, stacklets may

be more expensive than spaghetti stacks if many overows occur. By adjusting the depth

argument to the grain we can cause an overow to occur for every leaf. A worst-case

scenario is when all the allocations occur at the boundary. A function that recursively calls

itself and �nally calls another function, named null(), in a loop will take 219% longer if

overows occur when null is invoked and does nothing but return. In other words, the

allocation for an overow doubles the cost of a function call, which is expected since it is

similar to a linked-frame allocation.

To evaluate the e�ect of the memory model in isolation, we also look at a sequential

version of grain compiled by the lazy thread compiler. Figure 7.6 shows the slowdown of the

multithreaded version of grain relative to GCC, of the sequential version of grain relative

to GCC, and of the multithreaded relative to the sequential version of grain when both are

compiled by the lazy threads compiler. The last data line shows the overhead of potentially

parallel calls versus sequential calls within the lazy threading framework.

CHAPTER 7. EMPIRICAL RESULTS 138

Linked-Frame Memory Model

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3

C
on

t-
E

ag
er

-E
xp

l

C
on

t-
E

ag
er

-I
m

pl

C
on

t-
E

ag
er

-L
az

y

C
on

t-
La

zy
-E

xp
l

C
on

t-
La

zy
-I

m
pl

C
on

t-
La

zy
-L

az
y

S
ee

d-
E

ag
er

-E
xp

l

S
ee

d-
E

ag
er

-I
m

pl

S
ee

d-
E

ag
er

-
La

zy

S
ee

d-
La

zy
-E

xp
l

S
ee

d-
La

zy
-I

m
pl

S
ee

d-
La

zy
-L

az
y

Models

S
lo

w
do

w
n

LT/GCC
LT-Seq/GCC
LT/LT-Seq

Spaghetti Stack Memory Model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
on

t-
E

ag
er

-E
xp

l

C
on

t-
E

ag
er

-I
m

pl

C
on

t-
E

ag
er

-L
az

y

C
on

t-
La

zy
-E

xp
l

C
on

t-
La

zy
-I

m
pl

C
on

t-
La

zy
-L

az
y

S
ee

d-
E

ag
er

-E
xp

l

S
ee

d-
E

ag
er

-I
m

pl

S
ee

d-
E

ag
er

-L
az

y

S
ee

d-
La

zy
-E

xp
l

S
ee

d-
La

zy
-I

m
pl

S
ee

d-
La

zy
-L

az
y

Models

S
lo

w
do

w
n

LT/GCC
LT-Seq/GCC
LT/LT-Seq

Stacklets Memory Model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
on

t-
E

ag
er

-E
xp

l

C
on

t-
E

ag
er

-I
m

pl

C
on

t-
E

ag
er

-L
az

y

C
on

t-
La

zy
-E

xp
l

C
on

t-
La

zy
-I

m
pl

C
on

t-
La

zy
-L

az
y

S
ee

d-
E

ag
er

-E
xp

l

S
ee

d-
E

ag
er

-I
m

pl

S
ee

d-
E

ag
er

-L
az

y

S
ee

d-
La

zy
-E

xp
l

S
ee

d-
La

zy
-I

m
pl

S
ee

d-
La

zy
-L

az
y

Models

S
lo

w
do

w
n

LT/GCC
LT-Seq/GCC
LT/LT-Seq

Figure 7.6: Comparison of the three memory models for a grain size of 8 instructions.

LT/GCC shows the slowdown of the multithreaded grain relative to a sequential version

compiled using GCC. LT-SEQ/GCC compares a sequential version of grain compiled with

Split-C+threads relative to GCC. LT/LT-Seq shows the slowdown introduced by turning

sequential calls into pcalls when both are compiled by Split-C+threads.

CHAPTER 7. EMPIRICAL RESULTS 139

As expected, the linked-frame memory model introduces most of its overhead not

in handling potentially parallel calls, but just in managing the activation frames. On the

other hand, both the spaghetti stack and stacklet models show almost no overhead in the

sequential version; all the overhead is introduced by the potentially parallel calls.

The interaction between the di�erent axes of the design space is seen in the extra

overhead of the explicit queue models for both the spaghetti stacks and stacklets memory

models. In both of these memory models, the stack must be managed specially when a

thread suspends. When explicit queueing is used, the parent of a suspending thread may

not be noti�ed that its child has suspended. Thus, to prepare for the possible suspension

of a child, the compiler must initialize some frame slots on every call, resulting in extra

overhead.

Having shown that the linked-frame memory model is always signi�cantly slower

than the other memory models, we eliminate it from the rest of the comparisons in this

section.

7.4.4 Thread Representations

In this section we investigate the e�ect of the thread representation on perfor-

mance. We begin by looking at grain running sequentially. We then turn our attention

to how the choice of thread representation interacts with the compilation process. This

interaction varies with the number of pcalls in a fork-set and the data ow in the fork-set.

Finally, we show the e�ect of running threads in parallel on grain by varying the number

of leaf threads that suspend.

For any choice of memory model, disconnection method, or queueing mechanism,

there is no signi�cant di�erence between thread seeds and continuations when all the poten-

tially parallel calls run to completion. (See Figure 7.7.) This is expected since we use the

same techniques to implement both. When the potentially parallel call runs to completion,

the continuation and seed are both enqueued in the same way, and the pcall is implemented

as a sequential call.

When a pcall in a fork-set does not run to completion, the di�erent thread rep-

resentations can perform di�erently. If threads are represented with continuations, then

when a child suspends, the continuation to the rest of the thread is stolen, and when the

suspending child returns, it only tests the join to see if it is the last returning child. If it is

CHAPTER 7. EMPIRICAL RESULTS 140

Thread Representations (grain size = 8)
All Threads Run To Completion

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
pa

g-
E

ag
er

-E
xp

l

S
pa

g-
E

ag
er

-I
m

pl

S
pa

g-
E

ag
er

-L
az

y

S
pa

g-
La

zy
-E

xp
l

S
pa

g-
La

zy
-I

m
pl

S
pa

g-
La

zy
-L

az
y

S
ta

c-
E

ag
er

-E
xp

l

S
ta

c-
E

ag
er

-I
m

pl

S
ta

c-
E

ag
er

-L
az

y

S
ta

c-
La

zy
-E

xp
l

S
ta

c-
La

zy
-I

m
pl

S
ta

c-
La

zy
-L

az
y

Models

S
lo

w
do

w
n

LT/GCC-cont
LT/GCC-seed

Figure 7.7: Comparison of continuation stealing and seed activation when all threads run

to completion across the design space for grain with a grain size of 8 instructions. The

slowdown is relative to a GCC-compiled sequential grain.

not, the join fails, and the general scheduler is entered. Thus the control ow of the suspend

and steal streams is identical to that of the sequential stream. When thread seeds are used

to represent nascent threads, children that previously suspended will, when they complete

and return to their parents, activate a thread seed if it exists. Thus the control ow in the

suspend and steal streams is from every pcall to every other pcall in the fork-set. The

additional control paths present when thread seeds are used require that every inlet end

with an indirect jump. Furthermore, every register that is live before all the pcalls must

be restored before the indirect jump is executed.

To evaluate the di�erence in control ow we compare three programs with fork-sets

which di�er in whether or not results are returned by the children threads. Each program

consists of a loop that repeatedly calls a routine, caller, which consists entirely of one

fork-set with pcalls to a another routine, test. The test routine either suspends and later

returns or returns immediately, depending on its argument. In the �rst program, voidvoid,

both caller and test are void functions and no values need to be restored or saved in any

code stream. In the second program, void, test is a void function and caller returns a

value, so one value needs to be restored and saved in both models. In the last program,

return, both test and caller return values; thus every pcall in the suspend stream to save

and restore all the variables in the thread seed model, while in the continuation-stealing

model the nth call needs to save and restore n registers. As we see in Figure 7.8, the

CHAPTER 7. EMPIRICAL RESULTS 141

Comparing Thread Representation
The first pcall out of two suspends.

0

0.2

0.4

0.6

0.8

1

1.2

P
E

E

P
E

I

P
E

L

P
LE P
LI

P
LL

S
E

E

S
E

I

S
E

L

S
LE S
LI

S
LL

Models

R
at

io
 o

f C
on

tin
ua

tio
ns

/T
hr

ea
d

S
ee

ds

voidvoid
void
return

Comparing Thread Representation
The first pcall out of ten suspends.

0

0.2

0.4

0.6

0.8

1

1.2

P
E

E

P
E

I

P
E

L

P
LE P
LI

P
LL

S
E

E

S
E

I

S
E

L

S
LE S
LI

S
LL

Models

C
on

tin
ua

tio
n/

T
hr

ea
d

S
ee

d
R

at
io

voidvoid
void
return

Figure 7.8: The execution time ratio between the continuation-stealing model and the

thread-seed model when the points on the other axes are �xed and the �rst pcall of the

fork-set suspends. Lower ratios indicate that continuations perform better than thread

seeds.

continuation-stealing model is more e�cient for large fork-sets, and for small fork-sets there

is no real di�erence between the two models. This data is consistent with the fact that

the thread representation does not signi�cantly a�ect the other axes of the design space.

Interestingly, even though more save/restore operations are performed in the last program

(return) in the thread seed model, the di�erence in performance is lower because there is

slightly more work per thread.

The Figures 7.7 and 7.8 show the worst case for thread seeds, in that the �rst

pcall in the fork-set suspends and all the remaining calls must run in the suspend stream.

As Figure 7.9 shows, if a later pcall suspends, the di�erence between the two models

disappears.

When we look at the behavior of grain in Figure 7.10 we see that the thread

representation has little e�ect on the performance of the program even as the number of

threads suspending changes. The small di�erence is explained by two factors. First, there

are only two pcalls in the fork-set, so there is no di�erence in the control ow in the suspend

stream. Second, the suspending threads are evenly distributed between the �rst and last

pcalls in the fork-set.

As more leaves suspend, continuations perform better than thread seeds by only

a small margin. This is particularly true when the memory model has low overhead (e.g,

CHAPTER 7. EMPIRICAL RESULTS 142

Comparing Suspension Location

0

0.2

0.4

0.6

0.8

1

1.2

P
E

E

P
E

I

P
E

L

P
LE P
LI

P
LL

S
E

E

S
E

I

S
E

L

S
LE S
LI

S
LL

Model

C
on

tin
ua

tio
n/

T
hr

ea
d

S
ee

d
R

at
io

1 of 10
5 of 10
10 of 10

Figure 7.9: Comparing the e�ect of which of the ten pcalls in a fork-set suspends.

Thread Representations for Grain of 8

0

0.2

0.4

0.6

0.8

1

1.2

P
E

E

P
E

I

P
E

L

P
LE P
LI

P
LL

S
E

E

S
E

I

S
E

L

S
LE S
LI

S
LL

Models

R
at

io
 C

on
tin

ua
tio

ns
/T

hr
ea

d
S

ee
ds

0.01%
0.10%
1.00%
10.00%

Percentage
of Leaves
Suspending

Figure 7.10: Comparing thread representations for a grain size of 8 as the percentage of

leaves that suspend increases. Missing bars indicate that the program was unable to run

because it ran out of memory or took more than three orders of magnitude longer than the

other programs.

stacklets with lazy disconnection) and the implicit queue is used. When implicit queueing

is used, the suspending thread always returns to its parent. When continuation stealing is

in e�ect, the parent immediately suspends to its parent if it has no work; with thread seeds,

in contrast, registers might be restored needlessly, and a jump through the resume address

would be performed before the parent suspends.

CHAPTER 7. EMPIRICAL RESULTS 143

Disconnection Method (grain size = 8)
All Threads Run To Completion

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
pa

g-
C

on
t-

E
xp

l

S
pa

g-
C

on
t-

Im
pl

S
pa

g-
C

on
t-

La
zy

S
pa

g-
S

ee
d-

E
xp

l

S
pa

g-
S

ee
d-

Im
pl

S
pa

g-
S

ee
d-

La
zy

S
ta

c-
C

on
t-

E
xp

l

S
ta

c-
C

on
t-

Im
pl

S
ta

c-
C

on
t-

La
zy

S
ta

c-
S

ee
d-

E
xp

l

S
ta

c-
S

ee
d-

Im
pl

S
ta

c-
S

ee
d-

La
zy

Models

S
lo

w
do

w
n

LT/GCC-eager
LT/GCC-lazy

Figure 7.11: Comparison of eager and lazy disconnection for grain with a grain size of 8

and all the threads running to completion.

Continuations and thread seeds perform equally well when all the threads in a fork-

set run to completion or, when a thread does suspend, if there are few remaining pcalls left

in the fork-set. Since the total number of pcalls in a fork-set is often very small (in most

cases two) both methods of representing threads should work equally well when executing

multithreaded code on a uniprocessor.

7.4.5 Disconnection

In this section we compare eager-disconnect and lazy-disconnect. We �rst look

at the cases when all threads run to completion in grain and then when threads suspend

in grain. Next we look at how the number of pcalls in a fork-set a�ects the relative

performance of the two disconnection methods.

As we see in Figure 7.11, the di�erent disconnection models have little e�ect on

the sequential performance of potentially parallel calls. When eager-disconnect is used, the

parent must be able to modify the child's link back to its parent. In both the linked-frame

and stacklets models, this requires an extra store in the function prolog of every child.

There is no di�erence in the spaghetti model because when explicit queueing is used, extra

overhead is always required.

The real di�erence between the methods of disconnection shows up when the

potentially parallel calls run in parallel. In this case we see an overwhelming disadvantage

CHAPTER 7. EMPIRICAL RESULTS 144

Disconnection Method for Grain of 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
C

E

P
C

I

P
C

L

P
S

E

P
S

I

P
S

L

S
C

E

S
C

I

S
C

L

S
S

E

S
S

I

S
S

L

Models

R
at

io
 o

f E
ag

er
/L

az
y

0.01% 0.10% 1.00% 10.00%

>4>4 >4 >4>4 >4

Percentage of Leaves Suspending

Figure 7.12: Comparison of eager and lazy disconnection for grain of 8 as the number of

leaves suspending changes. Higher bars indicate lazy-disconnect is better.

Disconnection Performance (forkset=2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
C

E

P
C

I

P
C

L

P
S

E

P
S

I

P
S

L

S
C

E

S
C

I

S
C

L

S
S

E

S
S

I

S
S

L

Models

R
at

io
n

E
ag

er
/L

az
y

void
voidvoid
return

Thread Representation (forkset = 10)

0

0.2

0.4

0.6

0.8

1

1.2

P
E

E

P
E

I

P
E

L

P
LE P
LI

P
LL

S
E

E

S
E

I

S
E

L

S
LE S
LI

S
LL

Models

C
on

t/S
ee

d
R

at
io

voidvoid
void
return

Figure 7.13: Comparison of eager and lazy disconnection when the �rst pcall in a fork-set

with two (or ten) pcalls suspends.

CHAPTER 7. EMPIRICAL RESULTS 145

to the eager-disconnect method for stacklets, since entire activation frames must be copied.

Figure 7.12 compares the two methods as the number of leaves suspending changes. Eager-

disconnect is signi�cantly worse for the stacklet models even when as few as one out of

1000 threads suspends. When more threads suspend the programs run for so long (hours as

opposed to seconds) that we omit the data. The only other signi�cant di�erence between

disconnection methods is when spaghetti stacks are used with the explicit queue. In this case

the eager-disconnect method requires extra setup on every call, whether or not it suspends.

As Figure 7.13 shows, when the fork-set has only two pcalls the overhead of

copying the frames overwhelms the advantage of being able to run the next pcall in the

same stacklet as the parent. For the other memory models there is no real di�erence between

the two disconnection methods when the fork-set has few pcalls.

We conclude that eager-disconnect should not be used with stacklets, or with

spaghetti stacks if explicit queueing is used. Further, there is no advantage to eager-

disconnect unless the majority of fork-sets have many pcalls in them.

7.4.6 Queueing

We now examine the behavior of the di�erent queueing mechanisms when all the

threads run to completion and when they suspend. As expected, Figure 7.14 shows that

the explicit queue is more expensive than either the lazy or the implicit queue for threads

that run to completion. The di�erences between the implicit and lazy queues is small when

the threads run to completion.

When threads suspend, the explicit model becomes more attractive and the im-

plicit and lazy models diverge in performance. Figure 7.15 shows the improvement of the

explicit queue model as more threads suspend. It also shows the destructive interaction

between spaghetti stacks and the explicit queue. As discussed above, this arises because

there is no guarantee that threads are noti�ed when they must reclaim storage, and every

activation frame must set and check some variables in the prolog and epilog.

CHAPTER 7. EMPIRICAL RESULTS 146

Queueing Methods on Grain (grainsize = 8)
All Threads Run To Completion

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Spag-
Cont-
Eager

Spag-
Cont-
Lazy

Spag-
Seed-
Eager

Spag-
Seed-
Lazy

Stac-
Cont-
Eager

Stac-
Cont-
Lazy

Stac-
Seed-
Eager

Stac-
Seed-
Lazy

Models

S
lo

w
do

w
n

ve
rs

us
 G

C
C

Explicit
Implicit
Lazy

Figure 7.14: Comparison of the three queueing methods|explicit, implicit, and lazy|for

grain when all threads run to completion.

Lazy Queue Method for Grain of 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PCE PCL PSE PSL SCE SCL SSE SSL

Models

R
at

io
 E

xp
lic

it/
La

zy

0.01%

0.10%

1.00%

10.00
%

Implicit Queue Method for grain of 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PCE PCL PSE PSL SCE SCL SSE SSL

Models

R
at

io
 E

xp
lic

it/
Im

pl
ic

it

0.01%

0.10%

1.00%

10.00%

Figure 7.15: Comparison of the queueing mechanisms as the number of threads suspending

increases for grain with a grain size of 8 instructions. Lower bars indicate that explicit

queueing is preferred.

CHAPTER 7. EMPIRICAL RESULTS 147

Speedup of Grain 8 on NOW

0

1

2

3

4

5

6

7

8

0 10 20 30
Processors

S
pe

ed
up

Heap-Seed-Lazy-Expl

Heap-Seed-Lazy-Impl

Heap-Seed-Lazy-Lazy

Spag-Seed-Lazy-Expl

Spag-Seed-Lazy-Lazy

Stac-Seed-Lazy-Expl

Stac-Seed-Lazy-Impl

Stac-Seed-Lazy-Lazy

Implicit Queues

Linked Frame Models

Spagetti+Explicit

Figure 7.16: Speedup of grain (grain size 8 instructions) on the NOW relative to a version

compiled with GCC on a single processor for the di�erent models.

7.5 Running on the NOW

Having analyzed the behavior of the di�erent points in the design space on a

uniprocessor we now investigate the performance of lazy thread programs on a distributed

memory multiprocessor. We limit our attention to those models that can be reasonably

supported on a distributed memory machines. Thus we do not look at continuation stealing

or eager-disconnect. Continuation stealing requires migration of instantiated threads, which

is costly and very di�cult to implement.1 Eager-disconnect is clearly too costly, even on a

single processor, to have any positive bene�t on multiprocessors. We look at the implicit

queueing method only briey because it promotes the distribution of the �nest-grained work

and thus does not scale well on multiprocessors.

Figure 7.16 shows the speedup of grain with a grain size of 8 instructions when the

network is polled on every function call. Clearly, the work distribution method implemented

by the implicit queue is not e�cient, as the programs compiled with implicit queue run very

poorly. As expected, the linked-frame storage model performs poorly. Independently of the

number of processors, it is at least 15% slower than the other storage models. The other

1Continuation stealing can be implemented without frame migration, but in this case, when a continuation

is stolen the parent must fork o� its next child onto the remote processor, just as in seed activation. However,

with continuation stealing the parent cannot be continued until its remote child returns, and then it will

also have to fork o� its next child onto a remote machine.

CHAPTER 7. EMPIRICAL RESULTS 148

Where The Time Goes

0

1

2

3

4

5

6

7

P
S

LL 6

S
S

LL 6

P
S

LL
86

S
S

LL
86

P
S

LL
80

6

S
S

LL
80

6

P
S

LL
80

06

S
S

LL
80

06

Model + Grain

S
lo

w
do

w
n

ov
er

 G
C

C

GCC

GCC-Flat

LT-Sequential

LT-Uniprocessor

LT-Multi-No-Poll

LT-Multiprocessor

Figure 7.17: A breakdown of the overhead when running on one processor of NOW. LT-

Sequential is the serial version of grain. LT-Uniprocessor is a multithreaded version of

grain compiled for one processor. LT-Multi-No-Poll is compiled for an MPP, but does not

include any network polling. LT-Multiprocessor is an MPP version with polling.

models all perform well, getting linear speedup relative to themselves. However, the lazy-

threads programs run four times slower on a single multiprocessor than on a uniprocessor.

Figure 7.17 shows where the performance is lost. Focusing on the smallest grain

size, we pay an immediate penalty of 64% for using the -mat option of GCC. Ignoring the

linked-frames model there is no additional penalty for using Split-C+threads for compiling

a sequential version of grain. However, turning the function calls into pcalls incurs an

additional loss of performance of about 50%. Compiling the multithreaded version for a

multiprocessor adds no cost, but adding the instructions to poll the network interface more

than triples the running time.

If we compare the performance of lazy threads on the NOW with that of the

Thinking Machines CM-5 [58] we see how the less expensive poll operation on the CM-5

boosts performance. Figure 7.18 shows the speedup of grain compiled by an earlier compiler

which used stacklets, thread seeds, lazy-disconnect, and explicit queueing. Even the �nest

grain sizes have e�ciencies of over 50%. In the case of NOW, the more expensive poll

operation reduces the overall performance of even the large grain sizes.

When we reduce the number of poll operations, e�ciency increases dramatically.

If we change the poll operation into a conditional poll which checks the network only every

n polls, we increase the e�ciency of the program without implicitly increasing the grain

CHAPTER 7. EMPIRICAL RESULTS 149

0

5

10

15

20

25

30

5 10 15 20 25 30

S
pe

ed
up

Number of Processors

14
38

188
608

1208
3608

Figure 7.18: Speedup of lazy threads (stacklets, thread seeds, lazy disconnection, and ex-

plicit queue) on the CM-5 compared to the sequential C implementation as a function of

granularity.

1 4 16 64 25
6

10
24

40
96

16
38

4

1
2

4
8

1
6

3
2

0

5

10

15

20

25

Speedup

Polling Period
Processors

Speedup of Grain as Polling Period Changes (grainsize=8)

Figure 7.19: The e�ect of reducing the polling frequency on grain with a grain size of 8

instructions using stacklets, thread seeds, lazy-disconnect, and lazy queueing.

CHAPTER 7. EMPIRICAL RESULTS 150

Speedup of Models at Grain 8

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Processors

S
pe

ed
up

Spag-Expl 8

Spag-Lazy 8

Stac-Expl 8

Stac-Lazy 8

Spagetti-Lazy

Stacklets-Explicit

Stacklets

Speedup of Models at Grain 68

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Processors

S
pe

ed
up

Spag-Expl 68

Spag-Lazy 68

Stac-Expl 68

Stac-Lazy 68

Spaghetti-Explicit

Speedup of Models at Grain 608

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Processors

S
pe

ed
up

Spag-Expl 608

Spag-Lazy 608

Stac-Expl 608

Stac-Lazy 608

Speedup of Models at Grain 6008

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Processors

S
pe

ed
up

Spag-Expl 6008

Spag-Lazy 6008

Stac-Expl 6008

Stac-Lazy 6008

Figure 7.20: Speedup of grain at di�erent grain sizes for the explicit and lazy queue models.

In all cases, the polling frequency is 1/64.

size of work that can be stolen. Figure 7.19 shows how the speedup of grain changes as

we increase the period between polls. Performance increases as we decrease the number of

polls until a point is reached when the long periods of ignoring the network interfere with

load balancing. For the rest of our experiments we set the polling period to 64.

In Figure 7.20 we show the speedup of grain on the NOW with a polling period of

64. In all cases, the combination of spaghetti stacks and the explicit queue performs poorly.

The other combinations are roughly equivalent when the grain size exceeds 60 instructions.

When run on 32 processors the e�ciency ranges from 65% (for a grain size of 8 instructions)

CHAPTER 7. EMPIRICAL RESULTS 151

Unbalanced Grain - Remote Larger

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Processors

S
pe

ed
up

Spag-Expl 8

Spag-Lazy 8

Stac-Expl 8

Stac-Lazy 8

Spag-Expl 68

Spag-Lazy 68

Stac-Expl 68

Stac-Lazy 68

Spag-Expl 608

Spag-Lazy 608

Stac-Expl 608

Stac-Lazy 608

Spag-Expl 6008

Spag-Lazy 6008

Stac-Expl 6008

Stac-Lazy 6008

Figure 7.21: Speedup of an unbalanced grain where there is more work in the second pcall

of the fork-set.

Unbalanced Grain - Local Larger

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Processors

S
pe

ed
up

Spag-Expl 8

Spag-Lazy 8

Stac-Expl 8

Stac-Lazy 8

Spag-Expl 68

Spag-Lazy 68

Stac-Expl 68

Stac-Lazy 68

Spag-Expl 608

Spag-Lazy 608

Stac-Expl 608

Stac-Lazy 608

Spag-Expl 6008

Spag-Lazy 6008

Stac-Expl 6008

Stac-Lazy 6008

Figure 7.22: Speedup of an unbalanced grain where there is more work in the �rst pcall

of the fork-set.

CHAPTER 7. EMPIRICAL RESULTS 152

Speedup of Nqueens

0

4

8

12

16

20

24

28

32

0 4 8 12 16 20 24 28 32
Processors

S
pe

ed
up

Copy-On-Suspend
Always Copy

Efficiency of Nqueens

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0 4 8 12 16 20 24 28 32
Processors

E
ffi

ci
en

cy Copy-On-Suspend
Always Copy

Figure 7.23: Speedup and e�ciency achieved with and without the copy-on-suspend opti-

mization for nqueens using stacklets, thread seeds, lazy-disconnect, and the lazy queue.

to over 90% (for a grain size of 600 or more) showing that lazy threading is e�ective, when

implemented correctly, even on distributed memory machines.

Lazy threads also work well when the amount of work performed by the di�erent

threads is not uniform. Figures 7.21 and 7.22 show the speedup of a modi�ed grain in

which the amount of work performed by a parent's children di�ers by a factor of two. In

Figure 7.22 the �rst pcall performs twice as much work as the second. Thus work that

is stolen is always smaller than work performed locally. In Figure 7.21, the second pcall

performs twice as much work as the �rst, leading to larger-grained work being stolen. When

grain size is small, we see a slight performance degradation when the work that can be stolen

is smaller than the work available locally. While there is only a small di�erence between

these two programs, the di�erence shows the asymmetry in the overall approach taken by

lazy threads.

7.6 Using Copy-on-Suspend

In our �nal experiment using Split-C+threads we examine the e�ect of the copy-

on-suspend optimization as applied to the nqueens program. As Figure 7.23 shows, the

copy-on-suspend optimization yields up to a 20% improvement in performance. If the copy-

on-suspend optimization is not applied to nqueens there is a loss in performance for using

lazy threads even on a single processor because of the need to copy the shared data (See

CHAPTER 7. EMPIRICAL RESULTS 153

Section 6.5.1). The copy-on-suspend optimization eliminates the need to copy the shared

data except when parallelism is actually needed.

When running on a distributed multiprocessor there is the additional penalty of

sending the data across the network. This imposes two costs: the explicit cost of sending

the data and the implicit cost of having to poll the network often enough to service the

data requests. We compiled the program using a polling period of 64. When compiled

for a multiprocessor and run on one processor, the program gets 75% e�ciency, indicating

that the cost of polling is relatively low. Since nqueens achieves a speedup of 23.5 on 32

processors, the poll rate is su�cient to handle both load balancing and requests for data.

7.7 Suspend and Steal Stream Entry Points

As discussed in Section 5.1.2, for ease of experimentation we chose to implement the

suspend and steal entry points associated with a seed or continuation as jump instructions

placed after the call to which they are associated. This has a larger than expected impact on

the performance of a pcall due to the di�erence in the o�set used by a return instruction.

If we modify the assembly code by changing the jumps to nops and have the function

return like an ordinary sequential call, we see no e�ect on the runtime even though six

extra instructions are executed on every return. If we then remove the nops so the same

instructions are executed, we see an improvement in performance of about 10%.

7.8 Comparing Code Size

Our compilation techniques incur additional overhead in the form of an increase

in code size. Every call is duplicated (for single-processor concurrency) or triplicated (for a

multiprocessor). If there is code between pcalls, it too must be copied. Furthermore, each

call has associated with it the suspend and steal stream entry points, setup code to handle

disconnection, etc. Figure 7.24 compares the size of an object �le for the grain function

compiled by Split-C+threads for a uniprocessor and multiprocessor to the size of the same

function compiled by GCC. The multithreaded versions are approximately 2.5 and 4.5 times

larger than the sequential code as compiled by GCC for the uniprocessor and multiprocessor

version respectively. The largest e�ect on code size comes from the queueing method chosen.

The lazy queue has extra code to construct the explicit queue and the implicit queue has

CHAPTER 7. EMPIRICAL RESULTS 154

Code Size Expansion for forkset with 2 pcalls

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

H
C

E
E

H
C

E
I

H
C

E
L

H
C

LE

H
C

LI

H
C

LL

H
S

E
E

H
S

E
I

H
S

E
L

H
S

LE

H
S

LI

H
S

LL

P
C

E
E

P
C

E
I

P
C

E
L

P
C

LE

P
C

LI

P
C

LL

P
S

E
E

P
S

E
I

P
S

E
L

P
S

LE

P
S

LI

P
S

LL

S
C

E
E

S
C

E
I

S
C

E
L

S
C

LE

S
C

LI

S
C

LL

S
S

E
E

S
S

E
I

S
S

E
L

S
S

LE

S
S

LI

S
S

LL

Models

E
xp

an
si

on
 F

ac
to

r
O

ve
r

G
C

C

LT for Uniprocessor
LT for Multiprocessor

Figure 7.24: The amount of code dilation for each point in the design space.

extra code to transfer control to the parent. In e�ect we have traded o� time for space as

compared to the library implementation of eager multithreading.

7.9 Id90 Comparison

Our earlier work on lazy threading was motivated by previous work on e�ciently

implementing Id90 using a threaded abstract machine (TAM). The compilation process

involved compiling Id90 to TL0, an assembly language for TAM, and then compiling TL0

to C. In TL0, every function call is implemented as a parallel fork with the associated

overhead of scheduling, synchronization, frame allocation, and use of memory to transfer

arguments and results. To improve the performance of Id90 executables, we developed a new

assembly language, TL1, that would support lazy threading. We developed a lazy thread

based compiler for TL1 that used stacklets, thread seeds, lazy-disconnect, and explicit

queueing. In addition, TL1 supports strands. This compiler compiled TL1 code to C using

techniques that became the basis for the Split-C+threads compiler. In Table 7.4 we show

the results of this early work. We can see that even with the overhead of compiling to C,

the need to support strands, and no control over register usage, we achieved a signi�cant

speedup over TL0.

CHAPTER 7. EMPIRICAL RESULTS 155

Program Short Description Input Size TAM Stacklets, Seeds,
Lazy-disconnect,
Explicit Queue

Gamteb Monte Carlo neutron transport 40,000 220.8 139.0
Para�ns Enumerate isomers of para�ns 19 6.6 2.4
Simple Hydrodynamics and heat conduction 1 1 100 5.0 3.3
MMT Matrix multiply test 500 70.5 66.5

Table 7.4: Dynamic runtime in seconds on a SparcStation 10 for the Id90 benchmark

programs under the TAM model and lazy threads with multiple strands. The programs are

described in [16].

Seeds

Conts

Eager

Lazy

Eager

Lazy

Linked Frames Spaghetti Stacks Stacklets

Lazy Impl Expl Lazy Impl Expl Lazy Impl Expl

Slower than the other memory models.

Eager disconnection causes excessive
copying with stacklets.

Explicit queueing adds extra overhead to
Spaghetti stacks.

Requires frame migration or message
forwarding and limits use of local point-
ers on distributed memory machines.

Requires message forwarding on distrib-
uted memory machines.

Distributes work at too fine a grain for
distributed memory machines.

Thread Representation

Storage Model

Disconnection Method

Queue Mechanism

No drawbacks.

Figure 7.25: Which points in the design space are e�ective and why. The white squares are

the e�ective models.

7.10 Summary

In each of the preceding sections we examined the axes of the design space and

analyzed the performance of the points on that axis with respect to the other axes. Fig-

ure 7.25 summarizes our conclusions. Each of the shaded regions indicates a point in the

space that we have rejected either because the intersection of models lead to poor perfor-

mance or because a particular point was poor compared to the other possible points on that

axis. For example, eager-disconnect and stacklets clearly work against each other and any

implementation that uses both of these will perform poorly.

The �gure also includes three additional reasons for rejecting particular models for

use on distributed memory machines. Eager-disconnect requires either frame migration or

CHAPTER 7. EMPIRICAL RESULTS 156

message forwarding on distributed memory machines. It also excludes the use of pointers

to automatic variables. Continuation stealing is excluded since it requires frame migration.

Finally, implicit queueing distributes work at too �ne a grain.

All of the three remaining models perform well even on very �ne-grained programs.

Stacklets, thread seeds, lazy-disconnect, and lazy queueing work particularly well together,

requiring almost no preparation overhead before a potentially parallel call is initiated and

little work when parallelism is actually needed.

157

Chapter 8

Related Work

Attempts to accommodate logical parallelism include thread packages [20, 54, 14,

28], compiler techniques and clever runtime representations [16, 49, 44, 63, 61, 53, 30], and

direct hardware support for �ne-grained parallel execution [34, 3]. These approaches have

been used to implement many parallel languages, e.g. Mul-T [39], Id90 [16, 49], CC++

[13], Charm [35], Opus [43], Cilk [7], Olden [12], and Cid [48]. The common goal is to

reduce the overhead associated with managing the logical parallelism. While much of this

work overlaps ours, none has combined all of the techniques described in this thesis. More

importantly, none has started from the premise that all calls, parallel or sequential, can be

initiated in exactly the same manner.

Our work grew out of previous e�orts to implement the non-strict functional lan-

guage Id90 for commodity parallel machines. Our earlier work developed a Threaded Ab-

stract Machine (TAM) which serves as an intermediate compilation target [16]. The two key

di�erences between this work and TAM are that under TAM calls are always parallel, and

due to TAM's scheduling hierarchy, calling another function does not immediately transfer

control.

Our lazy thread fork allows all calls to begin in the same way and creates only the

required amount of concurrency. In the framework of previous work it allows excess par-

allelism to degrade e�ciently into a sequential call. Many other researchers have proposed

schemes which deal lazily with excess parallelism. One of the simplest schemes is load based

inlining, which uses load characteristics of the parallel machine to decide at the time a po-

tentially parallel call is encountered whether to execute it sequentially (inline it) or execute

it in parallel [39]. This has the advantage of dynamically increasing the granularity of the

CHAPTER 8. RELATED WORK 158

program. However, these decisions are irrevocable, which can lead to serious load imbalances

or deadlock. Our approach builds on lazy task creation (LTC), which introduced the idea of

lazy threads. LTC is based on linked frames, continuation stealing, eager-disconnect, and an

explicit queue. [44]. LTC also uses work stealing to perform dynamic load balancing. These

ideas were studied for Mul-T running on shared-memory machines. Since work-stealing

causes the parent to migrate to a new thread, LTC depends on the ability of the system

to migrate activation frames. This either requires shared-memory hardware capabilities

or restricts the kind of pointers allowed in the language. Finally, LTC also depends on a

garbage collector, which hides many of the costs of stack management.

Another proposed technique for improving LTC is leapfrogging, which uses multi-

ple stacks, a limited form of continuation stealing, eager-disconnect, and explicit queues [63].

Unlike the techniques we use, it restricts the use of continuation stealing in an attempt to re-

duce the cost of futures. Leapfrogging has been implemented using Cthreads, a light-weight

thread package.

StackThreads [57] uses both a stack and the heap for storing activation frames

in an attempt to reduce overhead for �ne-grained programs running on a single processor.

Activation frames are initially placed on the stack, and if a thread blocks, its activation

frame is moved onto the heap, in e�ect implementing eager-disconnect on a hybrid mem-

ory model. Since the sequential call invariants are not enforced, StackThreads does not

take advantage of passing control and data at the same time, reducing register usage and

increasing synchronization overhead. They take a point of view diametrically opposed to

ours in that all calls, sequential or parallel, use the same representation. This triples the

direct function call/return overhead and prevents the use of registers.

A much simpler thread model is advocated in Shared Filaments [19] and Dis-

tributed Filaments [23]. A �lament is an extremely lightweight thread which does not have

a stack associated with it. This works well when a thread does not fork other threads.

More general threads are supported with a single stack because language restrictions make

it impossible for a parent to be scheduled when any of its children are waiting for a syn-

chronization event. Distributed �laments are combined with a distributed shared memory

system. In the case of a remote page fault, communication can be overlapped with compu-

tation because each processor runs multiple scheduling threads.

Olden [12] is based on spaghetti stacks, continuation stealing, eager-disconnect,

and an explicit queue. In Olden, as well as in previous uses of spaghetti stacks [10, 31], a

CHAPTER 8. RELATED WORK 159

garbage collector is used to reclaim freed frames. Olden's thread model is more powerful

than ours, since in Olden threads can migrate. The idea is that a thread computation that

follows references to unstructured heap-allocated data might increase locality if migration

occurs [52]. On the other hand, this model requires migrating the current call frame as well

as disallowing local pointers to other frames on the stack.

We use stacklets for e�cient stack-based frame allocation in parallel programs.

Previous work by Hieb et al. [30] describes similar ideas for handling continuations e�ciently,

but it uses a garbage collector.

Our implementation technique for encoding the suspend and steal entry points

for a thread seed or continuation builds on the use of multiple o�sets from a single return

address to handle special cases. This technique was used in SOAR [60]. It was also applied

to Self, which uses parent controlled return continuations to handle debugging [32].

Finally, many lightweight thread packages have been developed. Cthreads is a

runtime library which provides multiple threads of control and synchronization primitives

for parallel programming at the level of the C language [14]. Scheduler activations reduce

the overhead by moving �ne-grained threads completely to the user level and relying on the

kernel only for infrequent cases [1]. Synthesis is an operating systems kernel for a parallel

and distributed computational environment that integrates dynamic load balancing and

dynamic compilation techniques [41]. Chant [28] is a lightweight threads package which

is used in the implementation of an HPF extension called Opus [43]. Chant provides an

interface for lightweight, user-level threads that have the capability of communication and

synchronization across separate address spaces. While user-level thread packages eliminate

much of the overhead encountered in traditional operating-systems thread packages, they are

still not as lightweight as many of the systems mentioned above that use special runtime

representations supported by the compiler. Since the primitives of thread packages are

exposed at the library level, compiler optimizations presented in this paper are not possible

for such systems.

160

Chapter 9

Conclusions

Many modern parallel languages support dynamic creation of threads or require

multithreading in their implementations. In these languages it is desirable for the logical

parallelism expressed by the threads to exceed the physical parallelism of the machine. In

practice most logical threads need not be independent threads. Instead, they can run as

sequential calls, which are inherently cheaper than independent threads. The challenge to

the language implementor is that one cannot generally predict which logical threads can be

implemented as sequential calls. In lazy multithreading systems each logical thread begins

execution sequentially, with the attendant e�cient stack management and direct transfer

of control and data. Only if a thread must execute in parallel does it get its own thread of

control.

This dissertation presents a design space for implementing multithreaded systems

without preemption. We introduce a su�cient set of primitives so that any point in the

design space may be implemented using our new primitives. The primitives and implemen-

tation techniques that we propose reduce the cost of a potentially parallel call to nearly

that of a sequential call, without restricting the parallelism inherent in the program. Using

our primitives we implement a system (in some cases a previously proposed system) at each

point in the design space.

We have shown that, using appropriate compiler techniques, we can provide a fast

parallel call with nearly the full e�ciency of a sequential call when the child thread executes

locally and runs to completion without suspension. Such child threads occur frequently with

aggressively parallel languages such as Id90, and with more conservative languages such as

C with parallel calls (e.g., Split-C+threads).

CHAPTER 9. CONCLUSIONS 161

The central idea behind a fast parallel call is to pay only for what is used. Thus

a local fork is performed essentially as a sequential call, with the attendant e�cient stack

management and direct transfer of control and data. If the child actually suspends be-

fore completion, control is returned to the parent so that it can take appropriate action.

Similarly, remote work is generated lazily.

Our compilation techniques, and the new points in the lazy thread design space

we introduce, exploit the one bit of exibility in the sequential call: the indirect jump on

return. First, we exploit this exibility by associating with each return address multiple

return entry points. The extra entry points are linked to compiler-generated code streams

that handle any necessary parallelism without advance preparation. Second, we exploit

the indirect jump by using parent-controlled return continuations to eliminate the need for

synchronization until the child and parent need to run in parallel. The new design points

introduced (stacklets on the memory axis, thread seeds on the thread representation axis,

lazy-disconnect on the disconnection axis, and implicit and lazy queueing) also arise from

exploiting the exibility of the indirect jump on return.

We �nd that performance is best in implementations that strike a balance between

preparation before the potentially parallel call and extra work when parallelism is actually

needed. Our implementation of spaghetti stacks illustrates this point perfectly. If a lazy

or implicit queue is used, then when a thread runs to completion, no unnecessary check

is made to see if reclamation is necessary. However, if a thread suspends, we use pcrcs

to ensure that the check is performed when the thread eventually completes. This strikes

a proper balance by avoiding runtime preparation and limiting the work necessary when

parallelism is needed. However, when spaghetti stacks are used in conjunction with an

explicit queue, we prepare for the worst case by performing the check on every return,

making this an unattractive combination. Stacklets also achieve balance for storing thread

state, while linked frames require too much preparation. Continuations and thread seeds,

when implemented using multiple return entry points and pcrcs, both achieve this balance.

Eager-disconnect, when combined with stacklets or spaghetti stacks and explicit queueing,

requires too much work when parallelism is needed. Finally, of the three queueing methods,

lazy queueing works well while explicit queueing requires preparation on every parallel call,

and implicit queueing interacts badly with work stealing when parallelism is actually needed.

Our empirical studies, using Split-C+threads on the Berkeley NOW, show that

the combination of stacklets or spaghetti stacks, thread seeds, lazy-disconnect, and lazy

CHAPTER 9. CONCLUSIONS 162

queueing o�ers very good parallel performance and supports �ne-grained parallelism even

on a distributed memory machine. In contrast, the linked-frame storage model, which is

the most commonly used storage model for compiler-integrated multithreading, performs

poorly. When concurrency is needed on a single processor, we �nd that continuations are

also a reasonable choice for representing threads. The trade-o� between thread seeds and

continuations on shared memory machines remains unexplored; on such machines migration

across address spaces is not necessary, removing the obstacle to using continuations.

This dissertation opens several areas for exploration. The most obvious is com-

paring the design space on shared memory machines. Three other interesting areas are

generalizing the use of thread seeds, the use of multiple code streams to support copy-on-

suspend in parallel programs, and the e�cient placement of network polling operations.

� One way to view thread seeds is as an e�cient way to handle exceptions without

advance preparation. Broadly speaking, an \exception" is an infrequently encountered

condition that must nonetheless be handled as part of normal program execution. In

our case, the exception is the need to run a child in parallel. Perhaps thread seeds

can be applied to a more broad class of exceptions in languages that promote the use

of explicit exception handling.

� Our results depend heavily on generating multiple code streams for each fork-set. We

also see how multiple code streams enable the copy-on-suspend optimization, which

eliminates unnecessary copying of shared data structures. Perhaps copy-on-suspend

can be implemented automatically, and if so, multiple code streams may allow other

optimizations.

� Because our compilation strategy eliminates most of the overhead due to multithread-

ing, the dominating overhead on a distributed memory multiprocessor is the network

poll. We currently take a very conservative approach and insert many more polling

operations than necessary. An important optimization to investigate is how to reduce

the number of polling operations while still guaranteeing correct network behavior.

In conclusion, we have shown that �ne-grained parallelism can be e�ciently sup-

ported, thus allowing programmers (and back-end compilers) the freedom to specify all the

parallelism in a program without concern about excessive overhead.

163

Appendix A

Glossary

cactus stack Page 10
The global tree of thread frames.

is-child Page 31
The state of a frame that has been invoked with an lfork, but has not been
disconnected.

child thread Page 20
The thread created by a one of the fork operations (fork, dfork, or lfork).
The thread executing the fork operation is the parent thread.

closure Page 40
A data structure that represents a nascent thread, containing the arguments
and address of the thread's codeblock. The closure is self-contained and can
be turned into an independent thread by the general scheduler.

codeblock Page 18
The set of instructions that comprise the body of a function or a thread.

continuation stealing Page 33
An operation that allows a parent thread to disconnect from its lazy child
thread. It disconnects the parent by restarting the parent at its current
continuation.

disconnection Page 28
An operation that elevates a lazy thread into an independent thread. This
may involve disconnecting the control link between the lazy thread and its
parent, the storage used by the lazy thread and its parent, or both.

daemon thread Page 12
A thread that remains alive until the end of the program.

APPENDIX A. GLOSSARY 164

dexit Page 32
The instruction in MAM/DF that terminates a thread that was invoked by
dfork.

dfork Page 31
An instruction in MAM/DF that creates and directly schedules a child
thread.

downward thread Page 12
A thread that terminates before its parent terminates.

eager-disconnect Page 51
The act of disconnecting a child from its parent by changing the parent frame
so that future lazy threads may be invoked in the same manner as before
disconnection. (Compare to lazy-disconnect.)

eager fork Page 30
A fork that always creates an independent thread.

enable Page 23
The instruction that ensures that a thread is on the ready queue and in the
ready state.

exit Page 20
The instruction that terminates a thread and idles the processor on which
it was running.

fork Page 20
The instruction that creates a new independent thread.

fork-set Page 11
A set of forks that are related by a common join.

frame area Page 62
The area of a stack or stacklet that holds the activation frames for one
independent thread (the base frame), its lazy thread descendants, and their
sequential call frames.

has-child Page 29
The state a parent thread enters when it lforks a lazy child thread.

idle thread Page 24
A thread waiting on an event. It is always an independent thread.

independent thread Page 28
A thread that is not lazy, i.e., one with its own logical stack.

indirect inlet address Page 44
An address of a location in a thread's frame which contains the address of
an inlet. The address is used by lreturn to �nd the inlet to run when the
child terminates.

APPENDIX A. GLOSSARY 165

inlet Page 22
A code fragment that processes data received from another thread. All
inter-thread communication is handled by transferring data with send to an
inlet.

ireturn Page 23
The instruction used to return control from an inlet back to the sending
thread.

is-child Page 31
The state a lazy thread enters when it is created.

join counter Page 22
A counter in the parent thread used in the synthesis of the join operation
for threads.

lazy thread Page 28
A thread that has been started by an lfork and is using its parent's stack.

lfork Page 44
An instruction in MAM/DS and LMAM that creates and directly schedules
a child thread.

lazy-disconnect Page 51
The act of disconnecting a child from its parent without changing the par-
ent's frame. It causes future lazy threads to be invoked di�erently than
before disconnection. (Compare to eager-disconnect.)

linked frames Page 59
A thread storage model where every activation frame is �xed-sized and heap-
allocated.

LMAM Page 50
A Lazy Multithreaded Abstract Machine. A lazy thread is directly scheduled
and can share the same stack as its parent thread.

lreturn Page 44
An instruction in MAM/DS and LMAM that simultaneously returns control
and data from a child thread to its parent.

nascent thread Page 35
A thread that has not yet started, but will start the next time its parent is
resumed.

MAM Page 15
The basic multithreaded abstract machine which supports only eager thread
creation.

MAM/DF Page 27
A multithreaded abstract machine with direct fork.

APPENDIX A. GLOSSARY 166

MAM/DS Page 41
A multithreaded abstract machine with direct scheduling for both thread
creation and termination. lfork directly calls its lazy child, and lreturn

directly schedules its parent.

multiple stacks Page 62
A thread storage model in which each thread is assigned its own stack.
lforks and calls are allocated on the same stacks as their parents.

parallel overhead Page 120
The overhead introduced by a parallel algorithm over its sequential algo-
rithm.

parent queue Page 29
The set of parent threads that have given control of their processors to their
children. These threads are all in the has-child state.

parent thread Page 20
The thread that executes a fork operation (fork, lfork, or dfork). The
thread created by the fork is the child thread.

ready thread Page 24
A thread in the ready state. It is always an independent thread.

recv Page 23
The �rst instruction of an inlet. It describes the data expected by the inlet.

ready queue Page 17
The set of independent threads that are in the ready state, i.e., that are
ready to execute.

return register Page 16
Contains the return continuation used by a child to return results to its
parent. In MAM the return continuation is an inlet pointer and a thread
pointer. It is rede�ned in MAM/DS (on Page 44) to be the indirect inlet
address.

running thread Page 24
A thread in the running state. It is always an independent thread.

send Page 23
The instruction used to transfer data from one thread to the inlet of another
thread.

spaghetti stack Page 71
A memory region that is unbounded in one direction, but unlike a stack, has
no free operation. A spaghetti stack requires the use of a top pointer which
points to the next free location in the stack.

stacklet Page 76
A �xed-sized heap-allocated chunk of memory that behaves like a stack.

APPENDIX A. GLOSSARY 167

strands Page 124
A ow of control within a function that may not suspend. Strands allow
parallelism within a function.

stub Page 62
A frame at the bottom of a stack or stacklet that is used to maintain the
links between independent threads and the cactus stack.

suspend Page 20
The instruction that causes a thread to give up its processor and enter the
idle state. If the thread was lazy, this may also involve disconnecting the
thread from its parent.

thread seed Page 36
A representation for a nascent thread. It is a pointer to a context and a set
of related code pointers where each of the code pointers can be derived at
link time from a single code pointer.

thread Page 16
A locus of control which can perform calls to arbitrary nesting depth, sus-
pend at any point, and fork additional threads. Threads are scheduled in-
dependently and are non-preemptive. Threads can be either independent or
lazy.

upward thread Page 12
A thread that terminates after its parent terminates.

yield Page 20
The instruction that causes the thread executing it to be placed on the ready
queue.

work stealing Page 15
The act of assigning a thread that comes from the parent queue to an idle
processor. Work stealing is accomplished through either continuation steal-
ing or seed activation.

168

Bibliography

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler acti-

vations: e�ective kernel support for the user-level management of parallelism. ACM

Transactions on Computer Systems, 10(1), February 1992.

[2] Andrew W. Appel. Garbage collection can be faster than stack allocation. Information

Processing Letters, 25(4):275{279, Jan 87.

[3] Arvind and D. E. Culler. Dataow architectures. In Annual Reviews in Computer Sci-

ence, volume 1, pages 225{253. Annual Reviews Inc., Palo Alto, CA, 1986. Reprinted in

Dataow and Reduction Architectures, S. S. Thakkar, editor, IEEE Computer Society

Press, 1987.

[4] Arvind, D. E. Culler, R. A. Iannucci, V. Kathail, K. Pingali, and R. E. Thomas. The

Tagged Token Dataow Architecture. Technical Report FLA memo, MIT Lab for

Comp. Sci., 545 Tech. Square, Cambridge, MA, August 1983.

[5] Arvind, S. K. Heller, and R. S. Nikhil. Programming Generality and Parallel Comput-

ers. In Proc. of the Fourth Int. Symp. on Biological and Arti�cial Intelligence Systems,

pages 255{286. ESCOM (Leider), Trento, Italy, September 1988.

[6] Arvind, R. S. Nikhil, and K. K. Pingali. I-Structures: Data Structures for Parallel

Computing. ACM Transactions on Programming Languages and Systems, 11(4):598{

632, October 1989.

[7] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, P. Lisiecki, K. H.

Randall, A. Shaw, and Y. Zhou. Cilk 1.1 reference manual. MIT Lab for Comp. Sci.,

545 Technology Square, Cambridge, MA 02139, September 1994.

BIBLIOGRAPHY 169

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and

Y. Zhou. Cilk: an e�cient multithreaded runtime system. Journal of Parallel and

Distributed Computing, 37(1):55{69, August 1996.

[9] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work

stealing. In Proceedings of the Thirty-Fifth Annual Symposium on Foundations of

Computer Science (FOCS '94), pages 256{368, Sante Fe, NM, November 1994.

[10] Daniel G. Bobrow and Ben Wegbreit. A model and stack implementation of multiple

environments. Communications of the ACM, 16:591{602, 1973.

[11] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Sietz, J. Seizovic, and W. Su.

Myrinet | A gigabit-per-second local-area network. In IEEE Micro, pages 29{36,

February 1995.

[12] M.C. Carlisle, A. Rogers, J.H. Reppy, and L.J. Hendren. Early experiences with Olden

(parallel programming). In Languages and Compilers for Parallel Computing. 6th In-

ternational Workshop Proceedings, pages 1{20. Springer-Verlag, 1994.

[13] K.M. Chandy and C. Kesselman. Compositional C++: compositional parallel pro-

gramming. In Languages and Compilers for Parallel Computing. 5th International

Workshop Proceedings, pages 124{44. Springer-Verlag, 1993.

[14] E. C. Cooper and R. P. Draves. C-Threads. Technical Report CMU-CS-88-154,

Carnegie-Mellon University, February 1988.

[15] D. Culler, A. Dusseau, S. Goldstein, S. Lumetta, T. von eicken, and K. Yelick. Par-

allel Programming in Split-C. In Proceedings of Supercomputing 93, pages 262{273,

November 1993.

[16] D. E. Culler, S. C. Goldstein, K. E. Schauser, and T. von Eicken. TAM | a compiler

controlled threaded abstract machine. Journal of Parallel and Distributed Computing,

18:347{370, July 1993.

[17] D. E. Culler, K. E. Schauser, and T. von Eicken. Two Fundamental Limits on Dataow

Multiprocessing. In Proceedings of the IFIP WG 10.3 Working Conference on Architec-

tures and Compilation Techniques for Fine and Medium Grain Parallelism, Orlando,

FL. North-Holland, January 1993.

BIBLIOGRAPHY 170

[18] David E. Culler, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Brent Chun, Steven

Lumetta, Alan Mainwaring, Richard Martin, Chad Yoshikawa, and Frederick Wong.

Parallel computing on the Berkeley NOW. In To appear in Ninth Joint Symposium on

Parallel Processing, Kobe, Japan, 1997.

[19] D. R. Engler, D. K. Lowenthal, and Andrews G. R. Shared Filaments: e�cient �ne-

grain parallelism on shared-memory multiprocessors. Technical Report TR 93-13a,

University of Arizona, April 1993.

[20] J.E. Faust and H.M. Levy. The performance of an object-oriented threads package. In

SIGPLAN Notices, pages 278{88, Oct. 1990.

[21] Message Passing Interface Forum. Mpi: a message-passing interface standard. In-

ternational Journal of Supercomputer Applications and High Performance Computing,

vol.8,(no.3-4):169{416, Fall-Winter 1994.

[22] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithread-

ing and communication. Journal of Parallel and Distributed Computing, 37(1):70{82,

August 1996.

[23] V.W. Freeh, D.K. Lowenthal, and G.R. Andrews. Distributed Filaments: e�cient �ne-

grain parallelism on a cluster of workstations. In Proceedings of the First USENIX

Symposium on Operating Systems Design and Implementation (OSDI), pages 201{13.

USENIX Assoc, 1994.

[24] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy Threads: Implementing a fast

parallel call. Journal of Parallel and Distributed Computing, 37(1):5{20, August 1996.

[25] Seth Copen Goldstein. The implementation of a threaded abstract machine. Master's

thesis, University of California at Berkeley, Computer Science Division, University of

California, Berkeley, Ca 94720, May 1994. Technical Report UCB94-818.

[26] James Gosling, Bill Joy, and Steele Guy. The Java Language Speci�cation. Sun Mi-

crosystems, version 1.0 edition, August 1996.

[27] D. Grunwald, B. Calder, S. Vajracharya, and H. Srinivasan. Heaps

o'Stacks: combined heap-based activation allocation for parallel programs. URL:

http://www.cs.colorado.edu/~ grunwald/, 1994.

BIBLIOGRAPHY 171

[28] M. Haines, D. Cronk, and P. Mehrotra. On the design of Chant: a talking threads

package. In Proceedings Supercomputing '94 (Cat. No.94CH34819), pages 350{9. IEEE

Comput. Soc. Press, 1994.

[29] E. A. Hauck and B. A. Dent. Burroughs' B6500/B7500 stack mechanism. In Proceedings

of the AFIPS Spring Joint Computer Conference, pages 245{251, 1968.

[30] R. Hieb, R. Kent Dybvig, and C. Bruggeman. Representing control in the presence of

�rst-class continuations. In SIGPLAN Notices, pages 66{77, June 1990.

[31] Guido Hogen and Rita Loogen. A New Stack Technique for the Management of Run-

time Structures in Distributed Implementations. Aachener Informatik-Berichte 93-3,

RWTH Aachen, Ahornstr. 55, 52056 Aachen, Germany, 1993.

[32] U. H�olzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic

deoptimization. In SIGPLAN Notices, pages 32{43, July 1992.

[33] IEEE. IEEE Standard for Threads Interface to POSIX, ieee draft std p1003.1c/d10

edition.

[34] H. F. Jordan. Performance measurement on HEP | a pipelined MIMD computer. In

Proc. of the 10th Annual Int. Symp. on Comp. Arch., Stockholm, Sweden, June 1983.

[35] L.V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented system

based on C++. In SIGPLAN Notices, pages 91{108, Oct. 1993.

[36] V. Karamcheti and A. Chien. Concert: e�cient runtime support for concurrent object-

oriented programming languages on stock hardware. In Proceedings SUPERCOMPUT-

ING '93, pages 598{607. IEEE Comput. Soc. Press, Nov. 1993.

[37] David Keppel. Tools and techniques for building fast portable threads packages. Tech-

nical Report UWCSE 93-05-06, University of Washington Department of Computer

Science and Engineering, May 1993.

[38] C. koelbel, D. Loveman, R. Schreiber, G. Steel Jr., and M. Zosel. The High Performance

Fortran Handbook. The MIT Press, 1994.

[39] D.A. Kranz, Jr. Halstead, R.H., and E. Mohr. Mul-T: a high-performance parallel

Lisp. In SIGPLAN Notices, pages 81{90, July 1989.

BIBLIOGRAPHY 172

[40] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. E�ects of communi-

cation latency, overhead, and bandwidth in a cluster architecture. In Proc. of the 24th

Int'l Symposium on Computer Architecture, June 1997.

[41] H. Massalin and C. Pu. Threads and input/output in the Synthesis kernel. In Twelfth

ACM Symposium on Operating Systems Principles, December 1989.

[42] Dylan McNamee. Newthreads.

http://www.cs.washington.edu/research/compiler/papers.d/nt.html, 1994.

[43] P. Mehrotra and M. Haines. An overview of the Opus language and runtime sys-

tem. In Languages and Compilers for Parallel Computing. 7th International Workshop

Proceedings, pages 346{60. Springer-Verlag, 1995. AN4917658.

[44] E. Mohr, D.A. Kranz, and Jr. Halstead, R.H. Lazy task creation: a technique for

increasing the granularity of parallel programs. IEEE Transactions on Parallel and

Distributed Systems, vol.2,(no.3):264{80, July 1991.

[45] R. S. Nikhil. Id (version 88.0) reference manual. Technical Report CSG Memo 284,

MIT Lab for Comp. Sci., March 1988.

[46] R. S. Nikhil. Id (Version 90.0) Reference Manual. Technical Report CSG Memo, to

appear, MIT Lab for Comp. Sci., 545 Tech. Square, Cambridge, MA, 1990.

[47] R. S. Nikhil. A Multithreaded Implementation of Id using P-RISC Graphs. In Proc.

Sixth Ann. Workshop on Languages and Compilers for Parallel Computing, Portland,

Oregon, August 1993.

[48] R. S. Nikhil. Cid: A parallel, \shared memory" C for distributed-memory machines.

In Languages and Compilers for Parallel Computing. 7th International Workshop Pro-

ceedings. Springer-Verlag, 1995.

[49] R.S. Nikhil. A multithreaded implementation of Id using P-RISC graphs. In Languages

and Compilers for Parallel Computing. 6th International Workshop Proceedings, pages

390{405. Springer-Verlag, 1994.

[50] M.D. Noakes, D.A. Wallach, and W.J. Dally. The J-Machine multicomputer: an ar-

chitectural evaluation. In Computer Architecture News, pages 224{35, May 1993.

BIBLIOGRAPHY 173

[51] G. M. Papadopoulos and D. E. Culler. Monsoon: an Explicit Token-Store Architecture.

In Proc. of the 17th Annual Int. Symp. on Comp. Arch., Seattle, Washington, May

1990.

[52] A. Rogers, M.C. Carlisle, J.H. Reppy, and L.J. Hendren. Supporting dynamic data

structures on distributed-memory machines. ACM Transactions on Programming Lan-

guages and Systems, vol.17,(no.2):233{63, March 1995.

[53] A. Rogers, J. Reppy, and L. Hendren. Supporting SPMD execution for dynamic data

structures. In Languages and Compilers for Parallel Computing. 5th International

Workshop Proceedings, pages 192{207. Springer-Verlag, 1993.

[54] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Herrman,

C. Kaiser, S. Langlois, P. Leonard, and W. Neuhauser. Overview of the CHORUS

distributed operating system. In Proceedings of the USENIX Workshop on Micro-

Kernels and Other Kernel Architectures, pages 39{69. USENIX Assoc, 1992.

[55] Anurag Sah. Parallel language support on shared memory multiprocessors. Master's

thesis, University of California | Berkeley, May 1991.

[56] Sun Microsystems, Inc. Solaris Threads.

[57] K. Taura, S. Matsuoka, and A. Yonezawa. StackThreads: an abstract machine for

scheduling �ne-grain threads on stock CPUs. In Theory and Practice of Parallel Pro-

gramming. International Workshop TPPP '94. Proceedings, pages 121{36. Springer-

Verlag, 1995. AN4986592.

[58] Thinking Machines Corporation, Cambridge, Massachusetts. The Connection Machine

CM-5 technical summary, January 1992.

[59] K. R. Traub. Implementation of Non-strict Functional Programming Languages. MIT

Press, 1991.

[60] D. M. Ungar. The design and evaluation of a high performance Smalltalk system. ACM

distinguished dissertations. MIT Press, 1987.

[61] M.T. Vandevoorde and E.S. Roberts. WorkCrews: an abstraction for controlling par-

allelism. International Journal of Parallel Programming, vol.17,(no.4):347{66, Aug.

1988.

BIBLIOGRAPHY 174

[62] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a

mechanism for integrated communication and computation. In Proc. of the 19th Int'l

Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

[63] D.B. Wagner and B.G. Calder. Leapfrogging: a portable technique for implementing

e�cient futures. In SIGPLAN Notices, pages 208{17, July 1993.

[64] Tim A. Wagner, Vance Maverick, Susan L. Graham, and Michael A. Harrison. Accurate

static estimators for program optimization. In ACM SIGPLAN '94 Conference on

Programming Language Design and Implementation, pages 85{96, Orlando, Florida,

1994.

[65] A. Yonezawa. ABCL{ an object-oriented concurrent system . MIT Press series in

computer systems. MIT Press, 1990.

