
An Analysis of File Migration in a Unix Supercomputing Environment 1

An Analysis of File Migration in a Unix Supercomputing
Environment

Ethan L. Miller
Randy H. Katz

University of California, Berkeley

ABSTRACT

The supercomputer center at the National Center for Atmospheric Research (NCAR) migrates
large numbers of files to and from its mass storage system (MSS) because there is insufficient
space to store them on the Cray supercomputer’s local disks. This paper presents an analysis of
file migration data collected over two years. The analysis shows that requests to the MSS are
periodic, with one day and one week periods. Read requests to the MSS account for the majority
of the periodicity; as write requests are relatively constant over the course of a week. Addition-
ally, reads show a far greater fluctuation than writes over a day and week since reads are driven
by human users while writes are machine-driven.

1 Introduction*

Over the last decade, computers have made incredible
gains in speed. This speedup has encouraged the pro-
cessing of larger and larger amounts of data; however,
storing this data on magnetic disk is not feasible.
Instead, most data centers with large data sets use ter-
tiary storage devices such as tapes and optical disks to
store much of their data. These devices provide a lower
cost per megabyte of storage, but they have longer
access times than magnetic disk. By studying the
tradeoffs between cheaper and slower tertiary storage
and more expensive and faster disk storage, response
time can be improved without increasing storage costs.

The problem is especially acute at computer centers,
such as the National Center for Atmospheric Research
(NCAR), that deal with large amounts of data that can
never be deleted. Data grows at the rate of several ter-
abytes per year [20]. The cost of storing this data on
shelved magnetic tape is relatively low, as cartridge
tapes are inexpensive. However, storing even 1% of the
total data in magnetic disk would be expensive, requir-
ing hundreds of gigabytes of Cray disk storage.

This paper analyzes file migration behavior on the
NCAR system described in [1] and [18]. The first sec-
tion will provide some background on the problem, dis-
cussing current mass storage systems and previous
work on them. The next section will describe the
NCAR system in more detail. We will then present our
trace-gathering methods.

* This work was supported in part by University Corporation for
Atmospheric Research contract S9128, and an NSF Fellowship.

The main part of the paper is a two-part analysis of the
gathered trace data—analyzing the usage patterns for
the entire mass storage system (MSS), and studying the
behavior of individual files. The first part of the analy-
sis includes system behavior over the course of a day,
week, and longer periods. It characterizes user behavior
with respect to the entire MSS, showing at what rate
data and files are read and written. Other characteristics
of the mass store at NCAR, such as request latency and
interrequest distribution, are also discussed. The second
part of the analysis provides insight for designing
migration algorithms, as it focuses on how individual
files are treated. This part of the analysis will discuss
file size distribution and individual file reference pat-
terns.

We will finally present some implications of our find-
ings on migration algorithms, and suggest some direc-
tions for future research.

2 Background

2.1 History

File migration systems are used by many large com-
puter installations, such as NCAR [1,18] and NASA
[7,19], to store more data than what would cost-effec-
tively fit on magnetic disk. Tertiary storage, which usu-
ally consists of tape and optical disk, lies at the bottom
of the “storage pyramid,” as shown in Figure 1. Cost
and speed increase going up the pyramid, while the size
of the memory level increases towards the bottom of
the period. CPU cache is at the top of the pyramid; it
have the highest cost per byte and is the smallest and
fastest of the levels. At the bottom of the pyramid are
tape and optical disk, which have slow access speeds,
on the order of seconds or minutes, and very low cost,
under $10/GB.

An Analysis of File Migration in a Unix Supercomputing Environment 2

Early mass storage systems used manual tape mount-
ing, since it was cheaper to hire system operators than it
was to have a robot manage tape mounts. However, by
1978, several companies had introduced automated
tape systems [2], and automated tape storage became
part of the mass storage systems in most large computer
centers. Several of these centers were studied in the
early 1980s; these included Brookhaven National Labo-
ratory [5], the University of Illinois [10], and the Stan-
ford Linear Accelerator Center [14,15]. These will be
discussed in a later section.

Since these studies, many complex mass storage sys-
tems have been implemented, including those at NASA
Ames, NCAR, and SDSC [7,11,12]. However, no stud-
ies on these systems have been published. Instead, the
data management staff at these sites collect huge
amounts of data to plan for new equipment purchases
and tune their systems. While this guarantees good per-
formance for each system, it does not provide any
guidelines for building future systems.

2.2 Mass Storage Devices

Currently, there are two major types of tertiary storage
devices in common use—tape and optical disk. Both of
these are high-density removable media. The tradeoffs
between the two media are presented in Table 1. Two
types of magnetic tape, helical scan and longitudinal
(linear) scan, are presented. The numbers for the tapes
come from [4], while the optical disk statistics come
from [16]. Table 1 includes figures for the IBM 3490
and the Ampex D-2.

Currently, the IBM 3480 tape format is standard at most
supercomputer installations, though some are begin-
ning to move to helical scan tapes that provide higher
density. The IBM 3480 uses linear recording, which
provides high speed at the expense of recording density.

Figure 1. Memory and storage hierarchy in large
computer systems. This is also called the “storage
pyramid.”

Shelf-stored tape/optical disk

Robotically-accessed
tape/optical disk

Magnetic disk

Solid-state disk

Main
memory

The D-2 drive, on the other hand, uses helical scan
techniques (similar to conventional VCR recording) to
greatly increase recording density. With a new genera-
tion of linear tape being developed, however, both
types of tape may be close in cost, performance and
capacity.

The major tradeoffs among the three media are access
latency and transfer bandwidth. Optical disks have a
much lower access latency than either type of magnetic
tape, but their bandwidth is also considerably lower.
Thus, a system which performs many small I/Os to ter-
tiary storage, such as a database system, would be best
served by optical disk, since the dominating factor in
calculating time per byte is access time to the first byte.
For supercomputing installations, however, magnetic
tape is better. While the time to get the first byte of data
is longer for tape than for optical disk, the time to get
all of the data is often lower for tape. Files on super-
computing installations tend to be large [20], so the dif-
ference in transfer time between optical disk and tape is
substantial. In general, more expensive drives have
higher transfer rate and storage density, though neither
longitudinal scan nor helical scan seems intrinsically
better. A new technology, optical tape [16], also looks
promising because of its high density storage and high
transfer rate.

Another primary consideration is price per gigabyte. As
can be seen in Table 1, magnetic tape has a lower cost
per gigabyte stored than optical disk. For systems with
terabytes of data stored on tertiary storage, such as
NCAR, this cost difference alone is enough to favor
using tape exclusively as the tertiary store. The lower
cost and higher transfer rate make magnetic tape the
obvious choice for supercomputer centers which deal
with sequentially-read large files.

Most installations today have one or more cartridge
tape robots to automatically mount some of their tape
libraries. The StorageTek 4400 [9] is an example of a
tape robot, or automated cartridge system (ACS). This
system can provide access to 1.2 TB of data (6000 IBM
3480 cartridges, holding 200 MB each). Loading a car-
tridge takes approximately 6 seconds; from there, tape

Category
 Optical Disk
Jukebox

 Linear
Tape

 Helical-
Scan tape

Media capacity
(GB)

 1.2 0.4 25

Random access
speed

 7 sec 13 sec 60+ sec

Transfer rate
(MB/sec)

 0.25 6.0 15

Media cost/GB $80 $25 $2

Table 1. A brief comparison of optical disk and
tape. The linear tape is an IBM 3490 (high-
density version of the 3480), and the helical-
scan tape is an Ampex D-2.

An Analysis of File Migration in a Unix Supercomputing Environment 3

characteristics are those of the IBM 3480 tape drives in
the tape silo.

2.3 Previous Work

There have been several studies of actual file migration
systems, but most are quite old and deal with different
computing environments. We will summarize them
here, and in a later section will compare the results of
studying the current NCAR environment with the re-
sults of the earlier studies.

In [15] and [14], Smith studied the file system at the
Stanford Linear Accelerator Center. His data dealt with
Wylbur text editor data sets, and tracked the references
to those data sets. He found that the best algorithms had
access to the entire reference string for a file. Since this
is often not feasible, the criterion he suggested was to
migrate off disk the files with the highest value oflast
reference time1.4 × file size. This algorithm, called
Space-Time Product (STP**1.4), was the best of the
algorithms examined which did not make use of any file
history other than the last reference time. The analysis
in the paper also did not consider the possible effects of
transfer time and access latency in minimizing average
file reference time; instead, the analysis attempted to
minimize file miss rate.

Smith also made several observations about file system
activity. He noted that usage followed a weekly pattern,
with activity highest on weekdays and lower on week-
ends and holidays. He also has extensive data on file
sizes and interreference intervals. Because of the size of
the data set in our NCAR study (over 900,000 files), it
would be very difficult to perform the same computa-
tions over the entire file set. The data set in Smith’s
paper has a granularity of one day and does not distin-
guish between reads and writes.

None of the acceptable migration algorithms would
have had much effect on average file access time at
NCAR. As noted in the paper, a miss ratio of 1% would
mean a loss of 6.26 person-minutes per day, given the
file usage rates and the number of users on the system.
For STP, this miss ratio would require a disk system
that held 1.5% of the total tertiary storage, and would
require 300 tracks, or about 1 MB, of data to be trans-
ferred each day.

Lawrie, et. al., in [10], considered the file migration
patterns on the University of Illinois Cyber 175. Again,
the system examined is quite different from the one
studied in this paper. Interestingly, Lawrie reported
that, though his system was quite different from SLAC,
his results matched Smith’s closely. This paper also
examined several migration algorithms, and compared
them against Smith’s STP algorithm on their data. They
found that STP was better than the algorithms they
tried, which included pure LRU, pure length (migrate
large files first), and SAAC, which migrated files that

became less active. In all cases, STP outperformed
these algorithms, though only by a slim margin.

Two recent studies focused on a workstation file system
at Berkeley [17] and the Common File System (CFS) at
the National Center for Supercomputing Applications
(NCSA) [8]. At Berkeley, Strange found that there were
more file reads than file writes, though more data was
written than read. He also found that, as expected, less
data was used on weekends (even though the system
was primarily used by graduate students). In this sys-
tem, algorithms using a space-time product to identify
files to migrate would work well. However, files were
much smaller than typical supercomputer files. Even
the file system with the largest files averaged under 50
KB/file. As Table 4 shows, this is far smaller than typi-
cal supercomputer files. The file system profile at
NCSA, on the other hand, is quite similar to that at
NCAR. File sizes are similar, and file reference rates
are close to those in this study. This gives us high confi-
dence that NCAR is typical of supercomputer mass
storage systems.

Other papers have simply presented data gathered from
existing mass storage systems without analyzing the
data and suggesting possible algorithm changes. Sys-
tems analyzed include Brookhaven [5], NCAR [1,18],
and NASA [7]. In addition, many large sites internally
publish a summary of statistics gathered from their
machines. They use these statistics for two purposes: to
better tune their systems, and to justify new equipment
purchases.

3 NCAR system configuration

In this section, we describe the system on which we
gathered the file migration traces. Rather than describe
the entire NCAR network, we focus on the parts which
are relevant to the study. However, the rest of the net-
work will be briefly described, since the mass storage
system is shared by all of the systems at NCAR, so their
presence might affect mass storage systems perfor-
mance.

3.1 Hardware Configuration

The CPU in the study was a Cray Y-MP 8/864 (sha-
vano.ucar.edu), with 8 CPUs and 64 MWords* of
main memory. Each CPU has a 6 ns cycle time.Sha-
vano , like other Cray Y-MPs, has several 100 MB/sec
connections to its local disks and two 1 GB/sec connec-
tions to a solid state disk (SSD). There are about 56 GB
of disks attached directly to the Cray; 47 GB of this
space is reserved for application scratch space and files
over a few days old are purged from it regularly.

The mass storage system (MSS) at NCAR is composed
of an IBM 3090—used as a bitfile† server—with
100 GB of online disk on IBM 3380s, a StorageTek

* Each Cray word is 8 bytes long.

An Analysis of File Migration in a Unix Supercomputing Environment 4

Automated Cartridge System 4400 with 6000 200 MB
IBM 3480-style cartridges, and approximately 25 TB
of data in shelved tape. The MSS tries to keep all files
under 30 MB on the 3090 disks, and immediately sends
all files over 30 MB to tape. Usually, the tapes written
are those in the cartridge silo. Files on the MSS are lim-
ited to 200 MB in length, since a file cannot span multi-
ple tapes. While the Cray supports much larger files on
its local disks, they must be broken up before they can
be written to the MSS.

The MSS at NCAR is shared by the entire NCAR com-
puting environment, which includes the Cray Y-MP, an
IBM 3090 which runs the MSS, several VAXen, and
many workstations. Figure 2 shows the network con-
nections between the various machines at NCAR. The
disks and tape drives attached to the MSS processor
have direct connections to the Crays via the Local Data
Network (LDN), providing a high-speed data path. All
machines connected to the MSS (including the Crays)
are connected to the 3090 by a custom hyperchannel-
based network called the MASnet. Data going out over
the MASnet must pass through the 3090’s main mem-
ory, so it is a slower path than the direct connection the
Crays have. The few workstations with connections act
as gateways to the networks which connect to the rest
of the workstations at NCAR. These gateways are also
the fileservers for the local networks. Many of these
smaller machines have their own local lower-speed
disks, about 5.5 GB of which are mounted by the Cray
via NFS (Network File System). According to the
monthly report published by the NCAR systems
group [20],shavano puts more data on the network
than any other node, but several other nodes receive
more data. In particular, several of the Sun workstations
receive comparable amounts of data. It is likely that
these workstations, which are the gateways to internal
networks of desktop workstations, are receiving a large
amount of image traffic.

3.2 System Software

The Cray Y-MP is primarily used for climate simula-
tions— both the extensive number crunching necessary
to generate the data, and the less computationally-inten-
sive processing used in visualizing it. The Cray has two
primary modes of operation; it can either run in prima-
rily interactive mode, where programs are short and run
as the user requests them, or in batch mode, where jobs
are queued up and run when space and CPU time are
available. There is no explicit switch between operating
modes, but short interactive jobs typically have higher
priority. There is less CPU time for running batch jobs
during the day, because scientists are looking at results
from previous batch jobs. At night, however, the CPU
is mainly used to run large jobs requiring hours of CPU

† A bitfile is a stream of bits stored by the file system. It is the same as
a plain file in UNIX.

time. The MSS request patterns reflect these two differ-
ent uses of the CPU, as will be shown below.

The software which runs the MSS is based on concepts
in the Mass Storage Systems Reference Model [3]. It
consists of software on the mass storage control proces-
sor (MSCP), which is the IBM 3090, and one or more
bitfile mover processes on the Cray. Users on the Cray
make explicit requests (via the UNICOS commands
lread andlwrite) to read or write the MSS. These
commands send messages to the MSCP, which locates
the file and arranges for any necessary media mounts.
The MSCP then configures the devices to transfer
directly to the Cray. For disk and tape silo requests,
these mounts are handled without operator intervention,
but an operator must intervene to mount any non-silo
tapes which are requested. After the data is ready to be
transferred, the MSCP sends a message to a bitfile
mover, which manages the actual data movement.
When transfer is complete, the bitfile mover returns a
completion status to the user.

3.3 Applications

The Cray at NCAR runs two types of jobs—interactive
jobs, which finish quickly and require a short turn-
around time, and batch jobs, which may require hours
of CPU time but have no specific response time require-
ments.

A typical climate simulation, such as the Community
Climate Model [21], might take 1 hour and produce
500 MB of data which would be stored on a tertiary
store. This is an example of a batch job, since a
researcher would submit the job and allow it to run
overnight or longer. These jobs use a large amount of
temporary disk storage as well as CPU time. The Y-MP
at NCAR is configured with small, 300 MB user parti-

Figure 2. Network connections between machines at
NCAR.

ACS

Cray Y-MP

IBM 3090

Manually-loaded tape Disk
farm

MASnet

The rest
of NCAR

LDN

An Analysis of File Migration in a Unix Supercomputing Environment 5

tions. Each user is allocated a few megabytes on one
partition, which would be insufficient for storing the
output of even one run of a climate model. Thus, the
initial input to a climate model must come from the
MSS, and any results must go back to the MSS. If the
results are needed later, they must be retrieved from the
MSS.

Interactive jobs, such as a “movie” of the results of a
climate simulation, have much more stringent response
time requirements. Typically, a user will initiate a com-
mand and expect a response quickly. According to [19],
an interactive request must be satisfied in just a few sec-
onds, or interactive behavior is lost. Nevertheless, the
average response time to satisfy MSS requests is over
60 seconds; possible solutions to this problem will be
discussed later.

4 Tracing Methods

4.1 Trace Collection

The data used in this study was gathered from system
logs generated by the mass storage controller process
and the bitfile mover processes. Approximately 50 MB
of data was written to these logs per month. The system
managers at NCAR use the data to plan future equip-
ment acquisitions and improve performance on the cur-
rent system. The logs also serve as proof that a
requested transaction took place. The system managers
occasionally use them to refute users who claim their
files were written to the MSS and then disappeared.

The system log, as written by the mass storage manage-
ment processes, contains a wealth of information. Much
of it is either redundant or unnecessary for migration
tracing. Information such as project number and user
name are not needed for migration studies, since the
user identifier is also reported. The traces are designed
to be easily human-readable, so fields are always identi-
fied and dates and times are in human-readable form. In
addition, each MSS request is assigned a sequence
number, since there are several records in the system
log which correspond to the same I/O. This is useful for
assembling a single record for a migration trace. By
processing the traces to remove redundant information
and transforming the rest of the information into a form
more easily machine-readable, the traces were cut from
50 MB per month to 10-11 MB per month. They could
not be reduced further because file names are long and
could not be compressed without losing information.

4.2 Trace Format

Once the system logs were copied to a local host, they
were processed into a trace in a format that is easy for a
trace simulator or analysis program to read. The traces
were kept in ASCII text so they would be easy to read
on different machines with different byte orderings. A
list of the fields in the trace is in Table 2.

Very little information is common between two consec-
utive records except temporal information. Even so, the
traces are compressed by recording times as differences
from some previous time, as suggested in [13]. The
start time for a MSS request is recorded as the elapsed
time since the start time of the previous request, while
the latency until the first byte is transferred (the startup
latency) and the transfer time are recorded as durations.
Start time and startup latency are measured in seconds,
while transfer time is measured in milliseconds. These
were the precisions available from the original system
logs. The only other commonality between consecutive
requests might be the requesting user, so there is a bit in
the flag field which indicates that the request was made
by the same user who made the previous request. Direc-
tories, too, might be common between consecutive
requests, but they would be harder to match. Future ver-
sions of the trace format may allow for full or partial
paths to be obtained from previous records.

5 Observations

The traces for this study were collected over a period of
24 months, from October, 1990 through September,
1992. Traces were available from the time the MSS
came on-line in June, 1990, but the MSS was very
lightly used for the first few months. We decided to
omit this data and study the “steady-state” system.

5.1 Trace Statistics

Overall statistics for the trace period are shown in
Table 3. The traces actually include 3,688,817 refer-
ences, but 175,633 (4.76%) had errors. The most com-
mon error was the non-existence of a requested file. In
such cases, it was impossible to include the reference in
our analysis, since the file never existed and wasn’t
stored on any device. It might have been possible to
include references that encountered other errors, such
as media errors and premature termination, but there
were few enough that they would not affect the results.

Field Meaning

source Device the data came from

destination Device the data is going to

flags Read/write, error information, compres-
sion information

start time time in seconds since the previous start
time

startup latency time in seconds to start the transfer

transfer time time in milliseconds to transfer the data

file size file size in bytes

MSS file name file name on the MSS

local file name file name on the computer

user ID user who made the request

Table 2. Information in a single trace record.

An Analysis of File Migration in a Unix Supercomputing Environment 6

Table 4 contains data about the massive store that
accesses were made to. This table only includes files
which were referenced during the trace period. Since
we had no data on the actual contents of the MSS, we
assumed that only files actually referenced during the
trace period existed on the mass store. This is a valid
simplification, as there are only three kinds of files that
are never explicitly read or written—large temporary
files used by Cray applications, small files that fit into
the 1 MB allocated for a each user’s home directory,
and system files such as binaries. The first category,
temporary files, would be actively used for their entire
lifetime, and discarded when no longer in use, never
providing a chance to move them to long-term storage.
Small user files, such as.cshrc , would never be
migrated since they would be used too often. Even if
they were migrated, they would only add approxi-
mately 4 GB of space to the MSS, assuming each of the
4,000 users filled their entire permanent allocation. Sys-
tem files, likewise, would probably be used often
enough so they would not be evicted from disk. Addi-
tionally, most system files are read-only, eliminating the
need to write any data to the MSS.

5.1.1 Latency to first byte

Figure 3 shows the total latency from when a request is
made to the MSS until the data transfer actually starts.
This time is composed of several elements—queueing
time on the Cray, queueing time on the MSS, media
mounting time, and seek time. For the disk, media
mounting time and seek time are very short, usually

Reads Writes Total

References 2336747.(66%) 1179047. (33%) 3515794.(100%)

Disk 1419280.(60%) 927722. (39%) 2347002. (66%)

Tape (silo) 480545. (66%) 239162. (33%) 719707. (20%)

Tape (manual) 436922.(97%) 12163. (2%) 449085. (12%)

GB transferred 63926.2(73%) 23389.9 (27%) 87316.2(100%)

Disk 5080.4 (58%) 3727.9 (42%) 8808.3 (10%)

Tape (silo) 38256.6(67%) 19081.4 (33%) 57338.1 (66%)

Tape (manual) 20589.2(97%) 580.6 (3%) 21169.8 (24%)

Avg. file size (MB) 27.36 19.84 24.84

Disk 3.58 4.02 3.75

Tape (silo) 79.61 79.78 79.67

Tape (manual) 47.12 47.74 47.14

Secs to first byte 98.1 38.6 78.18

Disk 32.47 25.39 29.67

Tape (silo) 115.14 81.86 104.08

Tape (manual) 292.58 203.84 290.18

Table 3. Overall trace statistics. The trace covers
the period from October, 1990 through
September, 1992. The percentages listed under
“Reads” and “Writes” are ratios to the value in
the “Total” column of that row. The percentages
listed under “Total” are percentages relative to
the top value in the column.

well under a second. While median access time for the
disk was 4 seconds, the distribution has a long tail due
to queueing at individual disks. Each disk has a rela-
tively low bandwidth, so a large file takes several sec-
onds to satisfy. Any requests for this disk that arrive in
the meantime must wait for the long request to finish,
generating the long delays in the tail of the disk latency
curve.

Delays were caused by queueing in several places in the
system—the Cray, the MSS CPU, the network from
disk to Cray, and data transfer to or from the disk itself.
Of these, the only delays that differ between disk, tape
silo, and shelved tape are the latencies due to the device
itself—transfer delays and seek delays. The disks do
not transfer data much faster than the tape drives, so
queueing delays for them are probably representative of
the time spent waiting for data to be transferred off
tape. We can then deduce how much extra time is
needed by the tape systems to get the first byte of data.

The first observation is that the tape silo is considerably
faster than manually fetching the tape. After subtracting
off the queueing time exhibited by the disk, the silo is
approximately 2 to 2.5 times as fast as the manual tape
drives at getting to the first byte. Since the tape silo tape
drives are the same as the operator-loaded tape drives,
this difference must come from the time to mount the
tape rather than from seek time. The StorageTek 4400
ACS can pick and mount a tape in under 10 seconds;
after subtracting off average queueing time for the disk,
which is 25 seconds, the non-seek overhead for reading
an automatically-loaded tape is 35 seconds. According
to Table 3, tape accesses take 85 seconds on average, so
the average seek is 50 seconds long. When the same
analysis is applied to manually loaded tapes, the man-
ual tape mounting time is found to be approximately
115 seconds, or about 2 minutes. This is quite good.
However, as Figure 3 shows, 10% of all manual tape
mounts were not completed within 400 seconds. Nearly
all of the tape silo and disk requests were completed by
this time. This is probably the biggest weakness of
manual tape mounting—the very long tail of the mount-
ing time distribution. While other data accesses will
almost certainly complete in 5 minutes, manual tape
mounts may take much longer.

This is just a simple analysis, though. There are several
factors that we did not consider which may affect our
conclusions here. In particular, queueing time for the

Number of files 902772

Average file size 25 MB

Number of directories 143245

Largest directory 24926 files

Maximum directory depth 12

Total data in MSS 23 TB

Table 4. Statistics for a file store needed to
satisfy all of the traced accesses

An Analysis of File Migration in a Unix Supercomputing Environment 7

tape silo may be different from queueing time for the
disks. There are only a few tape robots in the silo, and
each is tied up for several seconds with a tape load. If
several tape loads come in close together, some of them
will have relatively long queueing times. This does not
happen with disk, as each disk is tied up for relatively
little time with each request.

Another observation is the relation between latency to
access the first byte and time required for the entire
transfer. Both the tapes and the disks can transfer at a
peak rate of 3 MB/sec, but the observed rates are usu-
ally closer to 2 MB/sec. As a result, the transfer times
are similar for the two media. For tape, an average file
of 80 MB will take 40 seconds to transfer. This is com-
parable to the additional 60 second overhead from
using tape instead of disk. One possible way to improve
perceived response time in the system would be to use
cut-through, as in [7]. Under this scheme, a call to open
a file returns immediately, while the operating system
continues to load the file from the MSS and keep track
of how far it has gotten. When future requests are made,
the call returns immediately unless the requested data
has not yet been read. This scheme works because
applications often do not read data as fast as the MSS
can deliver it. Instead of delaying the application, then,
it allows the application and file retrieval from the MSS
to overlap. This system would be difficult to use in the
current NCAR configuration, however, since the MSS
is not seamlessly integrated with the local disk file sys-
tem. The bitfile mover processes would have to have
special communication protocols with the local file sys-
tem to let it know how much of the file has been trans-
ferred. Nevertheless, it is a useful optimization and
should be considered.

Figure 3. Latency to the first byte for various MSS
devices.

0%

20%

40%

60%

80%

100%

0 100 200 300 400

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f r
eq

ue
st

s

Latency to first byte (seconds)

disk

silo

tape

5.2 MSS usage patterns

Figure 4 shows the average amount of data transferred
each hour of the day. As expected, activity is highest
during working hours—from 9 AM to 5 PM. The varia-
tion in transfer rate, however, is almost entirely due to
reads. The amount of data read jumps greatly at 8 AM
when the scientists usually arrive, and slowly tails off
after 4 PM as they leave. The fall is slower than the rise
because most scientists are more likely to stay late than
to arrive early. This suggests that most reads on the sys-
tem are initiated by interactive requests, since reads
peak when people are at work, while writes remain
almost constant regardless of the number of humans
requesting data. File request rate over the course of a
day shows a pattern similar to that of data transfer rate..

The weekly data transfer rates, shown in Figure 5, have
patterns similar to those in the daily averages. As
expected, read activity is lower on the weekends, since
there are fewer researchers around to initiate read
requests. Write requests, on the other hand, experience
little variation over the course of the week, as the Cray
CPU runs batch jobs all weekend. There is a small
increase in write requests during the day, indicating that
users do actually make some write requests; however,
the change is small relative to the flood of read requests
that users generate.

Note that less data is transferred early Monday morning
than on any other day. This low point can be attributed
to two factors. First, the Cray might be taken down
early on Monday morning for maintenance, as that
would cause the least disruption of normal work. Sec-
ond, any idle time the Cray might have would be on

Figure 4. Average data transfer rate over the course
of a day.

0

2

4

6

8

10

0 6 12 18 24

G
B

 tr
an

sf
er

re
d

pe
r

ho
ur

Hour of the day (0 = midnight)

reads

writes

total

An Analysis of File Migration in a Unix Supercomputing Environment 8

Monday morning, as the queues from the weekend
might have finished.

Over the two years the trace covers, the mass storage
system received increasingly large amounts of work.
The average data rate for each of the 104 weeks is
shown in Figure 6. There are drops in read request rate
around Thanksgiving and Christmas for both 1990 and
1991. Note, however, that write request rate does not
drop on these holidays. In fact, write requestsincreased
at the end of the year. This reinforces our conclusion
that reads are interactive while writes are requested pri-
marily by batch jobs, as the Cray doesn’t take a Christ-
mas vacation while the scientists do.

The MSS data request rate increases over the period
shown by the graph, but this gain is due almost entirely
to increases in read requests. MSS write rate appears to
be related to the speed with which the computer can
generate results, while read rate is set by the number of
users that want to read their data back. The lack of
increase in write rate suggests that the Cray is already
running at full capacity, and that researchers are simply
using the machine more for tasks such as visualization
of the results. A faster machine would then need a
higher write rate to massive storage. There would be at
least a corresponding increase in read rate, and it might
be greater if the user community gets larger.

5.2.1 Interreference intervals

Figure 7 shows the distribution of intervals between
references to the MSS. Since about 3,500,000 files were
referenced over a period of 731 days (approximately
6.3 × 107 seconds), the average interval between MSS
requests was 18 seconds.

Figure 5. Average data transfer rate over the course
of a week.

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

G
B

 tr
an

sf
er

re
d

pe
r

ho
ur

Day of the week (0 = Sunday)

reads

writes

total

Looking at the graph, however, shows that 90% of all
references followed another by less than 10 seconds.
This distribution suggests that I/Os are clustered. There
are several possible explanations for this. Since Cray
files can be of (nearly) unlimited length, but files on the
MSS cannot exceed 200 MB, clustering could occur
since several files are accessed together by the same
program. Another possibility is that there are really two
distributions for intervals—those made by researchers’
interactive requests, and those made by batch jobs. The
interactive requests are very likely to be bunched
together, since a researcher interested in day 1 of a cli-

Figure 6. Average data transfer rate over the course
of a week.

Figure 7. Lengths of intervals between Cray
references to the MSS.

0

1

2

3

4

5

6

7

8

Oct-1990 Apr-1991 Oct-1991 Apr-1992 Oct-1992

W
ee

kl
y

av
er

ag
e

tr
an

sf
er

 r
at

e
(G

B
/h

ou
r)

Date

reads

writes

total

0%

20%

40%

60%

80%

100%

1 10 100 400

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f i
nt

er
va

ls

Length of interval (seconds)

An Analysis of File Migration in a Unix Supercomputing Environment 9

mate model simulation will usually be interested in day
2, and both days will probably be in separate files.

5.3 File reference patterns

Instead of counting all file references, this part of the
analysis included at most one read and one write from
any eight hour period. Since files on the MSS were
explicitly referenced Unix command, some files were
accessed many times in a short time. In a system with
automatic migration, this would not be likely to happen.

As expected, most files were not referenced often.
Figure 8 shows that only 5% of all files are referenced
more than ten times. 50% of the files in the trace were
never read at all, and another 25% were read only once.
Writes were slightly different—just over 20% of the
files were not written during the trace period, but
another 65% were written exactly once. Of course,
these numbers add up to more than 100%, as many files
were read and written one time or less. In all, 57% of
the files were accessed exactly once, and 19% were
accessed exactly twice. Thus, only a quarter of the files
were accessed more than two times. Our observations
found that the median number of file references was
one, as opposed to [14], which reported the median to
be two. Furthermore, fully 44% of all the files in the
trace were written exactly once and never read. These
numbers confirm the common belief that many files are
written to a massive store once and never read again.

Figure 9 shows the distribution of time intervals
between references to a given file, calledinterreference
intervals. Long interreference intervals mean that a file
is referenced infrequently, while short intervals indicate
many accesses over a short period of time. As Figure 9
shows, interreference intervals were short. This means
that, for files which were rereferenced, the second

Figure 8. Distribution of file reference counts.
During the trace period, 50% of the files had 0
reads and 21% had 0 writes.

50%

60%

70%

80%

90%

100%

1 10 100 250

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f f
ile

s

Number of references

reads

writes

total

access came soon after the first. Note, however, that
there were still some files that were referenced more
than a year after the previous reference to them. These
references could not be easily predicted, so it is not suf-
ficient merely to use prediction to improve access time;
we must decrease the latency for random requests as
well.

5.4 File and directory sizes

The dynamic distribution of file sizes transferred
between the MSS and the Cray is shown in Figure 10.
In this graph, a file is counted once for each access to it.
The distributions of files read and files written are simi-
lar, though there is a small jump in file writes at approx-
imately 8 MB. However, 40% of all requests are for
files 1 MB or smaller. Since reads are more likely than
writes to be initiated by a human user (as Section 5.2
shows), this graph suggests that performance on small
file reads in a migration system would be especially
important. Such small files make up under 1% of the
total data storage requirement, so it seems wise to store
these files on inexpensive, low-performance disks
rather than on tape. If magnetic disk would be too
expensive, an optical disk jukebox could provide low
latency to the first byte and high capacity.

The distribution of file sizes on the MSS during the
trace period is graphed in Figure 11. In it, each refer-
enced file is counted exactly once, regardless of the
number of times it was accessed. The graph shows that,
while about half of the files are under 3 MB, these files
contain 2% of the data. Algorithms that take file size as
an argument could use this fact to simplify their book-
keeping, as all files below a threshold size could be

Figure 9. Distribution of intervals between
successive references to the same file. 70% of all
intervals were less than 1 day.

50%

60%

70%

80%

90%

100%

1 10 100 300
C

um
ul

at
iv

e
pe

rc
en

ta
ge

 o
f i

nt
er

re
fe

re
nc

e
in

te
rv

al
s

Interval length (days)

An Analysis of File Migration in a Unix Supercomputing Environment 10

considered equivalent when computing space-time
products. Since most files are below this size, the algo-
rithm should run much faster.

Directories also tended to be small. Figure 12 shows
that 90% of the directories had 10 or fewer files, and
75% had only zero or one file. Even so, over half of all
files and data were in large directories that contained
more than 100 files. The size and number of directories
is very important, as many current systems do not
archive directories or file metadata such as inodes. With
over 130,000 directories and 900,000 files, the NCAR
system needs to store gigabytes of metadata on disk.

Figure 10. Size distribution of files transferred
between the MSS and the Cray. A file is counted
once for each time it is requested.

Figure 11. Distribution of file sizes on the MSS.
Each file referenced in the trace is counted once.

0%

20%

40%

60%

80%

100%

0.1 1 10 100 350

C
um

ul
at

iv
e

pe
rc

en
ta

ge

File size (MB)

files read

files written

data read

data written

0%

20%

40%

60%

80%

100%

0.02 0.1 1 10 100 350

C
um

ul
at

iv
e

pe
rc

en
ta

ge

File size (MB)

Files

Data

Future systems must be able to move this information
to tape, especially since over 40% of the metadata
describes files that will never be accessed again.

6 File migration algorithms

The observations made from the NCAR trace data have
several implications for future file migration algo-
rithms. The system studied here is quite different from
that in the studies done around 1980 [6,15]; while file
access patterns are not radically different, the files
themselves are larger and there are more of them.

The NCAR system uses two different migration algo-
rithms — one for moving files between the Cray and
the MSS, and the other for relocating files on different
media within the MSS. Moving files between the Cray
and the MSS is entirely manual, so there is no choice in
the “algorithm” involved. However, using automatic
migration between the Cray and the MSS would still
save many file requests. About one third of all requests
came within eight hours of another request for the same
file. Often, these accesses are generated by batch job
scripts which must read or write files on the MSS. If
several of these scripts are run at about the same time,
the Cray must make a separate request to the MSS for
each script; it has no way of keeping track of multiple
references to the same file. Better integration of the
MSS with the Cray would fix this problem.

Another change since 1980 involves large files. Previ-
ous algorithms optimize for low seek time and ignore
transfer time. For multi-megabyte files, transfer time
dominates the time needed to access a file. On magnetic

Figure 12. Distribution of directory sizes on the
MSS. Note that more than half of the directories
had only zero or one file in them (though most of
these also had subdirectories). Note also that 5%
of the directories held 50% of the files and data.

0%

20%

40%

60%

80%

100%

1 10 100 1000 10000 100000
C

um
ul

at
iv

e
pe

rc
en

ta
ge

 o
f f

ile
s/

da
ta

Number of files in directory

Data

Files

Directories

An Analysis of File Migration in a Unix Supercomputing Environment 11

disk, seek time is far lower than transfer time for mega-
byte-sized files. Even for robotic tape, however, seek
time is comparable to transfer time. A StorageTek robot
can load a 3480 tape in under 10 seconds; the drive can
transfer 20 MB in this time. The standard algorithms all
make the assumption that the retrieval cost is the same
for all files (though the storage cost may not be). New
algorithms will have to take the difference in access
time into account. The NCAR system already does this
by storing smaller files on magnetic disk and larger files
only on tape. In this way, small files do not suffer the
latency penalties of tape. Large files, on the other hand,
must wait for a tape to be loaded. However, their trans-
fer time is long enough that the added delay of loading
a tape is not as noticeable. The dividing point between
storing files on disk and storing them on tape is a sub-
ject for future research; however, it is likely that the
switchover point will be a function of tape seek speed
and transfer rate.

Previous algorithms also make little distinction
between reads and writes, primarily because their trace-
gathering methods did not allow them to distinguish a
read access from a write access. However, this differ-
ence is crucial for a file migration algorithm. The read/
write ratio to the MSS at NCAR is 2:1, contrasting with
conventional wisdom that an MSS serviced more writes
than reads. Additionally, humans must wait for the
results from reads, while users would not need to wait
for writes to tape to complete. This suggests that an
algorithm should not wait until it is absolutely neces-
sary to free up space; instead, it should write data to
tape relatively quickly, and then mark the file as
“deleteable.” Since files would be written lazily, their
placement on tertiary media could be optimized, mak-
ing future reads run faster. A mass storage system
should be optimized to make read access to files faster
at the cost of requiring more work for writes. This will
make the system seem faster to its users at little addi-
tional cost.

7 Conclusions

This analysis of file movement between secondary and
tertiary storage at a supercomputer Unix site provides
several important hints for designers of file migration
systems. First, humans wait for reads, while computers
wait for writes. Any migration policy should consider
this, and optimize for reading. The write rate is rela-
tively steady over time, while reads vary greatly. Thus,
migration algorithms should move files to tertiary stor-
age whenever resources (tape drives, etc.) are available,
and use the extra space to prefetch files which might be
read shortly.

Files have become larger and more numerous since the
early 1980s. Currently, there are over 900,000 files on
the MSS at NCAR averaging over 25 MB each. On the
other hand, their reference patterns have not changed
much. File rereference rate still drops off sharply after
the first few days, though it does level off soon thereaf-

ter. Files are also infrequently rereferenced; more than
half of the files were only accessed once in two years.
Again, this suggests that files can be migrated to a less
costly storage medium if they are unreferenced for only
a few days.

The NCAR system appears to be a typical large Unix-
based scientific computing center. Thus, the analysis in
this paper will help system architects design hardware
and software best suited for storing and rapidly access-
ing the terabytes of data that such systems must store.
While reference patterns for these data have not
changed much in the last decade, more files, larger files
and new tertiary storage technologies will require new
mass storage systems and new migration algorithms to
run them.

Acknowledgments

The authors would like to thank the staff at NCAR for
all their help in gathering the traces and understanding
their format. Special thanks go to Bernie O’Lear for
providing access to the data at NCAR and to Dennis
Colarelli for his assistance with the NCAR system. We
would also like to thank our colleagues at Berkeley and
elsewhere for their helpful comments on drafts of this
paper.

References

[1] Edward R. Arnold and Marc E. Nelson.
“Automatic Unix backup in a mass-storage
environment.” InUSENIX — Winter 1988, pages
131–136, February 1988.

[2] Donald L. Boyd. “Implementing mass storage
facilities in operating systems.”Computer, pages
40–45, February 1978.

[3] Sam Coleman and Steve Miller. “Mass storage
system reference model: Version 4.” IEEE
Technical Committee on Mass Storage Systems
and Technology, May 1990.

[4] Ann L. Drapeau and Randy H. Katz. “Striped
tape arrays.” InDigest of Papers. Twelfth IEEE
Symposium on Mass Storage Systems, 1993. To
appear.

[5] Carrel W. Ewing and Arnold M. Peskin. “The
Masstor mass storage product at Brookhaven
National Laboratory.”Computer, pages 57–66,
July 1982.

[6] Gordon George Free. “File migration in a UNIX
environment.” Master’s thesis, University of
Illinois at Urbana-Champaign, December 1984.

[7] Robert L. Henderson and Alan Poston. “MSS II
and RASH: A mainframe UNIX based mass

An Analysis of File Migration in a Unix Supercomputing Environment 12

storage system with a rapid access storage
hierarchy file management system.” InUSENIX
— Winter 1989, pages 65–84, 1989.

[8] David W. Jensen and Daniel A. Reed. “File
archive activity in a supercomputer
environment.” Technical Report UIUCDCS-R-
91-1672, University of Illinois at Urbana-
Champaign, April 1991.

[9] David D. Larson, James R. Young, Thomas J.
Studebaker, and Cynthia L. Kraybill.
“StorageTek 4400 automated cartridge system.”
In Digest of Papers, pages 112–117. Eighth
IEEE Symposium on Mass Storage Systems,
November 1987.

[10] Duncan H. Lawrie, J. M. Randal, and Richard R.
Barton. “Experiments with automatic file
migration.”Computer, pages 45–55, July 1982.

[11] Fred W. McClain. “Mass storage at the San
Diego Supercomputer Center.” InDigest of
Papers, pages 81–86. Eighth IEEE Symposium
on Mass Storage Systems, November 1987.

[12] Marc Nelson, David L. Kitts, John H. Merrill,
and Gene Harano. “The NCAR mass storage
system.” In Digest of Papers. Eighth IEEE
Symposium on Mass Storage Systems,
November 1987.

[13] A. Dain Samples. “Mache: No-loss trace
compaction.” Technical Report UCB/CSD 88/
446, University of California at Berkeley,
September 1988.

[14] Alan Jay Smith. “Analysis of long term file
reference patterns for application to file
migration algorithms.”IEEE Transactions on
Software Engineering, 7(4):403–417, July 1981.

[15] Alan Jay Smith. “Long term file migration:
Development and evaluation of algorithms.”
Communications of the ACM, 24(8):521–532,
August 1981.

[16] Ken Spencer. “Terabyte optical tape recorder.”
In Digest of Papers, pages 144–146. Ninth IEEE
Symposium on Mass Storage Systems,
November 1988.

[17] Stephen Strange. “Analysis of long-term UNIX
file access patterns for application to automatic
file migration strategies.” Technical Report
UCB/CSD 92/700, University of California,
Berkeley, August 1992.

[18] Erich Thanhardt and Gene Harano. “File
migration in the NCAR mass storage system.” In
Digest of Papers, pages 114–121. Ninth IEEE
Symposium on Mass Storage Systems,
November 1988.

[19] David Tweten. “Hiding mass storage under

UNIX: NASA’s MSS-II architecture.” InDigest
of Papers, pages 140–145. Tenth IEEE
Symposium on Mass Storage Systems, May
1990.

[20] Sandra J. Walker. “Cray Computer, MSS,
MASnet, MIGS and UNIX, Xerox 4050, 4381
Front-End, Internet Remote Job Entry, Text and
Graphics System, March 1991.” Technical
report, National Center for Atmospheric
Research, Scientific Computing Division, March
1991.

[21] David L. Williamson, Jeffrey T. Kiehl,
V. Ramanathan, Robert E. Dickinson, and
James J. Hack. “Description of NCAR
Community Climate Model (CCM1).” Technical
Report NCAR/TN-285+STR, National Center
for Atmospheric Research, June 1987.

Author Information

Ethan Miller received a BS in computer science from
Brown in 1987, and an MS from Berkeley in 1990. He
is currently a PhD candidate in computer science at
Berkeley, where he is a member of the RAID project.
He is interested in file systems and data storage for high
performance computing, including both disk and
tertiary storage. His U.S. Mail address is Computer
Science Division; 571 Evans Hall; University of
California; Berkeley, CA 94720. Electronic mail sent to
elm@cs.Berkeley.EDU will also get to him.

Randy Katz has been on the Berkeley faculty since
1983. He received his MS and PhD at Berkeley in 1978
and 1980 respectively. He received his AB degree from
Cornell University in 1976. He is the principal
investigator of a DARPA and NASA sponsored project
to construct high performance, high capacity storage
systems for diskless supercomputers. His U.S. Mail
address is the same as above, and his e-mail address is
randy@cs.berkeley.edu.

