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Abstract

This paper presents a simple-to-use mechanism for the creation of complex smoothly shaped
surfaces of any genus or topology. The work described here is the result of research into the
faimess of curves and surfaces specified through geometric interpolatory constraints.
Constraints consist of positions and, optionally, surface normals and surface curvatures. The
outcome of our investigation is a recommendation for the use of nonlinear optimization
techniques that minimize a faimess functional based on the variation of curvature. The approach
produces very high quality surfaces with predictable, intuitive behavior, while generating, where
possible, simple shapes, such as cylinders, spheres, or tori which are commonly used in
geometric modeling.

From a designer’s point of view, this approach allows the specification of a desired surface in
the most natural way. Though computationally intense, the techniques described have now
become practical because of the wide availability of very fast work stations. As the processing
power available on each desk-top further increases, the techniques described here will become
real-time and interactive.
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1.0 Introduction

In this paper we present a simple-to-use mechanism for the creation of complex, smoothly
shaped models of any genus or topology. The shapes are compactly specified using geometric
interpolatory constraints. The resulting models accurately reflect these specifications and are
free of unwanted wrinkles, bﬁlges, and ripples. When the given constraints indicate and/or per-
mit, the resulting surfaces take on the desirable shapes of spheres, cylinders, cones, and tori.
Specification of a desired shape is straight forward, allowing simple or complex shapes to be
described easily and compactly. For example, a “suitcase corner”, the blend of three quarter

cylinders of differing radii, is formed by specifying just six constraints (Fig. 1).

A Klein bottle is specified with equal ease; only twelve point constraints are used to model

the surface shown in Figure 2.

Figure 2. A Klein bottie. This model is defined by
twelve constraint sets.

The work described here is the result of research into the faimess of curves and surfaces
specified through geometric interpolatory constraints. These geometric constraints consist of
points, surface normals, and surface curvatures. We use nonlinear optimization techniques to

minimize a fairness functional subject to the given geometric constraints.
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Figure 1. A suitcase corner. Fig. 1a illustrates the
specification with normal and curvature
constraints. Fig. 1b illustrates the resulting blend.

Once the geometric constraints are satisfied by construction, the techniques described here
set the remaining surface parameters (degrees of freedom) to minimize our fairness functional

while maintaining Gl continuity using a penalty function. The problem of creating surfaces
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with G! continuity is very difficult to solve satisfactorily. Most techniques use heuristics to set
extra degrees of freedom and relatively complex constructions to guarantee G continuity;
however they typically produce unnecessary and undesirable “wrinkles”. An extensive survey
by members of the Graphics Group at the University of Washington [14] demonstrates these
widely prevailing flaws.

The curve and surface functionals that we have derived minimize the variation of curvature;
thus we refer to the curves as minimal variation curves (MV Cl) [16] and to the surfaces as
. minimal variation surfaces (MVS). In the case of curves, the integral of the squared magnitude

of the derivative of curvature is minimized

dx*

— ds. 1

7, 45 (1)
Note that this integral evaluates to zero for circular arcs. For surfaces, the functional is the
integral of the squared magnitude of the derivatives of normal curvature taken in the principle

directions®
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Note that analogous to the MVC, the MVS functional evaluates to zero for spheres, cones,

cylinders, and tori.

Section 2.0 reviews previous related work, discussing approaches, advantages, and shortcom-
ings. Section 3.0 presents an overview of our approach outlining the steps taken to produce a
surface model from specified constraints. Section 4.0 provides details of the representation of
the surfaces, and a description of the optimization techniques used to compute them. Section

5.0 details the computation of the minimum energy networks used in our algorithm. Section

1. Emery Jou coined this name/acronym.
2. It is our convention that a “hat”, e.g. €, indicates a unit vector.
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6.0 presents a comparison of our approach with other methods; it exhibits examples of com-

plex surfaces created from simple, compact specifications.

2.0 Previous Work

The work described in this paper touches on several problems and thus several areas of
study. First, we discuss work on creating a G! surface out of a collection of non-degenerate
polynomial patches. Second, we reference work on functional minimization, constrained opti-
muzation, and finite element analysis, all applied to surface design. The last portion of this sec-

tion reviews minimum energy networks.
21 Gl Continuity

Peters [20] provides a good classification and review of Gl interpolation techniques. All of
the methods discussed are constructive, using heuristics to set those degrees of freedom which
are not fixed by continuity constraints or set as a side effect of the construction method. These
methods rely on the computation of a network of curves that interpolate the data, subject to
varying continuity and connectivity constraints Peters has done a great deal of work on the con-
struction of geometrically continuous surfaces. His most recent work outlines a method for cre-
ating “C¥” surfaces. Relevant to this discussion, G! surfaces [21] require quintic patches and a
curve network maintaining G? continuity without any restrictions on the order of (i.e., the num-
ber of edges joining) the network nodes. Our work combines the construction of a G! continu-
ous surface with the setting of the unconstrained degrees of freedom to form a fair G

continuous surface.

In related work, used in our algorithms, DeRose [8] presents the necessary and sufficient con-
ditions for G' conﬁnuity between adjacent triangular and quadrilateral Bézier patches of equal

degree.
2.2 QOptimization, Minimization, and Finite Element Analysis

In [23] Pramila describes techniques for ship hull design that employ finite element analysis

to minimize a quadratic functional approximating strain energy. Celniker [4] presents a free
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form design system that uses finite element analysis to simulate physical models. Interactive
deformation is carried out by simulating forces applied to the subject model. Surfaces are rep-
resented by triangular patches meeting with Gl continuity. Approximations are used to model
deformations. As a result, surfaces converge on their theoretical shape after multiple elements
are inserted between constraints. Rando and Roulier [24] propose several specialized geometri-
cally based faimess functionals. These functionals are referred to as “flattening”, “rounding”,
and “rolling”. They apply these functionals to Bézier patches with some control points fixed
and other free to vary, minimizing these functionals. Hagen and Schulze [10] use the calculus
of variations to fit generalized Coons patches to three-dimensional data. The resulting patches

mininze a strain energy fairness criterion. The analysis uses simplifying approximations to

limit the complexity of calculations.

Our work uses higher order patches and the full nonlinear expression for the functional to

achieve the highest possible surface quality from the fewest underlying patches.
2.3 Minimum Energy Networks

Nielson [18] introduced the minimum norm network (MNN) using linear energy terms to
produce a G! network and a resulting G! surface. Pottmann {22] presents a generalization of
MNN to produce a G? surface. Most recently we [17] describe an algorithm for the computa-
tion of a G* minimum energy network composed of MVC, curves minimizing (1) along the
edges of the network. These MVC networks are of higher faimess and normally closer to the

corresponding minimal variation surface.

3.0 Our Algorithm

We treat the problem of creating a surface interpolating a collection of geometric constraints
as one of scattered data interpolation. The interpolation problem is broken into three steps
(Fig. 3); 1) connectivity definition, 2) curve network computation, 3) patch blending. In accor-
dance with the topology of the desired surface, the geometric constraints are first connected

into a network of straight edges. A curve is then placed at each edge of the network, and an op-
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Figure 3. The blend of two pipes.

timized network is computed composed of minimal variation curves (MVC) subject to the
specified geometric constraints and the additional constraint that the curve segments meet with
second order geometric continuity, G? at the vertices. Finally, an interpolatory minimal varia-
tion surface (MVS) is computed, interpolating the MVC network with tangent continuity. In a
first approach, the boundaries of the MVS patches are fixed, interpolating the previously con-
structed curve network. Alternatively, the surface calculation may use the MVC network as a
starting point and modify its geometry during surface calculation. The latter approach yields
even smoother surfaces at a substantially higher computational expense. The higher quality sur-
face results because the curves of an MVC network resulting from a given constraint set do not

always lie in the MVS resulting from the same set of constraints.

During the modeling process, the connectivity of the geometrical constraints is established

as a natural outgrowth of the design process. The techniques described here are also amenable
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to true scattered data interpolation, in which case connectivity must first be derived with some

other method, possibly based on some minimal triangulation on the data points.

Qur system is based on triangular and quadrilateral patches. All constraints are located at cor-
ners of these patches. Additional points and edges may be added to the network to create
three- and four-sided openings only. These additional points do not represent constraints and
are appropriately positioned by the curve network computation and patch blending phases of

the construction.

The computation of a curvature continuous (G%) MVC network is cast as a nonlinear optimi-
zation or finite element problem. First an initial shape of the curve network is computed using
heuristics based on the geometry of the network. The optimization then proceeds from this
starting pomnt using standard gradient descent techniques. The geometric constraints and the
second order continuity of the curve network are maintained by construction. During each iter-
ation, the algorithm defines a direction normal to the surface, principle directions, and princi-
ple curvatures at each vertex of the network, and all the curve segments are constrained to
remain consistent with them. Once the geometric and continuity constraints are satisfied, the
gradient of the functional with respect to the remaining degrees of freedom is calculated, and
those free parameters are adjusted iteratively to minimize the overall curvature variation func-

tional.

Based on this MVC network, the computation of the MVS interpolatory surface is accom-
plished using constrained optimization. The geometric constraints are again imposed by con-
struction similar to the MVC network. Patch-to-patch tangent continuity is imposed by means
of a penalry function that is equal to zero when the patches composing the MV.-surface meet
with tangent continuity and proportionally greater than zero for any Gl discontinuity. The use
of penalty functions alone does not guarantee perfect tangent continuity. Exact tangent continu-
ity may be achieved in a subsequent phase of optimization using LaGrange multipliers [6] or a
continuous reduction to zero of the weight of the curvature variation term in the functional. In

practice, it is rarely necessary to resort to this second phase because the surfaces resulting
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from the first phase are of high quality and sufficiently close to tangent continuous. Mann and
DeRose have shown approximate tangent continuity to be sufficient and, in fact, desirable in

some applications [7].

4.0 Representation and Computation

As described in section 3.0 the computation of an MVS satisfying a set of given constraints
is broken into several steps. In the remainder of this paper we will focus on the last phase of
the algorithm where surface patches are fit to a G? MVC network. The curves may remain
fixed or they may be used simply as a starting point for optimization. The choice between
fixed and variable curves is up to the designer and does not affect the algorithms described

here. For completeness, section 5.0 provides details of MVC network calculation.

The MVS is approximated by a quilt of parametric polynomial patches which interpolate the
curve network, satisfy the geometric constraints, and meet with approximate tangent continu-
ity. The surface functional is then minimized by varying the surface parameters that are not

fixed by geometric constraints.
4.1 Bézier Patches

The curves of the network are represented by quintic Hermite polynomial segments; one seg-
ment replaces each edge of the network of constraints. Consequently, the patches making up
the interpolatory surface are [bi-Jquintic patches. Peters [21] has demonstrated that quintics are
sufficient to achieve tangent continuity for all triangular-quadrilateral patch-patch combina-
tions. One patch is used for each opening in the network. Though we have found single patch-
es to have sufficient descriptive power, it is simple to subdivide network patches creating
multiple patches per opening. The use of multiple patches improves the approximation of the
theoretical MVS surface which in general has no closed form representation. Note that while
Peters’ construction requires that the curve network being interpolated have G2 continuity, the

interpolatory surface resulting from his construction is only G! across boundaries and at the

Functional Minimization for Fair Surface Design 9



Representation and Computation

vertices of the network. In contrast, our surfaces are constrained to meet with G? continuity at

the vertices of the network (see section 4.8).

Even though the boundary curves are in the Hermite form, we have chosen to use Bézier
patches because of their superior numerical characteristics and because the tangent continuity
conditions we use are particularly concise when formulated in terms of Bézier coefficients.
Also Bézier patches are more amenable to rendering, and may be rendered directly by subrou-

tines found in the graphics library of workstations such as the Silicon Graphics IRIS®.
4.2 Fairness Functionals

Our choice of functional for minimization was prompted by the need for very high quality
surfaces with predictable, intuitive behavior, and the desire to capture shapes commonly used
In geometric modeling. The fairness of curves and surfaces has been studied extensively and
has been shown to be closely related to how little and how smoothly a curve or surface bends.

For an early and interesting reference see [2].

Work on the fairness of curves has traditionally focused on the minimization of strain energy

or the arc length integral of the squared magnitude of curvature [15)
J K°ds.
We use an alternative faimess metric based on the minimization of the arc length integral of the

squared magnitude of the derivative of curvature
dx 2d

[ () as.

This new functional results in curves with noticeably smoother curvature plots [16], and it has

the added benefit that circular arcs are formed when constraints permit, since according to this

new functional they are optimally curved.
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Traditional work on the fairness of surfaces also focuses on strain energy, minimizing the

area integral of the sum of the principle curvatures squared {19, 13, 10]
Jllc‘;z + KgdA.
Our own approach again minimnizes the variation of curvature, rather than its magnitude. For

surfaces, we minimize the area integral of the sum of the squared magnitudes of the derivatives

of the normal curvatures taken in the principle directions:

J

The normal curvature at a point on a surface in a direction specified by a surface tangent vector

dx 2 ax 2
.+ " 4A. (2)
deé, dé,

is determined from the intersection curve of the surface with the plane spanned by the surface
normal and the given tangent vector. The principle directions, &; and &,, and the principle
curvatures, ¥, and ¥, , at a point on a surface are the directions and magnitudes of the minimum

and maximum of all possible normal curvatures at that point [9] (Fig. 4).

Like the MVC functional, the MVS functional has associated shapes that are optimal in the
sense that the functional evaluates to zero. In the case of the MVS functional, those shapes are
spherical, cylindrical, conical, and toroidal, all of which have lines of principal curvature
where the associated normal curvature remains constant. Lines of principal curvature follow

the paths of minimum and maximum normal curvature across a surface.
4.3 Parametric Functionals

The fairness functional for surfaces (2) is defined in terms of an area integral. To evaluate the
functional and its gradient in the context of the parametric polynomial surfaces patches de-
scribed in section 4.1, the functional must be converted to a compatible form. Here we outline

the calculations necessary to evaluate the functional. The faimess functional is computed for
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b)

Figure 4. a. Normal curvature, the curvature of
the curve formed by the intersection of the surface
and a plane containing the normal and tangent.
Figure 4b Principle directions and principle
curvatures, the directions and magnitudes of the
maximum and minimum normal curvature.

each patch, and the value of the functional for the whole surface is the sum of the values for
each patch. The area based definition
de * dx *

[+ aa
de, dé,

is converted to integrals of functions of the independent parameters u and v in S(u, v). For
quadrilateral patches, the bounds of the integrals are set to vary over the unit square, and the

differential with respect to area is converted to differentials in » and v

Il dK”2 d‘an
Il + =2 J18, xS, | duav
o de, dé,

where
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|S,xS,| = JEG-F,

and
E=3%, 53,
F=%,3, 3)
G=§,-3

v v

The variables E, F, and G, are from the first fundamental form from differential geometry [9].
The principal curvatures ¥, and x, are the normal curvatures in the principle directions. Thus
the problem of computing dx, /dé, and dk /dé, becomes one of computing dk, /dé, and

dx.,/de,. First we find expressions for these in terms of derivatives taken in the parametric

directions
de,  dk; dx,
a2, = (&1-5,) +?§(él 3y)
ZZ = % (23 5,) '*‘% 23 5y)
where
S.=5/180 8 =58,

Next we define the derivatives of k,, k, taken in the parametric directions using simple
parametric derivatives:

dKi dKi 1 dKr. dKf 1

&C@E] ®CER]

Finally, the parametric derivatives of x, and x, are computed from an expression derived
from the fact that the principle directions are the eigenvalues of the curvature tensor. The ex-

pression for the curvature tensor is

17“11 ‘121}
a
1412 4
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where

a _ fF-eG a :eF—jE
U EG-F 1T EG-F
a, = 8216 a,, = IL-8E
EG-F EG-F

e=ﬁ'—\uu

fzﬁ'guv

g=ﬁ§w

E, F, and G are defined as in equation (3), e, f, and g are the terms of the second fundamental form
from differential geometry [9].
Since K, K, and &,, 2, are the eigenvalues and eigenvectors of the curvature tensor, we get the

following expressions:

2 2
_ Ay tay + Jall +4ay08y = 2411855 + a3y

i 2

N x: 2
&= {a) —ant Jay + 80,y - 2G,,0y + a3, 20}
é,‘ = E,/“ é,”
These expressions are in terms of the surface parameters u and v, Using the chain rule, it is simple
to compute the required parametric derivatives. Note that in computing the parametric derivatives

of e, f, and g, it is helpful to have a simple way of computing £, and 7,

4.4 Numerical Integration

In Section 4.3 we discussed a method for evaluating the quantity on the inside of the faimess
integral (2). Because it is impractical to compute the integral analytically, we use numerical in-
tegration to evaluate the integral. Instead of using standard Gauss-Legendre quadrature, we use

Lobatto quadrature [1]. Lobatto quadrature has approximately the same convergence and, un-
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like Gauss-Legendre quadramure, samples the perimerer of the integration domain.

n-1

1
jf(x)dx =wiR0.0)+ Y wiflx) +w,R1.0)
o i=2

The first ten sets of abscissas and weight factors for Lobatto’s integration formula are tabulated
in [1]. The computation of other sets of weights and abscissas requires finding the roots of the
first derivative of a Legendre polynomial. Mathematica [27] may be used to generate larger
tables. Because finding the roots of high order polynomials is more difficult and prone to errors,
the results calculated for a new table should be checked for accuracy. An altemnative to computing
higher order sets of weights and abscissas is to subdivide the domain and integrate over the

subdomains.

We have found Lobatto’s integration formula to be more effective than Gauss-Legendre
quadrature for our application. As a default, we use ten integration points in each parametric
direction a satisfactory number for the modeling problems we have encountered so far. If the
number of sample points is reduced, the surface might form a cusp or crease berween sample

points where the integrator will not “see” it.
4.5 Differentiation

During the optimization process, it is necessary to compute the gradient of the functional
with respect to all the available degrees of freedom. When computing the curve network, ana-
Iytical partial derivatives were used in conjunction with numerical integration to compute the
gradient. In the case of surfaces, the functional is of such complexity that it is impractical to
compute the gradient in this fashion. Instead we use central differences [5] to compute the par-
tial derivatives. The standard formula for computing the derivative of fla) with respect to a fol-

lows:

_ fla+h) -fa-h)

In order to get accurate derivative estimates, it is necessary to choose the difference value £

carefully. An optimum value of 4 balances the trade-off between the discretization error resulting
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from a large 4 and an increasing relative roundoff error resulting from too small a value for .
The analysis used to compute  is taken from [5]. First we find the approximate roundoff error in
computing our functional. By computing the fairness functional, FF, in both single and double

precision, we find the number of significant digits in the single precision calculation:

A}

single = ~log 10

The roundoff error R in (4) is approximately

2Fx107°
=+
R T

The discretization error T 15 approximately
1.2
T=--h".
6
To find the optimum /# we must minimize

FEx10™ 1.2
— + 3h . &)

To find the value of k for which (5) is a minimum, we differentiate with respect to 4 and find the

positive root.

FFx10~ h
SEEXY LT
W 3

B = 3FFx10~°  h = 33FFx10~

Currently our calculations are carried out in double precision. Because we can only directly

compute § we presume a value of 5,,... = 9 by extrapolation. We recalculate 4 for each

single *
new value of the functional. For example, FF = 10.0 yields 2 = 0.006. Note that because the
functional and its derivatives are computed on a patch by patch basis, the value of FF, and thus

h, is set on a patch by patch basis, too.
4.6 Tangent Continuity

We have described how our functional is evaluated. To complete the objective function that

is being minimized, we add a penalty for lack of G! continuity. In [8] DeRose sets forth the
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necessary and sufficient conditions for G! continuity. The G! conditions take the form of a se-
ries of formulas, eq;, all of which must be zero for G! continuity to exist. Using the notation
of DeRose N, Ng., Ny refer to the degree of the cross-boundary tangent functions (F", G')
and the degree of the tangent function (H') along the boundary (Fig. 5). For example, a pair

of abutting bi-quintic patches have Np. = N5 = 5, Ny = 4 and formulas

eq,,= Z F;.G,H =0
jrk4l=m
m=10...D D =Np. +Ng +Npy
where

F;=(A;F')F'J
" N. . - Ng .,
Gk=[f]Gk H1=(f{)Hz

where the F' 7 G',, H'; are difference vectors as shown in Figure 5. The result per shared

Figure 5. Difference vectors for a pair of bi-
quintic patches

boundary, for our example of bi-quintic patches, is a set of fifteen equations, made up of one
hundred eighty 3 x 3 determinants. In computing the penalty function, we square these values
yielding

S

m=0 jtk+l=m

L * * 2
F.,GuH;) . 6)

This penalty function is computed for every G! patch-patch boundary and added to the fairness
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functional forming the objective function that is minimized.

The complexity of solving this system of equations has been outlined by a number of authors
[11, 21, 25, 26]. The complexity arrises because the comer interior control points (4 Fig. 6) ap-
pear in the cross-boundary equations for multiple sides. This multiple appearance couples dif-
ferent patch-patch continuity equations and thereby creates a global system of equations with a
very large number of variables. In the context of the optimization described here, it is impracti-

cal and unproductive to solve this explicitly.
4.7 Initialization

The gradient descent scheme described in section 4.0 starts with an initial surface and
iteratively refines that surface until the optimal surface is reached. In this section we discuss
ways of finding a suitable initial surface. In terms of the desired optimization, the goal is to
find an initial point in the proper “valley” of the solution space where the desired surface is
found as the minimal point. The optimization requires that initial values be provided for any
parameters not explicitly set. The use of an optimized curve nerwork initializes the control
points on the perimeter of each patch. The interior control points are set so as to: 1) achieve
approximate G! continuity and 2) zero the high order derivatives at the patch corners. The first
step initializes the twelve control points adjacent to the perimeter (4 ), and the second step

initializes the four points in the center of the patch (®) (Fig. 6). The heuristic used to position

Figure 6. The 20 perimeter control points (), the
12 adjacent control points (4}, and the 4 central
control points (®).
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the control points adjacent to the perimeter uses linear interpolation of the normal vectors and

magnitudes of difference vectors. Figure 7 and equation (7) demonstrate the approach, with

'ﬁoa

Figure 7. The initialization of Bézier control
points adjacent to the perimeter of a patch. Here
Dy is initialized by linearly interpolating the
surface normal vectors at the corners and the
magnitudes of the corresponding difference

the calculation of ps, @b. [ A = 1):
1513=,503+?'3
Fa=|FslFs

o 21 L 3

LFaf = *S'HF ol +'5‘HF5H

f:‘ H'EXﬁ03+H'3Xﬁ03 . (7)
3

) Hff'z X figy + H'3 X Rga|
2. 3.,
-5—n00+§n05

Roa

2, 3.
1‘ —n00+ 3’105”

5

Alternatively, one could also use the construction due to Jorg Peters [21].
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4.8 G? Vertices

Rather than impose G? cross boundary continuity at the cost of many more equations to eval-
uate, we construct the network of patches to meet with G* continuirty at the vertices, and we
maintain this continuity by construction during the minimization process. Because of the na-
ture of the faimess functional, the G* continuity tends to “propagate” along the patch-patch
boundaries. A comparison of surfaces with and without G? vertex continuity shows those with

G? continuity have superior overall curvature distribution.

The construction used to maintain G vertex continuity of the surface is a simple extension
of the construction used to maintain G* compatibility of the MVC network (see section 5.0).
An additional step is carried out after the principle curvatures at the vertices of the network
have been established. This extra step of the construction requires that the twist vectors at the
incident patch corners be compatible with the established curvatures, andthus f = A - 5 uy+

The value of fis computed from the formulas for mean and Gaussian curvature:

. LN - M*
Gaussian = K,K, = ——
EG-F
and
NE - 2MF+ LG

mean = K, +K, =
1 2 i
EG-F

where
E=§i e=h-8,,
F=38,8, =S,
ngi g:ﬁ.S‘W

The twist vector is adjusted to satisfy f = A - 3 4v- This is accomplished by forcing the tip of

§uv 1o lie in the plane perpendicular to # offset by distance f (Fig. 8).
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Figure 8. Calculation of 2 compatible twist. The
tip of the twist vector is projected onto the plane
perpendicular to the normal offset from the vertex
by a distance f.

5.0 MVC Network Computation

MV networks are used to initialize the boundaries of the patches making up the surface net-
work. Many of the techniques used in computing the network are used in the computation of
an MVS where the initial shape of the curve network is allowed to change. In this section we

outline the methods used to compute the G? curve network.
5.1 Network Representation and Continuity

The network of curves is defined via the parameters of a second order “fitting” surface de-
scription at each vertex of the network and a description of how each curve segment emerges
from within the fitting surfaces specified at its endpoints. Each fitting surface is defined by the
vertex position p, the conjugate directions w,, W,, and the normal curvatures in these direc-
tions Kt Ku,- Conjugate directions are equivalent to principle directions in that, coupled with
the associated curvatures, they fully characterize the curvature of a surface at a point. Conju-
gate directions are more amenable to optimization because they do not have to be constrained
to mutual orthogonality. The network is represented by quintic Hermite curves. These Hermite
curves are defined by the positions and first two parametric derivatives at their endpoints. Each
curve in the network is defined by the position p, tangent direction 7, and three scalar parame-

ters, m, o, ¢, at each endpoint. The mapping from these values to the parameters defining the
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corresponding Hermite curve 1s

P=p P = 't P o= m'k+am’t
k=xn+ch b= axt
¥ =1 []ﬂ-?
. (8)

1 - T
W, X, 0 5[ W,
[K_’J= ¥z 0 x,, Oi‘ W2
La 0 0 0 \Ln

During the optimization process, those variables not fixed by constraints are iteratively adjusted
to minimize the MVC functional. At each iteration step, %, W, are renormalized, and 7 is
projected onto the plane spanned by W, W, and also renormalized. It is this normalization step
in combination with the construction outlined in equation (8) that guarantees G? continuity is
maintained.

§.2 Network Initialization

The curve network must be initialized to some reasonable values before optimization may
proceed. First a vertex normal vector is initialized, then the tangent vectors of the incident
curves are computed, next the principle directions and curvatures are defined, and finally each

curves’ scalar coefficients are initialized.

The vertex normal is initialized as a weighted average of the incident face normals (weight-
ed inversely proportional to the area of the incident face, i.e. the smaller the face the greater
the weight [3]) (Fig. 9). The tangent vectors of curves incident to a vertex are set to the direc-
tion of the incident chords projected onto the plane defined by the vertex position p; and nor-

mal 7 (Fig. 10).

Once vertex normal vectors and incident tangent directions have been computed, the princi-
ple curvatures and principle directions at a vertex are calculated. Our approach uses a least
squares fit of sample tangent directions and normal curvatures to compute the principle direc-
tions and curvatures. The initialization of these values is very important to the speed of conver-

gence. First consider the situation shown in Figure 10. A junction is shown with a number of
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Figure 9. Vertex normal vector calculation. The
pormal is initialized to the average of the incident
face normals inversely weighted by area.

Figure 10. Tangent initialization. The projection
of incident chords onto the plane defined by the
normal

incident edges. For each edge we calculate the curvature implied by that edge emanating from
the vertex. Starting with edge p; we reflect the associated tangent #; through the normal and fit
a circle through its end point, its reflection’s end point, and the base of the normal. The radius

of the resulting circle is the radius of curvature (Fig. 11). Repeating this procedure for each of

Figure 11. Calculating an approximate radius of
curvature in the direction of 7;.
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the incident edges, provides a set of sample tangent directions and normal curvatures. This set
is used to compute a least squares fit for the principle directions and principle curvatures of the

fitting surface at the vertex.
We start with the expression for normal curvature expressed with respect to any convenient
basis in the plane defined by the normal,
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and extract the tangent components, to produce an over determined set of linear equations:
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The general formula for computing the least squares solution to this type of system is
ATAX = ATb where ¥ is the least squares solution for “x” in equation (9). Having solved for x

we have three equations and four unknowns
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Adding the fact that é% + éi y = 1, allows us to solve for the principle directions and prin-

, X

ciple curvatures.

Finally the scalars associated with each curve are set as follows: m is set to the chord length,

and o, ¢ are set to zero.
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5.3 Optional Network Constraints

Since the quality of the network directly impacts the quality of the resulting surface, we
present an optional heuristic constraint. A very successful method for improving the quality of
a curve network is to force curve segments into G? continuity through the vertices of the net-
work. Curves are made G! continuous by having them share tangent vectors. G? continuity is
imposed by forcing the two curves making up the joint to also share the bi-normal component,

¢ from (8).

During initialization, shared tangents are set to the average of the individual tangents comput-

ed by chord projection. Figure 12 illustrates curve continuity applied to points on the surface

(a) (b)
Figure 12. A network through points on a torus

without {a) and with (b) continuous curves
through vertices.

of a torus. The figure shows the two resulting networks after initialization. Figure 12b illus-

trates the improvement to the nerwork when G? continuity is imposed.
6.0 Examples: A Comparison of Functionals

6.1 Spheres

In Figure 13 we compare the MVS functional with three other functionals. The surfaces are
pseudo-colored using mean and Gaussian curvature to index a color map. In the upper left of

the figure, only the G! penalty function was minimized when fitting a surface to the points of a
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Figure 13. Cube Surfaces. Surfaces interpolating

points on a cube illustrate the differences among

different methods. Pseudo-coloring according to

mean and Gaussian curvature exposes the

differences between objective functions. Upper

left - G! penalty, upper right - linearized strain

energy, lower left - strain energy, lower

right - MVS,
cube. The upper right illustrates the result of using a linearized approximation to strain energy,
curvarure distribution is improved. Next at the lower left, rue strain energy is minimized pro-
ducing a surface with fairly uniform curvature. Finally, in the lower right of the figure, an

MVS surface fitted to the corners of a cube produces a very close approximation to a sphere.
6.2 Three Handles

Figure 14 illustrates the application of MVC to a more complicated example. The frame
shown in the upper left is the MVC network interpolated to created the G! MVS. The tangent
continuity is demonstrated by the surface rendered with lines of refiection, upper right. In the

lower half of Figure 14, strain energy and the MVS functional are compared. The differences
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strain energy MVS

Figure 14. Three Handles. Minimization of strain
energy is compared with the MVS surface starting
with the same MVC network.

are subtle, curvature varies more smoothly and is distributed more evenly over the MVS sur-

face.
6.3 Tetrahedral Frame

As our last example, an MVS surface it fit to a tetrahedral frame, (Fig. 15). Proceeding clock-
wise from the upper left: the fitted surface with MVC network, individual patches demarcated
by black borders, simple lighted rendering, lines of reflection. This last example demonstrates

the versatility and power of MVS to solve a very difficult interpolation problem.
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Figure 15. TetraThing. Upper left - the MVC
network. Upper right - individual patches
demarcated by black boundaries. Lower

left - lines of refiection indicating G* continuity.
Lower right - a simple shaded rendering.

7.0 Conclusions

Constructing a network of G! continuous surface patches is known to be a difficult task, and
it is even harder to shape such a network into a satisfactory surface. The use of a general opti-

mization procedure with suitable penalty functions greatly simplifies both tasks.

In this paper we have described a conceptually simple yet powerful technique for surface
modeling. Nonlinear optimization is used to minimize a faimess functional while maintaining
geometric and continuity constraints. The functional of choice is the variation of curvamre.
This choice has the advantage that it leads to regular shapes commonly used in geometric mod-
eling; spheres, cylinders, and tori are formed in response to a compatible set of constraints.
The minimization of our fairess functional also preduces very fair free-form surfaces. This al-
lows the designer to specify technical and artistic shapes in the most natural way for a given

design problem.
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Surfaces are represented by a patch work of quintic polynomial Bézier patches. The use of
quintic patches makes the satisfaction of geometric constraints simple, direct, and exact. The
use of a quintic patch also tends to minimize the number of patches needed to solve a given
problem. The use of Bézier patches eases numerical problems and simplifies communication

with other modeling systems.

The techniques described here are computationally very expensive. They have only become
practical since the wide availability of very fast workstations. As computers increase in speed,

these techniques will become even more attractive.
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