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Abstract

We examine the problem of characterizing the variability of measured packet-arrival
processes produced by individual workstations in a local-area network. Commonly
referred to as burstiness, variability can be informally described as producing sequences
of abrupt transitions from low to high arrival rates and vice versa. Since variabliity can be
related to the relationship among successive amivals, we adopt a quantitative definition,
based on indices of dispersion, from the theory of point processes.

We illustrate the measurement methodology and discuss the eror analysis. We then
analyze the first- and second-order statistical properties of interarrival-time and packet-
count series, which reveal the structure of the underying point processes. We estimate
indices of dispersion for intervals and counts, which express the autocorrelation structure
of a point process, and wam about the effect of nonstationary data. Using an artificial
example based on the Markov-modulated Poisson process, we show how to incorporate
into a mathematical model the second-order stochastic parameters that represent
dispersion. Fitting is done so that the index of dispersion for counts of the MMPP model
matches closely that of the data, a procedure that produces what we call a **‘model of
variability .

Finally, we derive a model of variability whose structure follows the structure of the data:
the interamival times of short and long packets are disjoint; the lengths of sequences of
short and long packets form a discrete-time Markov chain; and a generalized two-state
semi-Markov process, in which interarmival times in each of the states are autocomelated,
is shown to reproduce with good approximation the cormrelation structure of the data for
time scales up to 500 ms. The approximation requires only estimates of the first- and
second-order moments of the interarrival times. To complete the model, which is two-
dimensional, we also provide simple characterizations for the lengths of short and long
packets. Because of the recursive nature of the model’s equations. the model is suited
for simulation studies.
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1  Modeling Variability

Variability in the rate of arrival processes has been a characteristic of data com-
munication between or among computers from the earliest days of networking. Back in
the time when remote computers were accessed through terminals, communication
lines carried character traffic, and computers were not linked to each other through a
network, the rate of arrival of characters did not fluctuate a great deal. The primary
cause of variability was human: users paused for different lengths of time to think
between typing intervals.

The introduction of networking technology and its refinement has, however, directly
led to an increase in the variability of arival processes. First, the appearance of real
computer networks, file transfer protocols, and computer mail resulted in more variability,
as users could now instruct a system to send a message to a remote location, or copy
data from one location to another. Measurement studies of wide-area network traffic
revealed that the traffic was bursty [47]. Next, the advent of higher-speed local-area
networks and the simultaneous development of the personal computer workstation
[57,901 opened fascinating new avenues for data communication. Remote file systems,
distributed systems, more sophisticated protocols, including the Remote Procedure Call
protocol (RPC), and distributed applications became the norm. All of these advances
contributed to increasing variability since faster protocol allowed for transmission of more
data in a shorter time, while many distributed-system operations generated successive
transmission requests within a wide range of times. Studies showed that local-area traffic
was also bursty [80], but this was not a matter of concern, because local-network traffic
was extremely light and there were no noticeable queuing delays.

Variability increased even more dramatically when diskless workstations made their
debut. With diskless workstations, virtual-memory traffic had to be moved as quickly as
possible across the network. A few keystrokes could produce either a quick burst of up to
several hundred Kbytes of data across the network when a new program was invoked, or
only a minimal data representing. for instance, characters transmitted to a remote com-
puter.

While the networking research community began to experience congestion and to
think about ways to cope with it, telecommunication researchers, who had long been
studying telephone voice channels, had already well understood the effects of bursty
arrival processes to queues. Consider, for instance, the following two cases. In the first
case, we have a single-queue system whose input is a Poisson process with arrival rate A
in the second case, the input process is batch Poisson, i.e. arrivals occur, according to
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Poisson process, in batches of mean size B. If the amival rate of the batch-Poisson process
is chosen to be A/B, the mean arival rate is the same in each of the two cases. The
average times spent in the systems, according to Little’s law. will be proportional to the
number of customers in the systems. The mean number of customers in the system for a

Poisson process is Np =—1—E—;. The mean number of customers in the system in the batch-
Poisson case can be calculated easily [46, problem 4.3}

Np = l[n E(B) + V’E‘(’Z()B)

2 N

The quantity between parentheses is always greater than 2 (it equals 2 when all batches
are of sze 1, i.e. when the batch-Poisson process reduces to a Poisson process), and
hence the average waiting time of customers arriving according to a Poisson process is
shorter than the waiting time of customers amiving according to a (more bursty) batch-
Poisson process with the same mean arrival rate.

Despite its profound effects on computer network traffic, queuing, and congestion,
variability has been studied mostly in terms of analytical or simulation models. In this
dissertation, we will consider measured packet-arrival processes, study their variability
based on indices of dispersion, and propose models that will characterize this variability.

Il. Central Problem of Dissertation

This thesis examines the problem of characterizing the variability of packet-arrival
processes produced by individual workstations in a local-area network. The study is
based on measurements and emphasizes understanding and modeling real data. These
data are packet-amival processes extracted from the arrival times of aggregate traffic
produced by engineering workstations on an Ethernet local-area network. The term
“‘processes’’ refers to realization of stochastic processes along a time axis. Technically,
they are marked point processes as each point has several attributes, such as a packet
length, a protocol type. a source and a destination network addresses, and so on. Often
we will derive the properties of the point processes by operating on time series of interar-
rival times—the series of intervals between successive packet armivals.

Of all the features of complex phenomena such as packet arrival processes—a
result of the complexity of the systems that produce them—we will focus on variability.
Often referred to as burstiness, variability can be informally described as producing a
string of abrupt transitions from low to high amival rates and vice versa. We found no
satisfactory quantitative definition of variability in the computer science literature, but
since variability can be related to the relationship among successive arrivals, we
adopted a definition from the theory of point processes based on indices of dispersion.

We have chosen to study packet arrival processes generated by engineering work-
stations because these workstation constitute an important example of distributed system
whose network usage pattems are not completely understood. We conducted the
measurements on a local-area network, and not on a wide-area network, in order to
keep the measurement effort manageable, but also because amival-process variability is
more evident in a localarea environment where there are fewer queuing interactions
and less traffic smoothing produced by the superposition of traffic generated by
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machines communicating concurrently. There are other types of interesting systems that
produce network traffic worth modeling: transaction traffic generated by distributed
database systems comes to mind; however, given the intense research effort [38] in the
design of the new generation of workstations that will handle continuous media applica-
tions in addition to current user interfaces, we felt that models (even if only models of
variability) of current workstation traffic could have a direct impact on the workstation
design.

Though a major portion of the dissertation is devoted to the analysis of the first- and
second-order statistical properties of interamival-time and packet-count series, which
reveal the structure of the underlying point processes produced by individual work-
stations, we will also define models of traffic. These models are not intended to repro-
duce the traffic exactly as generated by the workstations. Instead, the models will focus
on the notion of variability of packet arrival processes. Using indices of dispersion, which
express the autocorrelation structure of a process, we can quantify data variability; we
can then incorporate into mathematical models the second-order stochastic parame-
ters that represent dispersion, and derive indices of dispersion for the models. Fitting is
done so that the models’ variability closely matches that of the data. This approach pro-
duces what we have defined as “*models of variability’’. The gist of the argument is that
the autocorrelation structure of a point process depends on the lengths of sequences of
observations smaller than the mean, on the lengths of sequences larger than the mean,
and the way the two types of sequences alternate. Hence, the form of the solution that
we seek to the problem of characterizing the variability of packet arrival processes is one
in which models will reproduce the correlation structure the the measured point
processes, not necessarily the exact marginal distribution of their interarrival times.

lil. Thesis Roadmap

Chapter 2 deals with the measurement methodology, the data collection, the
preparation of the data for analysis, and the initial data analysis. The data was collected
on a large Ethemet, which we will denominate “‘Engineering network’’, at the Sun
Microsystems headquarters in April 1989. The network consisted of about 130 machines,
divided among diskless workstations and machines with local disks. The workstations
were served by six major file servers. In the thesis we study arrival processes that occurred
approximately between 8:15 am and 6:30 pm on a single day. Based on observing the
measured network over a period of several days, we are confident that the chosen day
is typical. The data was packaged into traces, which, stored on tapes, consist of packet
headers and timing information.

The data collection was preceded by several months of study for the preparation
and design of the measurement system. The Performance Evaluation group of Sun let us
use the fastest machine available at the time. We knew from our previous measurement
project (described in Appendix A) that data analysis would greatly benefit from the avai-
lability of an accurate clock with which to timestamp packet arrivals. As the resolution of
the machine clock was only 10 ms, a serious limitation, we employed an extemal timing
device, described in Section 2.1ll, whose resoiution was 0.5 microseconds.

Data analysis required reading the traces innumerable times. This would not have
been practical if we had kept the data on tapes, as tape-drive access times are too
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slow. Since we could not monopolze many hundred Mbytes of disk space for our own
use. we were forced to compress the trace data; this is described in Section 2.Vl While
compressing the data, we also transformed the timing information. which was recorded
after each packet had been fully received, to the times when the packet transmissions
started. This is possible because most of the packet-delay components are deterministic.
The random components of the delay, most importantly the interrupt time latency. contri-
bute to the measurement errors.

During the timing conversion, we noticed that for a szable portion of the packet
arrivals, the beginning of the transmission time should have occured before the transmis-
sion of the previous packet had completed. This, on a single-channel, baseband net-
work, is impossible. Hence, the situation must have been created by measurement
errors. In Section 2.VIl, we analyze several cases of errors in this class and, in all cases, we
show that errors were generated by pairs of packets that were transmitted with the
minimum interpacket time admissible on the Ethemet, 16 microseconds. Our analysis
attributes the error source to the tracing machine’s internal bus, which was shared by the
CPU, the network interface, and the timing device.

At the end of Chapter 2, in Section VIIi, we describe some of the characteristics of
the aggregate traffic of the Sun Engineering network. We discuss the network utilzation,
the source-destination traffic pattems, the interarrival-time probability density, and the
distribution of packet iengths. This data analysis should be compared to the analysis of
older measurement that we took at Berkeley in an environment of diskless machines.
(The major results of this study are reported in Appendix A.)

Chapter 3 deals with the stochastic analysis of the traffic produced by individual
workstations. The point processes produced by the workstations are packet arrivals at
the Ethernet data-link layer. As such, they are different from the processes representing
arrivals of messages produced by users. Consider for instance a typical 8-Kbyte user
read operation: the single user request is transiated by the data-link layer into @
sequence of six fragments. In addition, data-link-layer packet amivals are affected by
network contention: were source and destination machines the only communicating
machines the arrival pattems would be different than those extracted from the aggre-
gate traffic. However, based on the analyses in Section 3.IX, we are confident that the
errors introduced by network contention are small.

One of the most important questions is whether arrival processes (or, equivalently,
interamival time series) are stationary. Our packet-arrival processes appear, even to sum-
mary investigation, clearly nonstationary. In Section 3.V we discuss whether standard sta-
tistical techniques for removing nonstationarity can be applied to interarrival time series.
We conclude that those technique, all of which amount to fitering the data so as to
remove the lowest frequencies. would disrupt the data appearance and would prevent
us from recognizing arrival process features and associating them to system parameters.

We recognize that the question of whether a time series is stationary is intimately
related to the time scale under consideration. There are at least two time scales of
interest in arrival processes that are generated by protocols under user-driven workloads:
a coarse one that comesponds, for instance, to user’s busy and idle intervals, and a fine
one that captures protocol time constants. The key observation is that user-generated
events occur infrequently when compared to protocol-generated ones. Hence, a
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coarse time scale that represents macroscopic changes in the packet amival patterns is
more appropriate for characterizing user activity. If instead the focus is on protocol
behavior, a finer time scale, ranging from a fraction of a millisecond to several hundred
milliseconds, is more desirable. In Section 3.V we observe 1) that we do not have enough
data to attempt a user characterization, and 2) that a fine time scale is more important
to the queuing dynamics of packet amival processes in interactive systems in which
response time is the key performance index. Thus, we decide to restrict the analysis to
fine time scales, and we remove the major nonstationary components by considering
only interarrival times shorter than a fixed threshold., which we select in Section 3.V
(Unfortunately, this truncation operation does not fully eliminate nonstationarity.)

In Chapter 3, we also discuss network utilization and histograms of interarrival times,
which are related to marginal probability densities. Using the properties of our marked
processes (for instance packet lengths, and source/destination addresses), we partition
interarrival times into components. The partition shows that short packets produce long
interarrival times and, vice versa, that long packets produce short interarrival times. We
then study the autocorrelation structure of our processes, and, in the last section, exam-
ine whether processes produced by independent machines are statistically related
because of network contention and concurrent access to file servers. The result is that
unrelated processes are also uncorrelated.

We also caried out the spectral analysis of interamival times, but did not include it in
the dissertation. Peaks in the power spectra of intervals are expressed in terms of lags.
Chamock in [13] addresses the problem of converting the lag references to times. Aside
from the complication intfroduced by this procedure, the frequency-domain analysis
revealed only, and was dominated by, the effects introduced by packet fragmentation;
no other relevant phenomenon was discernible.

In Chapter 4 we define the indices of dispersion for intervals and for counts, and
examine their properties. They are series of coefficients related to the autocorrelation
coefficients of intervals and counts. These indices are the pivotal elements of our varia-
bility characterization. We seek models that approximate well the indices of dispersion,
or, equivalently, the series of autocorrelation coefficients.

In Section 4.IV we give an example of a model (though a somewhat artificial one)
in which parameters are fitted using the index of dispersion for counts. The counts pro-
duced by the models may not be similar to those of the data (they are related to them
because the mean and the variance are fitted), but, by matching the correlation
coefficients, the model generates sequences in which groups of counts larger than the
mean and groups of counts smaller than the mean have a structure that follows the
structure of similar groups in the data. The unproven assumption in this dissertation is that
if data amivals and the arrivals produced by the model are submitted to the same server
of a queuing systems, they will produce comparable queuing effects.

Chapter 5 is devoted to the definition of the models of variability. These are models
of interamival times based on what we call a ‘‘generalzed two-state semi-Markov
model’’: a semi-Markov model in which intervals in each state are comrelated, though
intervals belonging two different states are independent. Our modeling objective is to
reproduce the variability rather than to insure that the queuing behavior of the models
approximates to some degree the queuing behavior of the data. We believe that there
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is a close relationship between the two, but the extent to which this is true will have fo be
explored with further research. (This question is discussed in the Future-Work section in
Chapter6.)

The distribution of packet lengths studied in Chapter 2 indicated a sharp repartition
of packet shorter than 200 bytes (short packets) on one side and those longer than 500
bytes (long packet) on the other side; there are virtually no occurrences of lengths
between 200 and 500 bytes. To build the models, we first show that the lengths of short
packets and the lengths of long packets constitute a two-state Markov chain: one state
for short packets, the other for long packets. Second, we associate to the states of the
Markov chain the probability density functions (component functions) of short and long
interarmrival times. Third, we derive the index of dispersion for intervals for the generalzed
semi-Markov model in terms of the autocovariances of the interarival densities of the two
states. A nice, simplifying feature of a semi-Markov model, which is also valid for the gen-
eralized model, is that its autocorrelation coefficients depend only on the first and
second-order properties of the component density functions.

We discover that the model does not fit nonstationary data and that, to obtain a
good match, we have to limit its range of applicability to lags up to 30 and to interamival
times up to about 500 ms. However, these are the intervals over which the variability of
arrival processes, produced and consumed by fast, interactive queuing systems, is
relevant.

This concludes the thesis outline; in the reminder of this chapter we will examine
some of the published works that are related to several aspects of the dissertation.

IV. Literature Review

In this section we will briefly review the major works that are related to the disserta-
tion. We will consider two classes of studies: network measurements and analysis studies,
and packet arrival process modeling with emphasis on amival-variability modeling.

A. Network Measurements and Their Analysis

One of the first measurement studies of local-area network traffic was performed in
1979 at Xerox PARC by Shoch and Hupp [80]. Shoch and Hupp suggested that the Ether-
net under its normal workload, produced by users of Alto [90] computers accessing file
servers, is lightly loaded and the host interfaces, and not the network, are the protocols’
performance bottlenecks.

More recently, Boggs et al. [9] have performed measurements of artificial traffic to
explore the limits of Ethemet behavior.

D.R. Cheriton and C.L Williamson [15] measured the traffic properties of an Ethemet
at Stanford University that connects about 50 diskiess Sun workstations running the V
operating system [16]. The authors focused on the performance of the VMTP request-
response protocol [14], a general-purpose protocol used for all network communication
in V. They did not quantify the network utilization (which was rather low) since they were
mainly concemed with the interactive characteristics of their system, such as the mes-
sage transaction rate, the duration of transactions, and VMIP’s retransmission behavior.
The measured V systems did not have virtual memory; as a resuft, most of the traffic was
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generated by file accesses and V's distributed-system services such as the naming ser-
vice. They express the opinion that the current generation of protocols is not suttable for
future high performance workstations.

E.D. Lazowska et al. [49] measured a network of diskless Sun-2s and their file servers
in the context of a modeling study in 1986. Surprisingly, they found that their workstations,
equipped with 2 Mbytes of physical memory, display a 4:1 file access to paging ratio.
Such a finding could be explained in part by the fact that UNIX applications were smaller
at that time.

In a study on network file-system caching in the Sprite operating system, M. Nelson
et al. [59] concluded that even without client caching, Sun-2 machines require network
bandwidths on the order of 80 Kb/s and Sun-3s on the order of 250 Kb/s; in the Berkeley
study [33] we observed 1 Mb/s between Sun-3s with NFS client-side caching. The differ-
ence can be explained by the fact that they ran benchmarks consisting of compilations,
sorting tasks, and text formatting jobs rather than simulating the full workioad generated
by a user running processes in @ window environment.

PJ. Leach et al. have designed an integrated distributed system where diskiess
workstations and file servers communicate via a 12 Mb/s baseband token-passing ring
network [50). Preliminary performance measurements indicate that the average network
utilization is low: less than 1/12 of the total network bandwidth was used. However, pag-
ing alone consumes ten percent of the network bandwidth when running arfificial work-
load tests. Since in the described implementations the maximum packet size was 550
bytes-their network interfaces allow packets as large as 2048 bytes-higher utilzation will
be achieved by future, more efficient implementations.

A number of measurement studies point out the presence of high burstiness in
packet data, but detailed models that incorporate this variability explicitly are not given
[33,54]. Measurement studies have been recently reviewed and classified by Pawlita
[65]; we refer the reader to Pawlita’s comprehensive taxonomy for additional references.

Newer measurement studies [51,93] have used high-resolution clocks to obtain tim-
ing information with which it is possible to estimate statistical distributions with small bias.

Wide area traffic was measured recently by Caceres 1121 and Heimlich [36). This
studies are interesting though only minimal statistical analyses are presented.

B. Arrival Process Modeling

Here we review some contributions in the area of the analysis of variability in arrival
processes. The key observation is that a number of models have been developed to
deal with data variability; however, most models have not been applied to computer
communication traffic data or to real data ot all.

In the 60’s a number of statistical studies emphasized the notion that many interest-
ing point processes cannot be described accurately as Poisson processes [6,52]. These
efforts cuiminated in the publication of a path-breaking book by Cox and Lewis [19],
whose characterization of the second-order properties of point processes is still used
today in the recently revived interest in the study of data variability spurred by growing
use of communication networks. For instance, Sriram and Whitt [84] propose to use the
index of dispersion for intervals (D) for characterizing the superposition of voice and
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data arival processes, and in a recent contribution Fendick and Whitt [26) propose to
use a scaled version of the variance-time curve (the index of dispersion for work) as a
measurement to describe the variability of the traffic offered to a queue.

Ramaswami and Latouche [74] propose a unified stochastic model for the arrival of
voice packets to a packet switch. They develop a point-process model that takes into
account the statistical fluctuations of packet generation of individual calls. For this, they
also resort to the use of index of dispension curves.

Heffes and Lucantoni {35] use a Markov Modulated Poisson Process (MMPP) to
model the dependencies present in voice and data sources. They obtain the moments
of the voice and data delay distributions as well as the queue length distribution. Numer-
ical results for the tails of the voice packet delay distribution show the dramatic effect of
traffic variability and correlations on performance.

Jain and Routhier [42] propose clustering techniques to capture dependencies in
packet streams and apply these techniques to packet data collected on a ring network
at MIT [24]. Trains are sequences of packets that are considered as a unit. They are
identified by a single parameter: the intercar gap. If the interpacket time is larger that
the intercar gap. then the next packet will start a new train, otherwise the next packet is
part of the current train. The authors explored several variations on the theme, but seem
to ignore any physical interpretation: their mean intertrain time is 23.8 seconds! They
define their trains arbitrarily and give no suggestion as to how one should chose the max-
imum intercar gap.

Jain and Routhier’'s approach has been carried on to a more theoretical basis by
Fontana and Guerrero, who propose a Markov model extended to include packet trains
[29].

Song and Landweber propose to modify the protocol layers on host machines in
order to optimize the transmission and receipt of trains of packets [83]. The proposed
packet-train mechanism takes advantage of the application of similar protocol process-
ing functions to all packets associated with a single bulk transfer. They studied the perfor-
mance of their scheme with simulation and tried different train sizes, but offer no insight
on how 1o choose the sizes of trains, nor they seem to rely on any particular train model.

Fendick et al. [25] in a theoretical study associate the burstiness of data in commun-
ication networks to various correlations in the data.

The variability characteristics of a process generated as the superposition of many
sources has been studied by Albin [11, by Sriram and Whitt [84], and Heffes and Lucantoni
[35].

Neuts [60. page 336] is interested in developing mathematically tractable descrip-
tors of the physical behavior of point processes. Among such descriptors are the
moments of the counting process, the peakedness functional, the power spectral density
of a square wave (random telegraph wave) associated with the point process, and the
caudal characteristic curve, which was introduced in [61]. The (exponential) peaked-
ness function of a stationary point process is the ratio of the variance and the mean of
the number of busy servers at an arbitrary time in an infinite server queue with exponen-
tial service times and the given point process as input.
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Cruz [22] develops a calculus for obtaining bounds on delay based on input data
streams that satisfy **burstiness constraints’’. A data stream Is said to satisfy a burstiness
constraint if the amount of data from the stream contained in any interval of time is less
than a value that depends on the length of the intervals.

In the context of operating-system and networking research aimed at providing
support for continuous media, Anderson et al. [3] define a model for traffic sources based
on Cruz’s thesis work. Their abstraction has the following parameters: a maximum mes-
sage size of Smax bYtes, a maximum message rate of Ryng, Messages/second, and a max-
imum burst size of Bmax Messages. The long-term data rate is SmaxRmax Dytes/second. In
any interval of length t, the number of messages armiving at a network interfface may not
exceed Bo + TRmax. The burst parameter allows short-term violations of this rate con-
straint. An analogous. simple model is proposed by Ferrari and Verma [271.

Leland’s study of LAN traffic [51] should be emphasized as it is similar in methodol-
ogy and basic results to our measurements and analyses in Chapters 2 and 3. Leland
develops the aggregate data analysis more than we do, and, although he mentions
possible models for various data characteristics, he does not develop a traffic model. He
associates explicitly the notion of burstiness to indices of dispersion.
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2 Traffic Measurements

The Ethemet local-area network is a broadcast medium: every station must be able
to monitor all communication in order to select frames destined to its own address. This
makes it easy to obtain traffic measurements of single-wire Ethemets without disruption of
the measured system: a single (powerful) machine can be instructed to listen to all mes-
sages without modifying or attering their arrival times. This technique was first used by
Shoch and Hupp [80] and later reused numerous times [7, 15,88]. The same passive listen-
ing technique can be easily adapted to ring networks [24], and, with a little more work,
to star networks such as a single-node Datakit [54).

This is also the method we used in a previous study of the traffic of an Ethernet in the
Computer Science Division of the University of Califomia, Berkeley. in which we focused
on the properties of the aggregate traffic produced by diskless workstations that com-
municate with their file servers [33]. Beside the specfficity of the topic investigated, that
study was notable for the high accuracy of its timing information and for the very small
packet loss. A detailed account of the Berkeley study is reproduced in Appendix A.

A more recent work at Bellcore pushes the limits of clock accuracy and packet loss
tarther [93]. s authors needed a measurement system that could detect broadcast
storms: the sudden increase in network traffic caused by many hosts that answer a
broadcast message.

For a number of reasons, which we will discuss in Section lll, but primarily to look
beyond diskless workstations and the small machines of the Berkeley environment, we
decided to conduct a new study in an industrial environment with more powerful
machines at Sun Microsystems, where we took traces of packet protocol information.
The structure of the new measurement system is similar to the one we devised for the
Berkeley study: a dedicated UNIX machine with a customized Ethernet interface driver
collected packet headers and packet arrival information that were stored on disk and
later moved to tapes for offline analysis. For the Sun study, we used the fastest machine
available at Sun and a hardware clock with a resolution of 1 microsecond. Mainly
because of bus contention, the accuracy of the timing information in the traces is lower
than the resolution of the clock: the maximum errors are estimated to be smaller than 100
microseconds. This accuracy is more than sufficient for the estimation of statistical quan-
tities and the modeling effort we intend to carry out in this study.

This chapter begins with a brief description of the main results of our Berkeley meas-
urements, which we frequently refer to in our analyses of the data that is the topic of this
study. We then describe the new measurement software, concentrating on the
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hardware high-resolution clock and our modification to the Ethemet driver. We then
explain the formats of the packet traces; since we had to compress the traces to be able
to store on-line most of the recorded information for ease of processing, we also describe
the compressed record formats. We next analyze in depth the timing errors caused by
the variations in the access time to the bus shared by the CPU and the Ethemet I/O inter-
face. Finally, we describe the aggregate traffic on the Sun Ethernet in terms of network
load, packet length distribution, and packet interarrival times.

Il. Berkeley Measurements

We had previously taken measurements of packet traffic on an Ethernet in the
Computer Science Division of the University of Califomia, Berkeley, in which we studied
the aggregate traffic produced by more than 100 machines. Although the network
environment, composed of Sun, Xerox, and VAX computers, was heterogeneous, most
network traffic was generated by diskless Sun machines. For this reason, we focused on
those workstations and their soffware. We analyzed and discussed network load, packet
length distribution, source-destination traffic pattems, and interarrival time distributions.
and focused on three protocol families: the Transmission Control Protocol (TCP), the Sun
Network Disk protocol (ND), and the Network File System protocol (NFS) [33].

The most striking conclusion of the Berkeley study was that diskless workstations may
indeed generate enough traffic to load substantially a local-area network of the current
generation. The mean network utilization was low (averaging 6.5 percent over 24 hours),
but bursts generated short-term peak utilization that exceeded 33 percent of the Ether-
net raw bandwidth.

Our measurements showed that a workstation’s traffic can be subdivided in three
broad categories: character traffic from the workstation to other machines; paging
traffic generated by the workstation’s vitual memory to a remote paging device; and
fle access traffic to remote file servers. A workstation’s behavior will depend on the
characteristics of each of these three types of traffic. These components were easily
identifiable because a different protocol was employed for each component. Charac-
ter traffic generates many small packets but no substantial network utilzation. File
access to a remote file server generates bursts of traffic lasting several seconds, which
may demand bandwidths of roughly 120 Kbytes per second, or about 10 percent of the
Ethemet raw bandwidth. Paging traffic, which accounted for maximum network utilza-
tion levels of 20 to 25 percent over 1-second intervals between a single client workstation
and a file server, has been greatly increased by small physical memories (by today’s
standards a 4-Mbyte memory, common in the Berkeley network, is small indeed) and,
possibly, by sub-optimal performance of the vitual-memory algorithms. Increasing
memory sizes may decrease the level of paging traffic; however, since there is a ten-
dency for applications to grow as more and more memory becomes available, it is likely
that paging traffic will remain a noticeable component in future diskiess workstation
traffic. Paging traffic could be reduced, however, by improved buffering schemes; one
such scheme, which calls for a global caching area for both virtual memory and the file
system, has been implemented in Mach [94] and in release 4.0 of Sun UNIX.

We also observed that the interarrival time distribution of the aggregate traffic
differs substantially from that of a Poisson process. We suggested that this was probably
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attributable to correlations between armivals, but did not analyze the possible correla-
tions.

Ill. Sun Measurements

The Berkeley study provided us with certain insights into the nature of network traffic
and experience in traffic measurements. For studying the problem of the variability of
network traffic, we felt that new measurements on a different network—we chose a net-
work at the Sun Microsystems headquarters in Mountain View, Califomia—needed to be
done. The Sun network presented some important hardware and software advances.
First, the machines in the Berkeley network (mostly Sun 3/50s with 4 Mbytes of memory)
were being superseded by more powerful models with larger physical memories, leading
to a smaller proportion of paging traffic and a lower level of network traffic altogether.
Second, the recently released SunOS 4.0 had changed the virtual memory algorithms,
managing to provide private root file system partitions to client workstations without
employing the ND protocol, a low-level protocol tailored to work with the Ethemet local-
area network, which in the Berkeley measurements accounted for 52 percent of the
traffic. Third, following the work of V. Jacobson [40], Sun had improved the performance
of NFS, increasing its throughput. We anticipated that, in a SunOS 4.0 environment, the
NFS protocol would be more pervasive, accounting for a larger proportion of the total
traffic than the 16 percent we measured in the Berkeley network. In addition. we felt that
it would be worth analyzing the effects of some features of the Sun network that were not
present in the Berkeley network. For instance, at Sun Microsystems many machines have
local disks, which makes those workstations independent of the network for running UNIX
and its vitual memory. Moreover, the Sun computing environment is more integrated
than the Berkeley environment: machines (with disks and diskless) mount file systems from
a variety of file servers and from other disk-based workstations. Finally, atthough the
clocks used in the Berkeley and Sun measurements have similar resolution (1 and 0.5
microseconds), the accuracy of the Sun clock is, as discussed below, better by at least
one order of magnitude. Thus, a second study in this new environment would provide
more general results and conclusions more readily adaptable to other types of network
environments.

The new measurement system was similar in structure to the old one, consisting of a
powerful stand-alone machine, a Sun-4/280, whose kemel had been modified to trace
all packets and that had been equipped with a hardware counter that was physically
assembled on a small board plugged into the machine’s socket normally reserved for an
optional encryption chip. The device used was an Am9513 counter chip, driven by a 2
MHz crystal, and was programmed to increment one of its five 16-bit registers every 0.5
microseconds. (We did not use the remaining four registers.) Register values thus ranged
from O to 65535 cyclically and were used in combination with the kernel time to produce
a high-resolution clock. The data path to the counter chip was 8-bit wide, making the
reading of a register value to occur in two steps, and was on a bus shared by the CPU,
the memory, and the Ethemet interface.

We added a routine, microtime, to the instrumented kemel to produce a time-
stamp when called according to the foliowing C programming language type definition:
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typedef struct {
struct timeval ts_tv;
unsigned short ts_ticks;
} Timestamp;
The data structure timeval, used to represent timing information in Berkeley UNIX
42BSD and Sun UNIX, provides separate variables for the seconds and for the
microseconds:

struct timeval ({
long tv_sec;
long tv_usec;
}:
The UNIX kemel variable t ime, which stores a value that approximates the wall-clock
time, is of type timeval and is incremented by SunOS on a Sun-4 every 10 milliseconds.
The routine microt ime. called with a pointer of type Timestamp as a single argu-
ment, simply recorded the UNIX time along with the current value of the counter register
from the Am9513 chip in the object addressed by the pointer argument.

The routine that read the counter chip actually had to cross the bus several times in
order to obtain a reading. First, the counter value was saved in a chip’s auxiliary register
so that slower reading cycles would not affect its value. This required writing three 8-bit
words In sequence, each in a separate bus cycle, to the chip’s control and data regis-
ters. Second, the chip had to be told about which auxiliary register to make available to
its data I/O port. This again required writing three separate words to the control and
data registers. Finally, as mentioned above, two reading cycles were necessary to
obtain a 16-bit counter register value through the 8-bit data path, bringing the total
number of bus accesses to eight for each timestamp.

Derivation of packet interarrival times from the timestamps first required some pro-
cessing. This was done by calculating separately the differences between two consecu-
tive packets’ UNIX times and between their counter-register values. (The differences in
the counter values are taken modulo 2'¢, by which, if x; and x, are two such values, we
mean that D=x; - Xy If x;2x; or D=2"%+x; - x, if x5 <x;.) Then, we can use these
differences to evaluate R, the number of times the counter has wrapped around. Table
2.1 shows how this is performed. The interarival time in microseconds is then D/ 2 + 2R

This relatively complicated timing system was chosen, over a simpler one in which
the counter chip would have maintained by itself a full microsecond-accurate clock by
chaining three of its 16-bit counters fogether, in order to reduce the time needed to read
the clock and thus increase the accuracy of the measurements. Using three 16-bit
counters would have required reading the counter device six times through the siow 8-bit
data path to the socket into which the counter circult was plugged; in contrast, under
our system, the overhead was confined to offine processing.

We measured the time it took to obtain a timestamp using a short program (which
we ran in kernel space during the testing phase of our modified kemel) containing the
foliowing code segment:
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ptr = &hrc[0];
do {
microtime (ptr);
} while (++ptr < &hrc([4096])

In this code, hrc and ptr are defined respectively as an array of sze 4096 and a
pointer, both of type Timestamp. Inthe ‘do’ loop. between calls to microtime, the
Sun-4 C compiler generated object code with seven instructions, which the machine
executed in 13 clock cycles or 0.78 microseconds. After running the code segment, we
computed the differences between subsequent values contained in the elements of the
array. In 97.3 percent of the cases the difference was 13 microseconds: in 2.5 percent,
14 microseconds. There were eight values of differences greater than 14 microseconds,
the largest being 80 and 108 microseconds. Except for the first interamival time of the
series, which was of 21 microseconds because the code was not yet in the instruction
cache, these larger intervals were caused by bus contention during accesses to the
counter register. Recall that the Ethemnet device with its busy DMA controller was on the
same bus. Using more than one counter in the Am9513 chip would have increased the
probability of bus contention delay, since more register accesses would have been
necessary. Based on the measurements above, we estimate that @ minimum  of 12t0 13
microseconds are needed to obtain a timestamp with microt ime.

TABLE 2.1. DIFFERENCES BETWEEN UNIX TiIMES N MS) AND COUNTER VALUE READINGS

DIFFERENCE BETWEEN | RANGE OF DIFFERENCES BETWEEN NuMBER OF TiIMES COUNTER
UNIX TiIMES COUNTER VALUES HAS WRAPPED AROUND
FROM 10

0 0 19999 0
10 1 39999 0
20 20001 59999 0
30 40001 14463 0. or 1 If between 0 and 14463
40 60001 34463 0, or 1 if between 0 and 34463
50 14465 54463 1
&0 34465 8927 1., or 2 if between 0 and 8927
70 54465 28927 1, or 2 if between 0 and 28927
80 8929 48927 2
90 28929 3391 2. or 3 if between 0 and 3391

IV. The Ethernet Driver

We modified the Ethemet driver to extract protocol information from each Ethemet
packet and to store it with a timestamp in a system’s file, from where it could be dumped
onto tapes. Although we cannot publish the code of our modified driver, since it is
owned by Sun Microsystems, we will describe here some detalls of its implementation.

The Sun-4 used for the measurements had two network interfaces, one on the CPU
board and one available as a card on the VME bus. We disabled the VME interface and
used the on-board Ethernet controller as it accesses a bus with larger bandwidth. The
on-board Ethernet controller, based on the Intel 82586 chip [37], was programmed to
receive, without CPU supervision, all Ethernet frames that were transmitted. The 82586
coprocessor moves each frame it receives to one of a large number of buffers in kemel
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memory using DMA. It uses for temporary storage a small 16-byte first-in-first-out queue to
prevent a temporarily busy bus from disrupting data reception. This organization is supe-
rior to one in which the controller buffers a frame entirely in its internal memory before
moving it to the computer memory since it reduces latency in data reception. Upon
being informed by an interrupt of the successful transfer, the CPU extracted the Ethemet
packet header and the portion of the data containing protocol information, and time-
stamped the record with the time information described above.

The driver employed a double buffering technique: it kept two 256-Kbyte buffers in
kernel memory in which it stored the packet information it was collecting. When the first
buffer was full, it switched to the second one, concurrently awakening a sieeping kemel
process, which ran only when there was no network interrupt pending or being served,
for the asynchronous transfer of the data in the first buffer to a trace file on disk. This pro-
cedure alternated between the two buffers.

When a trace file grew to 100 Mbytes—a size we had chosen because it fit in one
standard tape at 6250 bpi, and was the size of the three disk partitions we had dedi-
cated to the measurements—the kemel driver automatically switched to another file.
Dumping the data onto tape presented no problem since it took only a few minutes,
while filing up one file took from about 50 to 80 minutes, depending on the time of day.

An important goal of our measurements was to reduce packet loss to a minimum.
There are two maijor causes for packet losses: overruns of the small FIFO in the controlier
caused by a busy bus, and lack of buffers in main memory to receive the data. We pro-
grammed the controller to initiate data transfer to the bus when the data in the FIFO
queue had reached 12 bytes and allocated 250 buffers in kernel memory for the frames.
The Intel Ethernet controller monitored the bus transfers and kept counts of the frames
discarded due to bus overruns and a shortage of buffer space. The frames lost were typi-
cally a few units over a day, when several million frames were received. Apparently, the
speed of the CPU, the bandwidth of the on-board bus to which the Ethernet controller
was connected, and the memory allocated to receive frames were sufficient.

V. Packet Traces

The packet traces are composed of variable-size records. each of which is pre-
ceded by a standard header. The format of the header is shown below:

struct emt_record {
unsigned long dst;
unsigned long src;
unsigned short type:;
unsigned short length;
Timestamp mtime;
unsigned short bcount;
long sequence;
}s
The first two fields of this structure are used to store the least significant four bytes of the
six-byte Ethemet source and destination addresses. In general, these four bytes may not
identify uniquely each machine. However, since the most significant three bytes of an
Ethemet address identify the interfface maker, they are likely to be redundant in a
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network of machines of the same type. We have verified, by comparing directly each
machine’s address against each other, that the lower four bytes of the addresses do
identify our workstations uniquely.

The type field is also taken from the Ethernet frame and identifies the higher-level
protocol in the frame’s data portion, the length of which is stored in the 1ength field of
the record above. The fifth field, mt ime, is used to store the timestamp; the bcount
field, which indicates how many bytes of the original frame follow the frace header, is a
pointer to the next packet’s header; and the sequence number, which we included to
discover how many records would be lost in case of recording erors in the secondary-
level magnetic storage mediaq, is incremented by one with every received frame.

The decision of how many bytes to save for each packet was made by scanning
the type field of the Ethemet header, making assumptions about higher level protocols,
and trading off space for time. For instance, if an IP packet was of type UDP, we
assumed it was transporting NFS data and saved enough bytes to record the largest pos-
sible NFS header. Careful, complete protocol demultipiexing would have resulted in
longer execution time during trace collection, not justifying the space saved.

VI. Data Compression

Typically, the amount of information in the traces can be as large as 100 Mbytes per
hour of network traffic. The analyses and resutts shown in this study required reading and
processing the packet traces countless times. Without keeping the information on secon-
dary random-access storage our work would have not been possible. Given the severe
space limitations of our computing environment, it was necessary to compress the traces
in order to store several hours of network activity on line. The formats that we chose for
the compressed data reflect the requirements of most, though not all, of our analyses: in
most cases we needed only information about the source and destination addresses. the
packet length, and the amival times.

The format of the records of the compressed data is variable: there are four dif-
ferent formats, which are identified by the first two bits of each record. The source and
destination addresses required eight bits each. Even though a single Ethernet can have
more than 256 interfaces (each one with its own unique address), commonly Ethemets
are class-B IP subnets, for which the last byte of the IP address is reserved for the hosts (or.,
more precisely, for the host interfaces). On the Sun network we monitored, all machines
have (distinct) IP addresses. Packet length information (@ number between 46 and
1500), required 11 bits. Finally, we encoded the timing information in the form of an
interarmival time: the interval of time between a packet and the packet preceding it.

While converting the packet arrival time information, we also changed the original
times, which we recorded in the traces as the times when packets were received, to the
times when the transmission on the Ethemet first started. This was done by subtracting
from each recorded packet amival time the packet transmission time, which is propor-
tional to the packet length.

The first type of format, identified by two zeros in the most significant bits (the format

fype bits), encodes the interamival time in a total of 35 bits—32 bits in the second four
bytes of the record, and three bits, indicated by A, B, and C, just after the two format
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type bits. This allows us to represent time differences of about nine and a half hours,
more than enough since workstations are never silent for this long a time. (In this and the
following pictorial representation of formats, we show 32 bits on each line.)

if o packet followed the exact same path of the packet that immediately preceded it,
i.e., moved from the same source machine to the same destination, there is no need to
store the source and destination fields in the record. Instead, we use a second type of
format, identified by *'01°’ in the format type bits, which instruct trace-analysis programs
to produce a packet with the same source and destination addresses as the previous
packet’s:

If a packet moved between the same pair of machines as the preceding one, but in the
opposite direction, we employ a third, 10", format:

In these two formats, we reserved for the time difference 19 bits, capable of representing
interamrival times of up to about half a second. This should be sufficient for most cases.
though, especially in traces of traffic of single workstations, interarival times may be
iarger. When this occurs, we revert to the first format for the record, even if the address
fields of the two packets are the same.

Using interamival times helps to save considerable space, but has the disadvantage
of requiring sequential reads of all the previous records in order to obtain the arrival time
of a specific packet. To obviate this problem, we chose a fourth format based on the first
format but expanded to include the armival time, expressed in the standard Berkeley UNIX
4.2BSD convention in which the time is represented in seconds and microseconds since
midnight, January 1, 1970. (The x’s indicate unused bits.)

A record with this format was inserted at the beginning of each compressed trace file
(we kept on line compressed versions of the original traces divided into files representing
approximately one hour each). To determine the arival time of a given packet, we only
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need to refer back to the first record of the file in which the packet’s record is located,
and not the the beginning of the trace. In addition, we used this format to begin each
trace containing a subset of the global traffic that we extracted from the aggregate
traces.

It is important to notice that we use this type of data encoding for both the full
traces that we have collected on the Sun network and the traffic of individual work-
stations (or any subset of the aggregate traffic) that we extract from the general traces
for additional, more specialzed processing (such as estimating the interarrival time distri-
bution of a particular machine). Thus, we only needed to design a single set of programs
to read and manipulate all the various possible traces.

With these data-compression techniques, we used only about one third of the
storage space that would have been needed if we had represented each packet with
time, source, destination, and length fields as in the original traces. With respect to the
original traces, we need only one sixteenth of the storage space. though, of course. we
lose information since in the compressed traces we do not represent protocol data.

VIL. Timing Errors

Timestamping may not always accurately record the arrival time of a packet.
Although the counter-based clock has high resolution, Iatencies in intemupt response
time and lags in accessing the bus can lead to delays in the recording of timestamps.
For instance, if a packet (the receipt of which triggers the posting of an interrupt to the
CPU) is folliowed by the smallest Ethernet packet (64 bytes), and the two packets are
separated by the minimum interpacket time permitted (9.6 microseconds), the CPU has
only 67.2 microseconds to process the first packet before the next interrupt occurs (51.2
microseconds for the 46 bytes of data and the 18 bytes of header and checksum, 9.6
microseconds for the interframe time, and 6.4 microseconds for the Ethemet preambie,
which always precedes the first bit of a frame and is used to synchronize the clock of the
receiver with the clock of the transmitter). Since 13 microseconds are necessary to
record a timestamp. should the CPU take more than 54.2 microseconds to process the
first packet, the second packet would be timestamped Iater than it should be. (This is so
because UNIX serves only one network interrupt at a time.) Notice also that in this situa-
tion, since the timestamp of the second arrival time is delayed. the interarrival time
between the second packet and the third packet may be shorter than the real interar-
rival time. Because the driver only needs to perform few operations per received frame,
this hypothetical situation should occur infrequently.

During testing. we found the timestamps of some packets to be such that the
transmission of each of these packets should have begun before the arival of the previ-
ous packet—an impossible situation. If we define the inferpacket time to be the time
between the first bit of a packet and the last bit of the previous packet, this situation is
characterized by negative interpacket times. Clearly, negative interpacket times must
have been artificially created by measurement errors. In this section we will address two
issues: bounding the size of the erors and determining the mechanisms that delay the
timestamps.
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To determine the size of the measurement erors, one needs to compare real values
with measured values. Although no actual values are available, we can reasonably
hypothesize what the actual interpacket times were for a ciass of packets pairs that gen-
erated errors. Specifically, these are packet pairs with unrelated source and destination
addresses. Assuming that communications between unrelated pairs of machines are
statistically independent—an assumption that we wil discuss in detall in the next
chapter—it is intuitive that, given any marginal probability distribution of the interamival
times of packets between two stations, the probability that a ready-to-transmit station will
find the network busy is directly (though perhaps not linearly) related to the length of the
packet in transmission. The majority of negative interpacket time errors were caused by
pairs of packets in which the first packet had the maximum size of 1500 data bytes. Thus,
it is reasonable to assume that each second packet was queued up, waiting for the
large-sized packet in front of it to reach its destination. Since an Ethernet interface ready
to transmit samples the medium continuously and attempts transmission only after the
wire has been idle for at least 9.6 microseconds, a behavior that has been termed 1-
persistent (48], a packet that is queued at one interface should generate, in the absence
of collisions, an interpacket time of 16 microseconds (9.6 microseconds of the minimum
interframe spacing plus 6.4 microseconds necessary to transmit the frame’s preamble).
Thus, interpacket times of less than 16 microseconds for two packets in our traces with
unrelated source and destination addresses should in fact be exactly 16 microseconds.
(Some authors define two packets with minimum interpacket time as back-to-back
packets.)

In Figure 2.1 we show, represented by a solid line, the number of interpacket times
less than 16 microseconds including negative times, for these pairs of unrelated packets
belonging to a 10-hour trace, which we analyze in the remainder of this chapter and use
in the rest of the thesis. About 9.8 percent of ali packets in our traces—a sizable
number—were affected by this type of errors. We also show, as a dotted curve, the total
number of errors for all packets, including those generated by pairs of packets between
the same two of machines. This curve follows the shape of the unrelated-packet curve,
suggesting that packets between the same two machines may also be caused by meas-
urement erors involving back-to-back packets. In fact, in SunOS 4.0, back-to-back
packets can occur between two machines: as reported in [40], improvements in the Eth-
emet throughput were achieved mainly by reducing the interpacket gap during packet
fragmentation.

We observe that the large majority of emors in Figure 2.1 is between 15 and -85
microseconds (some 99.2 percent of the timing errors are within this interval). In the dis-
cussion that follows, we will aiso show that there some back-to-back packet pairs for
which the measured interpacket times are larger than 16 microseconds. These too are
caused by measurement errors; however, they are many fewer than the errors in Figure
2.1 and do not extend towards positive times as much as those extend towards negative
times. We can therefore conclude that in our traces with probability 0.99 the absolute
value of the measurement errors is smaller than 100 microseconds. In addition, in building
the compressed traces, which we have used for all timing analyses, we have adjusted
the measured arival times of all the packet involved in Figure 2.1 so that their interpacket
times become 16 microseconds. In doing so. in all probability we have reduced the
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FIGURE 2.1. ERRORS IN THE TiIMING MEASUREMENTS
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value of the average eror. Based on these estimates, we can state that the accuracy
of these measurements is fully adequate for all analyses we perform in the foliowing
chapters.

The conclusion above is predicated upon the assumption that first packets are long;
as Figure 2.2 shows, 72 percent in fact are longer than 500 bytes. In Figure 2.2 we plot the
packet length distribution of the first packets in the pairs that generated the interpacket
time errors; in Figure 2.3, the distribution of the length of the second packets of those
pairs. (These data are from the 10-hour trace.) Notice that the median of the distribution
of the first packets is 1500 bytes. This, as observed above, represents a case of iength
biasing: since it is more likely that the minimum interpacket time occurs after a long
packet, a timing error of this type is more probable after a long packet.

FIGURE 2.2. PERCENTAGE OF PACKETS VS, PACKET LENGTH FIGURE 2.3. PERCENTAGE OF PACKETS VS, PACKET LENGTH
FIRST PACKETS IN PAIRS SECOND PACKETS IN PAIRS
6.4% 50.3% 6.6% 63% 32.6%
5% 5%
3% 3%
1% 1%
| .| Ill 1 N . .| Al L.
46 56 124 552 920 1500 46 56 144 552 920 1500
Packet Length Packet Length

These two figures should be compared to Figure 2.15, which shows the packet
length distribution of all the packets in the 10-hour trace. Uniike Figure 2.2, Figure 2.3 is
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quite similar to Figure 2.15, suggesting that the lengths of the second packets may be
independent of the lengths of the preceding interpacket time. In order to explore the
hypothesis of independence, we computed the distribution of the lengths of consecutive
interpacket-time erors. Errors that occur in sequence one dfter another generate
dependencies in the packet lengths. To see this, consider, for instance, two errors in a
row. Three consecutive packets in the aggregate traces are involved, the second and
the third of which will both be considered among those in Figure 2.3. Since the lengths of
packets exchanged between two machines are autocorrelated, as we will see in
Chapter 5, and since there is a high probability that subsequent packets in the aggre-
gate trace are between the same stations, there may be dependencies between two
subsequent timing errors and the packet lengths of the associated packets.

We found that 84.9 percent of the errors are single, that is, the interpacket times that
precede them and those that follow them are not in eror. In 13.2 percent of the cases
there are two errors in a row, in 1.6 percent three errors, and in 0.2 percent four emors.
Since only a fraction of the 15.1 percent of two or more consecutive errors are caused by
packets exchanged between the same pairs of machines (the probability we mentioned
in the previous paragraph is less than 1), the global effect of consecutive errors on Figure
2.3 is negligible. Thus, we conclude that the packets of Figure 2.3 represent a random
sampling of all the packets in the traces.

Next, we would iike to identify and understand the mechanisms by which these
short interpacket times were generated. The presence of peaks in Figure 2.1, some of
which we have labeled, indicates that erors do not occur randomly, but are produced
by some recurring conditions. We noticed that packet pairs in which the second packet
was 46 data bytes generated errors of value -3 microseconds (l.e., peak a) very fre-
quently, suggesting that perhaps the length of the second packet was a primary factor
responsible for the peaks.

To determine whether or not errors were related to the length of the second packet
in a packet pair, we plotted the number of errors occurring for various second packet
lengths. Figures 2.4 and 2.5 show the results for two of the most common, shortest second
packet lengths, 46 and 56 data bytes. (These two data lengths were chosen because
they occur frequently, and hence allow the emror estimation to be statistically meaning-
ful.) These graphs prove that in Figure 2.1 the peak at -3 microseconds, labeled a, is
caused by the erors associated with 4é-byte second packets and that the glitch at -11
microseconds, labeled b, is instead caused by 56-byte packets.

We will explain the shapes of Figures 2.4 and 2.5 with the help of the timing diagram
of Figure 2.6. In this diagram, which illustrates the transmission of a 4é-byte frame (and a
56-byte one) separated from the previous frame by the minimum interframe time, we
show a possible scenario for the situation that leads to the erors in Figures 2.4 and 2.5.
The unit of the time axis is one microsecond, and the tick marks are spaced two
microseconds apart. The time origin is arbitrarily set at the time when the last bit of the
first frame (of the two frames that will generate the interpacket time error) amives on the
network. Each event is represented by a labeled amow and a time value. Events above
the time axis are Ethernet events; those below the axis are events—either measurements,
or quantities derived from measurements, or machine events—that occur in the meas-
urement system.
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FIGURE 2.6. TIMNG DIAGRAM OF INTERPACKET TIME ERRORS
SECOND PACKETS OF 46 AND 56 BYTES
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The first frame is fully received at 0 microseconds, and, assuming that the CPU is
idle—a reasonable assumption since most of the first packets are 1500 bytes implying that
the previous interrupt occurred at a time smaller than -1230 microseconds in our refer-
ence system—the comresponding interrupt is signaled shortly thereafter. We indicated
that the interrupt occurs at 24 microseconds because of the interrupt Iatency time—the
several dozens of instructions that UNIX executes in order to switch context to the
interrupt-handiing routine and then to the device-driver entry point—and because the
Ethemet controller chip has to update various data structures and pointers in the
computer’s memory, which is done through DMA, before posting the interrupt. (Most
likely this is an optimistic estimate; however, whether or not the interrupt actually occurs a
little later is not important for our purpose of deriving qualitative conclusions from these
ballpark estimates.) The first bit of the second Ethemet frame is transmitted at 16
microseconds, after the minimum interframe spacing of 9.6 microseconds and the
transmission of the 6.4-microsecond Ethemet preamble. Therefore, the timestamp rou-
tine, called soon after the interrupt handler gives control to the Ethemet driver, is execut-
ing while the second frame is being received by the Ethemet interface device.

To timestamp the first packet requires, as observed above, crossing the bus, which is
now busy moving the data of the second frame from the interface device to the buffers
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in main memory. Although the counter value is copied to an auxiliary register early in the
timestamping process, three bus accesses are required before this can happen, increas-
ing the value of the timestamp. Moreover. all memory accesses for the Ethernet driver
code also require bus cycles, causing additional delay before the timestamp can be
taken. Afthough we do not have measurements of bus utilization during our Ethemet
packet tracing and cannot provide direct data to assess the value of these timestamp
delays, we can cite measurements on a Sun-3/50 [92] that showed that the Ethernet-
interface DMA engine loaded the bus up to 70 percent during the transfer of Ethemet
frames into memory. The resutt of this study supports our interpretation of the delays.

If the frame’s data length is 46 bytes the last bit of the frame is received at 67.2
microseconds; if the length Is 56 bytes, the last bit is received at 75.2 microseconds. We
will assume that the Ethernet will become idle after receiving the second frame: again,
this is a reasonable assumption, as we have seen that the large majority of errors are sin-
gle. Under this assumption, the timestamps of the second packets are not delayed.

Now assume that servicing the interrupt of the first packet is completed by the time
the 46-byte frame is received. Then, all things being equal, the interrupts associated with
a 46-byte frame and with a 56-byte one will be separated by an interval of time equal to
the interval between the two frames: 8 microseconds. Similarly, between the two Qassoci-
ated timestamps there will be 8 microseconds. Finally, it is plain that the starting times of
the two frames, reconstructed from the timestamps, will coincide. But If this were true,
since the 0’s on each x-axis in Figures 2.4 and 2.5 coincide with the beginning of each
frame in Figure 2.6, Figures 2.4 and 2.5 would have to show peaks at the same times,
which Is not the case. Thus, we conclude that the servicing of the first frame’s interrupt
extends beyond the time when the 56-byte frame is fully received and, hence, that the
interrupts generated by both 46-byte and 56-byte frames must occur at the same time.

We have illustrated this stuation graphically in Figure 2.6, which also shows the
reconstructed times for the beginning of the transmission of the two frames at 50 and 58
microseconds. Consider peak 1, at 4 microseconds before the beginning of the second
frame of 46-bytes in Figure 2.4. In Figure 2.6, this point would be at 54 microseconds, that
is 4 microseconds affer the beginning of the 56-byte frame. Thus, we recognize that
peak 1 In Figure 2.4 is associated with peak 3 in Figure 2.5. The association is caused by
the same amount of delay in the timestamp of the first frame. Through a similar line of
reasoning. we can show that peak 2 in Figure 2.4 and peak 4 in Figure 2.5 are also associ-
ated. This gives us evidence that the timestamping of the first frame is delayed by
discrete, fixed intervals depending on how many times the three bus accesses are
delayed during bus arbitration.

Peaks 1 and 2 in Figure 2.5 occur when the timestamps of the first frames are
delayed by smaller amounts. In these circumstances, the interpacket times of 46-byte
frames are larger than the 16-microsecond minimum and, though not shown in Figure
2.4, still must be considered errors. We have verified that these errors are present but, at
least in this particular case, they are fewer. However, in general, the error intervals of
figures such as Figure 2.4 and 2.5 need to be extended to include valid-interpacket-time
errors.
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Figures 2.7 and 2.8, analogous to Figure 2.4 and 2.5, refer to ermors generated by
packet pairs in which the second packets are 124 and 144 bytes. respectively. We can
see that the peak labeled 2 in the 124-byte figure produces a small bump labeled dat
-35 microseconds in Figure 2.1.

FIGURE 2.7. ERRORS IN THE TIMING MEASUREMENTS FiGURE 2.8. ERRORS IN THE TIMING MEASUREMENTS
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Here, it is more difficult to interpret the peaks. In Figure 2.9, in which we show the
timing diagram of the transmission of a 124-byte and a 144-byte packet, we have again
indicated that the timestamps for the two packets occur at the same time. These are
NFS packets of which we saved 124 bytes in the traces (a number of bytes that is
guaranteed to contain the longest NFS header). It is important to observe that since the
SPARC Is a RISC architecture and does not have memory-to-memory instructions, the
data from the network buffer must first be moved to a CPU register and then from the
register to the trace buffer, crossing the bus twice in short sequence. Thus, for these
packets the interrupt servicing time is much longer than for the short 46 or 56-byte TCP
packets. Because of these facts, the beginnings of transmission of the two packets are
16 microseconds apart, which can be recognized as the difference between peak 1 in
Figure 2.7 and peak 2 in Figure 2.8. However, this does not appear to be the case if we
compare peak 2 in Figure 2.7 at —-35 microseconds after the beginning of the 124-byte
packet, and peak 3 in Figure 2.8 at —~44 microseconds after the beginning of the 144-byte
packet. These two peaks are only 9 microseconds apart. The double-pointed peaks in
both figures suggest that in some instances the interrupts for the 124-byte packets and for
the 144-byte packets occur after equally long delays, but in other cases after delays of
different lengths.

Figures 2.10 and 2.11 show the errors associated with pairs of packets in which the
second packets are respectively 920 and 1500 bytes. The two graphs are virtually identi-
cal, indicating that the time when interrupts are received depends on packet lengths.
They are also very similar to graphs (not shown) for packet lengths of 1064 and 1072
bytes. The mechanisms generating the errors are the same as those we have discussed
previously. Here, again, the timestamp associated with the first arrival is delayed, while
the second timestamp, taken when the Ethernet and consequently the CPU bus are idle,
is not. Whereas in the case of short packets one could argue that the delays are
bounded by the packet transmission times. since after the completion of a packet’s
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FIGURE 2.9. TIMNG DIAGRAM OF INTERPACKET TIME ERRORS
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transmission the bus becomes idie, allowing the timestamp process to proceed without
additional delay. in the case of very long packets arbitrarily iong delays could occur. But
this is not the case. since the great majority of the delays in both figures are smaller than
40 microseconds, indicating that the maximum amount of delay is bounded. Our model
of delays attributable to bus contention capture this phenomenon: bus contention is
resolved in a finite time since bus arbitration does not allow starvation. Thus, the time-
stamp of the first packet when the second packet is long occurs within a short time. The
long tails may be due to other factors such as the effects of coliisions, which increase
interpacket times by some 50 microseconds during which the channel is jommed. The
initial decreasing slope of the curves indicates that the second timestamp may Qlso be
delayed. The explanation is simple: since the second packet is long, there is a high pro-
bability that a third packet becomes queued during its transmission.

FIGURE 2.10. ERRORS IN THE TIMING MEASUREMENTS FIGURE 2.11. ERRORS IN THE TIMING MEASUREMENTS
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Many questions are still not fully resolved. For instance, without additional measure-
ments, it is difficutt to assess the precision of the numbers we have used in our argumen-
tation about the timing diagrams of Figures 2.6 and 2.9. Nevertheless, we think we have
presented evidence of the types of mechanisms that are behind the interpacket time
errors. In summary, we found that the errors are caused by readings of counter values
delayed on the single bus used in the CPU board to access both the counter chip and
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the Ethernet interface device. The magnitude of the errors depends on how many of the
counter accesses necessary to obtain a timestamp are delayed. We estimated that,
with probability 0.99, the errors of our clock-counter combination are, in absolute value,
smaller than 100 microseconds.

VIIl. The Sun Engineering Network

In order to get a picture of the workload of the Sun Ethernet, we monitored the load
over 24-hours for several days during the testing phase of the measurement system. Fig-
ure 2.12 shows the packet rate over 72 consecutive hours. Notice that the activity, unlike
the activity in a university environment shown in Figure A.1, is concentrated during office
hours. During the night hours the average packet rate falls to roughly one packet per
second per workstation. This background activity consists primarily of diskless workstations
periodically flushing to disk their dirty virtual-memory pages and modified pages in the file
cache. and of programs, left running by users who are no longer in their offices, that
monitor the load on other workstations or file servers by probing them periodically. In
addition, UNIX has a mechanism to run “‘housekeeping’’ programs, such as the com-
mands to clean up directories that contain temporary files, at midnight every day. Since
the clocks of all machines are approximately synchronized, this generates the peak load
seen shortly after midnight. The higher load during the night in the last 24 hours in Figure
2.12 was caused by a set of benchmark programs that were left running until morning.

Because the objective of our research was to analyze how the user workload deter-
mines the traffic behavior and to build models that capture the variability of the amival
processes, we decided to trace only working hours and not the night periods. On the
basis of a preliminary study of which the data in Figure 2.12 is part, we selected a typical
day for our analysis. In the remainder of this chapter and in the rest of the thesis. the
data presented and discussed will be based on traces that we collected on April 10,
1989 during a period starting at 8:15 am and lasting 10 hours and 20 minutes. The full
trace amounted to about 850 Mbytes of information. We kept on line and loaded seg-
ments of the original data when necessary for more specialized analysis. No packet loss
was experienced in this particular trace, which is the same data set whose timing errors
were discussed in the previous section; our conclusion there was that the errors in the
recorded amival times were smaller than 100 microseconds. In the remainder of this
chapter we will discuss some general statistics of the aggregate traffic in the Sun net-
work; these results should be compared to the results in Appendix A, which describes the
aggregate traffic of the Berkeley network.

The Sun Engineering network in which the data were collected consisted of about
130 machines and six major file servers. (We will differentiate between client workstations,
which are single-user machines, and file servers, which have no users of their own, but
provide file services to client workstations.) Table 2.2 provides some basic information on
some of the workstations of the Sun network. (To ensure security of the Sun network and
to protect the privacy of individual users, we have not used the actual machine names;
the names used throughout the thesis are fabricated ones.)

Figure 2.13 displays the network load during the 10 hours of our data set. Each verti-

cal line shows the percent mean network utilization over a 30-second interval, that is, the
traction of the 30-second period during which machines successfully tfransmitted Ethemet
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FIGURE 2.12. SUN ENGINEERING NETWORK PACKET RATE (PACKETS/SEC)
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frames. (In computing the utilization, we have inciuded the time spent in transmitting the
checksums and Ethernet-frame preambles, as well as packet headers and data bytes.)
The highest peaks reach 40 percent, indicating that for several seconds the Ethemet load
was nearly half of the network’s total capacity.

At these levels one would expect a high number of collisions. We have not meas-
ured collisions and are not concemed here with the question of estimating the collision
rate except for the way in which it affects workstations’ network access and the correla-
tions it induces in the traffic among simuttaneously communicating workstations. We will
deal with these issues in Chapter 3, when studying the sources of comelation in the traffic.

The average load over the 10 hours in Figure 2.13 is 14.6 percent. Much of it
involved the six major file servers. As previously noted, at Sun Microsystems it Is customary
for workstation users to mount several file systems from many different file servers onto
their diskless-machine file space. Furthermore, many clients have local disks that in some
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TABLE 2.2. WORKSTATIONS WHOSE TRAFFIC 15 USED IN THE EXAMPLES
WORKSTATION TyPE MEMORY SizE OS VERSION LocAL Disks
station 1 Sun-3/160 server | 20 Mbytes Sun-UNIX 3.5 2 disks
station 2 Sun-3/50 client 4 Mbytes SunOs 4.1 diskiess
station 3 Sun-3/50 client 4 Mbytes SunOSs 4.1 diskless
station 4 Sun-4/110 client 8 Mbytes SunOS 4.0 2 disks
station 5 Sun-3/280 server 8 Mbytes SunOS 4.0 4 disks
station 6 Sun-4/260 client | 16 Mbytes SunOS 4.0 1 disk
station 7 Sun-4/280 server | 32 Mbytes Sun0s 4.0 1 disk
station 8 Sun-4/280 client | 32 Mbytes Sun0S 4.0 3 disks
station 9 Sun-4/280 server | 32 Mbytes SunOs 4.0 2 disks
station 10 | Sun-3/75 client 8 Mbytes SunOSs 4.1 diskless
station 11 Sun-4/260 client | 32 Mbytes Sun0S 4.0 1 disk
station 12 | Sun-3/50 client 4 Mbytes SunOSs 4.1 diskless
station 13 | Sun-3/50 client 4 Mbytes SunOs 4.1 diskless
station 14 | Sun-3/50 client 8 Mbytes Sun0Ss 4.0 diskless
station 15 | Sun-4/110 client 8 Mbytes SunOs 4.0 1 disk
station 16 | Sun-4/260 client | 16 Mbytes SunOs 4.0 1 disk
station 17 | Sun-3/50 client 4 Mbytes SunOsS 4.0 diskless
station 18 | Sun-3/110client | 16 Mbytes SunOsS 4.0 1 disk
station 19 | Sun-3/280 client | 16 Mbytes Sun0S 4.0 2 dlisks
station 20 | Sun-4/110 cllent 8 Mbytes SunOs 4.0 1 disk
station 21 Sun-3/280 server | 16 Mbytes Sunos 4.1 2 disks
stafion22 | Sun-3/50 client 4 Mbytes SunOsS 4.0 diskless
station23 | Sun-4/280 server | 32 Mbytes Sun0OS 4.0 2 disks
station24 | Sun-4/110 client 8 Mbytes SunOs 4.0 diskless
station25 | Sun-3/50 client 4 Mbytes SunOSs 4.0 diskless
stafion 26 Sun-4/260 client | 16 Mbytes SunOS 4.0 1 disk
station 27 | Sun-3/260 client | 16 Mbytes Sun0S 4.0 1 disk
station28 | Sun-3/280server | 16 Mbytes SunOS 4.0 2 disks
FIGURE 2.13. NETWORK UTIUIZATION (PERCENTAGES)
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cases are used to export files to other machines, and thus, at Sun, even personal work-
stations may function as file servers for other workstations. As a resutt, the patfterns of file
access of individual users are quite complicated.

On the average. no single client workstation sent or recelved much more than 2
percent of the total number of packets over the entire 10-hour trace. File servers gen-
erated a higher proportion of the traffic because they interact with many clients simul-
taneously. This is shown in Table 2.3, which lists the most active workstations. The second
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column and third column show what percent of the total number of packets and what
percent of the total number of bytes respectively had a source address belonging to the
machine listed in the left column. Similarly, the last two columns represent the percen-
tages of packets and data bytes received by the workstation. Thus, each of these four
columns would add up to 100 percent when complete. Note that the workstations listed
(28 out of a total of 130) account for about 80 percent of all packets.

TABLE 2.3. LisT OF SOURCE—DESTINATION TRAFFIC (PERCENTAGES)

WORKSTATION SOURCE DESTINATION
PACKETS BYTES PACKETS ByTES

station 21 (s) 18.6 19.3 15.4 12.6
station 7 (s) 8.3 9.2 6.2 4.1
station 23 (s) 7.6 10.8 5.6 6.6
station 28 (s) 6.8 6.7 59 3.7
station 5 (s) 48 6.7 3.1 29
station 9 (s) 3.1 3.1 24 09
station 13 24 25 28 3.6
station 27 20 3.0 1.1 0.7
station 11 20 04 2.3 1.2
station 25 1.9 24 2.8 4.5
station 14 1.7 2.1 2.6 4.2
station 3 1.6 1.8 2.4 3.5
station 15 1.6 20 1.6 2.0
station 8 1.6 1.8 14 1.5
station 20 1.4 1.1 1.2 0.6
station 22 1.3 1.8 1.3 1.9
station 1(s) 1.3 o 2.1 2.7
station 26 1.3 1.5 1.8 2.7
station 2 1.3 1.6 1.5 2.2
station 19 1.2 1.3 1.1 1.0
station 4 1.2 0.6 0.9 0.6
station 24 1.1 0.7 1.2 0.9
station 10 1.1 0.7 1.1 0.7
station 16 1.0 0.9 2.8 50
station 18 1.0 0.7 1.0 06
station 6 1.0 0.5 1.1 08
station 17 08 1.0 1.2 1.8
station 12 0.7 0.6 0.9 0.9
Total 79.7 84.9 74.8 744

As we can see, the traffic in this network was rather balanced: no single workstation
dominated over the others. In contrast, in the Berkeley study we found that a single disk-
less workstation on occasion generated 20 to 25 percent of the network load over short
intervals of time and accounted for more than 16 percent of the total data bytes over a
day. The balanced load in the Sun network suggests that there is a better match
between hardware—machine power, local disks, large memory configuration—and user
workload than in the Berkeley environment. In a university environment, students often
are assigned limited resources, which they tend to overwork even if they have to pay the
price of poor performance.

There is clearly a 24-hour periodicity in Figure 2.12 and a shorter periodicity in Figure
2.13. In the next chapter, we will examine in depth the question of whether or not the
traffic produced by individual stations is stationary. Here, we are interested in a related
question: whether the trends in the aggregate traffic are connected to the number of
active workstations. If so, the nonstationary trends in Figure 2.13 can be predicted by the
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number of active workstations for some definition of ““active’’. At any given time, one
can define a workstation as active if it has transmitted at least a specified number of
bytes or packets over a given interval. The *‘best’ results were obtained when we con-
sidered active those workstations that sent more than 4 Kbytes in 1-second intervais.
Even in this case. however, the association between the number of active workstation
and network load was weak, as qualitatively illustrated in Figure 2.14, which shows a
smoothed version of the load in Figure 2.13 and the smoothed number of workstations
that transmitted more than 4 Kbytes in 1-second intervals. (The smoothing was per-
formed in both cases by averaging together 40 consecutive values.) This is not surprising
when we recall that different workstations produce different loads, and that even a sin-
gle workstation generates varying loads during the day.

FIGURE 2.14. COMPARISON OF PERCENT NETWORK LOAD (TOP) AND NUMBER OF ACTIVE WORKSTATIONS (BOTTOM)
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It is interesting to compare the network’s packet length distribution with that of the
Berkeley study. Figure 2.15 shows the percentage of packets transmitted in the Sun net-
work as a function of the packet length. Its counterpart for the Berkeley network is Figure
A.3. Figure 2.15 is very interesting. As expected, there are many fewer small packets
than in the Berkeley network, in which many users accessed machines on other networks
through remote login programs, producing small TCP packets for keyboard characters
and for the associated protocol acknowledgements. (TCP produces in this figure the
lines at 46 and 1064 bytes.) Also predictable is the much higher peak at 1500 data bytes,
caused by the substitution of ND with NFS as the transport protocol for paging fraffic.
(Notice that ND is still being used by the server station 1. this protocol produces the lines
at 48 bytes and 1072 bytes.) We observed that, except for the peaks mentioned above
produced by TCP and ND, NFS generates all the other peaks, an indication of the homo-
geneity of the Sun environment. The higher weight of the mid-sized packets, those
between 100 and 200 data bytes, which are NFS remote procedure call protocol pack-
efs, is more interesting. Together, the packets in this interval constitute 34.7 percent of
the total. We had predicted in [33] that this segment of the packet-length distribution
would have increased as more and more applications use RPC protocols.
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FIGURE 2.15. PERCENTAGE OF PACKETS VS. PACKET LENGTH
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Figures 2.16 and 2.17 show histograms of the interarrival fimes and of the intempacket
times. In both graphs, the abscissa is logarithmic and on the ordinate we plot the square
root of the number of events (interamival and interpacket times respectively) that fallin a
particular interval.

FIGURE 2.16. HISTOGRAM OF INTERARRIVAL TIMES — AGGREGATE TRAFFIC
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The highest peak in Figure 2.16 is generated by consecutive 1500 byte packets. As
we have seen in Section Vil, most of these packet pairs have unrelated source and desti-
nation addresses, and are separated by the minimum interpacket times. Thus, most of
them appear in the peak near the origin in Figure 2.17.

The histograms in Figures 2.16 and 2.17 are proportional to estimates of the marginal
density probability functions of the interarival and interpacket times. These estimated
functions are difficutt to model directly as they appear to be the superposition of discrete
and continuous components. Although we understand the significance and the origin of
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FIGURE 2.17. HISTOGRAM OF INTERPACKET TIMES — AGGREGATE TRAFFIC
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the peaks, we can think of no simple analytical representation for them. The value of
these histograms is the negative result that they make expilicit: times between amivals are
not exponentially distributed,

There are significant correlations between subsequent interarrival times, but we will
postpone the study of their second order properties to Chapter 3, in which we look at sta-
tistical descriptions of the arrival processes generated by individual workstations.

IX. Summary

In this chapter we have described and illustrated our measurement methodology
and techniques. Measurements were taken through passive listening of all packets on
an Ethemet local-area network. We used a dedicated machine with a modified network
driver that collected packet protocol information and dumped it to large files, which
were later transfemed to magnetic tapes. The machine had a 2-MHz hardware counter
that was used as a high-resolution clock. However, as our detailed timing emor-analysis
section has shown, the clock values in the traces are not as accurate as the original
clock’s 0.5 microsecond resolution. These timing errors, the great majority of which are
less than 100 microseconds, are still small for the type of analyses we carry out in this
study.

We have discussed the basic properties of the aggregate traffic of the Sun network
mainly to place in a broader perspective the per-workstation statistical description of the
tratfic. which will be the topic of Chapter 3. The reader may also find it useful to com-
pare directly these results 1o our previous analyses of traffic measurements in a university
environment, which we reproduce in Appendix A.
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3 Traffic Patterns of Individual Workstations

In Chapter 2 we have examined the aggregate, system-wide network traffic. Our
next step wil be to analyze the traffic from the perspective of the basic units that gen-
erate traffic—individual workstations. Although individual workstations are not the only
conceivable units for studying network traffic—two alternatives are individual processes
and clusters of clients workstations—they are the most logical choice. Individual (client)
workstations are associated with individual (human) users and, at least to a certain
degree, produce traffic when users are active. In this chapter we will perform several
types of stochastic analyses on the arrival processes associated with the receive and the
send queues of individual workstations.

A workstation’s send queue process will be constructed by extracting packets
whose source address is the workstation’s network address from the general traces. Simi-
larly, packets whose destination address is the workstation’s address will be selected from
the general traces and assembled together as the receive queue process. These will
include packets originating from the workstation’s file server as well as packets from other
workstations. In the case of a file server, the transmit queue will contain packets
addressed to several clients, some or all of which may be simuttaneously active, and the
receive queue will contain packets from all the clients. Thus, for file servers the packet
arrival processes are the superposition of more basic client-workstation processes. As dis-
cussed in Chapter 2, each of the records of these extracted (sub)traces will contain tim-
ing information that will allow us to compute interarrival times.

Of course, the processes obtained in the manner described above will not be the
same as those that would be recorded if the only machines on the network were source
and destination machines. On an Ethernet, as the offered load increases. the network
contention also increases, resulting in coliisions, and, uftimately, in transmission delays.
Although we will not consider the effects of collisions, in this chapter we will show that in
the Sun Engineering network there is only a moderate amount of interaction among the
various machines, i.e., the proportion of time in which two or more pairs of communica-
tion machines are active simultaneously is small. However, we make no claim that our
network packet-arrival processes have the same stochastic properties as the packet-
arrival processes that would be produced in a contention-free network.

In the next section we will look from a macroscopic time scale at the load patterns
produced by individual workstations. These patterns consist of sequences of busy and
idle segments, which we will analyze in Section lll. in Section IV we will look at histograms
of interarrival times, and associate protocol properties with the peaks in the histograms.
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The processes we are dealing with are nonstationary (Section V). By extracting from
each arrival process a subset of the interarrival times, which we define as the ““busy
period’’ In Section VI, we will obtain processes with better stationary properties. Using
these subsets, we will study the autocorrelation coefficients of packet armival processes in
Section VII. Finally, we will discuss whether network serialization and sharing or shared file
servers produce correlations in pairs of otherwise unrelated processes.

Il. The Network Load of Individual Workstations

The various client workstations listed in Table 3.3 each generate roughly the same
total volume of traffic during the working hours of a day. Yet, user behavior— busy/idle
cycles of packet transmission—varies a great deal from workstation to workstation; differ-
ences in the work patterns of individual users account for this variation. It is instructive to
look at the Ethemet load generated by the send queue and at the load directed to the
receive queue of a couple of workstations.

Figures 3.1 and 3.2 display these loads for the workstation station 3. (Each vertical
line represents the average load over a 30-second interval) We notice that communi-
cation follows an on-off behavior typical of a person’s work pattem. The spikes in the
graphs indicate that there is burstiness, by which term we imprecisely refer to a high
peak-to-mean ratio, when the load is measured at 30-second intervals. However, it is
unclear whether this interval or a shorter one is appropriate for studying burstiness. In
Chapter 4 we will introduce a formal definition of (interarrival time) variability and pro-
pose quantitative techniques for measuring it.

FIGURE 3.1. NETWORK LOAD (AS PERCENTAGE OF TOTAL) FIGURE 3.2. NETWORK LOAD (AS PERCENTAGE OF TOTAL)
WORKSTATION STATION 3 (SEND QUEUE) WORKSTATION STATION 3 (RECEIVE QUEUE)
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Station 3, a diskless Sun-3 model 50 with 4 Mbytes of physical memory, does not
create a high load on the network in spite of its small memory, which could potentially
cause a high paging rate. Nor did any of the other Sun-3/50°s generate a high load. In
the Berkeley study we saw that individual Sun-3/50’s on occasion generate enough load
to utilize one-fifth of the Ethemet raw bandwidth. This did not occur in the Sun environ-
ment, most likely because there was a better match between users’ workloads and
hardware capabilities than at Berkeley. In a university, where each machine is com-
monly shared by several student users, workstations tend to have shorter pauses (.e..
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periods of idle time). Furthermore, students often overwork their hardware, sometimes at
the expense of performance; in a company, the loss of productivity resulting from
insufficient hardware power is not tolerable, and more powerful hardware is obtained for
heavy users, while lighter users receive less powerful machines. Another reason for the
network load difference is lower paging rates, which are the resuft of the improvements,
mentioned eariier, in the virtual memory management scheme of SunOS 4.0. Finally, we
note again that in the Sun network there are fewer diskless workstations, machines that
depend on network communications for sending and receiving even the smallest bit of
information to and from their file systems, the temporary file space, and the swapping
areaq.

The dofs visible in Figure 3.1 can be attributed to periodic messages exchanged
between client and server, and are produced by small software tools that are frequently
run on client workstations. Such tools typically monitor some performance index on the
server (or on other machines), for instance the CPU load, displaying graphically the infor-
mation on the user’s display. Monitoring is performed by periodic packet transmittal,
which infroduces a deterministic component in the interarrival times, complicating our
analysis but affecting the network load very little. In Figure 3.2. these periodic packets
also appear as horizontal lines when relatively few other packets are sent.

FIGURE 3.3. NETWORK LOAD (AS PERCENTAGE OF TOTAL) FIGURE 3.4. NETWORK LOAD (AS PERCENTAGE OF TOTAL)
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As another example of the types of traffic pattems produced by a client work-
station, we show in Figures 3.3 and 3.4 the load generated on the Ethemet by those
packets sent and received by station 16, a Sun-4 model 260, with 16 Mbytes of main
memory and a 250-Mbyte local disk. Local disks on client workstations are typically
configured to hold the root file system and the swapping partition, to both of which
much of the UNIX disk traffic is directed. This disk traffic produces relevant network traffic
it the machines are diskiess. Hence. workstations with local disks. as in the station 16
example, display lower network utilization. The figures show that while station 16 does not
keep the network as busy as as station 3 does, station 16 produces peak network loads
that are higher and longer than station 3's because its faster architecture can sustain
higher transmission data rates. This pattern is probably caused by the workstation
transferring data from other workstations to its local disk during its busy periods. The high
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number of 1500-byte packets in Figure 3.6, plot of the packet length distribution in the
receive queue, indicates the higher activity of its receive queue.

FIGURE 3.5. PERCENTAGE OF PACKETS VS, PACKET LENGTH  FIGURE 3.6. PERCENTAGE OF PACKETS VS. PACKET LENGTH
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Figure 3.5 shows that medium-sized packets are over-represented in comparison
with the network average shown in Figure 3.15. In contrast, medium-sized packets are
under-represented in the receive queue (see Figure 3.6). With such unusual packet sze
distributions and network load patterns, traffic models based on station 16 data will not
be representative of typical-traffic pattems.

ll. Busy and Idie Phases

Figures 3.1 through 3.4 reveal on a macroscopic time scale of busy/idle intervals just
how variable network traffic pattems driven by individual user behavior can be. Busy
periods—time intervals during which the network load is significantly different from zero—
can range from 30 seconds to 30 minutes: idle periods from a few seconds to several
hours. We have studied the autocorrelation coefficients of the lengths of busy and idle
segments for the send and receive queues of several workstations. The values of the
coefficients suggest that these processes could be modeled as attemating renewal
processes, i.e., as processes in which successive intervals are sampled from two indepen-
dent probability distributions. The series of correlation coefficients of an alternating
renewal process altemates between a positive and a negative vaiue [19, page 89]. The
autocorrelation coefficients of the estimated busy/idle phases do altemate, although
they decrease as the computed correlation is for busy/idle phases farther and farther
apart (.e.. as the lag increases) and eventually become negligible. Another model,
perhaps more suitable for these types of data, would be a first-order autoregressive pro-
cess of the form X, = aX; +Y,. where Y; is a purely random process and the coefficient a is
negative. The autocorrelation coefficients of this type of autoregressive process also
alternate, but their absolute values decrease as the lag increases.

Beside these general observations, we will not attempt to describe the stochastic
properties of the busy/idie periods because we do not have enough data to make
parameter estimation statistically meaningful. To discriminate between different attema-
tive models requires longer data sets, perhaps spanning several days. Instead. we will
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focus on the busy periods alone. Busy periods are the most important aspect of packet
arrival processes: it is during these intervals that queue buildups occur: that network con-
tention is reflected in the response time; and that, in general, protocol and system perfor-
mance determines the shape of the arrival processes themselves. Later in this chapter
we will provide a formal definition of “‘busy period”” and characterize in detail busy
periods of several client workstations and file servers.

IV. Histograms of Interarrival Times

in this section we will analyze histograms of interarrival times. Assuming that the
series are stationary, interamivaktime histograms are, except for a scale factor, biased
estimates of the marginal probability density functions of the interamival times. in fact,
the probability that interarrivals X;'s assume values in an interval of sze & centered at x
can be estimated by

- b0
Pr(x. 8) = N
where N is the number of élemen’rs in the time series and b is the function
1if x- % <X <X+ %

bH) =
0 otherwise .

If the time series is stationary, the estimated probability is unbiased. Hence
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Since Pr(x, 8) is related to the probability density function by
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by definition, if § is small we can approximate the integral with the product p(x)é. Rear-
ranging, we obtain
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a sample estimate of the probability density function.
From equation (3.1) we can compute the expected value of p(x):
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Thus, In general,
E(D()) # OO .

that is, p(x) is a biased estimate of p(x). In addition, it can be easily shown that the bias
is proportional to 8, the size of the interval.

In the figures of this section, we have chosen to indicate on the ordinates the values
of the counts T.b(X) instead of the scaled version. This will allow the reader to relate
more directly the height of the various points to the size of the data sets.

In Figure 3.7 we plot the histograms of the interarrival times of packets generated by
the send queue and received by the receive queue of the client stafion 25. Each histo-
gram contains 100000 interarrival times. The abscissas of each graph were modified by a
logarithmic transformation; on the vertical axis, we report the square roots of the bin
counts,

FIGURE 3.7. HISTOGRAM OF INTERARRIVAL TIMES — CLIENT STATION 25
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In Figure 3.7, and in the following histograms presented in this section. the estimation
procedure is rather sophisticated: the size of the bins over which the histogram is com-
puted is not constant, but increases exponentially, that is. the size of the bins is constant
in logarithmic coordinates. The histogram is computed in a standard way, by counting
the number of interarrival times that fall in each bin. Hence, in order to *‘comrect’” the
shape distortion introduced by this method, one would have to muttiply each point by a
value obtained from a negative exponential curve.

Using exponentially increasing bins has several advantages. First, a single histogram
can capture interamival times spanning more than three orders of magnitude, which
would not have been possible with equally spaced bins. Second. since the majority of
interamival times are concentrated in the 1 to 3 ms range, smaller bins on the lefthand
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side region of the histograms allow us to display the curves with higher resolution in that
region. Third, since the variance of interamival times within classes of communication
events grows with the increase in the mean interarrival times of these classes of events,
the procedure matches more closely the size of the bins to the variance (or, more prop-
erly, to the standard deviation of interamival times) and permits the representation of all
of these classes as peaks in the histograms. In contrast, in a standard histogram, classes
of interarrival events whose standard deviations are larger than the size of the bins could
be invisible. For instance, without considering network contention and collisions, a class
of closely spaced interarrivals, such as those resutting from protocol fragmentation, shows
a small variance and produces a narow peak. Instead, periodic (but less frequent)
events generated by programs that access a peripheral (such as a magnetic disk) show
a much larger variance, and need a larger bin in order to appear as peaks. Finally, a
fourth advantage of this procedure is that it amplifies the values of the histogram for
large interarrival times allowing us to discriminate trends and properties that we would
otherwise miss: for instance. without this feature we would not have seen the decrease in
the interarrival times after 100 ms in Figure 3.7.

In order to provide an explicit comparison between a histogram with constant bin
sze and one with exponentially increasing bin sizes, in Figure 3.8 we show a constant-
size-bin histogram that corresponds to the first part of the top graph in Figure 3.7.

FIGURE 3.8. CONSTANT-SIZE-BIN HISTOGRAM OF INTERARRIVAL TIMES — CLIENT STATION 25 (TRANSMITTER QUEUE)
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in this figure we have used the same convention as in Figure 3.7: the abscissa is displayed
in a logarithmic scale. and on the ordinate we plot the square root of the counts.
Observe that the highest peak in Figure 3.8 is higher than the highest in Figure 3.7 since
we use a bin that is actually larger than the bin used for the comresponding region in Fig-
ure 3.7. which, therefore, has a higher resolution in that region. It is important to note that
this higher resolution does not involve higher computational costs; on the contrary. in Fig-
ure 3.7—showing histograms with only 800 bins—bins below 5.4 miliseconds are smaller
than the constant-size bin in Figure 3.8; this figure contains 2000 points, and hence has a
bin of about 25 microseconds. Because of the logarithmic x-axis scale, which results in a
higher concentration of points in the right half of the curve, in Figure 3.8 the histogram is
finely jagged for times larger than 10 miliseconds. Also. notice how the curve is stretched
and fiattened in this area, making it difficult to discem any trends or patterns. Changing
the y-axis scale does not help: as mentioned above, there are too few points in each bin
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for any significant pattem to show up in the representation of Figure 3.8. Retuming to Fig-
ure 3.7, we can appreciate how much ecsier it is to see the small bump at 13 milliseconds
than it is in the constant-size-bin histogram.

A drawback of our variable-size-bin procedure, indicated by our analysis of the sta-
tistical estimate of probability density functions, is the increasing bias as interarrival times
lengthen. However, since we do not plan to use these histograms (or probability densi-
ties) for quantitative analysis, but only to show qualitative properties of our amival
processes, this is not a major problem. Furthermore, given the nonstationarities present in
our processes, histograms are affected by other errors that are difficult to quantify. Thus,
it is not clear whether regular histograms could be used quantitatively anyhow.

FIGURE 3.9. HISTOGRAM OF INTERARRIVAL TIMES — SERVER STATION 23
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In Figure 3.9 we show histograms of interarmival times for the send and receive
queues of file server station 23. Although this figure and Figure 3.7 look roughly similar,
there are several differences worth noting. The first portions of the histograms, showing
interarmrival times up to 10 milliseconds, depend on protocol time constants. As a result,
the two workstations produce peaks at about the same points in the top histograms of
each figure. However, whereas the highest peak in station 25's send queue occurs at
1.71 miliseconds, the highest peak in station 23's case occurs at 1.25 miliseconds. Since
1.2 miliseconds is the minimum time between two 1500-byte messages, station 23 must
be sending these fragmentation packets back-to-back. (In Chapter 2, we have dis-
cussed the consequences of minimum-interframe packets on the measurements.) These
peaks correspond to the interamival times between successive 1500-byte packets gen-
erated by the IP protocol fragmentation of 8-Kbyte NFS messages (see Appendix A for
details on this type of message fragmentation). In station 25, these messages are write
messages; in station 23 they are replies to read requests. The relative shift can be
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explained by the difference in speed between the two CPUs: station 25 s a 15 MHz
Motorola 68020 and station 23 a 16 MHz Sparc. which, in spite of the comparable clock
rate. has a much faster architecture. (Analytical and measurement studies [33,49,64]
have pointed out that the bottleneck in the file server is most often the CPU, and, as @
result, @ network system of this type is most often configured with the fastest machine act-
ing as a file server for several, less powerful clients.)

The same reasoning explains why the peaks of the transmitter are shifted to the right
of those of the receiver in Figure 3.7 (the receiver queue of a client is related to the
transmit queue of its file server). Because station 23 is a file server, the situation is reversed
in Figure 3.9. Also, since its receive queue is the result of the overlapped transmission of
several clients of different speeds, the result is the multiplicity of peaks we see in the lower
graph. Station 23's simuttaneous communication with several other workstations aiso
explains why there is a nonzero probability that times between packets arriving at its
receive queue are very small. This is shown by the extensions of the points to the left of 1
millisecond in Figure 3.9.

In the top graph of Figure 3.10 we show a histogram of 100000 interarrival times pro-
duced by packets amiving at the send queue of client workstation station 15. Although
this machine has a local disk, it was relatively busy communicating with file servers and
other clients, and its the estimated marginal distribution of interamival times looks quite
similar to those we have seen before. In the other four graphs in Figure 3.10, we show
some principal components of the total traffic produced by the send queue. First, in the
second graph from the top. we have the histogram produced by successive NFS pro-
cedure calls, the packets that in Figure 3.15 occupied the region of packet lengths
between 100 and 200 bytes.

We recognize that these packets generate interarrival times that occupy primarily
the middie region of the histogram, running from 4 to 80 milliseconds. NFS remote pro-
cedure calls require substantial processing time, and hence more time between succes-
sive send or receive operations, because they often require disk accesses, for instance
during path-name transiations; because of more complex protocol headers; because of
the need for marshaling argument data types; because of the need to convert the data
to an extemal representation so that it can be received by machines with other number
representations or storage format conventions; and so on. In this region the curve is more
or less flat, which means, recalling the way in which the variable-size-bin histogram works,
that the interarrival time density function should be a negative exponential. The time
between events in a Poisson process is exponentially distributed. However, it is doubtful
that a Poisson process would model the data appropriately, since it appears that succes-
sive arrivals in the **100-200/100-200"* class are strongly correiated.

When the IP protocol layer fragments 8-Kbyte messages. it generates six fragments,
the last of which is shorter; this produces four **1500/1500"" interarrival times and one
interarmival that we will call **1500/LastFragment’”. The distribution of these times is shown
in the next two plots of Figure 3.10. These plots indicate that the interamval times gen-
erated by the last fragments are not different from those of the previous **1500/1500"°
fragments. Peak locations and histogram domains are very similar. Peak values in the
first of the two histograms are in a ratio of 4 to 1 to the peak values in the second histo-
gram; this ratio corresponds exactly to the ratio between the frequencies of **1500/1500"
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FIGURE 3.10. HISTOGRAMS OF INTERARRIVAL TIMES — CLIENT STATION 15 (SEND QUEUE)
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pairs and *1500/LastFragment’” pairs. We see that protocol fragmentation produces
small interamrival times and calculate that about 44.5 percent of the interarrival times
belong to these two classes. We observe also that the smaller peaks in these plots may
be the result of transmission delays due to network contention and transmission

reschedulings caused by collisions.
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FIGURE 3.11. HISTOGRAMS OF INTERARRIVAL TIMES — CLIENT STATION 15 (RECEIVE QUEUE)
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Most often these 8-Kbyte messages are part of larger user-level data transfers; thus,
it is quite common that two or more of them follow each other. if this happens, the
packet ofter the last fragment of one message is the first 1500-byte fragment of the fol-
lowing message and it is interesting to look at the distribution of the times between these
two classes of packets. We show this distribution in the last histogram of Figure 3.10. In
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this case we have a fiat curve across the entire domain and the same considerations we
made above for the middle part of the second plot apply here as well.

In Figure 3.11 we show plots equivalent to those of Figure 3. 10 for the receive queue
of workstation station 15. These histograms are, in general, quite similar to the previous
ones. A distinctive feature, however, is the comb-like sequence of peaks in the aggre-
gate histogram, which would not have been as apparent without the use of variable-size
bins. As the second plot shows, the peaks are caused by interamival times between
medium-sized NFS packets. We do not know the source of these consecutive short NFS
packets, although we have determined that all of the packets follow each other within a
relatively short interval of real time. Most likely, they were generated by a particular user
application. Because these interarrival process patterns are unusual, we decided not to
be concerned with this level of detail in the models.

Another interesting feature of the station 15 receive-queue histograms appears isin
the last plot (the **LastFragment/1500°* plot), in which there is a small peak centered at 8
milliseconds and extending from about 7 to 9 milliseconds. These delays between suc-
cessive 8-Kbyte messages appear to be caused by disk accesses: station 15°s receiver
activity consists of packets coming mostly from its file server.

Finally, as an example of the histograms produced by a less utilzed workstation, in
Figure 3.12 we display graphs of interamival times for client station 11. These plots were
based on roughly four-hour traces rather than 100000 interarrival times. Since the traffic
of this workstation is highly unbalanced between the transmit and receive queues, had
we considered only 100000 arrivals for each queue, we would have covered two quite
different intervals of real time. Here, also, we have truncated the plots at the interarmival
time of 1 second because there were quite a few long interarrivals that would have
excessively compressed the more interesting areas of the histograms.

The swollen intermediate part and the absence of the typical high peaks between
1 and 2 miliseconds in the top graph, representing the interarrival times between packets
transmitted by station 11, indicates that the transmitter did not transfer many data. The
NFS protocol caches for 30 seconds file descriptor information (see Appendix A), which
then needs to be revalidated—a process that generates medium-sized interamival times.
Since NFS is a request-response protocol, the receiver graph also shows a developed
intermediate areq, if compared with Figures 3.7 and 3.9. Like station 16, station 11is not a
workstation on which to base typical-traffic models.

The histograms of interarrival times that we have discussed in this section are related
to the marginal probability distributions of interarrival times. Alone, they do not fully
describe the stochastic processes we are studying: it is necessary to represent the joint
probability structure of each of these processes, that is, for interarrival times,

FX|X,~~X,.(X1rx2' s X)) PROX X0, X2 € X2, " . Xn S Xn) @32

for all n.

Using joint distribution and density functions is very complicated; however, since
most of the properties of stochastic process that are of interest in the description of
packet arrival processes depend only on the first- and second-order joint moments
[8, Chapter 6], we will complement the histogram analysis with the study of the
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FIGURE 3.12. HISTOGRAM OF INTERARRIVAL TIMES — CLIENT STATION 17
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correlation properties of packet amival processes. We will cary out the correlation
analysis after discussing, in the next section, whether the arrival processes are stationary.

V. Stationarity of Packet Arrival Processes

In this section we determine whether the stream of packet arrivals of a single user
workstation constitutes a stationary point process. A process is (strictly) stationary if its
joint distribution (3.2) is invariant under transiations in time (or serial number), that is, for-
mally, if

FXen + Xon QX1 X2 o0 Xian) = P e X1+ Xps2e vevs Xjan)

for all i, /, and n. The property of stationarity is a highly desirable one for a point process:
stationary processes benefit from a wealth of analysis techniques and lead to simpler
models. Unfortunately, as is often the case, only rarely do “‘real-life’” processes conform
to this simplifying property.

Requiring that the marginal and joint probability distributions be time invariant is
quite restrictive. Since we will base our descriptions of packet-arrival point processes only
on first- and second-order properties, we will also choose a weaker definition of stationar-
tty: a process is stationary if its first- and second-order descriptors are time invariant. In
addition, since we will work both with count and interarrival time descriptions, we observe
that the two are complementary aspects of an arrival process: a count process and an
interamival time process. The count and interarrival time processes are related because
the sum of the counts in an interval of size tis less than or equal to k if and only if the sum
of k interarmival times is larger than 1. If we assume that a process has a point af the origin,
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we can write

k
Pr(f‘,c, <K=Pr(XX;>1.
= 3
Although from a strictly probabilistic viewpoint, if either of these processes is stationary.,
the other is not necessarily so (for details see [19, page 67)). from a practical viewpoint
we will assume that the stationarity of one of the two processes will imply the stationarity
of the other.

Classical time series analysis considers departures from the assumption of stationarity
that have the form X, =Y, +Z. where the series Z is stationary and Y, is not. If the series Y,
varies slowly with respect to Z. it is called a frend. A good practical rule regarding sta-
tionarity Is given by Granger [32], who defines “‘trend in mean’’ as comprising all frequen-
cies whose wavelengths exceed the length of the time series. This definition is important
because it sheds light on the notion of ‘‘relevant time scale’’ that we will introduce
shortly.

Series with trends can be dealt with by transforming the data so as to remove the
trend. A typical transformation is by way of a linear fitter:

VVI =EG;-uXu .
u

If the fitter is high-pass, the low frequency components, i.e., the trends, in the original
series are removed. A special high-pass fiter can be obtained by differencing the
series—an approach stressed by Box and Jenkins who maintain that a time series should
be differenced until it becomes stationary [10]. (The differencing operation replaces two
successive points in a time series with their difference.)

Another technique used to remove trends in classical time series analysis is by
means of an interpolating curve. The differences between the curve and the original
series are then taken, the residual providing estimates of the local variations. However,
this is feasible only when the number of points in the series is small.

FiGURE 3.13. TIMES BETWEEN SUCCESSIVE ARRIVALS
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The use of data-transformation techniques is not advisable with our arrival processes
because much of the information we need in order to comelate properties of the
processes to protocol and system time constants would be ost. Moreover, nonstationari-
ties in our arrival processes do not satisfy the definition of trend given above. As an
example, in Figure 3.13 we plot 2000 interarival times, amounting to aimost half an hour
of real time, for the receive queue of station 11. On the vertical axis we report the
interarmrival times through a logarithmic transformation and on the abscissa we plot the
serial number. An artificial zero line has been placed at the value comesponding to the
median of this series; in this way, we can distinguish graphically short interarrival times
embedded into sequences of long ones, since the former are printed toward the bottom
of the graphs and the latter toward the top. As clearly seen in this figure, the sequence
consists of segments, which we call phases, ranging from a few units to @ few hundred
interamivals, in which the characteristics of the arrival process appear constant. Transi-
tions between phases occur abruptly, that is, with high frequency components, thus,
these transitions could not be classified as “'trends’* according to Granger’s definition.

The question of whether a time series is stationary can also be a question of time
scale. For example, all wouid agree that the load pattems in Figure 3.13 seem, to visual
inspection, nonstationary. Yet, this particular user might follow the same work pattemns
and produce roughly the same workload in successive half hours. Or the work (and net-
work load) pattems might follow a daily or weekly cycle. Therefore, if we looked at a
period of several days, instead of just at half an hour, the data might look more clearly
stationary.

There are at least two time scales of interest in our study. First, the busy/idle time
scale about which we have already commented in the previous sections. This involves
time intervals from many seconds to many minutes during which the network load gen-
erated by a workstation changes appreciably. A second time scale of interest, one over
smaller time intervals, ranging from a few miliseconds to a few seconds, is one over
which the packet rate of the sender’s queue changes appreciably. A fine time scale is
more important than a coarse one in the context of our study of the variability of packet
arrival processes that are produced and consumed in an interactive system, in which
response time is the key performance index. Hence, for us the “‘relevant time scale’” will
be the second: a time scale that will capture the queuing dynamics of packet amival
processes.

An important consequence of our approach is that we can drop long interamival
times since they will not affect the performance of the system over small time periods. In
particular, we may exploit this in order to remove nonstationary components from the
packet traces. It is clear that a nonstationary sequence at the coarser time scale will
result in a nonstationary sequence at the finer time scale. If we, instead, restrict our
attention to a subset of the amival stream, for instance to a subset corresponding to a
region of high network load, the resulting processes at the finer time scale may be sta-
tionary. We will explore this idea in our study of busy periods.



50 VI. The Busy Periods Chapter 3

VL. The Busy Periods

In this and the next section, we will focus exclusively on busy periods of packet
transmission, as defined below. Our methodology will be to extract from the full traces
the sets of interarrival times occurring during busy periods, and to treat these as a single
sequence. This approach is analogous to our extraction from the aggregate traces of
the packets transmitted by a particular workstation and computation of their interarrival
times: in both instances, we narow the objects of our stochastic analysis to certain sub-
sets of the general traces.

Our first step Is to define the subset consisting of busy periods. A busy period could
simply be defined as a period during which a user is active at the workstation. But draw-
ing the line between busy and idle spans on this basis is far from satisfactory. In a long
compilation task (or any long computation accessing the file system) that proceeds
without user supervision, CPU and network activities are not related to the presence of a
user at the workstation. Conversely, it is quite possible for a user to be active, without
generating any network traffic. A more satisfactory criterion for the definttion of busy
period would be interarrival time length: a workstation is deemed to be busy when the
interamival times at its send and receive queues are shorter than a specified length.

To choose the cut-off point, we return to the histograms of interarrival times that we
previously examined in Section IV. In each of those figures, which we have truncated at
1000 milliseconds. we see that at approximately 80 milliseconds the curve drops quite
noticeably. (Dashed lines have been drawn at the 80 millisecond mark.) The longer
interamival times do not pop up randomly in the time series, but tend to occur in clusters
during periods of low activity such as when a user logs off or leaves a workstation idle.
Typically, only less than eight percent of the points occur after the 80 millisecond mark;
yet, because of their large values and their occurrence in clusters, this small fraction of
interamival times accounts for most of the nonstationary behavior of a workstation.
Hence, we chose 80 miliseconds to be the cut-off point: whenever the interarrival time
exceeds this value, the machine is not deemed to be busy. We experimented with a few
other values for the cut-off point in the range from 60 to 100 ms; no significant difference
was evidenced and we conclude that the sensitivy of the following analyses to the 80
millisecond mark is minimal.

VIl. Autocorrelation Coefficient Series

Correlation is @ measure of causation in the data, and is often (but not always)
associated with cause-effect phenomena. For example, the transmission of a packet
may generate other transmissions within short, predictable times. We have already seen
that this is the case for packet fragmentation of 8 Koyte NFS messages. As another
example, because of packet serialization over the network, there is a causal relation
between Interarrival time and packet length, since transmission of one packet must be
completed before the next packet can be sent. Cormelation coefficients provide a
quantitative measure of the linear correlation among successive elements of a series.

The sample autocorrelation function of a series is defined as the (auto)covariance
function divided by the variance of the series:

CovX), Xip)
P —vao = (K= sl 0
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where the index kis called the lag and the covariance is by definition

COVEX), Xpi) = E(CX = X0k - X0) .

Since the covariance at lag 0 is equal to the variance, the autocorrelation coefficient at
lag O for any series is always 1.

It is clear that a sequence of interrival times all smaller or all larger than the mean
will result in a positive contribution to the autocorrelation coefficients. Since it is quite
common in packet arrival processes to find relatively extended sequences of short or
long interarrivals, we would expect to find positive correlation coefficients.

It is rather difficutt to establish confidence intervals for the series of autocormelation
coefficients. We can, however, define the y-axis interval within which, with some proba-
bility «.. all comelation coefficients should lie were successive elements of the series mutu-
ally independent. If a significant number of corelation coefficients is found outside this
interval, we will consider the series correlated and discard the assumption of indepen-
dence.

If a sequence is sampled from a random process so that the samples are indepen-
dent and identically distributed, all autocormelation coefficients should be 0 except for
the coefficient at lag 0, which is always 1. In this case, Kendall and Stuart [45] show that
the mean and the variance of the p,'s are

=L =1
E(pk) = - N and VOI'(pk) N’

where N is the cardinality of the series. They also show that, under weak conditions, py is
asymptotically normally distibuted. Therefore, the 100(1-a) confidence limits for the
autocorrelation coefficients are -1/N+ z, /NN, where Zq 2 Is such that, for the standard
normal distribution function, Pr(1Z|>Z, ) = a.

In Figure 3.14 we show the series of autocormelation coefficients (sometimes called
correlogram) for the send queues of three file servers, station 21, station 23, and station 7.
In this figure we have drawn as dashed lines the confidence intervals that allow us to
reject the assumption of independence with a 99 percent certainty. While the correlo-
grams of station 21 and station 7 are always positive (accordingly, we have only drawn
the upper limit of the confidence bands). station 23's comelogram has some negative
values. This is an indication (even after the truncation of interarrival times) that the series
contains some sequences of altemating short and long interarival times, which are often
artificially produced by the soffware monitoring tools that we mentioned in Section Il and
are revealed only when users are idle. We could remove from the series such sequences,
but we are reluctant to manipulate the data more than we have already done. We will
keep in mind, however, that some interarrival time series, such as that of station 23, con-
tain sequences that may not be fully representative of user generated busy periods.

In all three workstations there are periodicities that generate small spikes at lag
values muttiple of six. If we recall the discussion of Figures 3.10 and 3.11 in Section IV, in
which we showed that the interarival times classified as *‘LastFragment/1500"° were
more or less uniformly distributed, we redlize that in groups of successive 8-Kbyte transfers
with high probability the *‘LastFragment/1500° interamivals are larger than the others
generated by the message fragmentation. Thus, in sequences of successive 8-Kbyte
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FIGURE 3.14. AUTOCORRELATION COEFRICIENTS FOR THE SEND QUEUES OF THREE FILE SERVERS
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message transfers, we have longer interarrival times spaced exactly six interarrivals apart.
The impact of these is reflected upon the shapes of the comelograms. Since there are
fewer and fewer of those groups. as the number of successive groups increases, the size
of the periodic spikes decreases as the lag increases.

As expected., the series of correlation coefficients decreases towards zero as the lag
grows. Although in the cases of station 21 and station 23 the coefficients approach levels
indicating that after some delay the comelation effects are lost, station 7 shows a
significant long-term correlation. Since all machines run the same type of software and
communicate using the same protocols, we attribute station 7's long-term correlation to
nonstationary components in its arrival process.

Finally, note that, had we computed the correlograms using all interarrival times,
including those larger than 80 miliseconds, the details that emerge in these graphs
would have disappeared, overwhelmed by the dominant nonstationary components.

In Figure 3.15 we show the corelation coefficients of the receive queues for the
same three servers. Three observations deserve to be made. First, uniike the plots of Fig-
ure 3.14, those in Figure 3.15 are not spiky. Since the receive queue of a server collects
the aggregate traffic from all of the server’s clients, various groups of successive 8-Kbyte
messages mix together, resutting in randomization of packet interamival times.

Second, the cormelation coefficients of station 7 decrease towards zero even more
slowly than station 7's send queue coefficients, suggesting that nonstationary com-
ponents are even more dominant here. Table 3.3 indicates why this may be so. Accord-
ing to that table, station 7 receives 20 percent fewer packets and 50 percent fewer bytes
than it generates. This suggests that station 7's average receive-queue packet is smaller.
Smaller packet size in tum suggests that there are fewer long data-transferring packets,
which are associated with short interamival times; thus, the receive queue has fewer short
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FIGURE 3.15. AUTOCORRELATION COEFFICIENTS FOR THE RECEVE QUEUE OF THREE FILE SERVERS
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interarmrival times than the send queue. We have verified that the fewer long packets are
more unevenly distributed in the traces for which we computed the autocormrelation
coefficients. This uneven distribution is the source of nonstationarity.

Finally, the short-term correlation of the receive queues is generally higher than that
of the comesponding send queues. Such higher short-term cormelation is produced by
longer sequences of long interamival times in the receive streams. Table 3.3 indicates
that the receive queues of each of the file servers station 21, station 23, and station 7
contain a larger proportion of small packets. In each case. the average packet size is
smaller in the receive queues than in the send queues. This should be expected, since
client workstations have to page in programs, an activity that requires the servers to
transmit large packets. Another source of large packets are file-system read and write
operations. Since reads. which are transmitted by servers. outnumber writes, which are
received, the send queues of servers contain a larger number of large packets.

In Figures 3.16 and 3.17 we show the comelograms for the send and receive queues,
respectively, of four client workstations: two diskless ones, station 13 and station 25, and
two with disks, station 8 and station 11. Station 13 and station 25 display very similar corre-
lation series, characterized by high initial values that subsequently decline steeply. Sta-
tion 8 with its local disks generates long sequences of medium-sized, remote-procedure-
call packets. These sequences, which produce long interarrival times, occur within the
time series in clusters, creating long-term autocorelation. In station 11's case, we have
another indication that the data is highly nonstationary (compare with Figure 3.12 in Sec-
tion IV).

Interpreting a correlogram is complicated. Often, there are spurious correlations.

and the presence of nonstationary data components alters the shapes of the correlation
curves. Using as point processes for our autocorrelation study what we have calied busy
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FIGURE 3.16. AUTOCORRELATION COEFFICIENTS FOR THE SEND QUEUES OF FOUR CUENT WORKSTATIONS
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FIGURE 3.17. AUTOCORRELATION COEFFICIENTS FOR THE RECEIVE QUEUES OF FOUR CUENT WORKSTATIONS

oad s e T et e SHaon 8
(X T O RN £.11 | 1YV e ue ‘ .

02— b T T i, shation 25

01 “

e

oS S I R T

Serial Number

periods has simplified the problem of dealing with *‘real-life’" processes, for many packet
arrival processes (notably most diskless workstation processes) become stationary. Others
are not quite stationary, but in most cases the range of *‘variability’” has been reduced.
Although we could have used a more aggressive technique to remove nonstationarities,
our method has the fundamental advantage of not transforming the timing relationships
between successive amivals, which allows us 1o relate more directly interarrival times to
protocol features. In Chapter 4, we will discuss a new way of looking at autocorrelation
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coefficients through indices that we will associate with the variability of packet amival
processes. We will also continue there our discussion of the effects of nonstationarity.

VIil. Concurrency on the Network

Analysis of the behavior of single workstations must take into account interactions
between machines, if any. Without a clear understanding of such interactions, models of
packet arrival processes cannot be adjusted to encompass network configurations other
than the one studied. There are three major sources of interaction among workstations:
first, direct communication among them, since the protocols used for this communica-
tion are request-response; second. concurrent access to the same file server; and third,
serialization in the network. During all of these types of interaction there is simultaneous
activity by two or more workstations. Thus, we will begin by looking at the number of con-
currently communicating machines. In the next section, we will consider the effects of
shared resources.

The histograms in Figure 3.18 show the number of 1-second intervals during which a
given number of workstations were active. The chosen interval length of 1 second is short
enough to be meaningful for the queuing behavior of transmit and receive queues, yet
long enough to allow time for the statistical interaction among machines to develop.
Figure 3.18 is built from a subset of all packets recorded in our traces: in order to compare
more directly this figure to the following two figures, we consider only those machines in
the Sun Engineering network that communicate with the six major file servers: station 5,
station 7. station 9, station 21, station 23, and station 28. Between them, these machines
account for 82.4 percent of the total traffic. (The remaining 17.6 percent is primarily
traffic between pairs of clients as well as a small amount of intemetwork traffic.)

FIGURE 3.18. HISTOGRAMS OF THE NUMBER OF 1-SECOND INTERVALS IN WHICH WORKSTATIONS WERE ACTIVE
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Figure 3.18 consists of three separate sets of histograms, reflecting three different cri-
teria for defining an “‘active’’ workstation. In the first set, a workstation was considered
active if it sent or received at least one packet during a 1-second interval; in the second
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set. If it sent or received at least four packets during a 1-second interval; and in the third
set, if it sent or received at least 4 Kbytes during a 1-second intervals. The second and
third tests were devised to exclude workstations that tfransmit only occasionally or periodi-
cally but infrequently. Interpolation curves for the three sets have also been drawn. The
median for the curve for the first set (indicated by a dotted line) is between 9 and 10
workstations: for the second set (indicated by a dashed line), between 5 and 6; and for
the third, approximately 3.

In Figure 3.19 our unit of study is the individual file server rather than the single work-
station. We use the same three criteria for an active machine as in Figure 3.18. Finally,
Figure 3.20 presents histograms for workstations in communications with the busiest file
server, station 21.

FIGURE 3.19. HISTOGRAM OF THE NUMBER OF 1-SECOND FIGURE 3.20. HiSTOGRAM OF THE NUMBER OF 1-SECOND
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All these graphs show a consistent view: there is only a moderate amount of
interaction among workstations and between workstations and file servers. For instance,
notice that the statistical norm in Figure 3.20 in the case corresponding to the criterion
that calls for 4 Kbytes to be exchanged before a machine be considered active is 1.
Nevertheless, it is necessary to investigate whether this partial interaction is reflected in
the second order statistics.

It is also worth estimating the probability that k or more consecutive packets are
exchanged between two machines. We know that machines tend to produce bursts of
messages. thus, low values for this probability distribution would also indicate that there is
network contention.

In Figure 3.21 we display the sample probability that k packets are exchanged (in
elther direction) between two machines. (Here also we considered only those machines
in the Engineering network that communicated with at least one of the six major file
servers, that is station 21, station 7. station 23, station 28, station 5, and station 9) Of
course, for this probability to be meaningful, we have assumed that the distribution is sta-
tionary, when in reality one would expect that, for a given value of k, the probability
becomes higher as the average network load decreases. If we call this probability
Prag(S = k). we have
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Prag(S=k) = Pr[ Bhe (A, B, o€ lA. BL, * . Prokr€ {A. B). Prud (A, B}}

in which p,, Identifies the nth packet, and {A, B} represents the set of packets exchanged
between machines A and B, so that Prag(S = 1) is the probability that the next packet is
not between A and B. Then,

oo k-1
Prag(S= k) = TPras(S= N =1- X Prag(S= (3.3)
Jok I

is the probability that k or more packets are exchanged between two machines. Proba-
bility function (3.3) is displayed in Figure 3.22.

FIGURE 3.21. PROBABILITY THAT EXACTLY K PACKETS FIGURE 3.22. PROBABILITY THAT K OR MORE PACKETS
ARE TRANSMITTED BETWEEN TWO WORKSTATIONS ARE TRANSMITTED BETWEEN TWO WORKSTATIONS
o :gfg 04’
0.01-
0.001 4
0.0001 — 3

The relatively low probabilities are additional evidence that some network conten-
tion is present. In the following section, we determine whether this network contention
creates statistical interaction among workstation arrival processes.

IX. Statistical Interactions Among Workstations

Mutual interactions among personal workstations may have a significant impact on
the packet arrival processes that they generate. Personal workstations, as opposed to a
distributed system composed of several cooperating but autonomous nodes, which must
share access to common data structures as well as other resources, contend with each
other for only two types of resources: shared file servers and the shared network (in this
context, “‘'network’’ refers to the set of links, routers, and interfaces that are shareable).
Although distributed applications can be buitt on top of personal workstations, there
were few instances of distributed programs in use in the Sun system that we studied; most
users accessed their workstations, the file servers, and the other resources independently
of each other. Thus, interaction caused by mutual exclusion synchronization of distri-
buted programs is not relevant. Rather, interaction arises from contention over file servers
and the network. Both sources of interaction will be examined in this section.

Packet transmissions from autonomous machines originate independently of each
other. They will, however, be serialized on the network whenever two stations begin to
transmit simuttaneously. Serialization obviously creates a causal relationship between
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successive arrivals. In addition, concurent file server accesses are related by sharing of
the server's CPU and disks. Yet, it is necessary to determine whether serialization and
sharing result in significant interaction among workstations.

The technique we have chosen for capturing and describing possible interaction
among machines is the analysis of the cross covariance (in the form of cross correlation)
of various packet arrival processes detailed below. The covariance between two series
X; and Y, of means p, and p, respectively is defined by

cov(X, V) = E((X - pX(Y - ) . (3.4)

Since the covariance depends on the units in which X and Y are measured, we will use a
nomalized version of the covariance, the correlation coefficient, obtained by dividing
Equation (3.4) by the product of the standard deviations of X and Y. it can be easily pro-
ven that the cormelation coefficient between two series is @ number between -1 and +1.
Finally, we observe that the correlation coefficient at lag O between two (distinct) ran-
dom series. unlike the autocorrelation for which the coefficient at lag O is always 1, will be
in general different from 1.

The packet arrival processes that we will analyze fall into two basic categories.
which we define as opposite queues and parallel queues. Opposite queues are a pair of
arrival processes one at a send queue and one at a receive queue; parallel queues refer
instead to either two send or two receive queues. Opposite queues can be classified
into four types according to the machines they are associated with: 1) a single work-
station (i.e.. both the send and receive queues belong to the same workstation); 2) one
client and one server; 3) two clients on different file server clusters; and 4) two indepen-
dent servers.

In the single workstation case, comelation is to be expected: the nature of the
transmission sent to the server determines the content and size of the response and the
time i is sent. In the second case we are not sure whether to expect a causal relation-
ship because several different clients contribute to the queue of the server. The third
case considers whether or not there is corelation between opposite queues of two
clients that use different file servers, allowing us to isolate the effects of the network on
correlation. Finally, the fourth case, like the third, in which we consider two independent
servers, helps to detect causation attributable to the network. In this last situation, we
would expect a stronger causal relationship for two reasons: first, servers are more heavily
used than clients., and, second, clients in one cluster often mount file systems from a
server from another cluster of workstations. As a result, a client that loads a file from the
second server in its memory may need to flush some of its memory pages to the swap-
ping area. which is managed by the first server. Thus, in this example, there is a causal
relationship between the send queue of the second server and the receive queue of the
first.

Parallel queues can be classified into three types according to the relationship
between the two machines to which the queues belong: 1) two clients from the same
cluster; 2) two clients from two different clusters; and 3) two servers. Studying parallel
queues is important because they replicate what occurs when processes are superim-
posed. In the case of two clients from the same cluster, we examine the interactions at
the server and on the network of the two send (or two receive) queues. In contrast, in
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the case of two clients from different clusters, the queues’ sole interaction occurs on the
network: thus (as in case three and four for opposite queues), we can isolate the effects
of the network interaction. Finally, it is also important to see how two servers behave with
respect to the superposition of their queues.

We will study both opposite and parallel queues in terms of packet counts and
interamival times. Note that we cannot use subsets of measured series for these caicula-
tions. Since we are trying to see evidence of temporal cause/effect phenomena, we
cannot remove a portion of the measured arrivals, as we did in the study of the auto-
correlation coefficients. Instead, for each pair of amival processes, we will include all
arrivals in the time series.

Packet counts are computed by choosing a constant interval with which to divide
the time axis, and counting how many arrivals occur within each interval. The choice of
the interval over which to compute the packet counts is important and represents a
trade-off between computational cost and accuracy: small intervals will increase cost,
while large intervals will result in loss of burstiness information. In line with Cox and Lewis
[19], we found that choosing the number of intervals roughly equal to the number of
interarrival times gives good results. For the analysis in the rest of this chapter we have
used intervals of 50 milliseconds for computing packet counts.

In the correlation computations, we use arrival streams generated by nine
machines: three file servers—station 21, station 23, and station 7—and six clients. Station
25 and station 14 are clients of station 23. Station 27, station 3, and station 13 are clients
of station 21. Station 11is a client of station 7. Station 25, station 14, station 3, and station
13 are diskless and thus depend on their servers for obtaining, in addition to general file
services, the object code of programs that are executed, and swap space.

In all figures below, except for Figure 3.23, in which we needed more resolution, we
show the first 200 correlation coefficients. The notation *‘station 3->station 21°° will be
used to indicate the comelation curve between station 3's send queue and station 21°s
receive queue. Analogously, with the notation *‘station 3-station 21'* we will indicate
station 3's and station 21's parallel queues. Notice that we cover all cases: if there is a
“station 3->station 21" curve, there will also be the *'station 21->station 3'* one. In each
figure, we indicate with dashed lines the 95 percent confidence intervals for the null
hypothesis that packet counts (or packet interamival times) are not correlated (refer to
Section VIl for more details on the meaning of these confidence bands).

A glance at Figures 3.23 through 3.32 quickly reveals that all the queues, with the
noticeable exception of those in Figure 3.23 and those in Figure 3.25, appear to be
uncorrelated. There are several spurious correlation coefficients (for instance in the
graphs of Figures 3.28 and 3.29), which are generated by the few large sample points
present in the series. In addition, although not every autocorrelation curve is within its the
confidence interval, in almost all cases the coefficients are very small in magnitude and
display random fluctuations. Only opposite queues for packet counts of type 1, i.e..
belonging to the same workstation (in Figure 3.23), and opposite queues of type 2 for
packet counts (in Figure 3.25) show noticeable cormelation. (In type-2 opposite queues,
in which we comelate a queue of a client and that of its server, the correlation is not as
pronounced as in type-1 queues, but we have indicated earlier that, since many clients
contribute to the queue of the server, the causal effects may be reduced.) The
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FIGURE 3.23. CRrosS CORRELATIONS BETWEEN OPPOSITE QUEUES: PACKET COUNTS
SEND AND RECEIVE QUEUES ON SAME WORKSTATIONS
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FIGURE 3.24. CRross CORRELATIONS BETWEEN OPPOSITE QUEUES: PACKET COUNTS
SEND AND RECEVE QUEUES ON CUENTS OF DIFFERENT CLUSTERS
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association detected between the send and receive streams of a workstation is attribut-
able to the use, by many applications, of remote procedure call protocols, which
suspend themselves until an answer to the sole outstanding message is received., resuft-
ing in interlocks between send and receive operations. In addition, since in systems that
use request-response protocols operations are typically initiated by clients (and not by
servers), pauses in a user’s activity that resutt in long interarival times in the send stream
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FIGURE 3.25. CROSS CORRELATIONS BETWEEN OPPOSITE QUEUES: PACKET COUNTS
SEND AND RECEIVE QUEUES ON A CLIENT WORKSTATION AND A FILE SERVER
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FIGURE 3.26. CROSS CORRELATIONS BETWEEN PARALLEL SEND QUEUES: PACKET COUNTS
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are almost invariably associated to pauses in the receive streams.

In all other cases, if any causal relationships do exist, they are overwhelmed by the
large variability of the arrival processes. In fact, it is the greater variability of interamival
time processes in comparison to that of packet count processes (as we have observed
earlier, the range of the probability distribution functions for packet counts is rather lim-
ited) that washes out the correlation in Figure 3.28, which displays the cross cormrelations
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FIGURE 3.27. CROSS CORRELATIONS BETWEEN PARALLEL RECEIVE QUEUES: PACKET COUNTS
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FIGURE 3.28. CRrROSS CORRELATIONS BETWEEN OPPOSITE QUEUES: INTERARRIVAL TIMES
SEND AND RECEIVE QUEUES ON SAME WORKSTATIONS
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between opposite queues on the same workstation for interarrival time processes.

X. Summary

In this chapter we have analyzed the properties of the traffic generated and
received by single client and file server machines. From the prospective of a macros-
copic time scale, workstations produce network loads that can be divided into light (or
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FIGURE 3.29. CRrOss CORRELATIONS BETWEEN OPPOSITE QUEUES: INTERARRIVAL TIMES
SEND AND RECEIVE QUEUES ON CUENTS OF DIFFERENT CLUSTERS
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FIGURE 3.30. CROSS CORRELATIONS BETWEEN OPPOSITE QUEUES: INTERARRIVAL TIMES
SEND AND RECEVE QUEUES ON A CLENTS WORKSTATION AND A FILE SERVER
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nearly zero) and heavy phases. We argued, in Section Il, that traffic models of variability
need only be concerned with what we have termed ““busy”’ periods: intervals of time
during which the arival process produces a “substantial’’ arrival rate. In Section VI, we
then considered what constitutes a substantial amival rate. We concluded that the busy
period should be defined as the interval of time during which interarrival times are no
longer than 80 milliseconds.
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FIGURE 3.31. CROSS CORRELATIONS BETWEEN PARALLEL SEND QUEUES: INTERARRIVAL TIMES
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FIGURE 3.32. CRrOss CORRELATIONS BETWEEN PARALLEL RECEIVE QUEUES: INTERARRIVAL TIMES
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The major reason for focusing on busy periods rather than on the entire sequence of
interamival times is that busy periods are probably more stationary than the full series.
However, upon closer examination, we discovered that, although in most cases busy
periods appeared to be weakly stationary processes, there were also some that were
clearly nonstationary.
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We looked at histograms of interarmival times, which are related to the marginal pro-
bability density functions of interamival times. The decomposition of the histograms by
packet-length classes has shown that short interarrival times are produced by long pack-
ets, which are transmitted in quick sequence by the IP fragmentation layer. Sequences
of shorter packets, produced individually by the NFS protocol layer. tend to generate
long interarrival times. Typically, packet arrival processes from file servers and diskless
machines are more stationary than those from machines with local disks. Whereas in file
servers and diskless machines short interarrival times are more uniformly distributed
because of the high communication demands of these machines, in machines with local
disks we often observe long stretches of medium-sized packets and long interamival
times, which produce appreciable changes in the characteristics of the packet armrival
processes.

We studied the autocorrelation structure of packet armival processes during busy
periods. Often, interpreting the series of comelation coefficients is not simple, but, when-
ever possible, we have tried to relate the shape of the series to protocol and system
features.

We then considered the interactions among various types of packet amrival
processes, and found that the only non-negligible statistical dependence occurs
between the send and receive processes produced by the same workstation.
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4 Indices of Dispersion

Since the first analyses of computer traffic in the mid- and late 1970s [47,80], which
showed that packet arrival processes are highly variable, researchers have frequently
described computer communication patterns as “‘bursty””. Yet few have bothered to
define burstiness. Most seem to invoke the term bursty when confronted with processes
whose interarival time distributions show greater variability than Poisson processes.
(Exceptions do exist; see for instance [62]. in which a distribution with coefficient of varia-
tion 0.3 is termed bursty.) The vagueness surrounding the concept of burstiness stems
both from its use to denote different types of variability in many disparate situations and
from the difficulty of characterizing in meaningful ways the capricious nature of packet
arrivals.

The variability of packet arrival processes is strikingly manifested in the following Fig-
ures 4.1 and 4.2, which represent respectively the times between subsequent arrivals and
the times between every four arivals for the messages sent by a single-user workstation
to its file server over a local-area network. In each figure, the logarithm of the interarmival
time is on the ordinate and the serial number on the abscissa, and artificial zero lines
have been placed at the median values of the series. This graphical arrangement allows
us to view short interarrival times, which would otherwise be obscured by long ones: the
former are printed toward the bottom of the graph and the latfter toward the top.

FIGURE 4.1. TIMES BETWEEN SUCCESSIVE ARRIVALS FIGURE 4.2. TIMES BETWEEN EVERY FOUR ARRIVALS
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The variance of the interarrival times in Figure 4.2 is about six times larger than the
variance of those in Figure 4.1. Clearly, the larger dispersion of values in the second
figure stems from the clustering of small and large interarrival times in separate groups in
the first figure. This bunching is caused by protocol features, such as fragmentation of
large messages. that generate short interarrivals in batches. Similarly, a sequence of
related remote procedure calls may generate a group of longer interarrivals because,
for each request, the destination has to execute a procedure before retumning the
answer, which in tum will trigger the next request. Thus, the increase in variance is related
to the temporal structure in the data and is not captured by simple burstiness indices
such as the coefficient of variation, the peak-to-average ratio, an so on. In this chapter
we will use the term variability to refer explicitly to changes in the variance of the sum of
consecutive interarmivals or in the variance of arrival counts over larger and larger time
intervals.

Variability in packet arivals has been connected to the queuing delays packets
are subject to: the general rule is that more variability corresponds to longer delays.
However, except in a few simple cases, the precise relationship between variability and
queuing delays is difficult to represent analytically. Several attempts to resolve this issue
have been made; in particular, Fendick and Whitt’s approach [26]. which uses a statisti-
cal index that models the variability of the arrival process but also captures the depen-
dency between the interarrival and the service times, is worth mentioning.

In this chapter we take a more narrow, focused approach: we characterize the
variability of measured packet arrival processes with indices of dispersion functions and
discuss the merits of these indices as well as the pitfalls of their indiscriminate use. Indices
of dispersion have long been known in the statistics community as a powerful tool in the
analysis of the second-order properties of point processes [11,19], but, despite the fiour-
ishing in recent years of measurements and analyses of computer traffic data (for a sur-
vey see [65]), they have been rarely, if ever, applied to computer traffic measurements.
Here, we demonstrate that indices of dispersion are valuable and valid tools for charac-
terizing the variability of packet arrival processes. We also discuss how standard analytt-
cal models should be fitted to traffic measurements in order to take into account the
variability of the data.

This chapter is organized into three major parts. In Section Il, we define the index of
dispersion for intervals and the index of dispersion for counts, and review their basic pro-
periies. We then calculate one of these two indices for each of three classes of analyti-
cal models that are often used to represent bursty point processes: renewal models with
hyperexponential interarrival times, batch Poisson processes, and Markov-modulated
Poisson processes. Although the results are in most cases not new, the exercise serves the
important purpose of clarifying the meaning and use of indices of dispersion. In Section
i, we estimate the indices of dispersion for several measured packet arrival processes
generated by single-user workstations communicating with file servers over a local-area
network. We show how nonstationary data introduce difficutties, and suggest that semi-
Markov models may model accurately both short- and long-term variability. Finally, in
Section IV, as an example of how standard arrival models can incorporate the variability
that we have analyzed, we develop a procedure to fit a Markov-modulated Poisson pro-
cess 1o our amival processes.
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Il. Indices of Dispersion

A. The Index of Dispersion for Intervals

Let us consider first describing point processes in terms of the lengths of the intervals
between subsequent arrivals. For packet-arrival processes, these intervals, which we will
call interamival times, are defined as the length of time between the beginning of the
transmission of a given packet and the beginning of the fransmission of the previous
packet. (Cox and Miller [18, page 339] define the same quantity more esoterically as
backward recurence-time.) Notice that under this definition the transmission time of the
previous packet is included in the interarrival time: thus, for networks that aliow variable
packet sizes, this definition infroduces a source of dependency between intervals and
packet lengths. (A constant packet size imposes a lower bound on interamival times, but
not the dependency.)

The variance of the sum of two random variables depends on the covariance
between them, and, if they have common variance, is given by

var(Xy + Xuo) = 2varn(X) + 2cov(Xy. Xu2) .

and, in general, for the sum of n variables we have

varXy, + 0+ Xun) = nvar(X) + Zni‘: zj‘,cov(X,, Xpio - @n
Flk=
We have indicated with var(X) the common variance of the X; (we will also write E(X) for
the common mean), and thus have assumed implicitly that the processes under con-
sideration are at least weakly stationary, i.e., that their first and second moments are time
invariant, and that the autocovariance series depends only on the distance k. the lag.
between samples: cov(X;, Xu) = Cov(X;. Xu. forall i, j, and k.

It is the dependency on the autocovariance, or, equivaiently, on the autocorrela-
tion, that makes the variance of the sum of intervals useful in describing arrival processes.
In fact, in situations like those of Figure 4.1 and Figure 4.2, in which interamivals smaller
than the mean as well as interarrivals larger than the mean are grouped together, the
covariance will assume positive values.

We will use the variance above, normalized by the factor n E2(X), as a measure of
the variability of packet arrival processes. The sequence of values

J = VGF(XH,] + +X;+n)
n- n E2(X)
withn=1,2, -, is called index of dispersion for intervals (IDD.

Notice that J; is C3 = var(X)/E2(X). the squared coefficient of variation for intervals.
As a result of the normalization, for a Poisson process J, has constant value 1 for all n; for
a renewal process, whose interarrival times are identical and independently distributed
@.i.d.). J, Is also a constant in n of value C?. Using equation (4.1) and the definition
pn = COV(X,. X,) / var(X), we can express relation (4.2) in terms of the autocormelation
coefficients at lag n:

4.2

n-1 i
= n
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which shows that point processes with positive correlation coefficients have monotoni-
cally increasing IDI curves. Notice aiso that the limit of equation (4.3), when it exists, is
proportional to the sum of all correlation coefficients (plus 1. that is,

lim J,=C3 |1+ 239! . 4.4
=

n—00

The asymptote in the limit above depends on the sum (integral) of all the correlation
coefficients. Since the interarrival times typically become statistically independent as the
lag increases (the causation effects triggered by a packet transmission, such as addi-
tional queuing and increased disk activity, diminish as time increases), making their auto-
correlation coefficients decrease to 0, for practical purposes the limit will be reached for
a finite value of j As noted above, packet-amival processes normally have positive auto-
correlation coefficients since both interamivals shorter than the mean interarrival time and
those longer than the mean interarrival time tend to occur in separate bursts. in packet-
arrival processes, we would thus expect the IDI sequence to increase with n. Noftice that,
if the data are not stationary, we can still compute an estimate of J,; however, equations
(4.1, (4.3), and (4.4) are no longer generally valid.

B. The Index of Dispersion for Counts

We can also analyze point processes from the perspective of packet counts-the
number of packets in an interval. We can define for packet counts a function similar to
the index of dispersion for intervals. The index of dispersion for counts (IDC) is the vari-
ance of the number of arrivals in an interval of length t divided by the mean number of
arrivals in .

VOf(Nf)
= ———. 4.5
=B 4.5
where N; indicates the number of arrivals in an interval of length 1. The IDC has been so
defined in order that for a Poisson process the value of the IDC is 1, for all 1.
In estimating the IDC of measured arrival processes, we will only consider the time at
discrete, equally spaced instants 1, (i >0). Indicating with ¢; the number of arrivals in
T~ 1.1, we have

vcr(f‘,c,) : )
E(ZC,') N K
=1

where var(c,) and E(c,) are the common variance and mean of the ¢;'s, and &, is the
autocorrelation coefficient of the ¢;'s at lag j.

Notice that, in general, /s will not be constant for renewal processes, in which counts
in disjoint intervals are correlated, save for some notable cases such as the Poisson pro-
cess. However, observing that the sum of the counts in an interval of size tis less than or
equal to k if and only if the sum of k interarrival times is larger than t (assuming that the

n k
process has a point at the origin), Pr(Y.¢; < k) = P(T X; > 1), it can be proved that the limits
=1 J=1
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of the IDI and IDC are equal: lim J,= lim/ [20]. While we can always estimate
n—o0 t—so0

var(Ny)/E(Ny), the representation on the righthand side of equation (4.6) is valid only if
the data are stationary. Finally, we observe that both the IDC and the IDI are dimension-
less quantities: they do not depend on the dimensions of the variables used in their esti-
mation.

In the next three subsections, we will caiculate the IDI for the class of renewal
models with hyperexponential interarrival times, the IDC for batch Poisson processes. and
present Heffes and Lucantoni’s derivation of the IDC for Markov-modulated Poisson
processes [35].

C. IDI for Processes with Hyperexponential Interarrival Times

The hyperexponential distribution of order k. Hy. is the weighted sum (mixture) of k
exponential distributions:

k t
Fu(D=Pr(He < D= T (1 - 7™
E1

k
with weights a;>0, satisfying Yo~ 1, and rates of the exponential distributions A 0.
=1

Because it is characterzed by a coefficient of variation greater than 1, the hyperex-
ponential distribution is often used to approximate the interarrival-time distribution of
bursty processes. In the remainder of this section we will only consider H,.
The mean of a H, distribution is
orp + (1 — o)\
E(H) =y = ——M——
27=M A2

and the variance

201 — o)A + 2043 — ((1 - o)A} + adp)?

A3 ‘

VQf(Hz) =

inwhichwe haveseta; =aand oy, =1-a.

It is interesting to study the range of the squared coefficient of variation of intervals
for the hyperexponential distribution. This is the constant value of the IDI of a renewal
process whose interarrival time distribution is H,. The coefficient of variation depends on
three quantities: a., A;. and Ay; thus, if we choose a value for u; = ., which we keep con-
stant, to derive
_ a- a))\,]

W -
with the constraint A, > a/ﬁ, we can obtain a formula for the coefficient of variation that
depends only on e and A,;:

A2

(1 + A? — 4o, + 20

C%o, M) = -
S (1 - oAl
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In Figure 4.3 we show a three-dimensional plot of C3 for ;1: 5, which shows that the
squared coefﬁgienf of variation increases both as o increases to 1 and (when A,
approaches a /i) as o decreases 1o 0.

FIGURE 4.3. SQUARED COEFFICIENT OF VARIATION FOR H,

indeed, we have

im C3(a, Mi=consty =0, lim C3(o=const, &) = }*g Cand  im  Cia A =oo.
a- - -

A =00 a—,O,l.‘—»-(i
"

which proves that, for a given value of the mean arival rate, the variability increases
when o approaches the limits of its domain: 0 or 1. But this is inappropriate when the pur-
pose of an approximation based on hyperexponential interarrival times is to model arrival
processes markedly different from a Poisson process and with a large coefficient of varia-
tion. When a is nearly 0 or nearly 1, for “*'most of the time'’, the approximation process
has interarrival time exponentially distributed with rate A, or A, respectively.

D. IDC for Batch Poisson Processes

The batch Poisson process is a generalization of the Poisson process in which a ran-
dom number of simultaneous arrivals, p;, replaces the original single arival. The p,’s are

N(D

i.i.d. and the total number of arrivals in an interval of duration tis p(f) = ¥, p;. where N(H)
&=l

is the number of original Poisson arrivals. Since the p;’s are independent of N(#), the

mean number of amivails in an interval of size tis clearly E(N(D)E(p) = A t E(p). where L is
the amival rate of the original Poisson process.
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In order to compute the IDC for a batch Poisson process we need var(p(h). Using
the properties of conditional probability, we have

var(p(h) = E(p2(H) - E(p(h) = E[E<p2<f> | N<f>i - Ez[E(pm | N(hﬂ .
We expand the first of the last two terms using the definition of variance
var(p(h) = E[var(o(f) | N(t)i + E[£2(p(n | N(f)% - E2[Rp<r) | N(f)j ,

and then condense the two rightmost terms immediately above using the definition of
varance again:

var(p(h) = E[vor(pcr) | N(f)j ‘ vor[.e(p(r) | N(f)j .

Because N(1) Is independent of p;, we can finally derive
var(p(h) = E(NCHvar(p)) + varlNCHE(PD) = Atvarp) + EXpp) .
From definition (4.5), the IDC is then

. var(p)
'~ TEp)

Notice that the IDC is constant since a batch Poisson process is a case of a regenerative
process with independent increments.

When the distribution of batch arrivals is geometric, i.e., PriN=n)=(1 - p)p™'. with
0 <p <1.the IDC of the batch Poisson process becomes fy = %%.

it should be pointed out that, when a renewal approximation is used for bursty non-
renewal processes, a fitting based on the value of the moments may not be the best. As
we will see Iater when we estimate the indices of dispersion for packet amrival processes.
the IDI asymptote may be two orders of magnitude larger than the squared coefficient
of variation, that is. the value of J,, or between the values for large t and small f of the
IDC. If the main objective of a renewal approximation is to capture the variability of a
point process, the fitting should be done in such a way that the resulting constant index
of dispersion of the model intersects the estimated index of dispersion of the point pro-
cess at an intermediate point. For instance, if a batch-Poisson model is used with
geometrically distributed batch sizes, the parameter A could be set on the basis of the
estimated mean and the parameter p set to a value that gives (1+p) /(1-p) an
appropriate position on the estimated IDC of the point process.

+E(E) .

E. IDC for Markov-Modulated Poisson Processes

The Markov-modulated Poisson process (MMPP) is @ model that has received much
attention in recent years. It is a powerful, analytically treatable model that can represent
aggregate traffic generated by the superposition of several point processes. The MMPP
process is a doubly stochastic Poisson process whose arrival rate varies according to the
state of an n-state irreducible continuous-time Markov chain, and that, unlike renewal
models, can represent correlations between interarmival times. When the Markov chain is
in state i, the amival process is Poisson with rate A;. In the following we will only consider @
2-state MMPP.
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The 2-state MMPP process is fully specified by four parameters: two transition rates of
the Markov chain and two arrival rates (one for each state). It is described by the
infinitesimal generator matrix @ of the embedded Markov chain and by a diagonal
matrix A whose elements are the Poisson rates of the two states:

_|mer & M0
Q-[ J and A= 0 M}.

02 —O2
The first moment of the time between arrivals of an MMPP can be expressed as
My = p[A— QJ 2Ae,

Moy A0 ]
Mo2 +2207) " (Ao + X0, )J

and e the vector (1, 1). The second

where p Is the vector [

product moment is
Uy = 2p[A— QJ 3Ae.

For derivations of the above results see [56] or [28]. After expanding and simplifying, we
obtain for the two moments
_ Gy + 02 and _ 207 + A0 + 0’? +20105 + O’%)
B )\.] Go + XQO'] Hz2 = (l] O + X20'] )(7»10'2 + 3.20'] + l]M) )
from which we can easily derive the squared coefficient of variation for intervals:
Ci=pp/uf-1.

Heffes and Lucantoni [35] derive a formula for the IDC of a 2-state MMPP process:

W

2 A — A)? 2 Ay — Ap)?
=1+ 0103( 1~ A2) _ 01632( 1—A2) (1 - g +ety @7
(61 + 62)°M02 + A07) (07 + 62)°(M 02 + A0t
The asymptote of the IDC is
o = 2610, - )2
e (07 + 62)°(M 05 + Ap07)
and it is also straightforward to verify that
loo - lfo ] - e_da
lo =1 g .8

where r=0, + 0, can be interpreted as the “‘rate’” at which the IDC approaches its
asymptote. Equation (4.8) can be used to estimate rfor a measured arrival process since
the lefthand side can be easily evaluated from a point at f on the IDC and the
estimated IDC asymptote; r can then be obtained by solving (4.8) numerically.

Of the three processes we have analyzed, only the MMPP can be used to represent
correlations between subsequent arrivals. A model based on hyperexponential interar-
rival times is less appropriate than a batch Poisson model to approximate highly variable
non-Poisson measured processes since its interarival-time distribution is close to an
exponential distribution when its coefficient of variation is large. In the next sections, we
examine measured amival processes. estimate their indices of dispersion and, finally, out-
line a procedure to fit the four MMPP parameters to bursty arrival processes.



Chapter 4 Ill. Estimated Indices of Dispersion 75

Ill. Estimated Indices of Dispersion

A. Estimated Indices of Dispersion for Intervals

In this section, using index-of-dispersion analyses, we look at the second-order joint
probability structure of the packet arrival processes generated by six individual work-
stations. In Figure 4.4 we plot the estimated index of dispersion curves for the send
queues of these workstations. Each series contains 100000 interarrival times. The DI
curves are estimated for up to 20% of the length of the original series of data; after this
point, with few remaining degrees of freedom, any further estimate would have been
inaccurate. For details on how to estimate the indices of dispersion and how to evaluate
the precision of the estimates, refer to [19].

The IDI at lag n is the variance of the sum of n successive interarrival times, and the
IDI curve indicates the change in the variance as n increases. What appears to be very
large variability (the starting values of the IDI for the six curves are, proceeding from sta-
tion 7 to station 25, 7.2. 3.5, 6.4, 6.8, 13.0, 5.4, while the maxima range from 400 to more
than 1500) is caused primarily by nonstationary components in the data. Most remark-
able is the effect on the curve of station 14, which increases sharply until approximately
lag 3000, then stabilzes for the next 2000 points, and begins decreasing from lag 5000
onwards. From equation (4.3) we would think that the autocorrelation coefficients of this
series of data become negative at around lag 5000, but this is not the case: the
coefficients are all positive and only slowly decrease, another sign of nonstationary data.

FIGURE 4.4. ESTIMATED INDEX OF DISPERSION FOR INTERVALS — WORKSTATION SEND QUEUES
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A look at the smoothed interamival-time curve of station 14's arrival process, illus-
trates what is at work. (The smoothing was done by lowpass filtering the data in the
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frequency domain.) In Figure 4.5, the two peaks of long interarrival times, one at the
beginning and the other at the end of the graph, cause the total variance and the IDI to
decrease as more points are averaged together. Nonstationary data with a minority of
large values clustered together generate a gradually decreasing IDI curve such as sto-
tion 14's.

It could be argued that the apparent nonstationarity of the data in Figure 4.5,
which spans a period of about 1 hour, is a function of the time scale. This particular user
might follow the same work patterns and produce roughly the same workload in succes-
sive hours; thus, viewed over a period of several hours, the data might appear to be
(more) stationary.

FIGURE 4.5. SMOOTHED INTERARRIVAL TIME CURVE — WORKSTATION STATION 14
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For our purpose of analyzing variability however, the relevant time scale is not one
of several hours, or even minutes, but a shorter one, for a workstation will generate a con-
stant packet rate in intervals ranging from milliseconds to seconds. Analyzing the varia-
bility of point processes at a micro level, ie., in terms of the queues to which the
processes are fed, implies a time scale that is this short. In contrast, a study of packet
arrival processes from the perspective of user behavior would involve a much longer time
scale, one defined by the busy/idle intervals of user behavior, which would range from
several minutes to hours.

Nonstationary behavior in these types of arrival processes is the norm. It is virtually
impossible to isolate a stationary segment of a process long enough for the estimation of
many important statistical parameters. It is possible, however, to identify segments of
time during which the process has roughly the same characteristics. One can then juxta-
pose the various segments with the same properties, assemble several series of arrivals,
each of which is what we have called a phase. and derive the statistical description for
each phase. As a very simple iliustration of this procedure, let us re-examine the
processes shown in Figure 4.4 by considering subsets of interarrival times shorter than a
specified length.

The cut-off time chosen should be short enough to eliminate the two peaks shown in
Figure 4.5 but sufficiently long to capture not only the fast protocol transactions such as
file path-name transiations, but also the siower disk transactions. In Figures 3.10 and 3.11,
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the height of the histograms of interarrival times decreases visibly at or around 80 ms. This
decrease indicates that at around 80 ms there is a transition from frequent system-
generated events, driven by network protocols and disk-driver software, to infrequent
user-generated ones, such as keystrokes. All of the workstations in our traces show similar
histograms, an indication that the results described in the reminder of the chapter are
relatively insensitive to variations of this parameter. Thus, we set the threshold at 80 ms, a
value that we have indicated in Figures 3.10 and 3.11 with a dashed line.

The validity of this approach in reducing the nonstationarity measured by the index
of dispersion for intervals can be sustained with the following argument. The probability
density functions of the interarrival times for packet arrival processes typically have a very
large mass at the beginning and very long and low tails, which results in the median
being smaller than the mean value. (In Figures 3.10 and 3.11 we show the mean and
median of the histograms.) The index of dispersion for intervals, as we have seen in equa-
tion (4.1), depends on the autocovariances of the interamival times. The autocovariance
at lag k is defined as E((X,— EQO)Xpu ~ E(X))] where E(X), as usual, indicates the mean

interamival time. We see that, for each lag k. the few long interarrival times, because of
their large differences from the mean, account for much of the total covariance. Con-
versely, the large number of small interarrivals closer to the mean have reldtively little
effect on the covariance. Hence, removing the largest interamival times from a time
series that is skewed towards small values reduces the index of dispersion for intervals
and, if the large values are clustered as in Figure 4.5, may prevent the IDI's of packet
arrival processes, which nommally have positive correlation coefficients, from not being
monotonic.

FIGURE 4.6. ESTIMATED INDEX OF DISPERSION FOR INTERVALS — INTERARRIVALS SMALLER THAN 80 Ms
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In Figure 4.6 we re-evaluate the indices of dispersion for the subset of interarrivals
that are smaller than 80 ms. We find that, in three cases (station 13, station 14, and sta-
tion 23), the asymptotic value is reduced by a more than, or nearly, one order of magni-
tude. The series of data are 4% to 11% shorter than their counterparts in Figure 4.4
because the interarrivals greater than 80 ms have been dropped.

Analysis of the smoothed interarrival times of these truncated series, which are
shown in Figure 4.7, helps us understand the dynamics of the IDI behavior. Each of these
curves was obtained by averaging together 200 successive interarrival times. We notice
that the two peaks in station 7's interarrival times are responsible for the decreasing slope
of that machine’s IDI. The almost lineary increasing slope of station 25's IDI can be
understood by looking at two segments of the machine’s interarrivals: one between
20000 and 40000 and a second between 60000 and 80000. The first interval contains
interamival times smaller than the mean; the second, interarrival times larger than the
mean. Since the size of each of these segments happens to be equal to the length of
the interval over which we estimate the IDI, upon a moment's refiection one will realize
that the variance of the sum of consecutive interarrivals will increase linearly.

The range of station 11’s IDI in Figure 4.6 is the same as that in Figure 4.4, but the
second curve increases more gradually and is monotonic. The smoothed interarmivai
times of station 11 in Figure 4.7 explain why the range of the truncated series is the same
as the original one: despite the elimination of longer interamival times, the series remains
highly variable. The user of this particular machine was not active for much of the time
represented in Figure 4.6; during the inactive stretches, programs left running in the
machine invoked remote procedure calls but did not transfer data. The remote pro-
cedure calls produced longer interarrival times, the lack of data transfers did not pro-
duce the shortest interarrival times. The nature of station 11°s arrival processes reminds us
that the study of indices of dispersion is laden with complexities.

B. Estimated Indices of Dispersion for Counts

Figure 4.8 shows the estimated index of dispersion for counts. The IDC was
evaluated only up to one-sixth of the total time length of the traces, or about 11 min. In
each of the graphs, packet counts were estimated in slots of size 50 ms.

A description of a point process in terms of counts is statistically equivalent to a
description in terms of intervals [20]1. However, they are equivalent only through their
complete joint distributions. If we restrict ourselves to first- and second-order properties,
the two characterizations are separately informative. For instance, histograms of packet
counts, of which we show two exampiles in Figures 4.9 and 4.10, are rather different in
shape from the histograms of intervals shown in Figures 3.7 and 3.9. Analogously, the
estimated IDC curves in Figure 4.8 are substantially different from their IDI counterparts in
Figure 4.4. However, their technical interpretation, since equations (4.6) and (4.3) are
quite similar, proceeds along the same lines.
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FIGURE 4.7. SMOOTHED CURVES OF TRUNCATED INTERARRIVAL TIME SERIES
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FIGURE 4.8. ESTIMATED INDEX OF DISPERSION FOR COUNTS — WORKSTATION SEND QUEUES
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FIGURE 4.9. HISTOGRAM OF PACKET COUNTS
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Here also we see the effect of nonstationary components. The IDC of station 11 is
particularly affected by the grouping of amivals in some regions of the domain of the
packet count process. Station 11 has an almost linearly increasing IDC, which can be
attributed to the same sort of nonstationary data structure underying the linearly grow-
ing IDI of station 25. In general, since the domain of values of counts is rather limited
(especially so when packet counts are estimated over relatively short intervals, as in our
case), we can say that IDC curves are more sensitive than IDI curves to the presence of
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clusters of arrivals. The limited range of the domain of packet counts results in probability
density functions of counts with very short tails.

It is important to notice that the asymptotes in Figure 4.8 are different from those in
Figure 4.4. This is yet another confirmation of the presence of nonstationary data. We
have recalculated (but not shown here) the IDC’s for interarrivals less than 80 ms. In this
case, there is @ much better agreement between the data and the limiting result that
states that lee and Jeo are equal (Section I1.B). Indeed. if the shapes of the IDI and IDC
curves for an arrival process appear monotonic, and the limits of the two indices are the
same. one can assume with a considerable degree of confidence that the data are sta-
tionary.

In this section we have shown and interpreted the IDI and IDC of several measured
packet arrival processes. The probabilistic definitions of these indices makes them suit-
able for describing the variability of point processes. We next show how this variability
representation can be incorporated into analytical modeling.

IV. Fitting a 2-State MMPP to an Arrival Process

In this section we present a procedure that can be used to fit an MMPP model to
packet arrival processes of the type we have been describing as long as the nonstation-
ary data components are somewhat controlied. To provide a concrete example, we will
work with the data of workstation station 13, one of the most stationary data sets. Station
13's indices of dispersion appear in Figures 4.4 and 4.8. For the mathematical terminol-
ogy. refer to the MMPP definitions in Section IL.E.

We can write the following system of three equations. representing. from top to bot-
tom. the mean interarival time of an MMPP, the asymptote /. and what we haove
defined in equation (4.8) as r, the rate at which the IDC approaches the asymptote:

Gy + 02
M o7 + 7&20'1
. 26102(A — M) _
(o1 + 62)2 (02 +A207)

b+1 4.9

L(}'1 +0 = C .
The quantities a and b represent, respectively, the estimated mean of the interarmival
times of @ measured point process and the estimated value of the IDC asymptote minus
1. both of which can be obtained with modest effort. An initial value for the parameter
¢, an estimate of r, can be computed numerically, as indicated in Section ILE, from b
and I, the IDC at time 1,. The choice of t, is not crucial, as we can repeat part of the
procedure we are about to describe until we reach a satisfactory approximation based
on some measure of the goodness of fit.

We begin by solving the three equations (4.9) fo obtain the values of A;. 7. and o2
as functions of a, b, ¢, and the unknown ;.



82 IV. Fitting a 2-State MMPP Chapter 4“

A= 2+ abc -2ak,;
'" T 2a-20%,
abc?
= 4.10
19" 2+ abe- 4ak, + 2a°)\3 @10
oo 2c(ar, - 1)?
27 24 abc-4ar, +20%A3

Next, we equate the formula of the squared coefficient of variation for an MMPP,
Ci =, /ut - 1, to the square of the estimated value of the coefficient, which we call d. in
order to determine the value of the unknown A,. Since u; and p, depend only on the
four MMPP parameters, we can substitute the values above to obtain a formula for din
)\.22
_ 20)\3 + (2ac + abc - Dry - 2¢c(b + 1)
T 20M+Qac-abc-Dr-2¢

The expression of A, in terms of the quantities a. b, ¢, and d is simple but rather tedious
and we will omit the details here. Note, however, that for the righthand side of equation
(4.11) the limit as A, approaches infinity is 1 and the limit as A, goesto Ois b + 1.

To fit a 2-state MMPP to a measured amival process we set the four parameters as
follows:

1. From the data, estimate a. the mean interarrival time; b, the limiting value of the
IDC minus 1; and d, the squared coefficient of variation of the interamival times.

2. Using b, tg, and I, the value of the IDC at time f, estimate numerically an initial
value for the rate ¢ by solving equation (4.8).

3. From the solutions to equation (4.11), obtain a value for A,. and use it to denve
values for A;. 6y, and o, from equations (4.10). (Note that, in general, there are two
solutions for A, from equation (4.11).)

4. Compute, based on the cument values of the parameters, the goodness of the
approximation by comparing the estimated IDC with the theoretical one calcu-
lated by equation (4.7). A typical test for the goodness of the fit is one that evalu-
ates the sum of the squared distances between the estimated and the theoretical
IDC curves (for some applications it may be worth evaluating the goodness of fit
only over a portion of the domain of the IDC). Finally, adjust the value of ¢ as
appropriate to improve the fit and repeat steps 3 and 4 of this procedure until the
approximation is satisfactory. (A smaller ¢ will make the IDC reach the asymptote
more slowly.)

We now apply the procedure outlined above to the armival process generated by
station 13's send queue. We use the index of dispersion for counts computed only for
interamival times smaller than 80 ms. The resulting IDC Is related to station 13’s IDI shown
in Figure 4.6. The estimated mean interarrival time is 0.01376 s, the value of bis 112, and
the squared coefficient of variation 1.794. Using the value 20 s for t; and setting the
estimated Iy at 54, we obtain for ¢ a value of 0.073 (sec)™'. The resutting parameters (all
of them rates with dimensions (sec)™) are

@1n
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M =961, 2,=7737, 6,=00680. o,=0.0051. 4.12)

There is another symmetric set of solutions, which corresponds to the above with the sub-
scripts 1 and 2 exchanged.

In Figure 4.11 we plot the righthand side of equation (4.11), the squared coefficient
of variation for intervals of an MMPP with parameters given in (4.12) above. (In this and in
the following two figures, black dofts indicate the position of the two sets of solutions on
the curves.)
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Since d must be larger than 1, observe that we have not drawn the segment of the
squared coefficient of variation curve for points where the function in Figure 4.11 is
smaller than 1. Figure 4.12 shows a plot of the first of equations (4.10); there is a vertical
asymptote at A, = 1/a. Here, we have eliminated from the domain the region in which
the equation generates a negative value for the Poisson rate. Finally, in Figure 4.13 (only
on points belonging to the domain of the previous two functions) we show the curves for
the transition rates of the Markov chain.

In Figure 4.14 we plot the estimated IDC for the data (depicted as a continuous
curve) as well as the model IDC (depicted as a dotted curve). The fitting is very good in
the region of the domain from 0 to 1.5 min, the portion of the IDC that is most likely to
affect interactive queues.
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V. Summary

In this chapter we have used the index of dispersion for intervals and the index of
dispersion for counts to characterize armrival processes consisting of packets sent by work-
stations in an Ethernet local-area network. By evaluating the indices for three analytical
models we have illustrated some of their properties. We have suggested that renewal
approximations of non-renewal point processes may benefit from index of dispersion
analyses. Because indices of dispersion reveal a good deal about the correlation struc-
ture of point processes occuring in communication networks, index-of-dispersion analysis
should be adopted as one of the basic tools for examining these point processes.

We have introduced a procedure for utilizing indices of dispersion to fit an MMPP
model to measured data. We propose testing the quality of the approximation by com-
paring the IDI or IDC of the data with the model’s comesponding indices. Our purpose
has not been to propose models for packet arrival processes, or to demonstrate that any
one model best approximates workstation traffic, but to demonstrate how to incorporate
short- and long-term variability characterizations based on indices of dispersion into
arrival models.



5 Models of Variability

Modeling always involves some degree of approximation. We have seen how com-
plex and varied the features of packet amival processes are. Not only do users produce
different types of workloads, but also. at a lower level, communication requests use a
multitude of packet sizes and several different protocol types. In building models, one
has to strike a balance between accuracy of feature representation on one side and
simplicity and mathematical tractability on the other. However, often researchers opt for
simplicity of mathematical analysis and ignore key features of their point processes.
Although this approach can lead to useful approximations, unrealistic models are often
obtained, which cannot be viewed and used with full confidence.

In this chapter we attempt to develop models of packet arrivals that are based on
our knowledge of packet length and interarrival-time pattems present in our data and of
certain statistical properties of these pattems. Packet length is not a factor in the
Markov-Modulated Poisson-Process (MMPP) characterization of packet-arrival processes
that was outlined in Chapter 4. The MMPP model is buit on data for packet counts—
groups of packets arriving in the same interval—and does not incorporate any data on
packet length. However, packet length information is important if traffic models
developed on the basis of our data are to be used in connection with studies of non-
Ethemet networks, for variable packet lengths can have a mgjor impact on traffic pat-
terns in those networks. For instance, in an Asynchronous Transfer Mode (ATM) network,
the transmission unit, the cell, has a constant length of 53 bytes, of which 48 are for the
user's payload. Whereas a 46-byte Ethemet packet would comespond to a single ATM
cell, a 1500-byte packet would require 32 ATM cells. Thus, for models of Ethemet work-
station traffic to have more general applicability, they should include packet length infor-
mation, and should model interarrival times rather than packet counts. Hence. we will
seek two-dimensional point process models in which the coordinates of each point are
an interarmival time and a packet length.

Our analysis of packet lengths in Chapter 2 indicated that packet lengths in our
traces tend to be either shorter than 200 bytes or longer than 500 bytes. Furthermore.
short packets were typically associated with long interarrival times (recall that we assoct-
ate with an interarrival time the first packet of each packet pair generating the interar-
rival time), while long packets typically produced short interival times. These patterns
partition the packet-length and the interamivaktime spaces and suggest that an
appropriate model might be one with two states: one for the short packets, and one for
the long packets. (Notice that the two states in the MMPP model of Chapter 4 are really
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only a mathematical construction and are not grounded on empirical reality.)

If the model is to have two states, we must determine how long each state shouid
last. The answer to this question is provided by data on the lengths of sequences of short
packets—strings of back-to-back short packets—and on the lengths of sequences of
long packets. Section Il examines our data on sequence length. We observe that the
short- and long-packet sequence series are independent, and moreover, in each series.
the probability density decreases approximately exponentially with the sequence length.
These characteristics suggest the geometric distribution would model reasonably well the
sequence lengths in each of the two states, and that a two-state Markov chain would be
an appropriate model for the alternating process of short and long sequences.

Our next step is to propose a model that incorporates the Markov chain and pro-
duces interamival times and packet lengths. We suggest that packet lengths and interar-
rival times can be generated in each state using probability density functions estimated
from the data. Were these probability functions sampled independently, we would have
a semi-Markov process. Since this is not the case with our processes, in Section Il we
extend the two-state semi-Markov process to the case in which the probability functions
in the two states are not independent. We solve the model in terms of the autocovar-
ances of the two component functions and fit it with the measured data. Unfortunately,
the model’s covariance does not approximate well the covariance of the data for inter-
mediate and iarge vaiues of the lag.

In order to understand the reasons for this divergence, we next generate several
artificial point processes each of which contradicts one of the generalzed model’s
assumptions. We discover that the problems are caused by the nonstationary com-
ponents that are present in the measured arrival processes. Because of this negative
result, we are forced to conclude that the extended semi-Markov model can only be
used to represent accurately packet arrival processes over short time scales. However,
we observe that the queuing dynamics of interest in interactive distributed systems, such
as networks of personal workstations, occurs over short time scales.

Il. Models for Packet Sequences

In Figure 3.15 we show the distribution of packet-lengths for aggregate traffic in the
Sun Engineering network. We see that, with aimost no exception, packets are either
shorter than 200 bytes or longer than 500 bytes. Short packets are produced either by
TCP character traffic, as discussed in Appendix A, or by Remote Procedure Call (RPC)
packets, as discussed in Chapters 2 and 3. In contrast to the Berkeley network described
in Appendix A, in which character traffic represented a sizable proportion of the total
traffic (see Figure A.3). in the Sun Engineering network character traffic accounts for only
about 6 percent of the total (see Figure 3.15). Instead. RPC packets account for more
than 34 percent of the total packet traffic in the Sun network. The majority of long pack-
efs are 1500-byte fragments of larger messages generated by higher protocol layers.
Fragmentation, involving a straightforward sequence of operations that can be stream-
lined, results in short interamival times between fragments. As we have shown in Figures
4.10 and 4.11, when two successive messages are fragmented, the interamival time
between the last fragment of the first message and the first fragment of the second is
nomnally large. (We have defined these pairs of fragments as *‘LastFragment/1500°".)
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Thus, since the distribution of packet lengths can be divided into two regions each of
which has individual interamival time properties and is produced by different system com-
ponents, it is reasonable to classify packet lengths into two classes, small and large.
depending on which of the two groups they belong to.

We will now compute the distibution of the lengths of short- and long-packet
sequences—strings of consecutive short and strings of consecutive long packets. Follow-
ing the methodology of Chapter 3. we will limit the data set only to pairs of packets with
interarmival times of less than 80 milliseconds (as usual, each interarrival time will be assoCi
ated with the first of the two packets that produced #). In Figure 5.1 we show the histo-
gram of short-packet sequence lengths for the send queue of sfation 25; in Figure 5.2, the
histogram of long-packet sequence lengths for the same station. Figures 5.3 and 5.4
display the same type of histograms for station 25's receive queue. Both pairs of graphs
are semi-logarithmic.

FIGURE 5.1. HISTOGRAM OF SHORT-PACKET FIGURE 5.2. HISTOGRAM OF LONG-PACKET
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in Figures 5.2 and 5.4 we can clearly see the effects of the 8-Kbyte message frag-
mentation, which produces fragments in groups of six. Often, two or more groups follow
each other producing peaks at values that are multiples of six. However, sinCce we are
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only considering interarrival times shorter than 80 miliseconds, in some cases we discard
longer interarrival times produced by **1500/LastFragment’’ pairs (see Figures 4.10 and
4.11). When this happens, the lengths of some sequences of long packets are no longer
a multiple of six. The existence of a few non-NFS sources of large packets and of con-
currency among streams produced by independent processes running on the client
workstation explains why Figures 5.2 and 5.4 do not consist simply of single lines at values
that are a muttipie of six.

The graphs in Figures 5.1 and 5.3 are approximated well by straight lines. Since
these histograms are plotted as semi-log graphs, in which straight lines correspond to
exponentially decreasing curves, the associated functions are negative exponentials.
Although the graphs In Figures 5.2 and 5.4 show a more complex structure, the peaks
nearly fall into a straight line and so do moving-average plots of the two graphs. Hence.
we decide to ignore the level of detail represented by the peaks and to consider also
the sequences of long packets as produced by exponentially decreasing probability
density functions.

In Figures 5.5 and 5.6 we show the autocorrelation coefficients from lag 1 to lag 100
for the series of short-packet and long-packet sequence lengths, respectively, of stafion
25's send queue. The dashed lines indicate the 99 percent confidence bands for
uncorrelated series with the same number of elements. We see that the autocorrelation
level is very small, and, for practical purposes, both series can be considered self uncorre-
lated.

FIGURE 5.5. CORRELOGRAM FOR THE SERIES OF LENGTHS FIGURE 5.6. CORRELOGRAM FOR THE SERIES OF LENGTHS
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To confirm that there is no autocormelation, we show in Figures 5.7 and 5.8 scatter
plots at lag 1 of the lengths of short- and long-packet sequences, respectively. Each
point in these graphs has for coordinates two successive sequence lengths, L; on the x-
axis and L, on the y-axis. Although in these figures we have truncated the range of pos-
sible lengths at @ maximum of 50 packets. in doing so we have dropped less than 0.5 per-
cent of all sequences. Since sequences have discrete values, for clearer visualzation of
the point distribution we have added a random displacement to the coordinates of
each point so that a point will lie anywhere in a square of sze 1 centered on the original
point position. The two plots are symmetric with respect to the line y=x., an indication
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that the probability density functions of the sequence lengths have been sampled

independently.

FIGURE 5.7. SCATIER PLOT OF LENGTHS OF SEQUENCES OF
SHORT PACKETS — STATION 25'S SEND QUEUE

FIGURE 5.8. SCATTER PLOT OF LENGTHS OF SEQUENCES OF
LONG PACKETS — STATION 25'S SEND QUEUE
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We conclude that the series whose histograms are shown In Figures 5.1 through 5.4
are produced by discrete probability functions that decrease roughly exponentially and
are statistically independent within themselves. We have also verified that they are
independent of each other. A geometric probability function should provide a good
approximation for these data. However, since station 25 is a diskless client workstation,
before we can claim that geometric density functions are appropriate for modeling the
short- and long-packet sequence lengths of our amival processes, we must verify that
client workstations with local disks and file servers also satisfy the assumptions of
geometric probabilities.

In Figures 5.9 through 5.12 we show histograms of long- and short-packet sequence
lengths for file server station 21. The histogram plots of the short-packet sequence lengths
are characterized by steeply decreasing curves rather than straight lines in the region of
small values. This higher proportion of short sequence lengths is caused by network con-
tention. In the case of the receive queue, concurrent file accesses by different client
workstations may result in a client inserting a large packet into a sequence of short pack-
ets transmitted by another client. In the case of the send queue, the concurrent activity
is caused by the various server processes that handle client requests. The presence of
multiple server processes produces asynchronous traffic, which again results in the inter-
mixing of long and short packets addressed to different clients.

Asynchronous processes also play a role in the packet amival processes of client
workstations. Workstation users run multi-window interfaces, and in each window they
run separate processes that access the file server independently and asynchronously
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FIGURE 5.9. HISTOGRAM OF SHORT-PACKET
SEQUENCE LENGTHS STATION 21°S — SEND QUEUE
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FiGURE 5.11. HISTOGRAM OF SHORT-PACKET
SEQUENCE LENGTHS STATION 21'S — RECEIVE QUEUE

Packet Sequences Chapter 5‘

FIGUREe 5.10. HISTOGRAM OF LONG-PACKET
SEQUENCE LENGTHS STATION 21'S — SEND QUEUE
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FIGURE 5.12. HISTOGRAM OF LONG-PACKET
SEQUENCE LENGTHS  STATION 21'S — RECEIVE QUEUE
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with respect to each other. Retuming to Figures 5.1 and 5.3 for a moment, we see that in
fact the curves in these two graphs aiso deviate slightly from a straight line in the short
length region.

Figures 5.10 and 5.12 prompt two observations: first, these two curves (or, more pre-
cisely, their peaks) follow very nearly a straight line. Second. in comparison with Figures
5.2 and 5.4, there is a large proportion of sequence lengths occuring at values other
than muttiples of six. This is explained by the concurrency among different clients simut-
taneously communicating with the file server.

In Figures 5.13 through 5.16 we show the histograms of short- and long-packet
sequence lengths of station 11, a client workstation with local disks. From these plofs it is
obvious that the “‘straight line’’ model does not apply to this machine. We have already
observed in Chapter 3 (see Sections 3.IV and 3.VI) that station 11 has a highly nonstation-
ary behavior; unfortunately, such nonstationarity characterizes the interamival times of
most clients with local disks. Local disks are typically used as a swap partition and as a
cache for frequently accessed files. Hence, if they are sufficiently large, these disks can
reduce significantly the network traffic, resulting in sparse, highly irregular amival
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processes.
FIGURE 5.13. HISTOGRAM OF SHORT-PACKET FIGURE 5.14. HISTOGRAM OF LONG-PACKET
SEQUENCE LENGTHS STATION 11 — SEND QUEUE SEQUENCE LENGTHS STATION 11 — SEND QUEUE
100 4 100 4
10 - 10 -
14 14 j\
1 T I 1 I | 1 1 i 1
1 10 20 30 40 50 1 10 20 30 40 50
Length of sequence Length of sequence
FIGURE 5.15. HISTOGRAM OF SHORT-PACKET FIGURE 5.16. HISTOGRAM OF LONG-PACKET
SEQUENCE LENGTHS  STATION 11 — RECEIVE QUEUE SEQUENCE LENGTHS  STATION 11 — RECEIVE QUEUE
1000 1000 —
100 4
100
10
10 4
14

T T T T T T T T T T
10 20 30 40 50 10 20 30 40 50

Length of sequence Length of sequence

—_
—

The fundamental difference between packet arrival processes generated by client
workstations with locatl disks and those generated by diskless clients is that in the former
the ratio of large packets to small packets is much lower than in the latter. Long packets,
with their short interamival times and low variability, tend to stabilze the arrival processes
of diskless machines. The relatively large number of short packets, with their longer
interarmrival times and much higher variability, in the processes produced by disk-based
clients, coupled with low packet arrival rates, resutts in unstable processes.

in Figures 5.17 and 5.18 we show the first 100 autocormelation coefficients of short-
and long-packet sequence lengths of the process generated by the station 11's send
queue. As in the other correlograms, we indicate within dashed lines the interval where
with probability 0.95 the cormelation coefficients of an uncomelated process would lie.
The confidence band is larger than in the previous cases because station 11's send-
queuse arrival process is composed of many fewer arrvals. These graphs show that the
sequence lengths of both short and long packets are essentially independent processes:
the peak in Figure 5.17 around lag 63 is spurious. indeed, It is produced by a smail group
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of relatively long sequences and by a single long sequence 63 sequences apart from the
group. Since the sequences are independent and we have no other reason to believe
that the straight line model would not (approximately) apply were station 11°s armrival pro-
cess of higher intensity, we will consider this model valid also for clients with local disks.

FIGURE 5.17. CORRELOGRAM FOR THE SERIES OF LENGTHS ~ FIGURE 5.18. CORRELOGRAM FOR THE SERIES OF LENGTHS
OF SHORT PACKET SEQUENCES — STATION 17°S SEND QUEUE  OF LONG PACKET SEQUENCES — STATION 11°S SEND QUEUE
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Given that sequences of short packets altemate with sequences of long packets,
that the two types of sequences are independent of each other, and that both can be
approximated by geometric distribution functions, the most natural choice for a
mathematical mode! of these sequences is a two-state discrete-time Markov chain. We
have estimated the transition probabilities for the processes generated by the send and
receive queues of a number of workstations. These probabilities are shown in Tables 5.1
and 5.2.

TABLE 5.1. CONDITONAL TRANSTION PROBABILITIES — SEND QUEUES

WORKSTATION MATRIX ELEMENTS
Pn P12 P2 Pz

station 2 0.865 0.135 0.076 0.924
station 3 0.868 0.132 0.079 0.921
station 7 (s) 0.910 0.090 0.075 0.925
station 8 0.887 0.113 0.063 0.937
station 11 0.993 0.007 0.242 0.758
station 13 0.910 0.090 0.082 0.918
station 14 0.828 0.172 0.091 0.909
station 15 0.913 0.087 0.048 0.952
station 16 0.946 0.054 0.072 0.928
station 20 0.901 0.099 0.184 0.816
station 21 (s) 0.840 0.160 0.136 0.864
station 22 0.927 0.073 0.019 0.981
station 23 (s) 0.753 0.247 0.071 0.929
station 25 0.838 0.162 0.085 0.915
station 26 0.966 0.034 0.020 0.980
station 27 0.984 0.016 0.004 0.996

We will use these transition probability matrices as the embedded two-state Markov
chains of our semi-Markov models. One state corresponds to the generation of
sequences of short packets, the other to the generation of sequences of long packets.
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TABLE 5.2. CONDIONAL TRANSITION PROBABILITIES — RECEIVE QUEUES

WORKSTATION MATRIX ELEMENTS
Pn P2 P2 P2

station 2 0.789 0.211 0.065 0.935
station 3 0.793 0.207 0.058 0.942
station 7 (s) 0.968 0.032 0.077 0.923
station 8 0.954 0.046 0.038 0.962
stafion 11 0.936 0.064 0.256 0.744
station 13 0.863 0.137 0.073 0.927
station 14 0.674 0.326 0.063 0.937
station 15 0.938 0.062 0.028 0.972
station 16 0.673 0.327 0.01¢ 0.981
station 20 0.971 0.029 0.117 0.883
station 21 (s) 0.916 0.084 0.116 0.885
stafion 22 0.883 0117 0.041 0.959
station 23 (s) 0.848 0.152 0.095 0.905
station 25 0.691 0.309 0.063 0.937
station 26 0.890 0.110 0.027 0.973
station 27 0.978 0.022 0.014 0.986

in each state we will use two probability density functions to generate interamival times
and packet lengths. Our desire to define the models based on properties of the data
has led us o modify the traditional semi-Markov model. This is discussed in the next sec-
tion.

lll. A Generadlized Semi-Markov Process

The semi-Markov process was studied in the Iate fifties and early sixties by Smith 82]
and Pyke [72,73], among others. A description of its main properties can be found in
those studies. A semi-Markov process contains an embedded Markov chain that deter-
mines transitions between states. In each state intervals are chosen independently and
identically distributed according to a probability density function associated with that
state. The independence of successive intervals in each state makes the derivation of
the properties of a semi-Markov process particularly simple. However, it also limits its sui-
tability as a model for our arrival processes. Were we to use a two-state semi-Markov
model, one state would represent the generation of short packets and the other the
generation of long packets. However, as shown in Chapter 3, contrary to the assump-
tions on which the semi-Markov model is based., in each of these states interarrival times
would be correlated.

Our solution is to use a modified two-state semi-Markov model, which we will term a
generalzed semi-Markov model, that does not assume independence of intervals in
each state. The generalized semi-Markov model instead assumes that intervals in each
state have a non-zero covariance. It consists of a two-state Markov chain with state-

transition matrix
(¢ 31 1- o
P= . 6.0
1- a2 [0 5]

and with equilibrium state probability vector x = (ry, ©2)
1-0y 1-0o

EECEC I R ©2
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In state 1, interarrival times are sampled from probability density function f,(x): in state 2,
from probability density function f,(x). Each of the two series of intervals will be corre-
lated: however, we continue to assume that intervals in one state are independent of
intervals in the other state. In addition, we assume that the process generated in each
state is only suspended. not disrupted, by a transition to the other state: upon a transition
back to the original state, the process resumes at the point at which it was interrupted.

Under the assumptions stated above, the probability density function of interarrival
times produced by the generalized semi-Markov process is
0O =1 F100) + 1 F2(0)
and the mean interarrival time and the interarrival time variance are
EQXD =mpy +mol
var(x) = 69 + 108 + 1y — H2)? . (5.3)
in which p, and pu, are the means of the intervals generated in states 1 and 2, and o%

and o3 are the interval variances of the two states. We will next derive formulas for the
covariance of intervals, comelation coefficients, and index of dispersion for intervals.

Let us use u to denote one state and T to denote the other state. If we consider
two intervals X; and X, and denote with (v. w), where v and w are states, the fact that
X; is sampled from £,(x) and that X, is sampled from f,,(x), we have

E(XXui (U, 1)) =p2 + CK.,

where C¥ is a function, dependent on k, of the covariance of the intervals produced in
state u. We also have

E(XXuk | (U, T)) = pubtn
because intervals in one state are independent of the intervals in the other state.

We can express C¥ and C% in terms of the covariances of functions f,(x) and 20,
which we will indicate with cov;(X,. X and covy(X,. Xp. Let us consider a sequence of
k + 1 Markov-chain states, sos; - - * S. beginning and ending in the same state u, that is
with so=u and s,=u. Since we have assumed that f1() and f(x) each evolve
independently of any transitions to the other state, Ck will equal cov (X, Xum) with m
equal to the number of occurrences of state u, in the Markov-chain sequence, minus 1.
Hence, the range of m will be between 1 and k 1 when the initial and the last states are
the only occurrences of state u, and kwhen all the states in the sequence are u.

We will indicate with Py, the probability that a sequence of length m, beginning in
state v and ending in state w, contains n occurrences of state w. These probabilities can
be easily expressed recursively:

U u
P m-1.n1 (n=m)
PEY =4 (1= 0 )Pmiinet + 0uPm nm @<n<m)

A = 0P oy (n=2)
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(- ax)Priin (n=m-1)
PR = { agPmern+ (1 = 0)Pmiin (l<n<m-=1)
aupfﬁgl,n (n=1

with the following set of initial conditions

1.1 1.2 3 2
Pia=0oy. Pli=1-ay. P31=1-0p. Paa=ay.
We can now express CX in terms of the covariance of function £,(x)

k
C{(/ = Z Pzﬁ,qﬂ COVU(XI' Xl-o-q) .
q=1

The unconditional probability that beginning in state v the Markov chain will be in
state w after k steps is

Pr(s, = W, Sg = V) = Pr(s, = w|$g = WPr(sg = V) = pl w7, .
We have indicated with p% ., the probabilities Pr(s, = w|sg = V), that is, the elements of P¥:
o L mB*  mp — moB '
m-mBt mp+mpB
where B = a; + oz — 1. Then, the expectation E(XXy.) can be computed as
EQGXu) =1 PK ) (uf + CYH +myph o mimp + mppss bz + mP52 (W8 +CH

which can be expanded into
k
EQGXui) = iy + 1B (ui+ X P l;'1.q+1 covi (X Xug)) +
qg=1
+ 10 (my — moB¥) i + mp(my — 7y B g +
k x 2
+mp(mp + B Wi+ T PE2) qa1 COVa( X, Xiua)) -
q=1
We can now evaluate the covariance of the generalized semi-Markov process

COV(X/, X;.,.k) = E(X,XHk) - E2(Xl) =

= (W — )’ mymoPX +

K
R
+ (M + P T Piti.ge CON (X, Xig) +
ag=1

k
+ My + PO T PRA g COVR(X, Xug) . (5.4)
q=!
Observe that the covariance depends not only on the covariances of the two com-
ponent processes, but also on the difference between the means and py.
The series of comelation coefficients is obtained using the relationship
px = COV(X;, Xui) / var(X), and the index of dispersion for intervals using Equation (4.3):
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1

2
= + + - +
n T o [m 0'? 1t20'% ﬂ]ﬂz(u] |J.2)

n-1
+2¥ (0~ £)[(111 - up?mmpB* +
k=1 n

k
1.1
+m (1'5] + 1t2Bk) 2 Pk+],q+'| cov (X/, X,.,q) +
q=

k 22
+ My + 1B Y PEA g4 COVa(Xi, Xiug) H .
ag=1

We will next attempt to verify the ability of the generalzed semi-Markov model to
capture the variability of our packet amival processes.

IV. Data Fitting and Analysis

In Figure 5.19 we plot the first 100 autocorrelation coefficients of the interarrival-time
series of station 25's send queue and we also plot the autocormrelation coefficients pro-
duced by the generalized semi-Markov process using the covariances of station 25's
series. To compute the model’s correlogram, we have separated station 25's interamival
times into two series: one of interarrival times associated with short packets, the other of
the interamival times associated with long packets. (As mentioned earlier in Section |, we
associate an interarrival time to the first of the two packets that produced it.) We have
then computed the autocovariances of each series separately, and fed the coefficients
into Equation (5.4). Athough the two curves are close to each other for small values of
the lag, there is a clear divergence between the model and the data points for lag
values larger than 20: the data coefficients are above the 99 percent confidence band
(indicated by the dotted line), whereas the model’s coefficients are below it. Although
the difference may seem negligible, in the calculation of the index of dispersion for inter-
vals the effect of tiny coefficients is quite significant as a point at lag jon the IDI curve is
constructed by adding together all of the correlation coefficients for lags smaller than j.
To understand why data and model diverge, we will generate attificial component
processes with controliable parameters, and compare the estimated autocorrelation
coefficients of the process obtained combining the two component processes with the
autocorrelation coefficients predicted by the generalized semi-Markov model.

We will construct the point processes from two component time series, which we
assume are generated in state 1 and state 2 of the embedded Markov chain. We will
produce autocorrelated interamival times for the component time series using autore-
gressive functions of the form

Yir = (0 -Dgw +vY;. (5.5)

where g(u) is an exponential random variable with mean p and v is between 0 and 1
[101. In all of the examples in the remainder of this section we will compare the correla-
tion coefficients of the simulated data with the correlation coefficients produced by the
model. In order to focus on the effects of the correlations in the two component
processes, we will generate components with the same mean so that the first tem in
Equation (5.4) will be zero.
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FIGURE 5.19. AUTOCORRELATION COEFFICIENTS OF STATION 25'S SEND QUEUE AND MODEL
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In Figure 5.20 we present a process that satisfies exactly all the model’s require-
ments: we have two series that are mutually independent, each of the series is auto-
correlated, the two series are mixed using a two-state Markov chain that determines the
lengths of the sequences of interarmival times in each state, and transitions out of a state
do not lose state memory. As we can see, there is a good match between the correlo-
gram of the constructed process and that of the model evaluated using parameters
from the component processes. (The small oscillations are caused by stochastic varia-
tions in the random number generator that produced the time series.)

To see whether comelations between the two components generate the difference
seen in Figure 5.19, we evaluate the model using a process with two component time
series that are mutually correlated. We generate one time series Y, according to the
autoregressive model shown above, and the second using the relationship

W;.,.] =(1- 9)Y1+ GM// .

We set the various coefficients so that the amount of cross comelations between the two
component variables is significant. We show the first 100 correlation coefficients in Figure
5.22. where we also indicate the confidence band in which, with probability 0.95, the
correlation coefficients would lie were the processes independent. In Figure 5.21 we
graph the correlogram of the constructed process and that of the model evaluated
using parameters from the component processes. Because the two curves are so close
to each other. we conclude that the model is relatively independent of cross correlation
between the two component functions.

We next test whether the clustering displayed in Figure 5.2 and 5.4 has an effect on
the model’s comelation structure. To do this, we generate a stream of interarrival times in
which sequences of short packets are geometrically distributed and sequences of long
packets are exactly six packets long. Within each sequence, the interarrival times are of
the form (5.5). No major effect is discernible in the correlogram, shown in Figure 5.23; we.
hence, conclude that packet clustering is not causing the divergence between the data
and the generalized semi-Markov model in Figure 5.19.
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FIGURE 5.22. CROsS CORRELATION COEFFICIENTS OF COMPONENT PROCESSES

We, finally, experiment with nonstationary data in Figure 5.24. We produce two
independent, moderately nonstationary series by slowly increasing the mean g in the
autoregressive model (5.5). Now we see that the correlogram of the data decreases
very slowly, and, indeed, lies outside the 95-percent confidence interval. As one could
have guessed, the model’s output is instead more regular and quickly positions itself
inside the confidence band. (Recall that the confidence interval delimits the region
where, in this case with probability 0.95, all the coefficients would be were not the pro-
cess significantly autocorelated.) As in Figure 5.19, here too what appears a small differ-
ence between the comelation coefficients is greatly amplified during the computation of
the index of dispersion for intervals. Although we have produced these data with simple,
linearly increasing trends, while, as discussed in Chapter 3, nonstationarities in our armrival
processes cannot be classified as trends, the effects of packet amival nonstationarities on
the generalized semi-Markov model follow the same pattems.
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We have come to realize that much of the medium- and long-term variability of
packet arival processes, as revealed by the index of dispersion for intervals, is a direct
effect of the processes’ slowly decreasing autocormelation coefficients, and is caused by
nonstationary process components. In Section 3.V, we argued that is it rather difficult to
isolate and remove these components from our arrival processes. As Q resutt, we are
forced to reject the generalized semi-Markov model as a model! appropriate for the
representation of packet arrival processes that are nonstationary over long time scales.
Nevertheless, in the next section we will provide approximations, based on our extended
semi-Markov process, that are valid for short-term variability.

V. Short-interval Approximations

It is unfortunate, though not quite unexpected, that our generalization of the semi-
Markov process performs poory with nonstationary processes. However, in interactive
systems such as the queuing systems found in workstation networks, the system behavior
over short intervals is perhaps the key performance indicator. These systems are
designed to be highly responsive, and queue lengths must be kept short. Hence, the
queuing behavior is associated to the statistical interactions among packet amrivals for
small lag values. Although the high values of the asymptotes in the index of dispersion
curves shown in Chapter 4 indicate that interval and count processes are affected by
considerable long-term variability, one could argue that long-term amival-process
fluctuations have no effects on queues if the system manages to keep queue lengths
short. In addition, as shown in Figure 5.19, the model fit over small lags is acceptable (and
more evident if we smooth the data autocorrelation coefficients). Therefore, we propose
to use the generalized semi-Markov model to represent the variability of the arrival
processes over short intervals. (Notice that a simpler semi-Markov process would not
suffice as a suitable model since its autocorrelation coefficients are of the form Kb", with
both K and b less than 1, which hence decrease too fast [18].) In order to fit the model to
our amival processes, in addition to the transition probabiities o, and ay of matrix (6.1)
(that is py; and po, in Tables 5.1 and 5.2), we need to provide the mean and variance of
the two component processes, as well as their autocovariances.
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It is infeasible to express the correlation structure of the two component processes in
terms of their autocovariance coefficients, as we have done in the development of the
theory in Section lll. For ease of use, here we will instead provide algebraic approxima-
tions based on correlation coefficients. (We chose the correlation coefficients for it is
easier to work with their normalized scale; for each process, the autocovariances can be
obtained by muttiplying the autocorelation coefficients by the variance of the process
found in Table 5.3 below.) It tums out that the autocorrelation functions of both com-
ponent processes are well approximated by straight lines, as the examples in Figures 5.25
and 5.26 show. The approximation holds for all types of workstations: diskless, with local
disks, file servers. Figure 5.25 shows the autocorrelation coefficients of interarrival times
between short packets and, as an almost horizontal line near O, the autocormrelation
coefficients of interarrival times between long packets for the send queue of client sta-
tion 3. Figure 5.26 presents the same data for the two component processes produced
by client station 27, a workstation with a local disk.

FIGURE 5.25. AUTOCORRELATION COEFFICIENTS OF PROCESS  FIGURE 5.26. AUTOCORRELATION COEFFICIENTS OF PROCESS
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The linear approximations that we will tabulate for the autocorrelation coefficients
of interarrival times in Tables 5.1 and 5.2 are valid only between lags from 110 30. (Notice
that we have excluded the lag-0 coefficient, which is always 1.) The time spans of the
linear models range from about 218 ms to 517 ms depending on the mean interarrival
times of the various workstations. These intervals, outside which we suggest not to use our
approximation models, may seem small. However, only very rarely do we observe queue
lengths of size 30 or more. Hence, the dynamics of the queues of workstation systems
should be captured by the generalzed semi-Markov model truncated to these time
scales.

Table 5.3 lists estimated values of the means and variances of the processes pro-
duced by the send queues of a representative set of workstations. As expected. in gen-
eral faster architectures produce shorter mean interarrival times. The table also shows
the estimated values of the mean and variance for each of the two component
processes: the short-packet interarivaktime process, indicated by subscript 1, and the
long-packet one, with subscript 2. Observe how much smaller the mean interarrival times
of long packets are than those of short packets. However, their variances display a
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much wider range than the variances of short-packet interarrival times. This is related to
the long interarrival times that we have classified as *‘LastFragment/1500°". As we can
see. the variance is higher in machines with local disks, an indication that these work-
stations transfer longer data sets, and thus produce more *‘LastFragment/1500"" interar-
rival times.

TABLE 5.3. MEANS AND VARIANCES OF MEASURED PROCESSES — SEND QUEUES
Means In ms Variancesin ms? Erors In percentage

WORKSTATION AGGREGATE PROCESS COMPONENT PROCESSES
mean | mean enor var var error | mean, var, mean, var,

station 2 12.391 -0.044 325983 | -0.039 | 26,558 | 415926 | 4.407 98.417
station 3 15.909 -0.028 414982 | -0.018 34,028 | 431.696 | 5.058 90.632
station 7 11.004 -5.878 231.408 | -3.693 16.853 | 270.671 | 4.944 | 118.554
station 8 13.053 -0.297 347386 | -0.241 26024 | 459.565 | 5.761 136.567
station 11 16.168 -0.373 323.939 0.087 16,348 | 322958 | 7.799 | 296.829
station 13 | 14.683 —6.790 334.699 | -4.438 24,069 | 377069 | 4.226 79.991
station 14 | 12.598 0.237 339.101 0209 | 28.599 | 457.337 | 4.178 71.276
station 15 | 12.406 0.281 408.470 0.038 22,112 | 453.597 | 7.106 | 303.740
station 16 | 17.251 -0.691 375375 | -0.302 27.420 | 368.034 | 3414 53.207
station20 | 14.312 -0.043 362.179 | -0.045 19.039 | 396.539 | 5509 | 178.828

station 21 11.816 9.165 244.905 5.694 20.366 | 291204 | 6.552 | 143.674
station 22 9.005 0.131 313.545 0.161 31.185 | 729.676 | 3.247 44.675
station 23 8.552 15.004 229.607 12.800 | 25264 | 352.720 | 5.410 | 144.048
station25 | 12.559 0.778 346.452 0678 | 29262 | 468.933 | 3.944 65.182

station26 | 10.152 -0.775 254886 | -0.669 | 20.852 | 372369 | 3.733 74.529
station 27 7.278 -4.771 140.489 | -3.363 14778 | 183.706 | 4.969 | 104.536

Using the transition probabilities of Table 5.1 we can compute the equilibrium state
probabilities (5.2). and with them the model’s mean and variance from Equations 6.3).
In the columns ‘‘mean eror’’ and ‘‘var error’” in Table 5.3, we list the percent emors on
the model’s predictions. Except for one workstation, the percent errors are in absolute
value smalier than 10, proving again that the Markov property is satisfied in our data.

In order to evaluate the generalized semi-Markov models, we also need the auto-
covariances of the component processes. As mentioned earlier, we will provide first-
order polynomial formulas (i.e. equations of straight lines) that interpolate accurately the
first 30 autocomelation coefficients. In order to obtain the covariances, one will have to
multiply the corelation equations by the values of the (aggregate) process variances
found in Table 5.3. In Table 5.4, we list the coefficients of interpolating linear equations of
the form y = mx + q. (Again, with subscript 1 we label quantities that refer to short-packet
processes.) If both coefficients are very small, a situation that indicates statistical
independence between subsequent arrivals, we enter zeros in the table.

V1. Models of Packet Lengths

In order to complete our data characterization, which, as mentioned in the Intro-
duction, is based on a two-dimensional model, we now describe model approximations
for lengths of small and large packets. Several observations are in order. First, large NFS
packets have a very simple structure: they come in groups of six, the first five fragments in
a group are 1500 bytes long and the last fragment is somewhat shorter, for instance 920
bytes. Groups can follow each other, but as shown in Figures 5.2 and 5.4 and as dis-
cussed in Section ll, the probability that k groups occur consecutively decreases
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TABLE 5.4. CORRELATION COEFFICIENT INTERPOLATION LINES — SEND QUEUES

WORKSTATION EQUATION COEFFICIENTS

m, 9 m, 9
station 2 -0.00218 0.193 0 0
station 3 -0.00204 0.255 0 0
station 7 -0.00229 019 -0.00017¢9 0.0154
station 8 -0.00348 0.159 -0.00017¢9 0.0214
station 11 -0.00025 0.235 -0.000107 0.0242
station 13 -0.00279 0.227 0 0
station 14 -0.00211 0.141 -0.000107 0.0202
station 15 -0.00164 0.342 -0.00196 0.187

station 16 -0.00114 0.121 -0.000393 0.0188
station 20 -0.000357 0.0907 -0.00132 0.144
station 21 -0.00261 0.169 0 0
station 22 -0.00129 0.548 -0.000214 0.0214
station 23 -0.00129 0.0936 0 0]
station 25 -0.00225 o117 -0.000536 0.0221
station 26 -0.00179 0.175 -0.000429 0.0459
station 27 -0.00457 0.328 0 0

geometrically as k increases. This structure produces comelation at values that are multi-
ples of six.

Second, the other components in the distribution of large packets, TCP and ND
packets, which are shown in Figure 2.15, at 1064 and 1072 bytes respectively, are
irrelevant. ND, the Network Disk protocol. is being phased out and. although it produces
about 4 percent of the packet count (including also small packets), among the work-
stations that we have considered only station 1 uses it. Long TCP packets account for
about 3 percent of the total, but they also occur in groups and hence, rarely mix with NFS
packets. We will ignore both TCP and ND packets.

Third, some complications occur with file servers as their traffic is the superposition of
traffic simultaneously directed to or coming from several client workstations. This will have
the effect of making the lengths of sequences of 1500-byte packets variable, as dis-
cussed in Section Il with reference to Figures 5.10 and 5.12. As a result of these considera-
tions, we propose three possible models, with varying degrees of approximation, for long
packet sizes: the first model would produce one 920-byte packet every five 1500-byte
packets; the second model is a mean/standard-variation model with mean 1373 bytes
and standard variation 247 bytes; and the third model, a special case of the second,
would produce a constant packet of size 1373.

Fourth, the structure of the short-packet distribution is rather complicated. The
sequence of short-packet lengths is strongly autocorrelated, as contiguous packets tend
to have similar lengths. However, these comelations lose importance if they are put in
perspective. In Figure 5.27 we reproduce the aggregate packet length distribution on a
linear scale. From this graph we can see that the autocormelation within the series of short
packets, which are all concentrated at one end of the figure, amounts to small variations
in packet sizes when viewed from the other end. Thus, we will ignore the fine structure
produced by occurrences of groups of short packets of similar lengths, and describe
short packets simply by their means and variances. In most cases there are no significant
differences among the various workstations, hence we will simply provide the mean short
packet and the short-packet standard variation based on the aggregate traffic. They
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FIGURE 5.27. PERCENTAGE OF PACKETS VS. PACKET LENGTH
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are 119 bytes and 50 bytes, respectively.

VIl. Summary

In this chapter we have constructed models of packet arival processes using pro-
perties of the data. We focused on interarrival times, since we felt that packet lengths
needed to be represented explicitly, which is not possible packet count models. We
found that sequences of short and long packets are modeled accurately by two-state
discrete-time Markov chains. In order to represent correlations among arrivals in each of
the states. we have extended the semi-Markov model and derived formulas for the auto-
covariances, and index of dispersion of intervals.

Unfortunately, the generalized semi-Markov model does not reproduce accurately
the autocorrelation coefficients for medium and large lag values. Nonetheless, we pro-
vided model approximations based on linear interpolation of autocormelation coefficients
of the component processes that are valid and accurate for small lag values.
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6 Conclusions

In this dissertation we have investigated the variability of packet-arrival processes
produced by individual engineering workstations on an Ethemet local-area network.
Chapter 2 presented the measurement methodology. the measurement eror analysis,
and a simple description of the network’s aggregate traffic in terms of network load,
packet length distribution, and interarrival time distribution. Chapter 3 dealt with the sto-
chastic analysis of interarrival time series. We focused on the second-order properties as
they provide the basis of our definition of variability. In Chapter 4 we defined variability in
terms of indices of dispersion for intervals and counts. We estimated these indices for a
number of workstations, and discussed their properties. In addition, with an example
based on the rather artificial Markov-modulated Poisson process, we illustrated a way to
introduce variabllity into analytical models. Finally, in Chapter 5 we derived a model of
variability whose structure follows the structure of the data: short and long packets pro-
duce disjoint sets of interamival times; lengths of sequences of short and long packets
form a discrete-time Markov chain, a generalized semi-Markov process provides a good
approximation to the autocorrelation coefficients of interarrival times for short time
scales. The generalized semi-Markov process approximation requires only estimates of
the first- and second-order moments of interarrival times. To complete the model, we
also provided simple characterizations of short and long packet lengths. Because of the
recursive nature of the model’s equations, the model is suited for in simulation studies.

The relevance of the dissertation lies in the prominence of the type of computing
system that we have analyzed: personal engineering workstations represent one of the
most successful products developed by the computer industry over the last decade.
Because of this prominence, researchers and computer analysts alike are always looking
for data about system usage and modeling examples. Our analysis is quite specific, as
we developed the notion of variability and tailored traffic models to reproduce it. Com-
puter communication research is proceeding apace toward future Gigabit networks.
These networks will require knowledge of the statistical behavior of data streams if they
are to switch data efficiently. Analyzing the variability of arrival processes with indices of
dispersion can provide some of that knowledge. Models of variability can become use-
ful as input generators to gigabit network simulation studies.
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Il. Future Work

In spite of the wide range of material presented in the previous chapters, we have
just scratched the surface of the possible research topics that can be identified around
the issues of stochastic analysis and modeling of packet amival processes. Here, we
address briefly, in the form of research questions, some of the work that remains to be
done.

By far the most interesting and pressing question is the relationship between our
models of variability and queuing behavior. A key notion is whether the two-moment
approximation of the generalized semi-Markov process is sufficient to guarantee an
accurate queuing performance. What is the relationship between index of dispersion
curves and queuing? Are there simple rules that relate the initial slope, curve knee. and
asymptote of the indices to, say, waiting times? The work of Whitt et al. [26,84) provides
some initial answers, but we feel that more research is needed to understand these ques-
tions completely.

Many researchers are working on future packet-switching gigabit-speed networks.
These networks might provide performance guarantees. Can indices of dispersion
characterize the traffic sources that can be used by algorithms that guarantee the per-
formance of communication channels in terms of delay, jitter, and/or throughput [27]17

We discussed the difficulties associated with removing nonstationary components
from packet amival processes. Can a nonstationary version of the generalized semi-
Markov process be derived that models nonstationary packet arrival processes?

How general are the models of variability that we have developed? Can they be
adapted to handle, say, compressed audio and compressed video data?

Cluster models are important in applications since clusters can be treated as units
by the operating system for the purpose of scheduling or processing. What is the relation-
ship between cluster models and models of variability? Can one type of models be
expressed in terms of the other?

We have expressed file server queues, composed of the superposition of several
client workstation queues, in terms of the same models. Can the generalized semi-
Markov model be used to represent the entire aggregate traffic?

lll. Epilogue

The analysis of a massive amount of data such as that described in this work has
required time and resources out of the ordinary. Real data is almost never linear and
immediately suitable for simple models. We found no easy recipes for giving structure to
what at first (and for quite some time) looked like an orderless aggregate of amival times.
Trial and error, experimentation, and exploratory-data-analysis techniques have siowly
shaped our final solution. Unfortunately, modeling is still an art, one in which the form of
the final product depends as much on the raw material as it depends on the inclination
of the artist. But as artistic invention relies on techniques and tools, so our modeling of
packet arrival processes has benefted from the framework and the methodology of
point processes. We hope that the analyses and the models that we have developed
can be the base upon which others can build.



A Analysis of Berkeley Measurements

With the development and increasing use of distributed systems, computer com-
munication traffic over local-area networks has changed. Conventional remote terminal
access and file transfer are no longer the dominant applications. More and more com-
puting systems are buitt around diskless workstations and file servers. These workstations
are economical, expandable, easy to manage, and more suitable for offices, where the
noise and heat produced by a large disk subsystem would not be tolerable. They often
provide a virtual-memory environment and need to page to a remote paging device.
Whereas older protocols only had to respond to the siow, interactive terminal traffic and
provide throughput for the bulk transfer of data, newer ones have to provide much faster
response time for file access and quick network access to the backing store.

As a result of modifications aimed at increasing the performance of computer sys-
tems, now a single packet often only contains a portion of the object being transported.
For instance, at the time the Ethernet was designed., file pages were 512 bytes or 1 Kbyte
in size [89.91); now, 4 Kbytes appears to be the standard. A Sun-3's memory page con-
sists of 8 Kbytes, which are transferred to the paging device in a single transaction during
paging or swapping. Additionally, new programming interfaces have increased users’
need for bandwidth. Dumping the image of a graphic display may require the transfer
of millions of bits. In the case of diskless workstations, these transactions are performed
through network protocols, which, at the data-link layer, involve the transmission of a
number of frames in quick sequence.

The Ethemet, designed at the Xerox Palo Atto Research Center (PARC) at the begin-
ning of the seventies [21] and subsequently modified for higher speed [23]. is one of the
most successful local-area networks. It combines simplicity and low cost with reasonably
large bandwidth. The characteristics of its traffic have been repeatedly studied., starting
with basic measurements performed about ten years ago at Xerox PARC by J.F. Shoch
and J.A. Hupp [801. Shoch and Hupp suggested, and it is now commonly accepted [41],
that the Ethernet under *‘normal’’ workloads is lightly loaded and that hosts and host
interfaces, rather than the network, are the protocols’ performance bottlenecks.

For the purpose of evaluating how network and protocol behavior has been
modified by the developments in distributed systems and user interfaces, we took traffic
measurements of a 10-Mb/s Ethemet at the University of Califomia at Berkeley (UCB)
aimed at determining the performance of an Ethemet local-area network in the pres-
ence of file-system access performed by diskless workstations. This paper reports the pri-
mary results of the measured data analysis, an essential part of which is the interpretation
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of network communication protocol behavior.

The next section presents the general statistics of the measured traffic and com-
pares our raffic with the traffic that was described in 1980 by Shoch and Hupp. Sections
-V examine in detail the three protocols that transported the largest amount of data:
the Transmission Control Protocol (TCP) [70], which is part of the Defense Advanced
Research Projects Agency (DARPA) family of protocols [69,75]; the Sun Network Disk (ND)
protocol [85]; and the Sun Network File System (NFS) protocol [63]. Finally. in the last sec-
tion we present the conclusions of our study.

Il. General Statistics

In this section we shall briefly describe the UCB environment measured and discuss
the measurement methodology. We shall analyze the network utilization, the distribution
of packet lengths, the network protocols, and the pattems of packet interarmival times.

We took great care to ensure that the measurement system would generate as
accurate a picture of the traffic as possible. Rather than using a special-purpose device
for the measurements, we instrumented the kemel of one of our fastest general-purpose
UNIX systems to read all the packets in the network, timestamp them, and save the pack-
ets’ protocol information on tape for off-ine analysis. The high measurement accuracy
was achieved primarily by allocating a large buffer area for the Ethemet board’s DMA
and by employing a double-buffer technique to store the packet headers before mov-
ing them to disk and subsequently to tapes: in this way, we were able to reduce packet
loss 10 a minimum.

The measurement system lost less than one percent of ail packets transmitted. Most
previous measurement projects [7,15] suffered from much higher packet loss, in the
range of 10 to 15 percent or more. Furthermore, the timing information in our traces is
very accurate, enabling us to study the interarmival times closely. Though we used a
clock with a resolution of 1 microsecond, the timestamps were subject to variability in the
DMA time, which was caused by concurrent activity on the machine’s bus; o queuing
time in the Ethernet interface, which depended on the packet arrival rate; and to inter-
rupt response time and queuing time in the host. We estimate that, because of these
variable factors, our packet timings are accurate to within 1/10 ms.

The Ethemet we chose to study. a single-cable Ethernet in the Computer Science
department that UCB system administrators have denominated XCS network, con-
nected. at the time of the experiment, about a hundred machines: 41 diskless Sun work-
stations (both Sun-2s and Sun-3s) aranged in clusters around six file servers running Sun
UNIX, which is based on Berkeley UNIX 4.2BSD: 23 XEROX Star workstations; three VAXs,
several MicroVAXs; and a few Symbolics and Tl Explorer LISP machines. Two of the VAXs
and a Sun workstation were used as gateways to other UCB networks. By and large the
XCS user community is similar to those of other universities and large research organiza-
tions. User activities include program development, text editing, experimentation with
computation-intensive programs, and operating-system research.

For this study we collected traces of packet headers during a period of three weeks
for a total of 6,500 Mbytes. Because of the sheer amount of processing and storage
space involved in analyzing in detail the entire data set, in this paper we shall restrict our
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attention to a typical weekday for XCS traffic.

The 24-hour trace under study consists of 11,837,073 records-one for each packet.
The total number of bytes transmitted is 7.060,163.648 (this figure includes header, check-
sum, and data bytes). Although the mean network utilization-the proportion of time in
which one transmitter was active—is a mere 6.5 percent, during the period of high traffic
in the late aftemoon, it is very common to have relatively long intervals of mean utilizo-
tion ranging around and above 30 percent. By contrast, the 2.94-Mb/s Ethernet meas-
ured by Shoch and Hupp [80] a network with about 120 machines. carried less than four
percent of the total number of bytes we observed. Therefore, the first, most significant
difference between our data and previous measurements, none of which notably devi-
ated from Shoch and Hupp's data, is the higher utilization of the communication chan-
nel.

A. Network Utilization

Figure A.1 displays the network utilization in the 24-hour period under study. Each
vertical line represents the fraction of time during a 1-minute interval in which transmitters
were active. Thus, the packet headers, the data bytes, and the packets’ checksums, as
well as the 8-byte preamble, which is transmitted prior to each packet to synchronize the
receiver and the transmitter, are all counted in calculating the utilization.

FIGURE A.1. ETHERNET UTIUZATION (ALL PACKETS)
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Figure A.1 shows that the utilzation, measured over 1-minute intervals, rarely
exceeded 20 percent. If, however, we examine the utilzation more closely over smaller
intervals, we see that in fact the Ethernet behavior was quite bursty, frequently reaching
levels over 30 percent. Such traffic would overload Shoch and Hupp's 2.94-Mb/s Ether-
net, and would also saturate the IBM 4-Mb/s ring network. Furthermore, we found that
hardware changes-faster computers and more intelligent network interfaces-mean that
two computers alone may generate high utilization rates. For instance, a Sun-3/180 file
server and a Sun-3/50 client workstation, loaded the Ethernet more than 20 percent and
reached peak transfer rates as high as 275 Kbytes per second, as shown in Figure A.2.

This behavior has been observed in experimental environments where two
machines sent artificially generated data to each other [15,44]. However, its presence in
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FIGURE A.2. ETHERNET UTILZATION (TRAFFIC BETWEEN TWO WORKSTATIONS)
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a realworld environment compels us to re-evaluate the notion that under normal traffic
an Ethemet is lightly loaded [41,801.

B. Packet Length

Figure A.3 and Figure A.4 display respectively the number of packets and number of
bytes transmitted as a function of the packet data field length.

FIGURE A.3. PERCENTAGE OF PACKETS VS, PACKET LENGTH
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In Shoch and Hupp's Ethernet the packet size distribution was bimodal and a small
number of large packets accounted for most of the traffic volume. The mean and
median packet lengths were 122 and 32 bytes respectively. In our network, based on @
modern environment of diskless workstations with virtuakmemory operating systems, the
mean packet size is 578 bytes and the median is 919 bytes. However. since the maox-
imum packet sizes of the two Ethemets are different-554 for the 2.94-Mb/s experimental
Ethemet and 1500 for the 10-Mb/s Etheret-a more revealing comparison of the these
values can be obtained by dividing each mean and median by the corresponding
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FIGURE A.4. PERCENTAGE OF BYTES VS. PACKET LENGTH
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maximum packet length. In the case of the Xerox PARC Ethernet the mean is 22.0 per-
cent, and the median 5.8 percent, of the maximum packet size; in our Ethemet, the
mean is 38.5 percent and the median 61.3 percent.

The smallest packet sizes, those less than 50 bytes, together transport 30.4 percent of
the total packets but only 2.9 percent of the total bytes. A notable portion, 30.8 percent,
of these packets is used to carry requests for ND protocol transfers. Yet 66.8 percent of
them are used by the character and acknowledgment traffic of TCP.

Packets between 124 and 168 bytes in length are used almost exclusively by the NFS
protocol, which is based on request-response remote procedure calls. They account for
8.3 percent of the total packet count, but for only 2.2 percent of the total byte count.
We believe that this segment of packet lengths will acquire more and more weight in the
future as applications based on request-response protocols develop [15,76].

Finally, packets larger than 576 bytes comprise 50.2 percent of the total packet
count and 93.1 percent of the byte traffic. TCP transports 1.4 percent of the packets and
2.6 percent of the bytes. ND and NFS transport 40.8 and 6.2 percent of the packets and
75.7 and 14.6 percent of the bytes respectively.

C. Network Protocols

Table A.1 lists the number of packets and bytes transfered and the mean packet
size for each of the major protocols in use on XCS. The entries in the DATA Byres column of
Table A.1 are computed by summing up the lengths of the data field in the Ethemet
packets. The mean packet sizes in the last column are instead computed from the full
packet lengths. We observe again that the remote disk access and file system protocols,
ND and NFS, have relatively large mean packet szes and comprise most of the bytes
transferred (93.8 percent together), whereas the conventional character and file-transfer
traffic of TCP has a relatively small mean packet size.

One of the reasons for which the disk and file access protocols generate such a

large portion of the traffic is that the physical memories in our workstations are rather
small-ranging from 2 to 4 Mbytes—in comparison to the demands of the software run
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TABLE A.1. PROTOCOL STATISTICS

ProOTOCOL PACKETS DATA BYTES MEeAN
NUMBER PERCENTAGE NUMBER PERCENTAGE | PACKET SizE
nd 6,158,602 52.03 5,245.577.140 76.61 869.75
nfs 1.880.402 15.89 1.179.797 526 17.23 645.42
tcp 3.379.564 28.55 356640214 521 123.52
other 418,505 3.53 65,081.454 0.95 173.51
Total 11,837,073 100.00 6.847 096,334 100.00 §96.45

today. In particular, the size of the operating system increases as more protocols are
added to the kemel, graphic libraries are very large. and common programs’ working
sets grow as software becomes more sophisticated. The activity of the ND protocol is
particulady dominant. As we shall see in Section IV, most of this activity is system activity,
which includes paging and swapping. accounting. and the like. This observation leads
us to question the common belief that the bulk of system operation is directly related to
the user-generated workload; rather, it appears o be caused by the system’s own
managerial tasks not directly linked to user activity. We shall deal with these issues in
more detail in Sections IV and V.

All three protocols, ND, NFS, and TCP, as well as a large portion of the packets listed
as other, use the IP protocol [69] as the underlying network layer. The IP protocol alone is
responsible for 97.8 percent of the total packet count and for 99.6 percent of the total
byte count. Since IP traffic accounts for virtually all the traffic, in the next two sub-
sections we analyze the traffic communication patterns of IP packets, which is very con-
venient because an IP packet header provides both the network and host numbers for
the source and destination addresses.

Broadcast packets form only 1.3 percent of the total traffic. It appears that the
great majority of the broadcast packets are generated by LISP machines that do not
recognize subnetwork addresses [43,58] in the process of converting IP addresses into
Ethemet addresses [64]. If this problem were comected, the percentage of broadcast
packets would significantly decrease. From the data and these observations, we con-
clude that the broadcast mechanism exerts a negligible influence in an Ethemet. This
fact can be used to support two antithetical views: either that there is room for expand-
ing the usage of the broadcasting mechanism [17], or that the mechanism is unneces-
sary since it can be replaced by serial point-to-point communication with little loss of
functionality [71].

D. Intranetwork Traffic and Internetwork Traffic

The traffic is distributed very unevenly among machines. Two machines alone, a file
server and a client workstation, are responsible for 19.6 percent of the number of pack-
ets. The communication between the three most active diskless workstations and their
file servers comprise almost 41 percent of the total byte count. Since an unbalanced
traffic distribution is offen overlooked by system administrators, who do not have tools to
measure traffic, Ethernets may operate suboptimally.

The user of the most active workstation was developing a language-based editor in

a LISP environment and worked for many hours during the day. On other days in our
traces, the traffic distribution was more even mainly because individual users were active
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for fewer hours and ran applications that did not load the network as much. However,
the Ethemet load on weekdays (as opposed to weekends) during the three weeks on
traces displayed roughly the same characteristics, and. on the average, in every hour-
long interval we observed about the same number of active workstations as we did in
the comesponding interval on the selected day. In this sense the chosen day s typical.
Our choice to show a more unbalanced example illustrates that an Ethernet couid be
substantially stresses by heavy users.

sun workstations dominate the traffic as they exchange among themselves almost
95 percent of the total byte count; VAX-to-VAX traffic contrbutes only two percent of the
total: and Sun-to-VAX traffic accounts for another two percent.

By looking at the addresses in the IP packet headers, we can divide the traffic into
three categories: 1) traffic that remains within XCS (intra-network traffic); 2) traffic that
goes outside of XCS but remains within the Berkeley campus (inter-network); and 3) traffic
directed to or generated by machines outside the Berkeley local-area networks (inter-
network).

All of the observed file system traffic (either carried by the ND or NFS protocol) is
local. Although it would be possible to place client workstations and their file servers or
ND servers on different networks, the large amount of data that these protocols carry.
suggests that gateways would be potential bottlenecks. Inter-network traffic consists of
character and file transfer traffic transported by the TCP protocol. In the remainder of
this sub-section all data are expressed as percentage of the total number of TCP packets
and total number of TCP bytes.

Table A.2 divides TCP traffic according to the source and destination networks of IP
addresses: we label with xcs the traffic that was directed to or coming from hosts in the
XCS network: with ucb all the traffic, except for the XCS traffic, that remains within the
campus networks boundaries; and with outside the traffic that originates or is directed
outside UCB. For each combination of source and destination addresses, we show two
figures: on the top, the percentage of the total packet count and, on the bottom, the
percentage of the total byte count. First, we see that only 10.4 percent of the total TCP
packet tratfic is local; 89.0 percent is inter-network traffic within campus; and the remain-
ing 0.6 percent is inter-network traffic going to or coming from non-UCB networks. Only a
negligible portion of the total TCP traffic is generated by hosts outside UCB. Two reasons
explain this: first, interactive sessions across wide-area networks between distant
machines are rare because of high line delays, and second, as we shall point out in Sec-
tion 11I-C, most users do not receive mail on their diskiess workstation.

The three XCS gateways together switched more than 400 million TCP bytes, or 100
million more than the total traffic of Shoch and Hupp. The busiest one alone routed 164
Mbytes, more than 50 percent of the Xerox PARC total. This is possible (recall that the
total TCP byte count in Table A.1 amounts to more than 348 Mbytes) because there is
traffic generated outside XCS and directed to machines outside XCS. We call this traffic
traffic in transit. A single TCP packet in transit is counted twice: as an incoming packet
on some gateway, and as an outgoing one on another. We observed 540,876 packets in
transit, which transported more than 95 Mbytes. This traffic is represented in Table A.2; it
accounts for 15.6 percent of all TCP packets and 25.6 percent of all TCP bytes.
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TABLE A.2. SOURCES AND DESTINATIONS OF TCP TRAFFIC (PERCENTAGES)

(packets/bytes) DESTINATION
XCS ucb | outside | Total

xCS 10.37 | 40.66 0.37 51.40
17.33 [ 33.12 0.16 50.61
32.77 | 16.58 0.00 48.35

SOURCE ucb | 2358 | 2562 | 000 | 49.20
025 | 000 | 000 025
ouside | 019 | 0.00 | 000 0.19

2339 | 5624 | 037 | 100.00
Total | ;730 | 5874 | 016 | 10000

E. Interarrival Time

Figure A5 illustrates the distribution of packet interarrival times over one day.
Interarrival time is computed as the difference between the times when the transmissions
of two subsequent packets began. Note that because of the high arrival rate, there are
a small number of interarrival times greater than 100 ms. By contrast, in measurements
taken at MIT [24] there is a significant percentage of arrivals with interarrival times above
200 m:s.

FIGURE A.5. PERCENTAGE OF PACKET ARRIVALS (ALL PACKETS)
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The Poisson model, very often used in analytical and simulation studies, is inappropri-
ate for modeling our data because it assumes that there is no correlation between
arrivals. One of our investigations shows that the arrival process is highly bursty and that
the independence assumption is not justified [34]. Figure A.5 shows that there is a high
probability that one armrival will be followed by a second one within a deterministic time
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dependent on the protocol, the packet sizes, and the traffic intensity. Three facts explain
this high probability: first, the objects transmitted by network protocols are much larger
than the maximum packet size on the Ethemet; second, request-response protocols
(both ND and NFS can be so classified) generate interarrival times whose distributions
have pronounced modes; and third, the sources of packet traffic are bursty [42,88]. In
this paper. by studying the various protocol components of the fraffic separately (see
Sections llI-E, IV-B, and V-E), we show that we can characterize interarrival time constants
that are not visible if the amival process is studied globally. However, within the limited
scope of this article, we do not try to answer the difficutt and chalienging question of
what the most appropriate model of the arrival process for diskless workstations is.

We have numbered the peaks in Figure A.5; as observed above, they represent
patterns of interarrival time. All of these peaks are generated by the ND protocol and will
be explained in Section IV-B. They correspond, in order, to peaks 1, 3. 5, 6. 8, and 12 in
Figure A.11.

Figure A.6 displays the cumulative distribution of the interamival times. The numbers
refer to the peaks in Figure A.5. Notice that 50 percent of the packets are followed within
3 ms by the next packet, 84 percent are followed within 10 ms by another, and 99 per-
cent within 90 ms. Shoch and Hupp observed for the same percentages time values
three times s large.

FIGURE A.6. CUMULATIVE PERCENTAGE OF PACKET ARRIVALS (ALL PACKETS)
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There are several factors that contribute to this variation. First, the network utilization
is higher, which makes the mean interarrival time lower. The mean packet amrival rate is
137 packets per second and the mean interarrival time is 7.3 ms, whereas the
corresponding figures for the Xerox PARC Ethemet were 25 packets per second and 39.5
ms respectively. Second, the bit rate in our Ethemet is 10 Mb/s while it was 2.94 Mb/s in
the case of the older Ethemet. Third, the newer protocols, in particular the ND protocol,
have been optimized for the shortest response time. Finally, our Suns and MicroVAXs are
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faster than the Alto computers [90] on the Xerox Ethernet and many of our Ethemet inter-
faces (Sun Intel and AMD Am7990 Lance) provide much higher performance than the
Experimental Ethemet controller in exclusive use at Xerox PARC ten years ago. (The
Experimental Ethernet controlier for the Alto was half-duplex [81] The time required to
switch to receiving mode after packet transmission could have caused packets to be
missed by the receiver.)

In spite of the high arrival rate, we observed very few back-to-back packets, pack-
ets for which the interpacket time is close to the minimum data link layer interframe spac-
ing of 9.6 microseconds for a 10-Mb/s Ethernet.

F. Contention

In the Ethernet local-area network, channel contention is regulated by a binary
exponential backoff protocol, which randomizes the retransmission of colliding packets.
A few works have recently pointed out some instability characteristics of this protocol
[2.31,791; for instance, some stations may experience more collisions than others. In gen-
eral this instability appears at traffic intensities much higher than those we observed in
the UCB network. Although we cannot cite actual measurements of coliisions (our net-
work interface did not report the number of collisions), we believe that there are two fac-
tors that kept the number of collisions lower than predicted by Poisson models. First, as
we shall see in the following sections. each station generates packets in bursts that are
followed by relatively long silent periods. Second, intervals between packets in a burst
are much larger than the Ethernet minimum interframe spacing; as a result, should two
sets of stations generate bursts at the same time, the chances are decreased that pack-
ets from one burst will collide with packets from the other.

Two factors appear to cause long intervals between packets in a burst: first, the host
protocol implementations may not be tuned to achieve maximum performance, and
second, in many cases the Ethernet hardware is programmed to use a single buffer for
packet transmission, despite the flexibility offered by new interfaces. V. Jacobson has
reported that, by rewriting the Ethernet driver to allocate an arbitrary number of buffers
for the interface, he achieved back-to-back packets and throughput of 9 Mb/s on an
Ethemet between two Sun-3s [39]. (He also reported that, at that speed, the problem of
interface buffer overruns becomes very serious.) Of course, for this new implementation
the conditions described above that may account for a lower collision rate, do not
apply.

Analyzing the individual protocols will give us a more precise picture than the one
obtained so far by looking at the entire packet stream. In the following three sections we
shall describe the network protocols by focusing on TCP, ND, and NFS. We shall limit the
analysis to those features of the protocols that are relevant to understanding communi-
cation traffic. Thus, the file access properties of ND and NFS will not be covered in detail.

Ill. The Transmission Control Protocol

In Figure A.7 we show the network utilzation produced by the TCP protocol. The
most striking aspect of this protocol is that, despite the high number of packets transmit-
ted, it generates very low network utilzation. The activity peak between 9@ and 10 pm is
caused by file system dumps performed across the network. File system dumps may not
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be good indicators of TCP throughput since, in the presence of disk contention, data
may not be generated rapidly enough to keep TCP buffers always full. In addition, the
dump program may be inefficient.

FiGURrE A.7. ETHERNET UtiLizanon (TCP ProTOCOL)
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A. Data Size

Many TCP packets carry character traffic (characters of UNIX shell command lines)
from diskless workstations on the XCS network to VAXs on other networks. Therefore,
many packets are short. This is displayed in Figure A.4, which also shows that TCP traffic is
essentially bimodal. Figure A.8 shows the size of the objects transported by TCP packets.
i.e. the length of the data portion of TCP packets. More than a third of the TCP packets
are acknowledgment packets, which transport no data, sent from the receiving host to
the transmitting one. Although a portion of the 1-byte objects is produced by editors that
put terminals in raw mode and do not buffer character transmission, most of them are
keep-alive messages. Keep-alives, which involve two messages. are implemented in
Berkeley UNIX by periodically retransmitting the last byte of a conversation (a 1-byte mes-
sage) in order to get an acknowledgment (a zero-byte message) from the other side of
a connection.

The two peaks at 24 and 84 bytes result aimost exclusively from packets transmitted
over connections established by xterm in the X window system [78], which, at the time of
the measurements, was used on XCS’s MicroVAXs. 1t is the traffic of 24-byte data mes-
sages that generates the small peak at 64 bytes in the global packet size distribution in
Figure A.4.

B. Connections

In order to provide data demulttiplexing, TCP uses a set of addresses, called ports,
within each host to address individual processes. The source machine address, the
source port number, the destination machine address. and the destination port number
uniquely identify a TCP connection. The number of open connections during the day
varied from around 40 to 50, following the crash of one of the largest VAXs of the Com-
puter Science division, to about 130 to 140 at the peak of the TCP activity in the early



118 llI. Transmission Control Protocol Appendix A

FiGURE A.8. PERCENTAGE OF TCP PACKETS vs. DATA SiZES
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aftemoon. We found that most connections were idle, i.e. only keep-alives were
transmitted; the number of active connections over 1-minute intervals never went above
60 and on the average was below 30.

C. Higher-Level Protocols

TCP follows the convention of port numbers that are known in the internet environ-
ment and to which network servers bind permanently. These well-known port numbers
facilitate the procedure for establishing connections. Each server uses a specific higher-
level protocol; therefore, by looking at those ports, we can identify the higher protocol
traffic components of TCP. Table A.3 lists the major components of TCP traffic in decreqs-
ing order of the sum of bytes transmitted from both servers and clients. All of these proto-
cols can be classified as application-layer protocols in the OSI model. The DATA columns
show the percentage of total data bytes (using the sizes of the TCP data fields) tran-
sported by the TCP packets.

TABLE A.1. TCP ProtocoL STATISTICS (PERCENTAGES)

ProTOCOL SERVERS® SIDE CLIENTS” SIDE
Packers | Byies | DATA | PAckers | BYIES DATA
login 32.99 21.99 | 13.61 43.52 20.28 0.42
rcp 3.38 3.73 4,04 4.79 32.89 | 55.89
prinfer 0.60 0.32 0.08 0.80 5.57 9.46
fip 0.40 3.07 525 0.42 1.03 1.52
telnet 2.84 1.65 0.72 3.86 1.80 0.05
smip 0.13 0.08 0.04 0.15 0.14 0.13
Total 40.34 30.84 | 23.74 53.54 6171 | 67.47

The servers’ side lists the data that was transmitted by the various network protocol
servers (often running on hosts on networks other than XCS), while the clients’ side shows
the data that user processes sent to servers on XCS or other networks. In some case, as
for exampile for the login server, there is one server per machine. In others, there are only
one or a few per local-area network such as the case of the printer server.
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Table A.3 includes two remote-login protocols, login and telnet, and two file-transfer
protocols, rcp and ftp. This reflects a fundamental trend in, we believe. the majority of
local-area environments. Even within the confines of a single organization, the need to
transmit information and share data on different hardware and software systems forces
system administrators to maintain, and users to employ. a variety of programs.

These protocols encompass 93.9 percent of the total number of TCP packets, 92.6
percent of the total TCP bytes, and 91.2 percent of the total TCP data bytes. The login
protocol is responsible for the majority of packets and bytes sent on the network. This is
the combined results of both the muttiwindow environment of personal workstations,
which enables one to open many connections simultaneously, and the user-community
custom of using the department VAXs for tasks such as mail, electronic bulletin board.
and so on. Notice. however, that the rcp protocol accounts for most of the data bytes
transferred-59.9 of the total. This again can be explained by the high number of ack-
nowledgment and keep-alive packets that are sent on idie login connections, whereas
rcp is used to copy files.

It is interesting to note that rcp is used primarily to transfer data from the client’s side
to the server’s side (56 versus 4 percent of data bytes). We have verified, by identifying
sources and destinations of data transferred on the rcp port, that most of the bytes were
moved from the Sun workstations to VAXs. Therefore, rcp traffic is primarily generated by
remote file copying programs invoked on XCS workstations to **push’’ files to VAXs, which
do not share any file systems with Sun workstations, on networks other than XCS. (The rcp
protocol is virtually never used to transfer files between Suns as the remote file system
implementation of Sun UNIX allows workstations to mount file systems from various file
servers.)

Notice that the low-level activity of the mail protocol [67] (SMTP) is a result of users’
custom of sending electronic mail, or replying to messages received, from the machines
where they receive their mail. Few at Berkeley receive their mail on personal work-
stations. As a result, most electronic mail traffic is observed as login traffic since users typi-
cally connect to the VAXs in order to read or send mail.

D. Source-Destination Patterns

The analysis of the source-destination traffic patterns shows that most TCP communi-
cation occurs between workstations and VAXs. No single machine transmits more than
six percent of the total TCP byte count: the imbalance present in the traffic patterns for
the total IP traffic is absent in TCP. Unlike the total IP traffic, however, there is a marked
imbalance, at least for some machines, in the traffic between two machines. (For
instance. one Sun sends 5.8 percent of the bytes to a VAX, but receives only 0.1 percent
of the bytes from it.) As observed above, TCP file transfers, which carry the bulk of the
data, move, for each pair of machines, mainly in one direction. While NFS displays a simi-
lar imbalance, we shall later see why ND, which accounts for 76 percent of all IP bytes,
has more balanced traffic between any two machines.
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E. Interarrival Times

Figure A.9 shows the interarrival time distribution for the TCP protocol. Interarrival
time is computed as the difference between the beginning of the transmissions of two
subsequent TCP packets. The left axis of the graphs represents the percentage of TCP
packets; the right, the percentage of all packets received. The initial peak is generated
by two TCP packets following one another in quick sequence. Since the analysis of
source and destination addresses shows that the pairs of packets generating peak 1 are
not related. and since most of the pairs follow the transmission of a long packet, it is likely
that these packets queue up on different stations, waiting for the long packet transmis-
sion to terminate, and subsequently collide.

FIGURE A.9. PERCENTAGE OF TCP PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)
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The peaks numbered 2, 3, 4, and 5 occur after an interval in which there are fewer
interamival occumencies. These peaks correspond to TCP packets that are queued as
they are generated during the transmission of one of the many 1-Kbyte ND packets (see
Figure A.4). Had we observed the arrival of packets af the network interface queues,
rather than at the network after the Ethernet transmission contention has taken place.
we would have seen a distribution closer to that of an exponential distribution, which, on
a semilog plot, is a straight line.

TCP is slow compared to ND and NFS, which camy exclusively local traffic. Since
packet acknowledgments come mainly from machines on other networks, gateways
add their switching time to the propagation delays of most TCP packets. Thus, 50 per-
cent of the packets are followed by another within 11 ms, ten percent are followed by
another within 2 ms, and 90 percent within 52 ms.



Appendix A IV. Network Disk Protocol 121

IV. The Network Disk Protocol

The ND protocol provides disk block access to a remote disk server. The major
disadvantage of this type of access is that it does not allow file system write sharing. In
fact, since each client stores disk blocks in a locally maintained buffer cache in order to
reduce the number of expensive network accesses, concurrent write operations can
create inconsistencies between a client’s file data structures and the physical disk
image. causing clients to crash. The NFS protocol provides shared remote file access
and thus avoids the problems of the ND protocol. However, the performance of NFS,
which is implemented with a remote procedure call protocol and is itself a rather com-
plex protocol, is not as good as that of ND.

Sun Microsystems employs both protocols compromising between performance
and flexibility. Whereas NFS provides access to general file systems for which read/write
sharing is required, ND is used to implement each client’s root file system, a distinct one
for each client; to access the paging and swapping area of each workstation; and to
access shared portions of the file systems that, by containing read-only executable files,
do not give rise to inconsistencies. Although the latest release of Sun UNIX removes the
ND protocol and uses NFS for the virtual-memory impiementation [86], the systems run-
ning in the local-area network we measured relied on both protocols.

The ND protocol, which consists only of the two operations read and write, is very
simple and is entirely driven from the client side. Read requests and acknowledgments
are short packets, and data are transferred 1 Kbyte per packet. As shown in Figures A.3
and A.4, the packet size distribution for the ND protocol is strictly bimodal. For the pur-
pose of the following discussion, we shall distinguish two types of ND packet sequences:
a read-request packet followed by a data packet (Req./Data) from the server, and two
data packets one after the other (Data/Data). (Notice that write operations are initiated
by clients with the transmission of the first data packet.)

A. Utilization

Figure A.10 displays the network utilization attributable to the ND protocol. The
graph looks very similar, both in shape and in magnitude, to that of Figure A.1, which
shows the overall Ethernet utilization.

As mentioned before, the ND protocol is used to access different classes of parti-
tions on remote disks: the read/wiite private and the read-only public partitions, which
are shared by client workstations. The ND protocol is also used by diskless workstations to
access their paging partitions to which the virtual-memory system of the Sun UNIX kemel
directs swapping and paging traffic. By far, the largest amount of traffic is due to this last
component.

In the Sun UNIX virtual memory, processes compete for memory pages from a com-
mon page pool. Therefore, if one process requests more memory space and the system
free list is empty. the pagedaemon looks for pages owned by other processes to free
(and writes them to the paging device if dirty). This system generates a high amount of
paging traffic when workstations’ physical memories are not sufficiently large. Paging
activity constitutes the largest component of the traffic generated by the ND protocols:
more than 50 percent of the total ND traffic.
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FIGURE A.10. ETHERNET UtiuzATioN (ND PrOTOCOL)
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It is important to notice that, atthough there is a monstrous level of paging traffic,
because of the way processes compete for each others’ pages. Sun UNIX, as well as
Berkeley UNIX, generates very little swapping activity—the suspension of processes by sav-
ing their entire state information on the backing store. The low level of swapping has
often led researchers who have measured Berkeley UNIX or Sun UNIX virtual-memory per-
formance to conclude eroneously that virtual-memory activity would have a negligible
effect on network traffic should network file systems replace local disks [49.641.

One might find it surprising to discover that the ND protocol accounts for most of the
network traffic. The relative importance of the ND protocol components can be
explained by 1) small physical memories on most client workstations, which cause exces-
sive paging activity; 2) the tendency of the virtual-memory algorithms of Sun UNIX [4, 5],
designed when the cost of memory was high compared to the cost of disk space. to
make maximal use of the memory even at the cost of generating some extra |/O traffic:
3) small available file buffer caches. which force the kemel to discard pages belonging
to commonly used programs; and 4) UNIX applications that use extensively the directory
/tmp. which in a diskless Sun environment resides in the root partition.

We noticed that for some of the file servers the number of bytes written to the pag-
ing partitions exceeded the number of bytes read from the same partitions. Whereas the
high level of paging activity certainly depends on the small physical memories in use on
our workstations, the fact that vitual-memory pages are only rarely read back from the
paging device may result from system inefficiencies. Since space allocated to each pro-
cess on the backing store is organized as a contiguous sequence of blocks, disk transfers
are particularly efficient because disk arms need not seek between accesses to a
process’s data. It is not clear, however, that with today’s fast file systems [55] the backing
store provides significantly shorter access time. Altematively, virtual memory could page
to and from the file system [59]. This would have the additional advantage that a
process’s text pages need not be written to the backing store the first time they are
paged out.
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B. Interarrival Time

Figure A.11 plots the packet interarrival-times between ND packets. Figure A.12
shows the cumulative interarrival time distribution. In both figures, the vertical axis on the
left represents the percentage of ND packets; the axis on the right, the percentage of all
packets received.

FIGURE A.11. PERCENTAGE OF ND PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)
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The ND protocol is very fast: 90 percent of all ND packets are followed by the next
packet within 18 ms. Three factors contribute to this remarkable speed. First, the proto-
col is extremely simple, since it uses the IP fransport mechanisms to bypass much of the
kemel’s code for higher-level protocols; second, read requests typically involve 4 or 8
Kbytes of data resulting in bursts of packets sent with small interarrival times (notice that
the time between the read request and the first response packet is generally longer since
it includes disk access time); and third, write operations are delayed and servers can
send acknowledgements as soon as the data have been received.

We have numbered the significant peaks in Figures A.11 and marked them in Figure
A.12. These peaks represent pattems in the communication behavior and time constants
that are determined by the type of transaction, the disk speed, the CPU speed, and the
network interface used. As expected after seeing the influence of the paging activity,
the largest component of many of the peaks is the ND paging partition traffic.

The ND peaks numbered 1, 3, 5, 6, 8, and 12 are aiso clearly identifiable in Figure
A.5, the graph of interarrival times of all packets. This means that no packet belonging to
other protocols was transmitted between two ND packets in a good portion of arrivals
that contributed to these peaks.

Peaks 1 and 2 are due to Req./Data packet sequences. Data/Data message
sequences between Sun-3s account for a large portion of peak 3, which occurs at about
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FIGURE A.12. CUMULATIVE PERCENTAGE OF ND PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)
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2.2 ms. Since it takes 0.89 ms to transmit a 1-Kbyte ND packet, protocol overhead for
Sun-3s amounts to about 1.3 ms. Some Data/Data message sequences between Sun-3s
are delayed and have interarrival time of about 3 ms (peak 4). There are three possible
reasons for the delays: first, there could be queuing at their network interfaces, which are
used by other protocol modules; second, the network channel could be busy when the
two machines generate messages for transmission; and third, the two machines could be
loaded.

The Data/Data transactions at peak 5, which occurs at around 3.4 ms, are gen-
erated mostly by Sun-2 machines; the associated protocol overhead is in this case 2.6 ms.

Notice that while a write Data/Data message sequence is generated by client
workstations, the read Data/Data one is generated by servers. This explains why the
communication between a Sun-3 client and its Sun-2 server produced write Data/Data
sequences at peak 3 and read Data/Data sequences at peak 6.

One of the file servers had a siower, non-standard disk, which was exclusively used
by a single client workstation. The absence of disk contention generates the sharp peaks
numbered 11, 12, 13, and 15.

V. The Network File System Protocol

This section analyzes the network performance of the NFS protocol, which provides
diskless workstations with remote access to shared file systems over a local-area network.
It does not directly address the file access properties of Sun remote file-system implemen-
tation; while the patterns of file access are very important in file-server design, they are
outside the scope of this study. Understanding the traffic characteristics of the NFS proto-
col is particularly important because. unlike most of the ND protocol traffic, NFS traffic
represents user rather than system activity.
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The NFS protocol is much more complicated than the ND protocol: it uses remote
procedure calls (RPC) [87], which in tum use the User Datagram Protocol [68] (UDP) as
the transport protocol. Furthermore, NFS, in order to work with heterogeneous file servers,
converts the information it transmits into @ machine-independent format [53].

Among the procedures used by NFS, there are procedures to read and write data,
to create files, to convert file names into pointers to files, to retum file atftributes, and to
create, remove, or read directory entries. A description of the NFS protocol procedures
can be found in Sun manuals [63]. If files are to be accessed on remote file systems, Sun
UNIX transforms the system calls that operate on them into one or more of NFS remote
procedure calls.

A. Utilization

Figure A.13 shows the network utilzation, over 1-minute intervals, of the NFS protocol.
The pattem of NFS communication generally follows that of the total Ethemet traffic
although the graph'’s spikes indicate that it is more bursty. The 1-minute average utiliza-
tion is well below five percent, with occasional bursts in the range of five fo ten percent
and one peak at 12 percent after 10 pm.

FicURe A.13. ETHERNET UTiLizATION (NFS PROTOCOL)
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Figure A.14 displays the network utilzation, over 1-second intervals, generated by
NFS traffic between two Sun-3 workstations: a client and a heavily used server. The net-
work activity is intermittent, following the usual pauses in user behavior. In addition to
occasional 1-second peaks at 15 percent, there are times when the network utilization
stays at around ten percent for several seconds. This corresponds to a throughput rate of
about 120 Kbytes per second. Several other workstations, even those less heavily used,
displayed similar data transfer rates over short intervals.

B. Packet Length

The packet size distribution generated by the NFS protocol reflects that NFS is based
on remote procedure calls. The distribution of packet lengths is bimodal. The two modes
differ, however, from the modes of ND and TCP. One mode comresponds to a large
number of short packets whose lengths are distributed around 144 bytes: these are
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FIGURE A.14. ETHERNET UTILiZATON (NFS TRAFAIC BETWEEN TWO WORKSTATIONS)

15%

10%

5%

6:05pm 6:10 6:15 6:20 6:25pm
Time of day (1-second intervals)

requests and responses transporting NFS and RPC headers. The other mode occurs at
1500 bytes and is produced by the data fragmentation performed by the IP module dur-
ing file read and write operations. The minor peaks at 696, 920, and 1276 bytes are
caused by the last fragments of fragmented messages. These peaks are displayed in Fig-
ures A3and A4,

C. NFS Procedure Statistics

The routine that performs file path-name lookup is the most heavily used among the
NFS remote procedure calls; it represents 48.5 percent for the total number of cals.
Lookup operations dominate since path-name transiation is perfformed one component
at atime.

Read and write calls comespond to 33.7 and 4.3 percent of the total. On the aver-
age. there are 7.8 read operations for each write operation. A UNIX file system study [95].
in which user requests were traced at the system-call interfface, reports that there are
about 2.7 reads for each wiite operation. One would expect our read/write ratio to be
higher, not smaller, than the study’s, since, by looking at the network activity rather than
at the system-call activity, we do not capture file read operations that hit the local file
caches; moreover, under NFS all write operations go to the server [77]. However, our
caches are not very effective, mainly because of their small szes, and thus, the number
of reads we observed is close to the number of reads issued by the file system layer. Our
higher read/write ratio is explained by two factors. First, especially in the paging in of
programs, user read requests are large and each request corresponds to more than one
NFS packet (recall that page-outs are handled through the ND protocoD. Thus, we have
a higher number of reads. Second, the UNIX accounting information written to a
system’s file each time a process terminates is handled in diskless Sun workstations by the
ND protocol; therefore, we also have a lower number of writes.

An NFS client caches file data. Repeated use of these data requires a verification
from the file server that the data are up to date. This is done with the getatir NFS pro-
cedure call. The developers of the NFS protocol discovered that the getattr call
accounted for 90 percent of the total number of calls made to the server [77]. The
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situation was remedied by adding a so-called attribute cache at the client side. which
keeps file attributes for 30 seconds after they arive from the server. The number of
getattr procedure calls we observed came to 4.6 percent of the total.

One of the reasons for the mentioned ineffectiveness of the NFS caches is the large
size of frequently used programs and graphics libraries. For instance, the Sun window
library occupies 640 Kbytes, the C compiler library. typically stored in an ND public parti-
tion, alone occupies 350 Kbytes and the compiler commonly requires 1 Mbyte of physical
memory. The size of the UNIX kernel on a diskiess workstation is approximately 500 Kbytes:
Sun UNIX nomnally allocates ten percent of the total available memory for caches and
buffer pools. Therefore, the user of a 4-Mbyte machine is left with only about 3 Mbytes of
memory for user processes, a good portion of which is taken by Sun’s graphics programs.
(These sizes were measured on a Sun-3 workstation.) Under these conditions, we should
expect both poor cache hit-ratio and heavy paging traffic.

Three of the NFS routines, read, write, and readdir (this last one used to read the
content of directory files) may transmit in one call more data than fits in a single Ethemet
packet. In this case-we have seen that UDP provides the network transport layer for
NFS-the IP layer fragments the messages. The average number of packets for the read
responses, write requests, and readdir responses is 2.9, 3.1, and 1.6 respectively.

The small number of fragments for the readdir calls indicates that most directories
that users list contain only few files. One reason for this is that many users avoid listing
large directories since the response time of the UNIX Is command on directories with
many entries is particularly slow on diskless workstations.

D. Protocol Timers

We have observed that an excessive number of NFS requests were retransmitted.
Although some of these retransmissions were triggered by factors not related to the NFS
protocol, such as lost packets, many retransmissions were caused by RPC timers expiring
before the entire message was received because of delayed packets and delayed
server responses.

For example, in case of a client 8-Kbyte read request, the server fetches the data
from the file system and issues a single RPC response. The RPC module on the server side
adds an RPC header and passes the request to the UDP module. The UDP module adds
a UDP header and passes the data to the IP module. IP takes care of the transmission
over the Ethernet channel by fragmenting the message into five 1500-byte packets and
one last 920-byte fragment packet. The receiving IP module on the client side reassem-
bles the message. passing it up to the UDP and RPC modules only after the last packet
has been received and the message fully reassembled. Therefore, in the case of high
network utilization when queueing times become substantial, the RPC layer times out
while the response it generated is being received by the lower layers.

More than six percent of the write calls and more than one percent of the read calls
were retransmitted. Most of these retransmissions occurred 0.7 seconds after the original
transmission. The proportion of write retransmissions is higher than the proportion of read
retransmissions because reads are buffered (i.e. pages are cached at the server, which
implements a read-ahead policy) while writes always go to secondary storage. Based
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on an analysis of the correlation between network utilization and number of NFS opera-
tions, we conjecture that both network and disk contentions are responsible for these
retransmissions.

E. Interarrival Time

Figure A.15 displays the NFS packet interarrival-time distribution, and Figure A.16 the
cumulative interarrival-time distribution. In the two figures, the interamival time is the
difference between the beginnings of the transmissions of two subsequent NFS packets.
In both figures, the vertical axis on the left shows the percentage of NFS packets and the
one on the right the percentage of all packets received. We have numbered the peaks
in Figure A.15, and reported their position in Figure A.16. In the following discussion three
different message types are used: Request, for an RPC client request; Response, for an
RPC server response or for the first packet of a server response: and Fragment, for subse-
quent packets of a multi-packet RPC response. NFS Fragment packets play the same
role as Data packets in the ND protocol: they are large packets that resut from
protocol-specific fragmentation of long messages.

FIGURE A.15. PERCENTAGE OF NFS PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)
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Most of the peaks with lower interarival times are primarily produced by Sun-3
machines. The first significant occurence of Fragment/Fragment message sequences
occurs at peak 5 at around 3.1 ms. For the ND protocol and the same pair of machines
the Data/Data message exchanges generated interarrival times as low as 2.2 ms. The
time difference between these two measures is due in part to the longer messages of
NFS (50 percent longen and in part to higher protocol processing time. Using calcula-
tions analogous to those of Section IV, we estimate that the protocol overhead amounts
for Sun-3 CPUs to about 1.9 ms for this type of message sequence, as opposed to 1.3 ms
for the ND protocol.
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FIGURE A. 16. CUMULATIVE PERCENTAGE OF NFS PACKET ARRIVALS (AT RIGHT AS PERCENTAGE OF ALL ARRIVALS)
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Peak 7 aliows us to compute the equivalent protocol overhead for Sun-2 machines.
Here, the predominant message sequence is a Response/Fragment one, which indicates
that Sun-2s request fewer data per transaction from file servers. The sequence is other-
wise equivalent to a Fragment/Fragment sequence. The peak occurs at about 4.1 ms;
the overhead amounts to about 2.9 ms. In the case of Sun-2 machines, the computed
ND protocol overhead for Data/Data transactions was 2.6 ms.

It is important to notice that, although packet protocol overhead is higher in the
case of NFS, the increased packet size tends to reduce the per-byte overhead. Since
each NFS packet transports 50 percent more data than ND packets (in the case of
Data/Data and Fragment/Fragment message sequences), the per-byte protocol over-
head is about the same as that of ND: 1.3 microseconds per byte for a Sun-3 and 2.2
microseconds per byte for a Sun-2. Therefore, the lower NFS protocol throughput must be
caused by other factors.

Figure A.15 shows a slowly decreasing curve, which indicates that NFS operations
tend to be more spread over time than the ND ones. There are several reasons for this
behavior. First, since many user-level fle accesses involve a small number of bytes, the
NFS ratio of physical disk accesses to number of operations is higher than that of ND:
second, while ND's writes are delayed, NFS uses synchronous writes; third, the more com-
plex protocol message interactions in NFS communication create greater time variability:
and fourth, NFS remote procedure calls are synchronous, i.e. the client process is blocked
until the response is received.

An additional reason for lower performance, one not evident from the traffic meas-
urements, is that NFS client caches are less efficient than ND ones. Their data must be
validated before each access. The attribute cache discussed above only alleviates the
problem.
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VI. Conclusions

In this study we have analyzed the behavior of the Ethemet local-area network in
an environment of diskless workstations running the UNIX operating system. We have
closely compared the traffic characteristics of a medium-size 10-Mb/s Ethemet with those
of an older 2.94-Mb/s Ethernet whose traffic was studied at Xerox PARC at the beginning
of the 80’s. Use of the Shoch and Hupp study for comparison is meaningful because it
introduced basic traffic characteristics for Ethernets that subsequent studies have not
significantly questioned. As a result, system designers currently develop network software
and hardware under the implicit assumption that the network load is light.

The most striking conclusion of our study is that diskless workstations may indeed
generate enough traffic to load substantially a local-area network of the current genera-
tion. A system built around diskless workstations is highly interactive., and short-term net-
work utilization is more likely to affect users’ behavior than long-term average utilization.
Therefore, we consider response time more important than throughput in studying the
performance of today’s systems. The mean network utilzation is low (6.5 percent aver-
aged over 24 hours) but bursts generate short-term peak utilization above one third of
the Ethernet raw bandwidth. Studies have shown that, at this level, network latencies will
begin to increase [48]. For instance, according to Gonsalves [30], who measured Ether-
net delays at varying. artificially generated network loads for different packet lengths,
the queuing time at traffic intensity 0.3 is larger than 5 ms when all packets transmitted
are 64 bytes long, and about 19 ms when the packet length is 1500 bytes. We have seen
in Section V how the increased latency affects the NFS protocol.

Our measurements show that a workstation’s traffic falls into three broad categories:
character traffic from the workstation to other machines; paging traffic generated by the
workstation’s virtual memory to a remote paging device; and file access traffic to remote
file servers. A workstation’s behavior will depend on the characteristics of each of these
three types of traffic. These components were easily identifiable because a different pro-
tocol was employed for each component. Character traffic generates many small
packets but no substantial network utilization. File access to a remote file server gen-
erates bursts of traffic lasting several seconds, which may demand bandwidths in the
order of 120 Kbytes per second, or about ten percent of the Ethermnet raw bandwidth.
Paging traffic, which accounts for maximum network utilization levels of 20 to 25 percent
over 1-second intervals between a single client workstation and a file server, has been
greatly increased by small physical memories (by today’s standard a 4-Mbyte memory is
small indeed) and, possibly, by sub-optimal performance of the virtual-memory aigo-
rithms. It could be argued that larger memory sizes will decrease the level of paging
traffic: however, since there is a tendency to write new, larger applications that take full
advantage of memory size increases, it is more likely that paging will remain a noticeable
component in future workstations. It does seem, however, that paging fraffic could be
reduced by improved buffering schemes; one such scheme, which calls for a global
caching area for both vitual memory and file system, has been implemented in Mach
[94] and in release 4.0 of Sun UNIX. In addition, bridges could be used to cluster diskless
workstations and their file servers on separate segments of an Ethernet. This arangement
has the advantage of confining the virtual-memory traffic of the client workstations within
the boundary of each individual network segment. Unless these approaches are used
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extensively in the future, paging traffic may remain intolerably high, and the diskiess work-
station technology may be doomed to limited development in current local-area net-
WOrks.

The analyses of the interarrival time for each of the three categories of traffic have
revealed that there are very few occurrences of back-to-back packet arrivals despite
the high packet arrival rate. Although we did not obtain performance measurements on
the number of collisions, we believe that the observed packet amrival times-with spacings
among subsequent packet arivals that correspond amost to a full packet
transmission—contribute to keep the number of collisions and protocol latencies smaller
than predicted by Poisson models. As network interfaces and protocols are developed
that can transmit data, for the same type of user requests, at the rate of the Ethemet
data link layer, we would expect that a higher percentage of bandwidth will be wasted
in resolving collisions and that protocols’ response time will increase. Thus, on the Ether-
net, as protocols become more efficient, they must also become more sophisticated to
deal with increased latency.

Even though it is difficult to quantify the network bandwidth necessary to support
diskless workstations—this is largely a subjective parameter that depends on the perfor-
mance demanded by users—it seems clear that response time is the single, most impor-
tant performance characteristic for evaluating these bandwidth requirements. We have
seen that bursts of file system traffic may transport data on the order of one 10 two million
bytes. Because of coupling between CPU speed and new application interfaces, future
software applications will need to move even greater amounts of data. For this reason.,
the development of effective caches, as demonstrated by current research efforts and
by our measurements, is a very important objective. Yet larger caches will not eliminate
users’ need for larger amounts of bandwidth.

The Ethernet local-area network is a mature product. It provides an extremely
effective and low-cost communication medium for interconnecting computers within @
local area. Designed when users’ communication needs were quite different from
today’s. the Ethernet has been adapted to provide effective bandwidth to distributed
systems based on diskless workstations. Although pushed by improper memory
configurations on machines with high-performance network interfaces, the Ethemet still
functions satisfactorily. However, based on the measurements described in this study, we
believe that precise decisions on the number and type of workstations that can be
placed on a single-cable Ethernet must be made soon. if not immediately.
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