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Abstract: Single chip processor performance has improved dramatically since the in-
ception of the four-bit microprocessor in 1971. This is due in part to technological ad-
vances, (i.e., faster devices and greater device density), but also because of the adop-
tion of architectural approaches well suited to the opportunities and limitations of VLSI.
The most appropriate are those that effectively reduce off-chip memory accesses and
admit of a regular pipelined implementation. The overriding goal of pipelining is to
achieve “single cycle execution,” i.e., instructions appear to execute in a single proces-
sor cycle. Today’'s RISC processors are close to realizing this goal, and the next gener-
ation will reduce the cycles per instruction even further. In this paper, we will review the
design issues and the proposed architectures for high performance VLSI processors.

1. Introduction

Microprocessors have advanced rapidly from their early days as low-cost calculator
building blocks. Today’s 32-bit single-chip processors provide performance comparable
to super-minicomputers, at an historically low price per MIPS (million instructions exe-
cuted per second, an admittedly imprecise metric of processor performance). For ex-
ample, the LSI Logic Sparc processor chip, a 20 Mhz part that is rated by its designers
as achieving 12 MIPs, sells for $179 in 100 unit quantities. That is an astonishing
$15/MIP!  Much of this dramatic price/performance improvement has come about
through the advances of VLSI technology. Myers [1] reports that in the fifteen years be-
tween the introduction of the Intel 4004 and the 80386, the circuit technology delivered
a 100X increase in transistor density, an 8X improvement in speed-power product, and
a 100X reduction in gate delays (see Table 1).

Advances in circuit technology, however, do not explain the whole story. A complex
interplay between architectural invention and implementation constraints is also at work.
For example, architectural features that reduce off-chip memory references or that lead
to a regular pipelined implementation are well matched to the constraints of VLSI tech-
nology. Architectures chosen to reflect the underlying technological constraints will
more quickly reap performance benefits as the circuit technology inevitably improves
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4004 1971 2300 PMOS 4K 10.8 (4 bits)
8008 1972 3500 PMOS 16K 20.0 (8 bits)
8080 1974 5000 NMOS 64K 2.0 (8 bits)
8085 1976 6000 NMOS 64K 1.28 (8 bits)
8086 1978 29000 NMOS M 0.375 (16 bits)
80286 1982 130000 NMOS 16M 0.25 (16 bits)
80386 1985 275000 CMOS 32M 0.125 (32 bits)

Table 1: Trends in LSI/VLSI Processor Technology

The table is reproduced from [1], and shows the evolution of the Intel processor family over its first
fourteen years. Note the 100x increase in transistor count (accompanied by an 8x increase in chip
size). To match this fourteen year improvement in technology, mainframes required approximately

thirty years.

over the next decade. Over the last five years, one such architecture has been the re-
duced instruction set computers, or RISCs. While [1] observed that “conventional” mi-
croprocessor architectures had been improving at the rate of 40% per year (a factor of
two performance improvement every 2.25 years; a factor of ten every seven years), Wil-
liam Joy of Sun Microsystems predicated that RISC processor performance would dou-
ble every year. Popularly known as Joy’s Law, it can be expressed as

MIPS = 2Year-1984

Astonishingly, the designers of RISC microprocessors have kept pace with this auda-
cious prediction. The remarkable implications of Joy’s Law are represented in Figure 1.

This paper is an extension of [2], and is organized as follows. In the next section we
present the key issues for computer architectures destined for single chip implementa-
tion. This provides a framework within which to describe the advantages that accrue to
RISC architectures in Section 3. Section 4 discusses new developments in the archi-
tecture arena, in particular, superpipelined and superscalar architectures, that will play
an increasingly important role in the next generation of high performance single chip
processors. Section 5 is our summary and conclusions.

2. Architecture and Impilementation Issues

The IBM System/360 family was the first computer to successfully decouple archi-
tecture from implementation. It was possible for the same machine language program
to run on a continuum of implementations of the same instruction set architecture, yet
representing different points in the cost-performance space. Because of the tight inter-
play between technology and limits of what can be implemented in a single chip, VLSI
processor architectures have been more severely constrained, and it has not been pos-
sible to decouple architecture from implementation to the same extent. To a large
extent, design decisions that influenced early microprocessor instruction sets live on in
newer generations because of software compatibility considerations. As the technology
delivered ever more transistors, the instruction set extensions became more complex.
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Figure 1: Myers’ and Joy’s MIPs

The Y-axis, Processor Mips, is logarithmic. The 40% per year extrapolation for conventional micro-
processor architectures rapidly falls behind the predictions for RISC microprocessors. Despite being
made in 1984, Joy’s Law has so far been proven true by a number of available products, including

Intel's recently announced i860.

By the early 1980’s the time was ripe to reexamine the interplay between architecture
and implementation for single chip processors.

VLSI technology imposes some important design considerations that cannot be ig-
nored during the design of a new processor architecture. The first is utilization of real
estate. Even with today’s one million transistor devices, the allocation of chip area to
function must be done carefully. Memory bits are cheap, regular, and transistor and de-
sign efficient; random logic and interconnect are not.

The second consideration is time to market. Because of intense competition cou-
pled to a very rapid rate of innovation, a delayed product introduction will have serious
problems in capturing market share: a late product is not likely to be performance com-
petitive. Design correctness to achieve working silicon in a first pass becomes an over-
riding consideration. This has led several computer architects to pursue “simplicity”
rather than ever increasing complexity in microprocessor architectures. An important
secondary effect is that simpler architectures normally require less resources to imple-
ment them, and are thus the best candidates for implementation in the most aggressive
new technologies.

The third is the magnification of performance when critical paths can be subsumed
within a single chip, because of the considerable expense associated with crossing chip
boundaries. Thus, a single chip processor can outperform a multichip ECL implementa-
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tion, even though the latter technology is much higher performance at the gate level.

Finally, the limits of VLSI technology also impact design decisions. For example,
local communication is faster than global communication, and the technology favors ar-
chitectures that can exploit this. The allocation of the scarce transistor resources to pro-
cessor functions, such as control, datapath, and on-chip memory, also plays a critical
role.

These considerations led, in part, to the original proposals for single chip reduced
instruction set computers (RISCs). Prior to RISCs, processor instruction sets had
begun to contain an overwhelming collection of operations, operand accessing modes,
and instruction formats. A number of studies indicated that most instructions in existing
“complex” architectures were rarely executed. Thus, one way to achieve faster time to
market was to simplify the processor’s instruction set. It was proposed that the simplici-
ty of RISC processors should yield shorter design cycles, while simultaneously yielding
a faster machine with a better utilization of silicon resources. While it makes sense that
a simpler processor should take less time to design, the latter two points are not nearly
as self-evident. We shall examine these points in the next section.

3. Why RISC is a Good Idea
3.1. Pin Bandwidth and Instruction Set Design

The critical performance bottleneck for VLSI processors is represented by the limit-
ed bandwidth of the single chip processor's pins. The pin bandwidth limitation mani-
fests itself in several ways. From a technological perspective, it is expensive in power
and delay to cross the chip boundary. While we may expect that external busses will in-
crease in size and speed in the near future, packaging and chip periphery restrictions
will continue to severely limit the number of connections relative to the amount of logic
on chip. Architecturally, the bandwidth limitation implies that main memory access will
continue to be slow compared with the processor’s cycle time, and that the speed gap
will widen.

One possible solution is to design a highly encoded instruction set, with high “func-
tion” per instruction. A typical program could be represented by a shorter sequence of
instructions, thus decreasing the number of instructions that need to cross the
processor’s pins to accomplish a given task. This approach has motivated the design of
most of the conventional instruction sets.

Nevertheless, a careful analysis must be made of how the usage of chip area af-
fects performance. A highly encoded instruction set requires a more complex
instruction decoder, a step that often determines the overall cycle time of the machine.
Microprocessors that have taken this approach typically dedicate more than 50% of
their chip real estate to on-chip microcode store. Rather than being executed directly, a
given complex instruction is actually interpreted by some sequence of microcode
fetches.



The alternative is to employ streamlined or “reduced” instruction sets, which allow
instructions to be executed by the hardware directly. Complex tasks are written as a se-
quence of the more primitive “reduced” instructions. This allows the chip real estate
normally dedicated for microstore to be more effectively used for other forms of on-chip
memory that can more directly improve program performance (3. These include large
register sets, instruction caches, and data caches. Registers allow operands to be ac-
cessed at processor rather than memory system speeds, and compilers have been de-
veloped that can be effective in allocating frequently accessed variables to registers. A
register-oriented machine has the additional advantage that operands can be encoded
in fewer instruction bits than if full addresses are needed. Instruction caches are
efficient in capturing “loops” within programs: once an instruction is fetched from main
memory, it can be “cached” in a fast memory within the processor. If it is referenced in
the near future, as one would expect within a loop, the next time the instruction is ac-
cessed, it can be obtained much more rapidly if it is “hit” in the cache memory. Because
instruction access exhibits a high degree of temporal reference locality, relatively small
caches can obtain high hit ratios. Data caches also reduce off-chip references by
catching accesses to recently referenced data, although they are not as effective as in-
struction caches, because data does not have as high temporal locality.

Instruction path length is defined as the number of instructions that must be execut-
ed to complete a task. The difference in instruction path length between RISC and more
conventional machines is actually not as great as one might think. Recent studies indi-
cate that compilers generate sequences with comparable instruction counts for the Mo-
torola MC68020 as for the commercial RISC architectures, while RISC instruction
counts are approximately 1.8 times as much for programs compiled for the Digital
Equipment Corporation’s VAX architecture [4].

In the (still) transistor constrained world of 1989, the technology tradeoffs favor in-
struction sets that require simple decode over more complex encoded instructions. This
does not imply, however, that the same choices would be made in a less constrained
world. Nevertheless, simple to decode instruction sets have additional advantages,
which we discuss next.

3.2. Pipelining and Instruction Set Design

Perhaps the most significant reason why RISC architectures lead to faster machines
is because they admit of a more efficient pipelined implementation. CPU performance
can be expressed in terms of the clock rate divided by the product of the dynamic in-
struction count and the average number of processor cycles per instruction (CPI) [5]:

clock rate
CPU Performance = .
UPe ance dynamic cycles
instruction X per
count instruction

-5-



Performance can be improved by increasing the clock rate, or by reducing the instruc-
tion count or the cycles per instruction. Technology factors make possible a higher
clock rate, while RISC concepts dramatically decrease the number of cycles to execute
the average instruction at the expense of modestly increasing the number of instructions
needed to complete a task.

Pipelining is the best known technique for reducing the effective clocks per
instruction. In just about any processor implementation, every instruction must pass
through the stages of instruction fetch, instruction decode, operand fetch, instruction
execute, and result write. If these stages can be overlapped, then a separate instruc-
tion can be in each stage at the same time. An instruction’s execution time, or latency,
is the sum of its (five) stage times. Since an instruction exits (and under ideal condi-
tions a new instruction enters) the pipeline every stage time, the effective time per in-
struction is that of a single stage. Hence the term “single cycle execution” often associ-
ated with pipelined instruction sets.

Consider Table 2, which shows the clock rate, cycles per instruction (CPl), and na-
tive MIPS for several popular machines. The CPl was determined by averaging the re-
sults for a standard benchmark set run for each of the machines reported in the figure.
It clearly shows the importance of CPl in determining overall performance. The VAX
11/780 and the IBM RT-PC have comparable clock rates, 5 and 6 Mhz respectively, yet
the advantageous CP! of the RISC machine allows it to execute its instructions at a four
times faster rate. Since the VAX has a highly encoded instruction set relative to the RT-
PC, it takes approximately twice as many of the latter’s instructions as the former’s to
perform the same task. Thus, the RT-PC is still twice as fast at a comparable clock
rate. The MC 68020 and the MIPS R2000 have the same clock rate, yet once again,
the advantageous CPI for the RISC machines yields a four times improvement in perfor-
mance. As we have noted before, dynamic instruction counts for the two architectures
are very comparable.

Machine Clock Rate CcPl Native MIPs
VAX 11/780 5 Mhz 10 0.5
VAX 8550 22.2 9 2.5
MC 68020 16 7 2.3
Clipper 33 6 5.5
RT-PC 6 3 2.0
MIPS R2000 16 1.6 10.0
Fujitsu SPARC 16 2.1 7.6
88000 20 1.6 12.5
MIPS R3000 25 1.3 20.0

Table 2: Native MIPS
The CPl is based on averages observed for the execution of a standard benchmark set run on the indi-
cated machine. Note that the clock rate alone does not predict true machine performance.



Machine Pipeline Stages CPl Instructions in Execution

VAX 8700 5 6.8 0.7
MC 68020 2 6.3 0.3
MIPS R3000 5 1.2 4.2

Table 3: Pipeline Efficlency and CPI

Instructions in execution is derived by dividing the number of pipeline stages by the average CPI. A
low results indicates that there is little instruction level parallelism being exploited. The optimal re-
sult would be a perfectly utilized pipeline, achieved by reaching a CPlof 1.

Cycles-per-instruction offers an important measure of the efficiency of a machine’s
pipelined implementation. The smaller the CPI, the better the processor is at exploiting
instruction level parallelism, i.e., the overlapped execution of instructions in the
sequential instruction stream. Despite a much faster clock rate, the VAX 8550 only
barely improves on the clocks per instruction of its ancestor the VAX 11/780. Thisis in
large part due to the difficulty in overlapping the interpretation and execution of the com-
plex multi-format variable-operand instruction format of the VAX. Pipeline efficiency is
illustrated in Table 3. The figure shows for several machines the number of pipeline
stages, the CPI, and the derived instructions in execution. The RISC machine, with its
very low CPI, yields the highest number of instructions in simultaneous execution, and
hence a more highly utilized and thus efficient pipeline. This can be accomplished
because of the streamlining of the instruction set: memory delays are more easily de-
coupled from the pipeline by separating load/store instructions from register-register in-
structions, delayed branches facilitate the smooth change of control flow, instruction de-
code and execution take a predictable number of processor cycles, etc. The degree of
pipeline efficiency due to streamlined instructions is why a high end implementation of
the IBM System 370 architecture requires 200,000 gates to achieve a CPI close to 3,
while a single chip RISC processor, which can be implemented in 40,000 to 50,000
gates, achieves a CPI of approximately 1.

Thus, the advantages due to RISC architectures primarily come from the instruction
set streamlining and its resulting pipeline efficiencies, leading to very low cycles per
instruction. After normalizing for instruction set differences, the advantage is approxi-
mately a factor of five in terms of instruction execution rate.

3.3. RISC Performance

One might be left with the impression that all RISC architectures are the same and
that there is little to differentiate the vendors. This is not the case. The RISC approach
depends intimately on moving some of the pipeline scheduling complexity to compile
time. For example, a compiler must be effective in finding useful instructions to insert
into the delay slots following branch instructions. This requires a careful analysis of
looping and IF-THEN-ELSE constructs in high level language programs. It is often help-
ful to obtain a profile of the program’s execution patterns before compiler optimization.
This can help identify the more common directions for conditional branches, i.e., are
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they more frequently taken or not taken (see Figure 2 and the explanation below). Even
though the architectures are similar at a high level, the quality of compiler technology
varies from one manufacturer to another.

In addition, there are some architectural differences among the various RISC archi-
tectures that do have an effect on performance. These include (1) branch architectures,
(2) the organization of on chip registers, and (3) the choice of what primitives to support
in hardware. We will examine each of these in turn.

Every RISC machine exposes some aspects of its pipeline to the compiler. The
most notable example is the delayed branch: to avoid pipeline hazards associated with
the update of the program counter, the instruction following the branch is always execut-
ed. This guarantees that once an instruction enters the pipeline, even in the presence
of conditional branches, it will complete its execution (assuming no traps or interrupts).
This helps achieve a CPI of 1 by avoiding “holes” or “bubbles” in the pipeline due to
switching the instruction stream fetch to a different memory location. However, as men-
tioned above, it is something of a challenge for compilers to find useful instructions to
place in the delay slot. The compiler's job can be simplified by having canceling
branches in the instruction set. Figure 2 shows two alternative code sequences for a re-
peat-until loop, one of which uses a canceling branch with the semantics that the in-
struction in the delay slot is canceled when the branch is not taken. Note how the can-
celing branch allows the delay slot to hold a useful instruction rather than an NOP. It
should be noted that very good compilers can often rearrange the instructions within the
loop to achieve the same effect with a conventional delayed branch instruction.

On chip register organizations also affect performance. Some RISC processors
contain register windows (overlapped and non-overiapped), basically a sliding porthole
to a large stack of registers, while others contain more conventional register files. Reg-
ister windows accelerate subroutine call and return, by obviating the need for saving
and restoring processor registers to and from memory. However, the decode time for
the large register stack, in the range of 138 registers for most ot today’s machines that
incorporate this feature, could be the critical path that lengthens the machines basic

X: instr0 X: Instr0
Instr1 X+1: Instr1
frequent .
case
Bicc X\ infrequent Bicc X+1
NOP case instr0
exit loo, exit loop

Figure 2: Canceling Branches

The code sequence on the left is for a straightforward implementation of an indexed do loop or re-
peat-until loop. Bicc X represents a conditional branch to address X. The right sequence shows
the alternative assuming that the branch at the bottom cancels the following instruction when the
branch back is not taken. With canceling branches, instr0 can be placed in the delay slot and only
canceled for the final loop iteration in which the loop is exited.

-8-



cycle time. Also, more advanced compiler techniques for register allocation can make
more efficient use of a smaller number of registers, even across procedure calls.

Finally, there is the issue of what primitives to include in the instruction set. While
the goal is single cycle execution, some operation are likely to require multiple instruc-
tions, such as multiply and divide. Some processors provide a primitive multiply/divide
step that must be iterated to perform full 32-bit operations, while others implement the
full operations in hardware.

Yet these effects are actually rather small compared with variations in pipeline strat-
egies, especially in terms of memory interfaces and coprocessors. For example, some
RISC machines assume a split instruction and data cache off chip (a so-called “Harvard
architecture”), and have organized their pipelines and memory interfaces to fetch an in-
struction and data word within the same cycle. This can be accomplished either by time
multiplexing the address and data pins, or by providing a separate set of pins for in-
struction and data memory. Other architectures assume a unified cache, and can not
perform both accesses at the same time. A similar problem exists for loads and stores:
some machines can execute these operations in a single cycle if coupled to a fast off-
chip memory, while others will require more than one cycle. Another place where
architectures differ is in the area of floating point pipelines. If these are fully integrated
into the integer pipeline, rather than decoupled through a coprocessor or multiple func-
tion unit interface, the pipelines tend towards a large number of stages. Deep pipelines
can result in higher instruction latency for all instructions. If the pipeline depth exceeds
the amount of available instruction level parallelism, i.e., it is not possible to find enough
instructions before a branch to keep the pipeline flowing smoothly, this can lead to high-
er CPI and thus degraded performance.

Figure 3 shows a performance comparison between a MIPS R2000 and a Cray
XMP uniprocessor for five different workloads: integer, LISP symbolic processing, non-
vectorizable floating point, low-to-medium vectorizable floating point (the livermore loop
kernels), and highly vectorizable floating point (linpack). The figure clearly shows that
the current generation of RISC processors are already comparable or faster than the
Cray for some tasks, although slower in raw floating point and vector processing
performance. The gap between the RISC machines and the supercomputers are nar-
rowing rapidly, especially given the observation that RISC machines are doubling in per-
formance every 12 to 18 months. Justin Rattner of Intel has observed that single chip
RISC processors surpassed conventional minicomputer performance in the late 1980’s
and predicted that high end mainframe performance could be eclipsed in the mid 1990’s

(6l
4. What Comes Next
4.1. Architectural Futures

A number of factors are driving towards faster single chip processors, irrespective of
the architectural approach. Innovations in process technology will continue to produce
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perts expect the crossover to take place within
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integer LISP FP lo-med highly the next five years, at least for programs with
V“’:;W Ve:;m low to moderate levels of vectorization.

new integrated circuit technologies with ever higher clock rates. Better compilers and
small improvements in instruction sets will obtain more efficient utilization of machine

pipelines.

However, the major impetus to higher levels of performance will be new computer
organizations that will drive CPI below one clock per instruction. To a large extent this
is the secret of vector processing machines: a single instruction is issued yet the opera-
tion is applied to a large number of operands, in effect achieving more than one opera-
tion per instruction. ‘

However a new collection of ideas have begun to emerge, based on incorporating
multiple functional units within the processor to permit more than one instruction to be
issued per clock. These machines are called superscalars [7). Figure 4 compares pipe-
line diagrams for a generic RISC machine and a superscalar implementation of the
same architecture. Each implements the same basic four stage pipeline: instruction
fetch, decode, execute, and write results. However, this particular superscalar machine
has the ability to issue two instructions at the same time, assuming that each does not
require the results of the other (i.e., they can be executed in parallel without changing
the results of the final computation). Performance is doubled, at an increased cost in
memory and register files ports, as well as an additional ALU.

An early example superscalar was the original MIPS processor developed at
Stanford University, which could combine two ALU-register operations or one LD/ST
and one ALU-register operation within a single instruction [8]. However, they initiated a
new instruction every other cycle, and so the net effect was a single cycle per instruc-
tion. The Intel i860 has a limited capability of issuing two 32-bit instructions
simultaneously, as long as one is a floating point operation and the other is an integer
operation.

An alternative to superscalars are the very long instruction word (VLIW) machines.
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I Generic RISC

Key:
IFetch Decode Exec WriteBk

Time

instruction
Sequence

Superscalar RISC

Figure 4: Pipeline Schemes for RISC and Superscalar Machines

The figure compares a generic 4-stage pipeline for a RISC machine (instruction fetch, instruction
decode and read register operands, operation execution, and operation result register writeback)
with the pipeline of a superscalar machine that can issue two instructions per clock cycle. The su-
perscalar requires twice as many ports to the instruction memory and register file, as well as two in-
dependent functional units (i.e. ALUs). The tigure is from (7).

VLIW machines [9] employ a large number of functional units within the CPU and use
compiler techniques to rearrange the instruction stream to find operations that can be si-
multaneously executed. Figure 5 shows a pipeline diagram for this class of architec-
tures. The approach depends on finding many operations that can be packed into a sin-
gle instruction for simultaneous execution. There is some controversy about the
amount of instruction level parallelism that can be extracted from real programs. A vari-
ety of studies place the limits from less than two all the way to many tens of instructions.
The prevailing wisdom is that VLIW machines do well on the same kinds of programs as
vector processors: those with simple control flow, such as applying the same operation
to all elements of a matrix.

However, for non-vectorizable codes, such as most non-numeric programs, the
available instruction level parallelism is actually relatively low, in the range of 2 to 4
instructions [10]. Thus superscalar machines appear to be a more attractive architec-
ture, especially since they have a number of implementation advantages: the choice of
which instruction(s) to issue can ultimately be made at run-time rather than determined

Key:
Fetch Decode Exec WriteBk

AN

Figure 5: VLIW Pipeline Structure

A VLIW pipeline can be represented by multiple paralie! tasks during the execution stage. The fig-
ure shows two simultaneous execute operations, but in a general VLIW, significantly more parallel
operations are usually supported, fimited only by the number of functional units within the
processor. VLIW instructions are typically hundreds of bits long. The figure is adapted from [7].
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Figure 6: Superplipelined Pipeline Structure
The figure shows a pipeline structure in which the cycle time is one half that of the generic RISC ma-
chine of Figure 7. The functional unit is pipelined, so a new operation can start every cycle. The fig-

ure is adapted from (7].
statically at compile time (although the existing superscalars are static rather than
dynamic), better code density will be possible especially if actual instruction level paral-
lelism is low, and finally, object code compatibility with existing RISC instruction sets
can be maintained, an important practical consideration.

Key:
|Fetch _Decode Exec  WriteBk
| PO |

Another alternative, which seeks to reduce the machine’s cycle time rather than the
number of instructions issued per clock, is called superpipelining [7). In many current
RISC machines, the pipeline is arranged so that the ALU operation time determines the
machine’s cycle time, even if instruction fetch takes less time. This assumption results
in a simplified pipeline structure, requiring reduced control logic at the cost of potentially
increasing the cycle time. In superpipelined machines, the functional units like the ALU
are pipelined, requiring multiple pipeline stages to complete their operations. Such an
organization allows the shorter instruction fetch time to determine the machine’s cycle
time. The idea is not a new one. The computers designed by Seymour Cray exhibit
this kind of pipeline structure. The pipeline structure is shown in Figure 6.

The relative merits of RISC, superscalar, superpipelined, vector, and VLIW ma-
chines are summarized in Figure 7. Superscalar, VLIW, and vector architectures all
seek to increase the number of instructions issued per clock cycle, the latter achieving
this by increasing the number of operations per instruction for a special class of instruc-
tions. Superpipelining increases the achievable clock rate by dividing the functional
units into finer pipeline stages, which is also used to advantage by vector processing.
The most controversial point in the figure is the location of the VLIW architecture. De-
spite having the potential to issue a large number of instructions per cycle, the control of
such a large number of functional units is likely to sacrifice clock rate, especially if the

faster clock rates Figure 7: Architectural Futures
—  This figure shows the differences among RISC,
Superpipelined, Superscalar, Vector, and VLIW
RISC Superpipelined architectures with respect to clock rate and CPI.
b b Superpipelining allows RISCs to run at faster
clock rates, with no effect on CPI. Superscalars

'%Y,?r improve CP! with no effect on clock rate. Vec-
Superscalar tor machines are pipelined and support many
4 operations per cycle, and are well matched to

numeric codes. VLIW achieve very low clocks

Vector . .
VLIW Machine per instruction through large number of func-
° ™ tional units, but the control circuitry appears to
v be very complex, and can actually reduce the
achievable clock rate.
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achievable instruction level parallelism is only very modest. A much more attractive al-
ternative is to combine superscalar, superpipelining, and vector processing techniques,
as has been described in [11].

The experience with RISC designs supports the adage that machines must be bal-
anced. This is essentially Amdahl's famous law that states that the slowest part of com-
putation will limit the available speedup. No design can afford to have one component
be extremely high performance at the expense of the others. Good designs will have
fast branch, memory, and arithmetic support. The combination of deeper pipelines and
multiple instruction issue imply longer effective latencies for instructions. This could
cause problems unless instructions can be found to keep the pipelines filled around
branches. Compiler techniques will be critical in finding such instruction level parallel-
ism. Eventually, there are limits to the amount of instruction level parallelism that can
be found in a single instruction stream. Once this limit is reached, the next step to high-
er performance will require parallel processing, distributed memory architectures, and
hardware support for switching among muiltiple threads of execution within a single pro-
cessor (“multi-threaded” machines). Will RISC ideas run out of steam? We have not
yet reached the limit in extracting the parallelism in the instruction stream, nor have we
reached the end of the range of increased clock rates due to architectural innovations.
At worst, performance improvements will return to technology driven growth in the range
of 20-25% per year.

4.2. Technology Implications

Extrapolating from the raw technology trends, Myers [1] predicted that the processor
of 1995 will be constructed from 0.25 micron CMOS technology, containing 5-10 million
transistors on a 500 square mil die, with gate delays below 100 ps. More than one half
of these transistors will be dedicated to cache functions. In fact, designing memory sys-
tems that can sustain the high memory access rates will be one of the most important
challenges for the next generation of single chip processors. As the CPI approaches
(and goes below) 1, a cache miss penalty becomes very severe. To avoid the pipeline
stalls associated with memory access, which drive up the CPI, cache memory design
becomes critical. Caches will go to two level, one level on chip (split for instructions and
data) and one unified level off-chip, and they will be implemented in fast static RAM
rather than dynamic RAM. By the mid-90’s we can expect to see a 1Mbit SRAM cache
within the CPU, and a 16 Mbit cache off-chip implemented with BICMOS SRAMs. The
processor will be heavily pipelined, incorporating many of the techniques traditionally
used in mainframes and supercomputers.

Rattner [6] extends the predictions to the year 2000. He foresees 50-100 million
transistors on a one inch square silicon die, incorporating four 250 Mhz processors, or-
ganized as a shared memory multiprocessor. The higher transistor count is expected
because of the extensive use of memory cells. Each processor will be able to reach a
peak integer processing rate of 750 MIPs and a 500 Mflop peak floating point process-
ing rate. The multi-megabyte second level cache will be implemented on the die. Once
again, the predicted technology will be CMOS or BiCMOS.
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Design complexity, rather than transistor density, will continue to be the limiting fac-
tor in bringing these chips to market. We expect to see the incorporation of full floating
point arithmetic and integer multiply/divide on chip, along with multiple scaler functional
units. A worthwhile tradeoff exists between compiler technology and hardware com-
plexity, and we expect to see a continued shift of decision making to compile-time to
simplify the run-time hardware.

Binary compatibility with existing architectures will continue to be a key requirement,
although RISC machines have demonstrated that it is possible to break with the past if
there is sufficient performance gain by doing so. There will be less controversy in in-
struction sets with respect to RISC vs. CISC, although 64-bit instruction sets could lead
to some some innovative ideas. These 64-bit instruction sets will need to have a com-
patibility mode with existing instruction sets. There will be a return to somewhat more
complex instruction set formats, and while single cycle execution will be the goal, some
instructions will still require multiple cycles. There will be a shift in emphasis from in-
struction sets to system support features, such as memory management, cache control,
and multiprocessor support. Special purpose coprocessors for /O processing, graph-
ics, message passing, will be fabricated on the same die. [6] postulates two different fu-
tures for microprocessors: high performance and high integration. The former would be
a four processor multiprocessor with on-chip support for graphics and interprocessor
communications. The latter would be a “workstation on a chip”, with integrated copro-
cessor support for human interfaces, such as speech recognition/synthesis and digital
television.

The highest performance single-chip architectures will be 64-bit machines by 1995.
There already exists a demand for address spaces that are larger than 32 bits. External
busses significantly larger than 32-bit would ameliorate some of pin/bandwidth issues
we have already raised. 64-128 bit wide processor buses running at 16-32 Mhz have
already been predicted [1]. Further, a 64-bit internal architecture would result in a
primitive superscalar architecture, yielding an ability to pack multiple independent sim-
ple instructions within the same instruction and also to use the datapath for at least two
independent 32 bit operations at the same time.

We expect to see more extensive use of macrocell rather than full custom technolo-
gy to implement these future processors. The SUN Microsystems/Fujitsu SPARC chip
ilustrated that macrocell and high-performance are not incompatible, and that reduced
instruction set machines are a good match to this implementation technology. Although
the densest and most aggressive chips will continue to be full custom, a class of high
performance machines will get to market more rapidly by using this approach.

While we have described a positive future for high performance single-chip proces-
sors, there remain a number of technical issues that may yet limit their success. The
most pressing problem will be how to construct very high clock rate CMOS and
BiCMOS systems. The problems of dynamic power consumption will require packaging
and cooling technologies adapted from those used in today’s highest performance ma-
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chines. It is virtually certain that a reduced power supply voltage will be used. The
problems of clock distribution at these speeds across a 500 square mil die will be con-
siderable, and besides the circuit issues, a non-synchronous architectural design style
may be necessary. Off-chip delays will be considerable, and hybrid packages that allow
the processor and its memory to be closely located and connected with low impedance

paths will be required.
5. Summary and Conclusion

In this paper, we have briefly reviewed the developments in high performance VLSI
processor architectures. The key attributes of an architecture that make it suitable for
high performance VLSI implementation are its proficiency to minimize off processor ref-
erences, through the incorporation of data and program memories on processor, and its
ability to realize high performance through a pipelined implementation. The reason that
these attributes are the most critical is the inherently limited bandwidth that is possible
across the processor's pins and that performance depends critically on the average
number of clock cycles necessary to execute an instruction. The interested reader is di-
rected to [12] for a more thorough treatment of instruction set usage and pipelining is-
sues than we can cover here.

While there has been a raging controversy over instruction set design, we believe
that future processors will focus more on system features and advanced implementation
techniques than instruction sets. Part of the motivation for the RISC/CISC debate has
been the relatively limited number of transistors available on a processor chip. Even
with the ability to place several million transistors on such a chip, some critical lessons
of the last few years should not be forgotten. Namely, instruction sets that are stream-
lined lead to simpler, faster pipelined implementations than complex instructions with
multiple formats and operand accessing modes; that software complexity can be traded-
off to reduce hardware complexity, in particular, hardware design complexity; and that
simpler pipelined implementations can take advantage of more rapid turnaround tech-
nology such as macrocell design to get to market faster.

RISC architectures are really about rational and well-designed pipelined
implementations. It has been observed that successtul pipelining requires that no single
stage should dominate, which provides another rationale for reduced instruction sets
with their simpler decoding formats. There are a whole host of aggressive mainframe
and supercomputer pipelining techniques, such as branch prediction, multiple branch
path following, register scoreboarding, etc. that are likely to be attempted to be incorpo-
rated into future single chip processors. In fact, the goal of “single cycle execution” can
be achieved for just about any instruction set, given sufficient transistor resources, but
at significant cost in design complexity with a potentially longer clock cycle than a more
straightforward pipelined implementation. Also, the RISC concepts, perhaps not as criti-
cal in a less transistor constrained point in technology, still demonstrate the importance
of compiler technology to assist in pipeline efficiency and to reduce hardware complexi-
ty. Simple techniques such as delayed branches and loads, easily supported by compil-
er technology, simplify the pipeline hardware and improve its efficiency by eliminating
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potential pipeline stalls.

The ultimate limit of conventional pipelined machines, that of commencing the exe-
cution of a new instruction every clock cycle, will be expended by new techniques that
seek to initiate more than one instruction per clock cycle. We have described super-
scalar methods oriented towards multiple instruction issue per clock. These techniques
are likely to be incorporated into future single chip processors.

We expect to see high performance architectures based on a 64-bit internal organi-
zation, with multiple functional units and more aggressive pipelining than that found in
today's machines. However, because of complexity considerations, we do not expect to
see very complex pipelined implementations on a single chip. The challenge of high
clock rate CMOS and BiCMOS systems will keep circuit designers and chip system ar-
chitects busy for many years to come.
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