THE BERKELEY UNIGRAFIX TOOLS
Version 2.5

Carlo H, Séquin

Report No. UCB/CSD 86/281
December 1985

Computer Science Division (EECS)
University of California
Berkeley, California 94720

THE BERKELEY UNIGRAFIX TOOLS
Version 2.5

Carlo H. Séquin

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

This is a brief overview over the current status of the Berkeley UNI-
GRAFIX tools. The various renderers, object generators and modifiers are
introduced. The UNIGRAFIX object description format that ties these
tools together is presented. Some plans for future developments are also

given.

1. INTRODUCTION

Berkeley UNIGRAFIX provides simple graphics and modeling capabilities for 3-
dimensional polyhedral objects within the UNIX operating system. It renders mechanical
parts or geometrical manifolds in the style of engineering drawings, with visible edges
displayed as solid lines and faces shaded to enhance understandability of the drawing,
rather than to make the objects look ‘“‘natural”. Output is primarily aimed at high-
resolution black-and-white dot-raster plotters but can also be previewed on various
terminals.

The Berkeley UNIGRAFIX system also comprises a set of generator programs that
assist in the creation of parameterized object descriptions such as gear wheels or
architectural elements (staircases, houses ...). There are programs that modify simple
objects by truncating them, by tessellating their faces, or by cutting holes into them;
others place pyramids on all faces or replace the edges of the object with thin prismatic
solids.

Most of these programs focus on the design, representation, and rendering of
mechanical parts and on the creation of purely geometrical objects in 3 and 4 dimensions.
Some of these utilities may also be useful in the rapidly growing fields of robotics and
computer vision. All tools are loosely tied together by a simple descriptive ascii format
for the specification of the geometrical objects. They run under the UNIX 4.2 and 4.3
BSD operating system.

This system was put together over the last four years by several Master’s Degree
candidates and by many students taking a project-oriented graduate course in Geometric
Modeling.! The two main goals were to give us the geometric modeling and rendering
tools that were so conspicuously absent from the UNIX environment, but also to provide
an educational experience for the many students interested in computer graphics.

Building such a large and potentially heterogeneous system at an university, where
the period during which a student contributes actively to the project ranges from one to
three years, has its difficulties. How do you assure that the various pieces built by
individuals will hold together and do not become obsolete the moment the student leaves
the university ? One approach is to produce a very detailed overall system specification at
the beginning of the project, and then £ill in the pieces over the years. However, in a field
that moves as rapidly as the current evolution of computer graphics, this is not practical;
the final system would be obsolete by the time it is completed.

A better way is to create a modular set of building blocks that can be individually
developed at their own paces and that can be replaced by newer and better modules as
these become available. In this approach, the only thing that needs to be defined at an
early stage is the ‘‘glue” that holds everything together. In our case this was the UNIX
operating system at the top level and at a lower level the UNIGRAFIX language. The
latter is an intermediate descriptive format for the specification of objects and scenes. All
modules work to and from this format. Because of its central role, we will discuss this
language before we discuss some of the operational modules.

-3.

2. THE UNIGRAFIX LANGUAGE

The UNIGRAFIX language is a human readable, yet terse ASCII format for the
description of scenes composed of 3-D polyhedral objects in boundary representation, of
9-D planar faces with arbitrary many holes, and of 1-D piecewise linear wire trains. The
ASCII format makes possible easy exchange of object descriptions over electronic networks
and easy modification with any text editor when an interactive graphics editor is
unavailable or impractical to use. A detailed description and discussion of the
UNIGRAFIX language was presented in 1983.2 Only a few minor syntax changes have
been made since then to make parsing more efficient and to accommodate some small
language extensions.

Syntactically, a UNIGRAFIX file consists of statements, starting with a keyword and
ending with a semicolon. Statements consist of lexical tokens, separated by commas,
blanks, tabs, or newlines. The language is simple and has only ten different types of
statements:

Table 1. UNIGRAFIX Syntax

vertices: v ID zyz;
wires: w [ID](viv2..on)(..)[colorID];
faces: f [ID](viv2..vn)(..)[colorID];
definitions: def defID;
non-de f-statemnentas

end;
instances: i [ID] (defID [transformations]) :
arrays: a [ID](defID [transforms]) size [transforms];
lights: 1 [ID] intensity [z y 2];
color: ¢ colorID intensity | hue { saturation |];

include files: include filename [transformations | ;

comments: { | anything {nesting is OK} but unmatched { or } | }

- 2.1. Vertices, Wires, and Faces

Semantically, the vertices are the ‘corper stomes’ of any UNIGRAFIX object
description. They are described by their absolute locations in 3-D space and are then used
as fix-points to define the position of ‘wires’ and ‘faces’ (edges). Rather than repeating
absolute coordinates for the end-points of edges or for corners of polygons, these latter
constructs simply reference previously defined vertices by their identifiers (ID in Table 1).
A piece-wise linear wire running through 3-D space can be described with a single ‘wire’
statement that lists all the vertices at subsequent joints.

In the case of ‘face’ statements, the edge train defined by the list of vertex-IDs within
a single pair of parentheses specifies a closed contour, so that it is not necessary to repeat
the first vertex in a contour. Face statements with multiple groups of parentheses can be

-4-

used to describe faces with several contours. Whether the contour encloses a hole or a
separate patch of the face depends on its orientation and on its placement with respect to
the first contour. The first contour must be an outer contour. Contours are pot allowed
to intersect.

92.2. Hierarchical Constructs

A building block definition capability exists with the statement pair : ‘def...end’.
With this construct, groups of statements can be associated with an identifier (defID in
Table 1). Copies of these definitions can then be placed at other locations in the scene
through the use of ‘instance’ and ‘array’ commands. The definitions themselves are not
part of the visible scene. Instances and arrays take any homogeneous transformation for
the placement of the (first) instance; in addition, the array statement needs the
specification of an incremental transformation between array elements. While the
definitions themselves must not be nested, the calling hierarchy can be of arbitrary depth.
The permissible transformations in the above specified places are of the form:

Table 2. Transformations

—8? scale_ factor for scaling in direction of coordinate axis
—t? translation_ amount for translation along coordinate axis

—r? rotation_ angle for rotation around coordinate axis

-m? for mirroring in direction of coordinate axis
-M3 828 Matriz for linear 3-dimensional transformation
-M4 424 Matriz for homogeneous 3-D transformation

The ‘1’ should be replaced with ‘x’, ‘y’, or ‘z’ to denote in which direction to scale,
mirror, or translate, or about which axis to rotate; as a shorthand way of specifying
scaling or mirroring in ‘all’ dimensions, the ‘»' can be replaced with ‘a’. When specifying a
transformation in matrix form, from 1 to 9 numbers (for ‘-M3’) or from 1 to 16 numbers
(for ‘“M4’) may be specified. The specified numbers replace the entries, by rows, in a
unity matrix of degree 3 or 4, respectively. Transformations are applied to the defined
object in the order given. Arguments may be integer or floating-point numbers.

2.3. Light Sources and Color

To provide shading on the faces, light sources must be specified. These can be
uniform ambient lights or they can be directional. In the first case, all faces regardless of
their orientation are equally illuminated. In the latter case, the brightness is determined
by the scalar product between illumination vector and face normal.

On appropriate terminals, color renderings can be produced. To specify a color, we
use a double-cone model of color space. For each color, its lightness (intensity), its hue,
and its saturation must be given; if the last one or two values are omitted, fully saturated
colors or neutral gray surfaces are inferred, respectively. As in the case of the vertex
coordinates, the lengthy color specification is not repeated for every face using that color;
one simply references the corresponding colorID (see Table 1.).

2.4. Examples

To illustrate the correspondence between ASCII description and the defined object,
we present a few simple cases. The first is the wire-frame of a cube:

Figure 1. Cube_file

vXYZ 111;

v XY 11-1;
v XZ 1-11;

vX 1-1-1;
vYZ -111;
vY -11-1;
vi -1-11;
v N -1-1-1;

wnear (NYXYXN};
w far (ZXZXYZYZZ})
wsides (XXZXYYZXXYXYZ X N Z); {4 separate wire segments}

The second is an equilateral solid triangular frame embedded in a cube frame so that its
symmetry axis coincides with the space diagonal of the cube:

Figure 2. Triangle_file

vlA -5.4082 -0.4082 4.5917 ;
vlB -4.5917 0.4082 5.4082 ;
vlC -6.5917 0.4082 7.4082;
vlD -7.4082 -0.4082 6.5917 ;
v2A 4.5917 -5.4082 -0.4082 ;
v2B 5.4082 -4.5917 0.4082;
v2C 7.4082 -6.5917 0.4082 ;
v2D 6.5917 -7.4082 -0.4082 ;
v3A -0.4082 4.5917 -5.4082 ;
v3B 0.4082 5.4082 -4.5917 ;
v3C 0.4082 7.4082 -6.5917 ;
v3D -0.4082 6.5917 -7.4082 ;
(v1A vIB v2B v2A);
(viC v1D v2D v2C);
(v2A v2B v3B V3A);
(v2C v2D v3D v3C);
(v3A v3B viB V1A);
(v3C v3D vID vIC);
(v1C v2C v3C X v3B v2B vIB); {face with triangular hole}
(v3D v2D v1D) V1A v2A v3A); {face with triangular bole}

“'""‘"‘"""""""<<<<<<<<<<<<

-6-

It is possible to mutually interlock four of these triangles if they are properly
oriented. This can be achieved with four separate instance calls or one single array call to
the triangle, which is assumed to reside in a file called ‘Triangle_file’. The previously
defined cube, assumed to be in a file ‘Cube_file’, has been scaled up by a factor of 7 to
match the size of the triangles:

Figure 3. UNIGRAFIX Scene

def cube;
include Cube_file;
end;
def triangle;
include Triangle_file;
end;
i C(cube -sa7.0);
a T (triangles) 4 -rz 90 ;

This example also demonstrates that faces with holes can be properly drawn, even if
they are interlocking, without the need to cut the faces into smaller pieces. Available
rendering styles include: full wire frame (Fig.1), wire frame with backface elimination, hid-
den lines removed (Fig.2), and shaded faces with hidden parts removed (Fig.3). Faces can
be rendered with or without outlines. The latter contribute significantly to the crispness
of the display when rendered on a black-and-white device.

3. RENDERING

From the beginning, one of the main goals of UNIGRAFIX was the production of
high-resolution black-and-white output of publishable quality.2 The aim of our rendering
routines was not to imitate glossy photographs of real objects, but to render the objects in
a clear way in the style of an engineering drawing. In particular, it was found that the
presence of outlines around each face greatly enhances the clarity of the drawing and gives
it a much crisper look when rendered on black-and-white dot-raster plotters.

The selection of a high-resolution plotter as one of the main output devices of UNI-
GRAFIX has strongly affected the choice of the algorithms for rendering and for hidden
feature removal. The widest plotter available to us measures 3 feet; a square plot of that
size corresponds to about 50 million pixels. The resolution of this output medium rules
out ‘ray casting’ as a practical rendering technique. Moreover, these plotters need the
output information one line at a time in y-sorted order, thus strongly favoring a scan-line
algorithm. Several high-resolution renderers based on scan-line hidden-feature removal
algorithms have been developed over the last three years.

More recently, with the emergence of more interactive UNIGRAFIX tools, some of
the earlier renderers were adapted for this new environment with different constraints.
Also, in addition to these renderers that run on most typical graphics raster output dev-
ices, we have recently developed a renderer for the Silicon Graphics IRIS that makes use
of the special hardware features used by this device. In the following the various render-
ers will be discussed briefly.

3.1. ‘ugshow’

This is the original rendering program of UNIGRAFIX 1, based on an enhanced Wat-
kins scan-line algorithm. Many objects defined by the anticipated user of UNIGRAFIX
will have only a few hundred or a few thousand vertices. Large areas in the output will
thus be of identical shading and it is important to look for algorithms that exploit object
coherence as much as possible to reduce the amount of computation that needs to be
done. This program exploits object coherence by keeping z-ordered llsts of faces for all
the segments between subsequent edge crossings on the active scan line.2

3.2. ‘ugplot’

This renderer is an enhanced version of the ‘cross’ algorithm by Hamlin and Gear.3
It is an object space algorithm that can also return visible polygons at object resolution.?
In a single scan-line sweep, the visible edge segments are determined and properly com-
posed into the contours of visible and invisible polygons. The algorithm concentrates on
the edges in the scene, analyzes all crossings in the given projection, and relies on the
coherence of planar, nonintersecting polygons to minimize the number of depth comparis-
ons. It makes even stronger use of object coherence than ugshow; this makes it more sen-
sitive to small data inconsistencies.

3.3. ‘ugdisp’

With this renderer we have returned to the more robust approach of ugshow, how-
ever, without incurring the penalty of the large dynamic data structure resulting from
maintaining in parallel all the face lists for each segment on the scan-line. An enhanced
version of the ‘stack’ algorithm by Hamlin and Gear® bas been used. Special features
were added to render edges and wires and to produce outlines around faces. Optional
Gouraud shading has been included. The renderer can even be run in a mode where extra
depth comparisons are included so that intersecting objects can be handled directly.®

3.4. ‘ugpaint’

This is a renderer aimed at a display device such as the Silicon Graphics Iris. Its
purpose is to quickly preview a scene from various eye-points.5 Since the scene does not
change between renderings, it is worthwhile to do as much preprocessing as possible to
reduce the amount of computation that needs to be done for each displayed frame. A
binary space partitioning (BSP) algorithm” produces a tree-like structure of the scene that
can be used to determine quickly a strict back-to-front ordering of all polygons, so that
they can then be rendered with a painters algorithm.

3.5. ‘uq’

This is the renderer of the ‘UniQuadriz’ modeling and rendering program for objects
represented as the Boolean intersection of quadric and planar half-spaces. A language
very similar to the UNIGRAFIX format is used to define the half-space boundaries by
their coefficients. UniQuadriz uses implicit equations to represent the surfaces and boun-
daries of objects throughout the rendering process. This permits a scan-line based algo-
rithm very similar to the one used in ugshow to quickly identify visible spans. An
efficient incremental algorithm shades pixels within spans.8

4. SOME GENERAL UTILITIES

Because of the constraints inherent in some of the renderers discussed above and in
some of the filters to be presented in the mext section, UNIGRAFIX descriptions need
sometimes be converted to “‘simpler” descriptions, using only a subset of the expressibility
of the full UNIGRAFIX descriptive format. A few “filter”” packages provide such services.

4.1. ‘ugisect’

Most of the renderers described in the previous section rely in their hidden feature
elimination algorithm on the fact that the faces are planar and do not intersect each
other. Scenes that due to the construction process or due to their inherent nature consist
of intersecting objects meed to be preprocessed once with ugisect® to convert them to a
UNIGRAFIX description with no intersecting faces before they can be rendered. However,
this process must not generate spurious edges that would subdivide unnecessarily contigu-
ous parts of planar faces. Ugisect can handle arbitrary collections of polygons. In addi-
tion, when true polyhedral solids are involved, ugisect can also form set theoretic opera-
tions, i.e., union, intersection, or difference of two objects.

4.2. ‘ugxform’

This “filter” program makes a global transformation on a UNIGRAFIX file by simply
transforming all vertices and instances at the top level of the scene hierarchy with the
transformation specified on the command line. All other information is passed through
unaltered. This utility can be used to transform the scene so that the default viewing
option produces an optimal display. It can also be used to produce anisotropic scaling of
vertex groups for use in other objects.

4.3. ‘ugexpand’

This batch program expands instances and arrays recursively into their individual
constituent parts. It produces a hierarchically flat description of vertex, wire, and face
statements. This form is needed by some of the modifier programs that cannot cope with
a hierarchical description. Optionally, the long and cumbersome hierarchical vertex
names that may result in this process can be replaced with new terse (and meaningless)
identifiers. Another important option is to merge all vertices within a distance epaslon of
one another. This helps to avoid problems resulting from slight intersections that may be
created by such near coincidences in the presence of numerical inaccuracies.

4.4. ‘ugmerge’

This is another clean-up filter. It merges coinciding vertices and edges that may
cause trouble for programs such as ugplot. All vertex pairs that are separated by less
than a specifyable tolerance eps are merged into a single vertex. Correspondingly, edges
that run between merged vertex pairs also are merged.

5. THE UNIGRAFIX LIBRARY

A rendering system alone is probably unsatisfactory for most users when not comple-
mented by some tools to aid in the generation of interesting objects. Simple UNIGRAFIX
objects can be readily created with a text editor; large, but regular objects can be gen-
erated by writing a small program (in your favorite language) that produces the required
ASCII strings. The simple and terse format of the UNIGRAFIX language as well as its
hierarchical nature make both these approaches quite practical.

The UNIGRAFIX library contains simple geometric primitives that are frequently
used as the starting point for the generation of objects. They comprise Platonic solids in
3-D and 4-D space. In addition there are filter programs that modify these primitives or
other UNIGRAFIX objects. Finally, several procedural generator programs have been
developed that create polyhedral objects from scratch.

5.1. Generator Programs

In the following we present some examples of programs that create an UNIGRAFIX
object description from scratch based on some user-supplied parameters or data files.
These programs have typically been developed by students as course projects in graduate
courses on computer graphics and solids modeling.

‘ugsweep’ sweeps a polygon through space with an arbitrary incremental transform
between steps and produces the surface of the swept out volume.

‘mkworm’ creates properly mitred prismatic tube sections around piece-wise linear
paths through 3-D space. These paths are read in from an ‘ax-file and can form closed
loops but must not include branches.

‘mktree’ outputs, in the above mentioned ‘ax-file' format, the joint-coordinates of a
tree-like object based on the growth algorithm of Kawaguchi.1® The shape of the gen-
erated structure can be altered by a set of command-line options to make them resemble
trees, shells, or corals.

‘mkstairs’ creates helical staircases or ramps according to a set of parameters. Each
step is an instance of a definition describing a single step or ramp segment with the proper
geometry for a smooth fit.

‘mkecity’ is a city-sprawler that will generate a ‘‘downtown area” of a city in a random
fashion. It supports three types of prism-based buildings. Other parameters control the
block dimensions, number of blocks in the scene, street width, and the maximum and
minimum height of the buildings.

‘mkgear’ produces a UNIGRAFIX description of gear boxes based on the specification of
position and size, of gear wheels and shafts.

‘mkrobot’ is a generator program that reads the predefined parts of a robot arm from
the file “ug/lib/rbparts, takes the values of the various position parameters from the com-
mand line, performs some checking on the size and ranges specified, and produces a UNI-
GRAFIX description of the complete manipulator arm.

- 10 -

5.2. Modifier Programs

Other programs start from an existing UNIGRAFIX description to produce a new
object, either by such processes as projection or truncation, or by modifying each indivi-
dual face of the polyhedral object in some specified way:

‘ugshrink’ separates the faces of a polyhedron and shrinks them individually by a
specified factor with respect to the face center. It can also be used to cut similarly shaped
holes into faces or to produce concentric rings.

‘ugfreq’ subdivides triangular faces into a tessellation of similar, but smaller facets. The
degree of subdivision is specified by the ‘frequency’ parameter.

‘ugtess’ is a filter that tessellates the faces of an arbitrary unigrafix object into convex
polygons without creating any new vertices. An option exists to triangulate the faces
instead.

‘ugstar’ constructs pyramid-shaped extrusions or intrusions on all faces of a polyhedron.
The tip of the pyramid lies at a parameterized distance on the face-normal through the
face-center.

‘ugtrunc’ truncates the corners of a polyhedron. New vertices are formed either in the
middle of every edge or at a parameterized distance from the ends. These new vertices
are then linked in a circular manner around every old vertex to form the new faces. To
guarantee planar truncation faces, an approximate plane is first placed through all the
vertices determined in the above manner on the edges emerging from a particular vertex;
then the truncation plane is moved through the new vertex that minimizes the distance of
the plane from the old vertex. Vertices with emerging edges that occupy more than a
balf-space (saddle points) will not get truncated.

‘ugwire’ creates a wire segment for every physical edge in the original polyhedron. The
wire sections are disassembled at the corners and can be shortened by a specified amount.
They can be used as ax-input to the mkworm program.

‘ugsphere’ projects all vertices radially from the origin onto a sphere of a given radius
around a specified center point. This is useful to construct geodesic domes.

‘ugpipe’ produces ball and cylinder descriptions in the UniQuadriz descriptive format.
It starts from standard UNIGRAFIX scene descriptions and converts all vertices into balls
and all wire segments and face edges into cylinders. The output contains all of the qua-
dric and planar descriptions necessary to render the object with UniQuadriz.

‘ug4tod’ projects 4-dimensional vertex coordinates into 3-dimensional space. It applies
to each vertex the transformation specified. The default transformation is a parallel pro-
jection along the w-axis, i.e., simply a removal of the w-component. Face, wire, color, and
light statements are passed unaltered to the output.

5.3. Modifier Pipes

In typical UNIX style, the described filter and generator programs can be piped into
one-another to form very powerful scripts. The examples below show how the objects
were generated as well as how they were rendered. Note the variety of objects that can
be generated by starting from some of the same very simple primitives.

Figure 5.
cat “ug/lib/dodeca | ugstar -h 3 |
ugtrunc -t 0.9 | ugtrunc -C-107>15

cat £5 illum | ugplot -ep -25 60 -100 -sa
-dw -sy 3 -sx 2.75

Figure 7.

cat “ug/lib/icosa | ugfreq -f2 | ugsphere
| ugshrink -f0.8 -H > 7

cat f7 illum7 | ugdisp -ep -60 30 -100 -
ab -sa -sg -dw -sy 3 -sx 2.75

-11 -

Figure 6.

cat wire | ugsweep -n 9 -tx 6 -rz 30 -tx
.6 -n 9 -tx -6 -rz -30 -tx 6 | ugxform -tx
6 -ty 6 | ugshrink -f 0.8 | ugsweep -tz 10
> f6

cat {6 illum | ugplot -ep -50 30 -100 -sa
-dw -sy 3 -sx 2.75

Figure 8.
cat “ug/lib/D4cube | ugdto3 -ep 0003
| ugpipe -rb 0.3 -rc 0.15 > f8

cat f8 illum8 view8 | uq

-12 -

Figure 9. Figure 10.
cat “ug/lib/cube | ugshrink -f 1.3 |

cat wireZ | ugsweep -n 15 -rz 24 | ug-
ugshrink -H -f 0.6 | ugisect > {10

merge | ugpipe -rc 0.8 -rb 0.8 > f9

cat f10 illumc | ugplot -ep -6.5 5 -10 -ab
-sa -dw -sy 3 -sx 3

cat f9 view8 | uq

Figure 11. Figure 12.
cat “ug/lib/dodeca | ugshrink -H -f 0.3 |
ugtess -t | ugfrac -r 0.4 99 -n 2 > {12

cat f12 illum | ugdisp -ep -2 3 -10 -sa -sg
-dw -sy 3 -sx 2.75

cat “ug/lib/octa | ugxform -sy 0.3 | ug-
freq -f5 | ugext -g cube -8 5.0 > {11

cat f11 illum | ugplot -ep -5 7 -20 -sa
-dw -sy 3 -sx 2.75

- 13-

6. INTERACTIVE EDITING

In some sense, the UNIGRAFIX system construction has been started at the back
end, providing the rendering programs first. Recently, the missing front end, a truly
interactive editor, has been constructed in prototype form. As an intermediate step we
had first created a semi-interactive environment at the shell level.

8.1. The Interactive Shell ‘ugi’

This interactive environment for the display of UNIGRAFIX scenes provides most of
the old UNIGRAFIX batch capabilities for scene manipulation, view specification, and
display style within a homogeneous interactive framework.!! This greatly enhances the
speed and ease with which UNIGRAFIX scenes can be designed, viewed, and edited. The
new flexible renderer, ugdisp, has been integrated with the new interactive environment.
ugdisp is capable of detecting intersecting polygons and displaying them correctly, which
is an important feature during the scene composition stage. Only the visible intersections
are handled, so no effort is wasted on hidden areas. The rendering speed does not seem to
suffer more than a factor of two for “reasonable” scenes.®

8.2. The Geometric Construction Editor ‘Jessie’

Jessie is an interactive tool for the creation and modification of UNIGRAFIX scene
descriptions and individual leaf cell objects.]2 It supports a rich set of transformation
operators to move and align objects or whole subtrees. This can be done visually or with
constructive methods giving full geometric accuracy. Jessie strongly exploits the given
hierarchy (if any) in the object description to gain speed in rendering and when picking
objects. The first prototype is built under SunTools in the window package on the
SUN I11/160 color workstation.

7. THE FUTURE

The creation of “‘interesting’’ objects is still a time-consuming and tedious process,
and we plan to create better tools to ease this task. Also we plan to extend the realm of
UNIGRAFIX more into the domain of smooth, curved objects.

7.1. Curved Edges and Surfaces

Over the last three years, the UNIGRAFIX language served its purpose well for
objects and scenes composed of linear geometrical primitives. To extend the range of
applicability of UNIGRAFIX to objects with curved edges and surfaces, we are currently
experimenting with a small extension of the language, called UniCubsiz, to accommodate
such elements.

We follow the approach taken in MODIF, the solids modeler developed at Tokyo
University by Chiyokura et al.13 In this system objects are entirely defined by their edges
and by the borders between the curved patches, both of which can be cubic space curves.
The system automatically fits patches between these borders guaranteeing Oth order con-
tinuity along edges and first order geometric (G1) continuity across the borders between
patches. Thus, once a satisfactory and unambiguous method of constructing these patches
has been defined, it is sufficient for the language to specify the exact shape of all edge and
border curves. For cubic curves this can be done with two additional Bezier points each.

-14 -

This approach can of course be generalized to use more complicated construction rules for
the edges. For this reason, UniCubiz gives the curvature information in explicit edge
statements (see below) rather than integrating it into the face statements. This also
excludes duplicate, and possibly conflicting, specification of that information in patches
sharing the same border, and it keeps the old UNIGRAFIX statements unchanged and
makes this a straight upward extension.

Table 3. UniCubix Extensions

linear edge: el [ID](viv2);
linear border: bl [ID](viv2);
curved edge: ec [ID](viv2 b1 bly b1 b2 b2 b2)
curved border: be [ID](vlv2 b1 bly b1 b2 b2: b2)

flat face: f [ID](viv2..vn)(..) [colorID] ; {unchanged}
curved patch: p [ID](viv2v8[v4]) [colorID];

Since patches are uniquely determined by their borders, there would be no need for a
special patch statement. Nevertheless, we are planning to use a separate keyword for a
curved patch to distinguish the former form flat faces. The old face statement ‘f ..." will
continue to be treated like a flat polygon that does not necessitate any subdivision for
rendering. The control vertices of all the borders of such a patch must of course lie in the
plane of the face. The tessellation of the adjacent curved patches determines into how
many segments each edge of this flat face will be subdivided.

7.2. Better Interactive Tools

At the level of interactive editing tools, we are particularly interested in the develop-
ment of better user interfaces with more high-level commands and some built-in intelli-
gence to recognize implicitly opportunities to produce symmetric configurations and to
align objects with respect to one another. Other experiments will explore the addition of
constraint systems to such editors. In time, these experiments will be extended to the
UniCubiz system.

8. CONCLUSION

UNIGRAFIX is a further enhancement of the UNIX environment; it makes three
main contributions: First, it presents a terse ASCII-based language for the description of
scenes at the object database level.

Second, it provides an efficient rendering system for high-resolution views of
polyhedral objects. It produces hardcopy output in the style of engineering drawings,
rather than refined displays simulating photographic renderings of real objects.

Third, it offers a collection of generator and modifier programs and an interactive
editor that make it easy for the user to create rather complex objects with a command-
line pipe or with a small shell script. The currently available utilities are primarily aimed
towards geometric objects such as semi-regular polyhedrons in three and four dimensions.

UNIGRAFIX is being made available to people for their own use and at their own
risk. These programs form in no way a “turn-key system.” We believe they are a basis

-15-

from which others can start their own experiments, and perhaps a guide how such a sys-
tem could look, once all the parts have been honed to perfection.

ACKNOWLEDGMENTS

The UNIGRAFIX system would never have come into existence without the dedi-

cated effort of many graduate students at U.C.Berkeley. Special contributions have been
made by Paul Strauss, Paul Wensley, Mark Segal, Nachshon Gal, Lucia Longhi, Ziv
Gigus, and H.B. Siegel. This development has been supported by Tektronix, Inc. and by
the Semiconductor Research Corporation.

References

1.

10.

11.

12.

13.

C.H. Séquin, “Creative Geometric Modeling with UNIGRAFIX,” Tech. Report
(UCB/CSD 83/162), U.C. Berkeley, Dec. 1983. .

C.H. Séquin and P.S. Strauss, “UNIGRAFIX,” Proc. 20th Design Automation
Conf., pp. 374-381, Miami Beach, FL, June 1983.

G. Hamlin and C.W. Gear, ‘“‘Raster-Scan Hidden Surface Algorithm Techniques,”
Computer Graphics, vol. 11, no. 2, pp. 206-213, Summer 1977.

C.H. Séquin and P.R. Wensley, “Visible Feature Return at Object Resolution,” Com-
puter Graphics and Appl., vol. 5, no. 5, pp. 37-50, May 1985.

N. Gal, “Hidden Feature Removal and Display of Intersecting Objects in UNI-
GRAFIX,” Master's Report, U.C. Berkeley, Jan. 1986.

Z. Gigus, ‘‘Binary Space Partitioning for Previewing UNIGRAFIX Scenes,” Master's
Report, U.C. Berkeley, Jan. 1986.

H. Fuchs, G.D. Abram, and E.D. Grant, “Near Real-Time Shaded Display of Rigid
Objects,” Computer Graphics, vol. 17, no. 1, pp. 65-72, July 1983.

G.K. Ressler, “UniQuadrix,”” Master's Report (UCB/CSD 85/240), U.C. Berkeley,
June 1985.

M.G. Segal, “Partitioning Polyhedral Objects into Non-Intersecting Parts,” Master’s
Report (in preparation), U.C. Berkeley, Spring 1986.

Y. Kawaguchi, A Morphological Study of the Form of Nature,” Computer Graph-
ics (Siggraph’82 Conf. Proc.), vol. 18, no. 3, pp. 223-232, 1982.

N. Gal, “The ugi Shell for UNIGRAFIX,” Technical Report (in preparation), U.C.
Berkeley, Spring 1986.

H.B. Siegel, “Jessie: An Interactive Editor for Unigrafix,” Master's Report, U.C.
Berkeley, Dec. 1985.

H. Chiyokura and F. Kimura, “‘Design of Solids with Free-form Surfaces,” Computer
Graphics (Siggraph’83 Conf. Proc.), vol. 17, no. 3, pp. 289-298, 1983.

