A Version Server for Computer-Aided
| Design Data

R. H. Katz, M. Anwaruddin and, E. Chang

Report No. UCB/CSD 86/266
November 1985

Computer Science Division (EECS)
University of California
Berkeley, California 94720

A VERSION SERVER FOR COMPUTER-AIDED DESIGN DATA!

R. H. Katz, M. Anwarrudin®, E. Chang
Computer Science Division
Electrical Engineering and Computer Science Department
University of California, Berkeley
Berkeley, CA 94720
ABSTRACT: A design database organizes the description of an artifact, by arranging it as a
hierarchical composition of components across multiple representations. It is particularly difficult
to manage this complex structure as it evolves over time. In this paper, we present a logical
organization for describing designs across time. We also present an operational model, based on
workspaces and tramsactions, that describes how these structures can be manipulated while
controlling the sharing and integrity of the design database. These concepts are being
implemented in a Version Server under development at the University of California, Berkeley.

Key Words and Phrases: Version and Configuration Control, Design and Object-Oriented
Databases;

1. Introduction

VLSI design is becoming dominated by data management concerns. Correlating a design’s
physical implementation with its many representations used for simulation is one of the primary
sources of complexity. The design is implemented by a set of process masks, but its behavior and
performance are verified with register transfer, logic, switch, and transistor level descriptions. It is
important to be able to find, across representations, equivalent descriptions of the same portion of
the design. Maintaining these correlations is made even more difficult because they change over

time.
The organization of the design is itself very complicated. First, it is viewed from several

perspectives.> For example, the description of a processor as seen by the layout artist, circuit
designer, and computer architect are all different, yet they must be correlated: the layout must

correctly implement the circuit; the circuit must satisly the functional specifications.

! Research supported by the National Science Foundation under Grant ECS-8403004 and a grant from the National
Semiconductor Corporation.

3Work done while a Visiting Industrial Fellow with the U. C. Berkeley CAD/CAM Consortium. Current Address:
Digital Equipment Corporation, 75 Reed Rd., Hudson, MA.

® Perspectives are sometimes called views in the CAD literature.

-1-

Second, designs are constructed hierarchically. Hierarchy is generally accepted as the most
effective method for reducing the complexity of a design, by making it more intelligible to
designers and easier to process by design tools. However, it complicates the design description by
introducing considerable additional structure. The design database must now describe how

composite objects are built from components.

Finally, the entire description, across representations and within hierarchies, must be
maintained across time. Individual portions of the design are superceded by newer versions. To
maintain the design history, new versions do not overwrite the existing description. At least some

of these must be kept on-line, so design alternatives can be evaluated and reviewed.

In this paper, we describe a Version Server, providing version and configuration management
functions for design teams. It (1) organizes the design into an archival hierarchical description
across representations, (2) maintains versions of design portions, (3) supports workspaces, in which
designers can make private and tentative changes, (4) permits these changes to be shared in a
controlled way, and (5) implements the ‘‘careful” update of the archive (a new version of the
design must be validated before it can be placed in the archive). The Version Server is
independent of design domain: while imposing an organization on design components, it does not

restrict their internal structure.

The rest of this paper is organized as follows. In the next section, we define some basic
terms. Section 3 is a detailed description of the structural relationships among design data that
are explicitly supported by the Version Server. In section 4, the workspace model and the
mechanisms for sharing tentative design changes are described. We discuss the transaction model,
in particular, the design validation mechanism, in section 5. Our status and conclusions are given

in section 6.

2. Basic Terms

The Version Server maintains a database of design objects and certain structural

relationships among them. Objects are nothing more than logical aggregates of design

-2-

information.* The Version Server supports a small number of domain-independent structural
relationships defined over design objects, while their internal representations are determined by
design tools (see Figure 2.1). This separation of representation and structuring decisions is

crucial: it enables the Version Server to remain independent of design domain.

Consider a microprocessor design. One object within this description is the datapath layout
object. Its internal structure could be arranged in several formats: as an ASCII file, as a collection
of tuples from different relations [BATO85b), or as a linked-list of records [KELL82]. In addition,
it participates in structural relationships. For example, it is the composition of the ALU, register
file, and shifter layout objects. There is also a relationship between it and its equivalent transistor
description. Equivalence relationships are represented as special objects in the design database

(see Figure 2.2).

Figure 2.1 — Coarse vs. Fine Grain Structure of Design Objects

The Version Server knows about the objects and their structural interrelationships (highlighted in
darker lines). However, each of these objects may have their own finer grain internal structure,
which may be formed hierarchically as well. The fine grain object structure is not known to the
Version Server, to keep it free of representation details.

At present, design objects are data-only. However, this does not rule out SmallTalk-style packages of data and
manipulation operations in future implementations.

-3-

Rl

/
Y N
v N\ BJIVALENCE
Y N
N,

DATAPATH DATAPATH

LAYOUT TRANSISTOR
ALU RFILE SHFTER
LAYOUT LAYOUT LAYOUT

Figure 2.2 — Hierarchical Design Description

The datapath object is decomposed into layout and transistor objects. The former is further
decomposed into ALU, Register File, and Shifter layout objects. A datapath equivalence object
constrains the layout and transistor representations to describe the same real world object -- the
datapath.

We distinguish between a generic object, such as the “microprocessor datapath layout,” and
its particular instances over time, or versions. These versions contain specific collections of
layout primitives. They are full fledged type-specific, or representation, objects. They are
directly created by design tools. Generic objects, on the other hand, are not created by any
particular design tool, but by the Version Server as a focus for grouping versions. In contrast to
representation objects, objects introduced into the design database to represent structural

relationships are called structural objects. These include both generic and equivalence objects.

The SmallTalk object/type mechanism has also been proposed for representing versions
[BATO85b]. Generic objects become types, and instances/versions become objects. In the
SmallTalk model, objects can inherit part of their description from their associated type, e.g., a
portion of the interface description that is common across versions. Inheritance is not explicitly
supported by the Version Server; to do so would require it to interpret objects’ internal formats.

However, this capability can be provided by an application program that traverses the

-4

object/version data structure and interprets the internal structure of objects, distinguishing

between ‘“‘type” and ‘‘object’” objects.

Representation and structural objects are either composite or primitive. Primitive objects
cannot be further decomposed into components (at least as far as the Version Server is
concerned), while composite objects are composed of more primitive composite and primitive
objects. Configurations are related to hierarchical compositions: they are synchronized collections
of versions of hierarchically related objects. Thus, a datapath version, incorporating specific
versions of its ALU, Register File, and Shifter components, forms a configuration for that portion
of the design. Versions of the root of the design hierarchy represent different configurations of the

complete design.

3. Three Structural Relationships

A design database must distinguish between representational and structural details. By
“representational”’, we mean the specific choices of how to represent the details of the design, i.e.,
the description formats for layouts, schematics, logic gates, etc. They are determined by the
design tools. Structural considerations lead to the choice of relationships among objects. The
Version Server manipulates the structure of the design, while design tools create and manipulate

its representational details.

The organizing principle behind the Version Server’s data structures are three kinds of
structural relationships: (1) version histories, (2) hierarchical compositions, and (3) equivalences.

They impose an organization on the collection of objects that over time constitute the design.

3.1. The Version Plane

The version plane organizes the many versions an object has over its lifetime into a version
history. While it is natural to arrange versions into a linear sequence arranged by creation time,
this is not flexible enough. Because an object may have many simultaneously valid versions, i.e.,

alternatives, the history is a tree. When a version is created by modifying an existing version, we

-5-

Vvio]
ALTERNATIVES

A 4

p- i
X

o Vil V2l Vi)

¥V DERIVATIVES /
MUYl

vis]

') Vi4]

vig*

Figure 3.1 — The Version Plane

A hierarchy is imposed on the versions of an object. The order of creation is indicated by the
subscripts. Parallel versions are alternatives, while versions in series are derivatives. At any point in
time, one leaf version is distinguished as “current” (marked by an asterisk). The path from the root
to the current version is the “main derivation.”

call it a derivative of the original.

Figure 3.1 shows the organization of the version plane for generic object V. The subscripts
indicate the order of creation. Derivatives are arranged vertically, while alternatives are arranged
horizontally. Every object must have an initial version, e.g., V[0]. Alternative versions V[1], V[2],

and V[3] are derived from V[0].

Without some control mechanisms, version histories can branch widely. We need to identify
the preferred or default version from which new derivatives should be created. This is
accomplished with a currency indicator: new derivatives can be created from previously
superceded versions, as long as they are descendants of the current version. Currency can be set

explicitly to allow the design team to follow any desired system release policy.

-6-

To see how the version history of Figure 3.1 could have been derived, consider the sequence
of events shown in Figure 3.2. V[0] is created and made the current version (see Figure 3.2a).
V[1], V[2], and V[3] are created as alternative derivatives of V[0]. V[4] is then derived from V[3].
At this point, V[2| is set to the current version (see Figure 3.2b), and no further derivatives of
V[1], V[3], or V[4] can be created without changing currency. V[5] is derived from V[2], and in

turn, V[6] is derived from V[5]. Note that V[2] remains the current version (see Figure 3.2c). V(7]

(2) O MUN
(b) Vio]
vl O \%5)
v}
V4]
(c) V(o)
Vil O Vi3]
vzl

i & To vl

virl

vel &

Figure 3.2 — Example Derivation of a Version History

Initially, V]0] is the current version. After currency moves to V[2], no further derivations can be
made from V[0], V[1], V{3], or V[4].

-

is created as a new alternative derived from V[2]. Now V[6] is made current, disallowing further

derivations from V[2] or V[7], as shown in Figure 3.1.

3.2. The Configuration Plane

Figure 3.3 shows a portion of the configuration plane rooted at object instance U[i]. All
nodes shown in the figure are representation objects. Configurations are formed by combining
versions of different objects into composites. For example, V]j| is formed from the versions of W,
X, and Y denoted by W|k], X[l], and Y[m]. Since composition information is associated with each

composite object, a version of a composite object simultaneously defines its configuration.

Versions and configurations are orthogonal (see Figure 3.4): the configuration plane
constructs objects as a hierarchy of components, while the version plane shows how instances of

individual objects have evolved over time.

Figure 3.3 -- The Configuration Plane

Object V is composed 3{ obg'lects W,)% and Y, and is a component of U. The jth version of V is
configured from the k" , 1t , and m™ versions of W, X, and Y respectively. The configuration
plane, which organizes objects to form composite objects, is orthogonal to the version plane, which
organizes the component instances of the same object.

-8-

Z

Figure 3.4 — Configuration and Versions

The version and configuration planes are orthogonal. An object version is configured from
components and is configured into composites. It is also a derivative of some other version in its
own version plane. For example, object instance V[j] is configured from instances Wik| and XII].
Each is also derived from some previously created object instance in its individual version plane.

At the time of its creation, the object instance V|j] is composed from instances of the objects

W and X, but which instances? We defer, until section 4.2, a discussion of how instances are

bound to configurations.

3.3. The Equivalence Plane

A real world object is described by several objects in the design database: one for each of its
representations, arranged on their own version planes and participating in their own

configurations. The equivalence plane ties together equivalent object instances across

configurations in alternative representations.’

Figure 3.5 shows how the equivalence among the objects V', V”, and V' is represented.
Their instances, V’[i], V”[j], and V'"[k], are joined together through an equivalence plane

associated with the structural object V.

*Equivalences can also be defined over objects of the same representation.

-9-

Figure 3.5 - The Equivalence Plane

Configurations in different design representations are correlated through the equivalence plane. In
this figure, three different representations of the object V are grouped together by an equivalence
object.

Figure 3.6 — Equivalences as Structural Objects

An equivalence object ties together V'[i], V'[j], and V”[k]. A new version of V7, V{l], is created,
and associated with V’[]] and V" [k] through a new equivalence object version.

Equivalence objects are composites with versions and associated version histories (see Figure
3.6). The semantic distinction among equivalences and configurations can be exploited to good
advantage in assigning design objects to disk. Design object clustering can be based on
configuration (an object and its components of the same representation stored near each other on
disk), although clustering by equivalence may be desired for certain applications (an object and its

equivalents in different representations stored near each other on disk).

Equivalence objects represent constraints on the database. They must be validated, i.e.,
shown to be in force, before the database can be consistent (see section 5.2). Consider what
happens when a new derivative is first created. Since the database starts out being consistent, we

assume that all existing equivalence constraints are already in force. The new version will inherit

-11-

the equivalence relationships of its parent in the version history. The Version Server
automatically introduces new equivalence objects to represent these. During design, these new
equivalences must be validated to show that the database is still consistent. The designer can add
new constraints or override inherited ones at his option. Additional constraints appear as new

equivalence objects, while equivalence objects associated with overriden constraints are deleted.

4. Workspace Model: Controlled Evolution of the Design Database

In the previous section, we described how to organize design objects. In this section, we
describe the Version Server operations that allow the design team to make changes to their data
in a controlled way. The project database is viewed as an archive of design objects. It can be
read by any member of the design team. However, new versions are added without overwriting
existing objects. The Version Server allows designers to create workspaces, and provides check-

out /check-in operations for moving copies of objects between workspaces.

4.1. Archive, Private, and Semi-Public Workspaces

Workspaces are named collections of object instances. There are three kinds of workspaces:
archive, private, and semi-public. The archival workspace, or Archive Space, exclusively contains
validated object instances, arranged into version, configuration, and equivalence planes as
described in section 3. The Version Server provides mechanisms for selectively migrating old
instances off-line. There is usually one Archive Space per design project. In addition, there can be

any number of design libraries.

Private Workspaces are created for individual users by the Version Server, and are accessible
only by that user. Objects are brought into private workspaces from an associated archive space
(or semi-public workspace, see below) through Version Server check-out (see Figure 4.1a). When
an instance is returned from a private workspace as a new validated version, it is added as a
derivative of the originally checked-out instance (see Figure 4.1c). Configuration and equivalence

relationships are implicitly inherited at check-out time. New configuration and equivalence

-12-

VERSION HISTORY OF ORJECT X

Xjo) X} X
X X X
Xz) X2 X2] PREVIOUS RELEASE
|
]
blec)| NEW RELEASE
/
/ ARCHIVE
!
CHECK-IN |
\
AN
CHBECK-OUT x ox
CHRCK-IN
SEMI-PUBLIC
SEMI-FUBLIC
\ X] X2 PREVIOUS RELEASE
x UFDATED VERSION
x

(a) (b) {c)
Figure 4.1 — Workspace Model

An object version, X[2], is checked-out from the Archive to a private workepace [a]. Changes are
made to create a new version X', which is frosen and then moved to a semi-public workspace for
integration with the changes made by other designers. Once the assembled pieces of the design have
been verified, the new versions are committed back into the Archive.

relationships can be created in the workspace, but these must be validated by check-in time to be

recorded in the Archive Space.

Since it is only possible to place validated objects in the Archive Space, Semi-public
workspaces provide a mechanism through which designers can share incomplete or partially
verified objects. A designer can selectively check-in an object into a semi-public workspace (see
Figure 4.1b). Other designers, with access rights to this workspace, can either read these objects

or check them out if they wish to make further changes. Semi-public workspaces are associated

-13-

with design transactions (see section 5).

4.2. Dynamic Configurations Binding

A version of a composite object is formed from versions of its components. Instances can be
bound at the time the composite is created, or can be left unspecified until the object is accessed.
The latter approach, dynamic binding, is most useful during the exploratory phases of design,
when alternative new versions are being evaluated. Once a new version is committed to the

archive, its configurations must be bound to specific versions.

Layers [GOLD81] support dynamic configuration binding. The Version Server provides
operations to partition the database into layers that correlate versions among related objects.
The initial layer contains the original versions, the second layer contains newly added objects and
new versions of existing objects, etc. A composite object identifies its components by referencing

their associated generic objects. At least conceptually, the binding to actual versions takes place

by searching through the design layers for the first encountered version of the desired object.®

The power of layering is that the designer determines which versions will be bound simply
by specifying the layer search order. This choice of ordering is an environment. The Version
Server allows layers to span any kind of workspace accessible to the defining user, and supports
the grouping of layers into environments. There can be many user-defined environments for each
database. All object accesses are evaluated with respect to a specified (perhaps default)

environment.

As an example, consider the creation of layers as shown in Figure 4.2. By creating
environments from diflerent sequences of layers, different instances of the ALU and the Register
File can be bound. If the environment is formed from layers 0, 1, 2, and 3, then the ALU is bound
to instance 2 and the Register File is bound to instance 2. If the environment is formed from

layers 0, 1, and 2, then the instances bound are 2 and 1 respectively. If the layers are sequenced

This search can be implemented efficiently as an index structure mapping unique object identifiers into object
versions, taking account of the specified order of the layers (e.g., see [KATZ84a)).

-14-

ALLT0| RFILE{)
LAYER 0 T /\
LAYER 1 ALUT O/
RFILE(]
LAYER 2 i ALUT2|
LAYER 3 \O

RFILE2)

Figure 4.2 — Layers and Environments Example

The Version Histories are partitioned into layers as shown. Layers can be shuffled to make some
versions dominate others. For example, if layer 1 dominates layer 2, then a reference to the ALU
will be bound to ALU[1] rather than the newer ALU[2}.

as 0 followed by 1, then the ALU instance is 1 and the Register File instance is also 1. If the
environment contains just layer 0, then the ALU[0] and RFile[0] are the instances bound. As a
final example, an environment constructed from layer O followed by layer 3 would yield ALU[0]
and Rfile[2] as the bound objects. Note that it is not possible to create a context that binds

ALU[0] and RFile[1], because of the grouping of ALU[1] and Rfile[1] in the same layer.
5. Transactions

Implicit in the Workspace Model are the permitted kinds of sharing: all design team
members have access to the Archive Space; only an individual designer can access his private
workspaces; semi-public workspaces allow limited sharing among designers. Transactions
constrain how objects can be moved among workspaces. For example, only a fully validated

object can be placed into the Archive Space. Check-out/check-in operations and semi-public

-15-

workspaces are associated with particular design transactions.

5.1. Nested Subtransaction Model

A transaction is a packaged sequence of actions that map a state of the database into a new
consistent state. A design transaction, associated with a single designer, corresponds to the
sequence of design object check-outs, tool invocations, and object check-ins that together lead to
the creation of mew versions of design objects. It is well known that conventional database

transactions do not model design database interactions (see [KATZ83]).

Nested subtransactions [KIM 84, KATZ84b] provide a better model by allowing partially
completed versions to be shared among a group of designers. A project manager can create a
master transaction to cover objects potentially shared by his design group. Individual designers
may check-out their objects directly, circumventing the master, or may attach to its semi-public
workspace, thus becoming a subtransaction. In the former, any derivatives they create cannot be
shared until they are validated (see next subsection). Otherwise, derivatives can be checked-in to
the master’s semi-public workspace without verification, and can then be checked-out by other
subtransactions. By joining a master transaction, the designer agrees to accept objects that may

not have been fully validated.

5.2. Validation

The Validation Subsystem assists designers track portions of the design that must be
revalidated after a change. It logs designer activity, either automatically, such as during check-
out actions, or with their assistance, for example, to record the success or failure of a simulation
run. Most design constraints are validated through successful execution of simulation tools, but
some constraints can only be validated through a complex sequence of validation programs.
These constraints are described by validation scripts that are matched against the actual log of

design events.

-16-

Equivalence constraints are the most complex to validate. For example, verifying that a
layout and transistor object are equivalent requires the invocation of a circuit extractor and a
schematic comparison tool. These tools must be applied to the appropriate versions of the objects
being returned to the archive. The equivalence object associated with the constraint may need to
identify the input test data set under which the objects are to be compared for equivalence, as

well as any “technology” parameters that must be provided to the programs that perform the

comparisons.

We have implemented a simple Validation Subsystem in PROLOG. The PROLOG system
is used as an elaborate pattern matcher, in which the validation scripts, specified as PROLOG
rules, are matched against the event log, stored as time-stamped PROLOG facts, to ‘‘prove’’ that

the constraint is in force for the returned objects (see Figure 5.1).

We are investigating how to use PROLOG to infer unvalidated equivalence relationships
from those that have been validated. Suppose that A and B are equivalent. A designer checks-
out A to create a new version A’. By inheritance, A’ must be shown to be equivalent to B before
it can be checked back into the Archive. The designer can augment the database with a new
equivalence relationship among A and A’. If this constraint is shown to be valid, then the original
constraint is satisfied by tramsitivity: A is equivalent to B and A’ is equivalent to A implies that

A’ is equivalent to B.

8. Implementation Status and Conclusions

We are implementing the Version Server system described above in a network environment
of Digital Equipment Corporation VAX-11 computers and SUN Microsystems workstations.
Figure 6.1 lists a command summary. Extensive use has been made of the interprocess
communications and networking primitives available in Berkeley 4.2 BSD UNIX. The object
system is built directly on top of UNIX files, but we hope to be able to make use of an Object
Data Manager being developed by Professor Richard Newton and his students when it becomes

available. A Version Server shell has been developed to automatically map generic object names

-17-

rules:

equivalence (Layout, Transistor) :-
extractor (Layout, T1),
comparator{Transistor, T1, succeed).

Jacts:
extractor (layout-1, transistor-1).
extractor (layout-2, transistor-2).
comparator (transistor-S, transistor-1, succeed).
comparator (transistor-3, transistor-2, fail).
query:

equivalence (layout-1, transistor-3)?

** YES
Figure 5.1 — Check-in Script and Proof of Consistency in PROLOG

Layouts are shown to be equivalent to transistor descriptions by executing a circuit extractor and
schematic comparator. This sequence of events is specified in the Prolog rule, where the capitalized
parameters are variables. The facts indicate which tool events are associated with which versions
{lower case parameters), and whether the invocation succeeded or failed. To check that layout-1 and
transistor-3 are equivalent, the rule is matched against the facts, and Prolog’s inference mechanism
can deduce that the rule is satisfied for the specified objects.

-18-

vsshell fvsdone
Enter/leave the Version Server command interpreter.

checkin <object-name> <environment-name>
checkout <object-name> <layer-name>

view <object-name>

return <object-name>

Check-in/out objects from/to the identified Archive or Semi-public
Workspace. Read-only objects can be viewed and returned without
validation.

startzact/endzact <workspace-name>
viewzact
Begin or end a design transaction. View validation status.

define-layer <layer-name> <object-name>
define-environment <environment-name> <layer-name>
make-known/make-unknown <semi-public-name> <user-name>
Place objects in layers. Place layers in environments.
Make environments available to other designers.

register /semi-register ~<workspace-name>
Attach current transaction to a new Archive or Semi-public Workspace.
In the latter case, the transaction becomes a subtransaction.

set-currency <object-name> <versionID >
store-version/restore-version <object-name>

Set current version of version history.

Archive or restore versions older than the current version.

Figure 6.1 — Version Server Command Summary

into their appropriate versions, given an environment specification. We are experimenting with
how layers/environments and workspaces can be used by design teams to more effectively share
their data. We are also considering how to build a graphical browsing capability on top of the
design database.

Our work focuses on the importance of separating structural considerations (i.e., the
organization of the design database into versions, configurations, and equivalences), from
representation details (i.e., how to store layout geometries). The Version Server provides an

“arms-length’’ database capability - the applications and the Version Server are not closely

-19-

coupled. Integrating design applications and databases, perhaps at the level of in-memory

database structures, will require further work.

7. References

[BATO85b] Batory, D. S., W. Kim, “Modeling Concepts for VLSI CAD Objects,” ACM SIGMOD
Conference, Austin, TX, (May 1985)

[ECKL84] Ecklund, E. F., Jr., D. M. Price, “Multiple Version Management of Hypothetical
Databases,” Oregan State Technical Report, 1984,

[GOLD81] Goldstein, 1. P.,, D. G. Bobrow, “Layered Networks as a Tool for Software
Development,”’ Proceedings 7th International Joint Conference on Al, (August 1981).

[KATZ83] Katz, R. H., “Managing the Chip Design Database,” L.E.E.E. Computer Magazine, V
16, N 12, (December 1983).

[KATZ84a] Katz, R. H., T. J. Lehman, “Database Support for Versions and Alternatives of Large
Design Files,” I.LE.E.E. Transactions on Software Engineering, V SE-10, N 2, (March
1984).

[KATZ84b] Katz, R. H., S. Weiss, “‘Design Transaction Management,” Proc. A.C.M./LE.EE. 21st
Design Automation Conference, Albuquerque, N.M., (June 1984).

[KATZ85] Katz, R. H., M. Anwarrudin, E. Chang, “Organizing a Design Database Across Time,”
Islamorada Workshop on Large Scale Knowledge Bases and Inference Systems,
Islamorada, FL, (February 1985).

[KELL82] Keller, K., A. R. Newton, S. Ellis, “A Symbolic Design System for Integrated Circuits,”
Proc. ACM/IEEE 19th Design Automation Conference, Las Vegas, NV, {June 1982).

[KIM 84] Kim, W, et. al., “Nested Transactions for Engineering Design Databases,”” Proc. Very
Large Database Conference, Singapore, Malaysia, (August 1984).

