

OFC 2005 Tutorial

Current Trends in Optical MEMS

Ming C. Wu

University of California, Berkeley EECS Department & Berkeley Sensor and Actuator Center (BSAC) wu@eecs.berkeley.edu

Acknowledgment

- Providing viewgraphs
 - Thomas Ducellier (Metconnex)
 - Li Fan (Formfactor)
 - Andres Fernandez (Glimmerglass)
 - Roger Helkey, Olivier Jerphagnon (Calient)
 - Dan Marom (Lucent)
 - Katsu Okamoto (Okamoto Lab)
 - Olav Solgaard (Stanford University)
 - Rod Tucker (Univ. Melborne)
- Graduate students and Postdocs at Berkeley and UCLA
 - WSS: J.C. "Ted" Tsai, Dooyoung Hah, Sophia Huang
 - PhC switch: M.C. "Mark" Lee
 - MEMS Microdisk: M.C. "Mark" Lee, Jin Yao
 - MEMS PLC switch: Josh C.H. Chi, Jin Yao

OUTLINE

- Introduction
- Optical design considerations
- Space division switches
 - 2D MEMS optical switches
 - 3D MEMS optical switches
- Spectral domain processors
 - Wavelength-selective switches
- Planar lightwave circuits (PLC)-MEMS Integration
- Diffractive optical MEMS
- New directions
- Summary

25 Years of Optical MEMS

Bulk Micromachining

• Anisotropic wet chemical etching (restricted to fixed crystalline orientations)

• Deep reactive ion etching (DRIE or ICP-RIE)

- High aspect ratio (> 20:1)
- Independent of crystal orientation
- More efficient use of real estate of substrate (e.g., can produce closely spaced structures)

- Combine with silicon-on-insulator (SOI) or III-V epi wafer
- Suspended structure in one-step etching + releasing
- Multi-layer structure by additional wafer bonding

• Fairchild (SUMMiT-4)

MEMS Technologies and Optical Element Size

Optical Designs

Direct Coupling Without Lenses

- Short propagation distance
- May be used for small switches or VOAs

Example: 2x2 Switch

Marxer, et al., J-MEMS, vol.6, 1997. p.277-85.

Free-Space Optics: Gaussian Beam

- Larger beam waist → Long collimation length
- System size ~ 2b
- Mirror diameter ~ $2aw_0$, a ~ 1.5 to 2

Space Division Switches:

(1) 2D MEMS Optical Switches

(2) 3D MEMS Optical Switches

Ming Wu @ OFC 2005

Scaling of 2D MEMS Optical Switches

Port Count of 2D MEMS Switches

Port Count vs Beam Size

Loss Due to Mirror Tilt

Surface-Micromachined 2D MEMS Optical Switches (16x16)

L. Fan, et al., OFC 2002

L. Fan, et al., OFC 2002

Absolute angular uniformity ~ \pm 0.05°

Ming Wu @ OFC 2005

A STATEMENT

Glimmerglass 3D-MEMS Switches

Glimmerglass MEMS Module

(Scan Angle ~ 3.5° @ ~ 200V)

SPIE Vol. 5604, pp. 208-217

- Snap Guard Prevents Electrostatic Snap-Down Failure
- Mirror Material Is Highly Reliable Single-Crystal Silicon on Insulator (SOI)
- Ceramic Substrate Contains Electrodes, Routing, And Hermetic Seal Ring

Wavelength-Selective Switches (WSS)

Fourier Transform Pulse Shaper

A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. 1988

• Shaping femtosecond pulses by modulating the phases and amplitudes of their spectral components

Dynamic WDM Functions

MEMS Spatial Light Modulator Array	Dynamic WDM Functions
Piston Mirrors	Femtosecond pulse shaper
ON-OFF reflectors	Wavelength blocker
Variable reflectivity mirror	Spectral (or gain) equalizer
1x2 Digital micromirrors	Optical add-drop multiplexer (OADM)
1xN analog micromirrors	Wavelength- Selective Switch (WSS)
Deformable mirrors	Tunable dispersion compensator

1x4 Wavelength-Selective Switch (WSS)

1x4 WSS

- D. Marom et al. (Lucent), OFC 2002
 - 1x4 WSS
 - Channel spacing: 50 or 100 GHz
 - MEMS performance: 12° (> 55 V)

- T. Ducellier et al. (JDS-U), ECOC 2002
 - 1x4 WSS
 - Channel spacing: 100 GHz
 - MEMS performance: ±2°

Analog Micromirror Array (UCLA)

Scan Angles	+/- 6° (mechanical)
Voltage	6 V
Fill Factor	98%
Res. Freq.	3.4 kHz
Stability (3hr)	±0.00085°
System (3hr)	± 0.0035dB

• Hah, et al (UCLA) J. MEMS, 2004, p. 279

• Tsai, et al (UCLA) IEEE PTL 2004, p. 1041

Ming Wu @ OFC 2005

Approach for Increasing Port Count (1)

- Use anamorphic prism pair to compress lateral beam size on MEMS micromirrors
- Elliptical beams on MEMS mirrors → Rectangular micromirror

Approach for Increasing Port Count (2)

- 1xN² WSS:
 - 2D collimator array
 - 1D array of 2-axis micromirror array
- Port count is increased from N to N²
 - N is the diffraction-limited linear port count
- High port count WSS
 - 1x32 WSS has been demonstrated
- J.-C. Tsai, et al., (UCLA) ECOC 2004, Paper Tu1.5.2

High-Fill Factor 2-Axis Micromirror Array

Ming Wu @ OFC 2005

SEM of Gimbal-less 2-Axis Analog Micromirror Array

- SUMMIT-V 5-layer surface micromachining process
- Mirror pitch: 200 um
- Large scan angles: ±6.7° (mechanically) @ 75 V
- Fill factor: 98%
- Resonant frequency = 5.9 kHz

Planar Lightwave Circuit (PLC) MEMS

Reconfigurable Optical Add/Drop Multiplexer (ROADM)

K. Okamoto et al., Electron. Lett., vol. 31, pp.723-724, 1995

(VG courtesy of K. Okamoto)

PLC 1x9 WSS

- 1x9 WSS
- Thermal optic switch
 450 mW / switch
 - Total power ~ 14W
- Loss ~ 5.4 dB
- Isolation > 46 dB

C.R. Doerr, et al. (Lucent), OFC 2002 Postdeadline Paper, FA3

2x2 MEMS Waveguide WSXC

- 3 diffraction orders by AWG
- Optical phases of (+1, 0, -1) orders modulated by MEMS piston mirrors
- Chip ~ 5 x 9 mm²

D.T. Fuchs, et al (Lucent) IEEE PTL, Jan. 2004

- 100 GHz channel spacing
- 10.6 dB insertion loss
- 20 dB extinction ratio

2D arrangement of ports for scalable 1x9 WSS

Interleaved spectrum switched to all output ports

A

1x8 PLC MEMS Optical Switches

C.H. Chi, et al. (UCLA and Okamoto Lab), OFC 2004

Ming Wu @ OFC 2005

50 um

10.0kV 12.0mm x1.10k SE(U) 9/6/03 01:56

Tunable Fabry-Perot Filters

Tunable Fabry-Perot (FP) Filters

Ming Wu @ OFC 2005

Tunable FP Filters

- Has been demonstrated in many material systems
 - III-V
 - Dielectric (e.g., Si/SiO₂)
 - Semiconductor Air gap DBR
- Various actuation mechanisms
 - Electrostatic (parallel plate actuators)
 - Thermal actuators
 - Piezoelectric actuators

Nonlinear Optical Response

VG courtesy of Prof. Rod Tucker (Univ. Melbourne)

Effective Spring Constant due to Radiation Pressure

Diffractive Optical MEMS

Grating Light Valve

O. Solgaard, F. S. A. Sandejas, D. M. Bloom, "A deformable grating optical modulator", Optics Letters, vol. 17, no. 9, pp. 688-690, 1 May 1992.

Applications

- Projection display
- Variable optical attenuators (VOA)
- Gain equalizers
- Wavelength blockers
- Companies ۲
 - Silicon light machine (Cypress), Lightconnect, Polychromix, Kodak

Telecommunications Applications

Reconfigurable Channel Blocking Filter

Dynamic Gain Equalizer

MEMS Switchable WDM Deinterleaver Based on Gires-Tournois Interferometer

Olav Solgaard, Stanford University

Nanophotonic MEMS

1D and 2D Photonic Crystal Switches

1D MEMS Photonic Switch

Experimental Results

M.C. Lee, et al (UCLA) OFC 2002

- 100-nm-wide beam with < 5 nm ullettolerance
- ON-OFF switching with 11 dB extinction ratio
- 0.5 ms switching time

Ming Wu @ OFC 2005

Microring Resonator-Based PIC

S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo and J. Shanton (Little Optics) OFC 2004

MEMS Tunable Microresonators

Microdisk Resonators

- Change resonant wavelength
 - Thermal tuning
 - Free-carrier injection
- Change effective Q
 - Increase cavity loss (e.g., electroabsorption)
 - Change waveguide-disk coupling

- Change resonant wavelength
 - Move mirror
- Change effective Q
 - Increase media loss
 - Tune mirror reflectivity (Hard)

Microdisk Resonator with MEMS Tunable Couplers

Dynamic Optical Add-Drop Multiplexers

Spoiling Q by MEMS Metal Membrane

- Use a metal membrane to spoil the Q of microring resonator
 - Low loss \rightarrow resonant wavelength sent to "Drop" port
 - High loss \rightarrow all wavelengths transmitted to "Through" port

Enable resonance

Disabled resonance

Gregory N. Nielson, et al., (MIT) "MEMS based wavelength selective optical switching for integrated photonic circuits", CLEO 2004

SUMMARY

- Tremendous progresses have been made in
 - MEMS devices and manufacturing
 - Micro-optics
 - Packaging
 - Control
- New trends in Optical MEMS -- Integration
 - Higher level of integration, less free-space alignment
 - MEMS-PLC integration
 - MEMS-nanophotonics integration
 - Electronics integration
 - Single-chip optical MEMS system

