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Introduction
[ Jelele]e}

High-Dimensional Data: Images, Videos, etc...

Figure: Dimension of an image: 1000 x 700 x 3 > 2million!
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HD data are often multi-model
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Mixture-Subspace Model
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Introduction
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Face Recognition: “Where amazing happens!”
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Face Recognition: “Where amazing happens!”

Figure: Steve Nash, Yao Ming, Kevin Garnett, Jason Kidd.
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How to let computer compete with human perception?
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How to let computer compete with human perception?

o How to determine a class of models and the number of models?

.eecs.berkeley.edu/~yang -Dimensional Multi-Model Estimation


http://www.eecs.berkeley.edu/~yang

Introdu
[e]e]ee] }

How to let computer compete with human perception?

o How to determine a class of models and the number of models?

o Curse of dimensionality! [Richard Bellman 1957]

WE'RE DOOMED ITS

MAOVIN, WHAT'S THE CLRSE OF CHDEAR .. . WOLLE | [IT'S WORSE THEN THAT:
WRONG? DIMENSTONALITY! IT FELP IF WE WE'RE SOING TO HAVE
AL QUR SEGMENTS RENAMED THEMP TO LOOK AT THE DATA,
SRE MELNINGLESS! “ JIM'
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[e]e]ee] }

How to let computer compete with human perception?

o How to determine a class of models and the number of models?

o Curse of dimensionality! [Richard Bellman 1957]

MADVIN, WHAT'S
WRONG?

WE'RE DOOMED ITS
THE CLIZSE OF
DIMENSTONALITY!
AL QUR SEGMENTS
SRE MELNINGLESS!

i)

2

OHPEAR . . . WOLLD
IT HELP IF WE
RENAMED THEMP

FAN

IT'S WORSE THEN THAT:

WERE SOING TO HAVE

TO LOOK AT TJI'? DATA,
W
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o To make things worse: Robust to high noise and outliers?
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o

Outline

© Unsupervised segmentation
Segment samples drawn from A = S; U S, U...U Sk in RP, and estimate model parameters.
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Introdu

Outline

© Unsupervised segmentation
Segment samples drawn from A = S; U S, U...U Sk in RP, and estimate model parameters.

@ Supervised recognition
Assume training examples {A1,--- , Ak} for K models. Given a test sample y, determine its
membership label(y) € [1,2,---, K].
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Robust Segmentation
000000000

Affine Motion Segmentation

Assume multiple 3-D objects far away from the camera in a dynamic scene

o 3-D features py,...,py € R? are tracked in F
image frames.

o Image of p; in jth frame:

1T . .
m; = [;Z] —Ap +b €R2, j=1,.. F. parking-lot movie
o Stack images of p; in all F frames

mj; At by
xi=| :|=]: {pl,} € R,
m;e AfF  br
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Affine Motion Segmentation

Assume multiple 3-D objects far away from the camera in a dynamic scene

o 3-D features py,...,py € R3 are tracked in F
image frames.

o Image of p; in jth frame:

e 2 . arking-lot movie
mij:[yz'] =Appi+b cR% j=1,....,F. P £
o Stack images of p; in all F frames T e
A T T
00430 o 00 8%8%,
£ 5 o0
mj; A1 by ¢ ‘MN
1 %] erer B e
Xj = . = . |: e R°™. B 3No°°,°°o
: : 1 ! e ©° o 2, i
| A N A
m;e AfF  br [

Challenge: Affine Motion Segmentation = Subspace Segmentation

Each motion satisfies a 4-D subspace model.
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Robust Segmentation
0®0000000

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)
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Robust Segmentation
0®0000000

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)

Q@ ForA=ViU\VWV,

Vz = (X1,X2,X3)T, ze ViuW, & {X3 = 0}|{(X1 = 0)&(X2 = 0)}
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0®0000000

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)

Q@ ForA=ViU\VWV,
Vz = (X1,X2,X3)T, ze ViuW, & {X3 = 0}|{(X1 = 0)&(X2 = 0)}
© By De Morgan’s law

[ = 0}{(x1 = 0)&(0 = 0)} & (x1x5 = 0)&(xoxs = 0) ¢ { 1320

Xpx3=0
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Robust Segmentation
0®0000000

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)

Q@ ForA=ViU\VWV,
Vz = (X1,X2,X3)T, ze ViuW, & {X3 = 0}|{(X1 = 0)&(X2 = O)}
© By De Morgan'’s law

[ = 0}{(x1 = 0)&(0 = 0)} & (x1x5 = 0)&(xoxs = 0) ¢ { 1320

Xpx3=0

Q Vanishing polynomials: p; = x1x3, p2 = x2x3
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Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p; = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.
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Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p; = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.

o Kth-degree vanishing polynomials Ix(.A) as a global signature
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Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p; = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.

o Kth-degree vanishing polynomials Ix(.A) as a global signature

o Ix(A) is a polynomial subspace.

Subspace Properties
If p1, p2 € Ik(A), p1(x) =0 and pa(x) =0
@ Closed under addition: (p; + p2)(x) = 0 = (p1 + p2) € Ik(A).
@ Closed under scalar multiplication: Va € R, ap1(x) = 0 = ap1 € Ix(A).
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Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p; = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.

o Kth-degree vanishing polynomials Ix(.A) as a global signature

o Ix(A) is a polynomial subspace.

Subspace Properties
If p1, p2 € Ik(A), p1(x) =0 and pa(x) =0
@ Closed under addition: (p; + p2)(x) = 0 = (p1 + p2) € Ik(A).
@ Closed under scalar multiplication: Va € R, ap1(x) = 0 = ap1 € Ix(A).

o Ik(A) is determined by a linearly-independent polynomial basis.
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Estimation of Vanishing Polynomials

@ Veronese embedding: Given N samples xg,...,xy € R3,

. Bl
L = [w(x),...,vo(xn)] € RM2 N

-Dimensional Multi-Model Estimation
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Estimation of Vanishing Polynomials

@ Veronese embedding: Given N samples xg,...,xy € R3,
. M[3]><N
Ly = [va(x1),...,v2(xn)] € R™2
(a)?
(x1x2)
_ (x1x3)
- (e)?
(x2x3)
(x3)?
. €= [0’07170’070] P1 :Cll/Z(X) = X1X3
@ The null space of Ly is ¢ =[0,0,0,0,1,0] = P2 = Cova(X) = xox3

Figure: 2nd-degree vanishing polynomials: p1 = x1x3, p» = X2Xx3.

-Dimensional Multi-Model Estimation
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Calculate Subspace Basis Vectors using Polynomial Derivatives

o VIL, ceey VKL recovered by the derivatives

X1 X2

x3 0
VP = [prl VXPQ] = |:0 X3:| .

@ Pick z=[1,1,0]7 € V4, then V,P(z) = [

E
]

OO O
OO~ OO

H — T _
Pick2 = [0,0,117 € v then VsP(2) = | Figure: P(x) = [p1(x) p2(x)] = [xi, xo].
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Calculate Subspace Basis Vectors using Polynomial Derivatives

o VIL, ceey VKL recovered by the derivatives

X1 X2

x3 0
VxP = [prl VXPQ] = |:0 X3:| .

@ Pick z=[1,1,0]7 € V4, then V,P(z) = [
Pick z = [0,0,1]7 € V4, then V,P(z) = [

Diagram of GPCA

o

RM

Null(L,)
=

Rank(L,) = M — hy(n
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Robust GPCA

(a) .08 (b) .12 (c) 16 (a) .08 (b) .12 (c) 16

Figure: (2,1, 1) with various noise-to-signal ratios Figure: (2,2, 1) with various noise-to-signal ratios
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Robust GPCA

(a) .08 (b) .12 (c) 16 (a) .08 (b) .12 (c) 16

Figure: (2,1, 1) with various noise-to-signal ratios Figure: (2,2, 1) with various noise-to-signal ratios

(a) 12% (b) 32%

Figure: One plane and two lines with various outlier Figure: Two planes and one line with various outlier
percentages percentages
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Robust Segment:
000000e00

Outlier Elimination

Figure: Elimination of outliers.

Reference:

SIAM Review: Estimation of subspace arrangements with applications in modeling and segmenting mixed data, 2008.
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Experiment: Affine Motion Segmentation

Sequences:
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Experiment: Affine Motion Segmentation

Sequences:
Lo e o 95 0 00g0 38550 Eng .. ..
et e X Ry
oo, “opBo00 52 5.5 e R e
o § g0 moleectLg S d z B d:
e N % ] R A

RGPCA:

(d) Image/Video (e) Vanishing Point Detection (f) Manifold Fitting

Segmentation
Berkeley

imensional Multi-Model Estimation
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Robust Segmentation
00000000e

Summary: GPCA

Advantages:
o Closed-form algebraic solution, not iterative.
@ Segmentation of subspaces with mixed dimensions.

o Robust to noise and outliers.
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Summary: GPCA

Advantages:
o Closed-form algebraic solution, not iterative.
@ Segmentation of subspaces with mixed dimensions.
@ Robust to noise and outliers.

Limitations:

o Only apply to mixture linear subspaces. (How about mixture nonlinear manifolds?)
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Summary: GPCA

Advantages:
o Closed-form algebraic solution, not iterative.
@ Segmentation of subspaces with mixed dimensions.
@ Robust to noise and outliers.
Limitations:
o Only apply to mixture linear subspaces. (How about mixture nonlinear manifolds?)

o User provides correct subspace number and dimensions. (How to select a good mixture
model?)
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Mixture Perspective Motions
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Robust Segmentation
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Mixture Perspective Motions

Given two image correspondences x1,x; € R3

o Epipolar

[0,

L N

[ f2 fi3
Xy | f1 f2 fo3 | X1 =0
31 f32 f33
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Mixture Perspective Motions

Given two image correspondences x1,x; € R3

o Epipolar o Homography

[ f2 fi3 h1 o b
X3 | 1 f22 fo3 | X1 = 0 X2 X | ho1 h o3 | X3 =0
31 f32 f33 h31 h3z h3s
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Mixture Perspective Motions

Given two image correspondences x1,x; € R3
o Epipolar o Homography

=
S

L NP

[ f2 fi3 h1 o b
X3 | 1 f22 fo3 | X1 = 0 X2 X | ho1 h o3 | X3 =0
31 f32 f33 h31 h3z h3s

Segmentation of mixture perspective motions

Each perspective constraint is linear w.r.t. (x1,x2), but in different form!
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Robust Segmentation
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Quadratic Manifolds in Joint Image Space

Joint image space: Stack x; = (x1,y1,1)7 and x2 = (x2, y2,1)7

y = (3, y1,%2,y2,1)T €R®

.eecs.berkeley.edu/~yang -Dimensional Multi-Model Estimation


http://www.eecs.berkeley.edu/~yang
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Quadratic Manifolds in Joint Image Space

Joint image space: Stack x; = (x1,y1,1)7 and x2 = (x2, y2,1)7

y = (3, y1,%2,y2,1)T €R®

o Quadratic fundamental manifold (QFM)

0 0 ff_n ;21 ;31

X 0 0 fio fp f32
yiAy=y | A1 fi 0 0 A3 |y=0. 1)

12 0 0 f3

f31 f32 fi3 fo3 2f33

o Quadratic homograpy manifold (QHM)

0 0 0 h3y —hyp
0 0 O0hp —hy
y"Biy=y"| o o0 00 o y =0,
0 s
—hy1 —h 0 h33 —2hy3
0 0 *231 0 211
0 0 —h30 hy
yT - _
Boy=yT | —hss —hpp 0 0—hy3 | y=0, (2)
0 0 0 0 0
b1 ha —h33 0 2h3

0 0 hyy —h;; O
T - 0 0 hyy —hp O
y'Bsy =y hyy hoy 0 0 hy3 y=0.

“hu—hp 000 = Berkeley

0 M-tz o )  DPEIREN
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Segmentation of Quadratic Manifolds

o Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pi(y) =y  Qy=0. 3)
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Segmentation of Quadratic Manifolds

o Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pi(y) =y Qy=0. (3)

@ Vanishing polynomials (as global signature): The set of 2Kth degree polynomials hk(.A)
uniquely determines A = 5; U--- U Sk.

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model E:


http://www.eecs.berkeley.edu/~yang

Robust Segmentation
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Segmentation of Quadratic Manifolds

o Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pi(y) =y Qy=0. (3)

@ Vanishing polynomials (as global signature): The set of 2Kth degree polynomials hk(.A)
uniquely determines A = 5; U--- U Sk.

Robust Algebraic Segmentation

Y:{ylv'“ 7yn}:>l2K('A):>‘A:>{517“' 75K}

Reference:
IJCV (draft): Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions, 2008.
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boxes MLESAC|MC-RANSAC| RAS |RAS4+RANSAC

FPR 9.24% 0.84% 1.68% 0.84%

VR 36.97% 84.87% 100% 87.39%
carsnbus3 MLESAC|MC-RANSAC| RAS |RAS4+RANSAC

FPR 45.75% 12.55% 2.83% 1.62%

VR 83.81% 90.28% 97.17% 85.83%
deliveryvan MLESAC|MC-RANSAC| RAS [RAS+RANSAC
FPR 23.23% 10.63% 5.91% 0.39%

VR 97.64% 96.85% 100% 94.09%

desk MLESAC|[MC-RANSAC| RAS [RAS+RANSAC

FPR 9.00% 2.50% 3.00% 0.50%

VR 55.50% 93.50%  [91.50% 93.50%
lightbulb MLESAC|MC-RANSAC| RAS |RAS+RANSAC

FPR 39.52% 0.00% 0.00% 0.00%

VR 76.19% 82.86% 100% 99.52 %
manycars MLESAC|MC-RANSAC| RAS |RAS+RANSAC

FPR 30.56% 22.22% [0.00% 0.00%

VR 90.28% 95.83% 100% 88.89%
man-in-office MLESAC|MC-RANSAC| RAS |RAS+RANSAC
FPR 20.56% 34.58% 20.56% 11.21%
VR 89.72% 95.33% [84.11% 82.24%
nrbooks3 MLESAC|MC-RANSAC| RAS [RAS+RANSAC
FPR 12.38% 9.05% 5.48% 0.95%

VR 41.19% 65.48%  [94.29% 88.33%
office MLESAC|MC-RANSAC| RAS |RAS+RANSAC

FPR 2.28% 0.33% 10.42% 0.00%

VR 89.59% 90.55%  [86.97% 93.49%
parking-lot MLESAC|MC-RANSAC| RAS |RAS+RANSAC
FPR 7.86% 5.00% 3.57% 2.86%

VR 98.57% 96.43% 100% 97.86%
posters-checkerboard[ MLESAC|MC-RANSAC| RAS [RAS-+RANSAC

FPR 20.58% 1.06% 9.23% 0.00%

VR 49.87% 97.36% 70.71% 95.25%
posters-keyboard |MLESAC|MC-RANSAC| RAS |RAS+RANSAC

FPR 8.59% 0.25% [10.61% 0.51%

VR 56.06% 83.33%  [78.03% 88.13%
toys-on-table MLESAC|MC-RANSAC| RAS |RAS+RANSAC
FPR 38.10% 38.10% 15.08% 7.94%

VR 91.27% 92.86%  |81.75% 77:78%
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Experiment

@ Visualization
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Experiment

@ Visualization
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@ Faster than RANSAC!
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Robust Segmentation
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Summary: Robust Algebraic Segmentation

Advantages:
o Segmentation of quadratic manifolds with mixed dimensions.
o Closed-form algebraic solution, not iterative.
@ Robust to noise and outliers.

Limitations:

o User provides correct subspace number and dimensions. (How to select a good mixture
model?)

Berkeley
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Robust Segmentation
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Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):
Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
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Robust Segmentation
@0000

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.
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Robust Segmentation
@0000

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.

© For mixture subspace model
o Model V; as a (degenerate) Gaussian model

1 D
Bit rate: R(V;) =  log, det(/ + Z—N\/,-V,T).
€=V
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Robust Segmentation
@0000

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.

© For mixture subspace model
o Model V; as a (degenerate) Gaussian model
. 1 D T
Bit rate: R(V;) = 5 log, det(/ + GTNIV,VI ).
o Coding length for V; of N; samples

L(V;) = (N; + D)R(V}) + g log, det(1 + ;2,1,-“,7) + N;(— logy(N;i/N)).
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Robust Segmentation
@0000

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.

© For mixture subspace model
o Model V; as a (degenerate) Gaussian model

1 D
Bit rate: R(V;) =  log, det(/ + Z—N\/,-V,T).
€=V

o Coding length for V; of N; samples
D 1
L(V)) = (N; + D)R(VA) + — log, det(1 + —puia]) + Ni(— logy(Ni/N)).

o Total coding length: L°(Vy, -, Vi) =3, L(V}).
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Robust Segmentation

A Greedy Optimization

@ Initialize: Assume N samples as individual groups.
@ Each iteration: Merge two groups that reduces largest coding length.
© To stop: If any further merging cannot reduces L°.

@ Output: Estimation of K and the grouping.

animation

Berkeley
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Robust Segmentation

Simulation
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Robust Segmentation
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Image Segmentation via Mixture Subspace Models

39

Nature

e I

(h) Urban
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Robust Segmentation

Quantitative Comparison

Table: Average performance on the Berkeley image segmentation database.

PRI Vol GCE BDE
Humans 0.8754 | 1.1040 | 0.0797 4.994
CTMy—0.1 0.7561 | 2.4640 | 0.1767 | 9.4211
Mean-Shift [Comaniciu 2002] | 0.7550 2.477 0.2598 | 9.7001
N-Cuts [Shi 2000] 0.7229 | 2.9329 | 0.2182 | 9.6038
F-H [Felzenszwalb 2004] 0.7841 | 2.6647 | 0.1895 | 9.9497
PRI: Probabilistic Rand Index [Pantofaru 2005]. GCE: Global Consistency Error [Martin 2001].
Vol: Variation of Information [Meila 2005]. BDE: Boundary Displacement Error [Freixenet 2002].

Reference:
Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2008.
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Robust Segmentation
[ Je]

GPCA Website: http://perception.csl.uiuc.edu/gpca/
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About GPCA

In many scientific and engineering problems, the data of interest can be viewed as drawn from a mixture of
geometric or statistical models instead of a single one. Such data are often referred to in different contexts as
“mixed," or “multi-modal,” or "“multi-model," or “heterogeneous," or “hybrid." For instances, a natural image
normally consists of multiple regions of different texture, a video sequence may contains multiple independently
‘moving objects, and a hybrid dynamical system may arbitrarily switch among different subsystems.

Generalized Principal Component Analysis (GPCA) is a general method for modeling and segmenting such
mixed data using a collection of subspaces, also known in mathematics as a subspace arrangement. By
introducing certain new algebraic models and techniques into data clustering, traditionally a statistical problem,
GPCA offers a new spectrum of algorithms for data modeling and clustering that are in many aspects more
efficient and effective than (or complementary to) traditional methods (e.g. Expectation Maximization and
K-Means).

The goal of this site is to promote the use of the GPCA algorithm to improve segmentation performance in many
application domains. Tutorials and sample code are provided to help researchers and practitioners decide if the
algorithm can be applied to their application domain, and to help get their implementation set up quickly and
correctly.

Browsing through the links on the left, you will find a brief overview of the fundamental concepts behind GPCA
in the Introduction section; numerical implementations of several variations of the GPCA algorithm in the Sample
Code section; examples of real applications in the areas of computer vision, image processing; and system
identification in the Applications section; and finally all the related literature in the Publications section.

Website Credits

This site is jointly developed and maintained by the research groups of

® Professor Yi Ma of the Electrical & Computer Engineering Department at the University of Illinois at
Urbana-Champaign xle

® Professor Rene Vidal of the Biomedical Engineering Department at the Johns Hopkins University o y

® Professor Kun Huang of the Biomedical Informatics Department at the Ohio State University
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Robust Segmentation
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www.eecs.berkeley.edu/~yang/software/lossy_segmentation/

Unsupervised Segmentation of Natural Images

via Lossy Data Compression

Allen Y. Yang, John Wright, Yi Ma, and Shankar Sastry

@ Copyright Notice: It is important that you read and understand the copyright of the following software packages as specificd in the individual items. The copyright
varies with each package due o its contributor(s). The packages should NOT be used for any commercial purposes without direct consent of their author(s).

ABSTRACT:

‘We cast natural-image segmentation as a problem of clustering texure features as multivariate mixed data. We model the
distribution of the texture features using a mixture of Gaussian distributions. Unlike most existing clustering methods, we allow
the mixture components to be degenerate or nearly-degenerate. We contend that this assumption 1s particularly important for
mid-level image segmentation, where degeneracy is typically introduced by using a common feature representation for different
textures in an image. We show that such a mixture distribution can be effectively segmented by a simple agglomerative
clustering algorithm derived from a lossy data compression approach. Using either 2D texture filter banks or simple fixed-size
windows as texture features, the algorithm effectively segments an image by minimizing the overall coding length of the feature
vectors. We conduct comprehenswe experiments to measure the performance of the algorithm in terms of visual evaluation and

a variety of quantitative indices for image segmentation. The algorithm compares favorably against other well-known image
segmentation methods on the Berkeley image database.

@ Publications:

Allen Y. Yang, John Wright, Yi Ma, and Shankar Sastry. Unsupervised segmentation of natural images via lossy data compression. To
appear in CVIU 2007. [PDF]
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Classification
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Classification of Mixture Subspaces

o Notation
o Training: For K classes, collect training samples {vi,1,- - ,vin }, -+, {vk,1," - ,VKY,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2,-- , K].
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Classification of Mixture Subspaces

o Notation
e Training: For K classes, collect training samples {vy 1, - - 7"1v"1}7 e {vk, ,VK,,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2,--- , K].

o Facial disguise & occlusion
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Sparse Representation

A signal is sparse if most of its coefficients are (approximately) zero.
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Sparse Representation

A signal is sparse if most of its coefficients are (approximately) zero.

@ Sparsity in frequency domain

Figure: 2-D DCT transform.

@ Sparsity in spatial domain

Figure: Gene microarray data.
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o Sparsity in human visual cortex [Perrett & Oram 1993, Olshausen & Field 1997,
Riesenhuber & Poggio 2000]

response o response

Berkeley
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o Sparsity in human visual cortex [Perrett & Oram 1993, Olshausen & Field 1997,
Riesenhuber & Poggio 2000]

stimul

mplexity of preferre:

response o response

© Feed-forward: No iterative feedback loop.

@ Redundancy: Average 80-200 neurons for each feature representation.

© Recognition: Information exchange between stages is not about individual neurons, but
rather how many neurons as a group fire together.

FEl =
Berkeley
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Classification of Mixture Subspace Model

© Face-subspace model: Assume y belongs to Class i

“

Qj1Vi1+ QjaVio+ -+ Qo Vi,
 h = A,

. A where A; = [vj1,Vi2, -+ ,Vin]
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Classification of Mixture Subspace Model

© Face-subspace model: Assume y belongs to Class i

Qj1Vi1+ QjaVio+ -+ Qo Vi,
 h = A,

. A where A; = [vj1,Vi2, -+ ,Vin]

005

@ Nevertheless, Class i is the unknown variable we need to solve:
ap

Sparse representation y = [A1, Az, -, Ak] - | =Ax

aK
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Classification of Mixture Subspace Model

© Face-subspace model: Assume y belongs to Class i

018, -
e : | y Qj 1V 1+ 0oV + - O Vi,
: = A,

o o | where A; = [vj1,Vi2, -+ ,Vin]

05018 o

@ Nevertheless, Class i is the unknown variable we need to solve:
ap

Sparse representation y = [A1, Az, -, Ak] - | = Ax.

aK

3] xoz[ou. 0al0--- O]TER".

v

TestingInput  Feature Extraction )
0
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1-Minimization

O Ideal solution: ¢°-Minimization

(Po) x* =argmin||x||o s.t. y = Ax.
X

|| - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.
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1-Minimization

O Ideal solution: ¢°-Minimization

(Po) x* =argmin||x||o s.t. y = Ax.
X

|| - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.

@ Compressive Sensing: Under mild condition, £%-minimization is equivalent to

(P1) x* =argmin||x||; s.t. y = Ax,
X

where ||x||1 = |x1| + |x2| + -+ - + |xn].
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1-Minimization

O Ideal solution: ¢°-Minimization

(Po) x* =argmin||x||o s.t. y = Ax.
X

|| - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.

@ Compressive Sensing: Under mild condition, £%-minimization is equivalent to

(P1) x* =argmin||x||; s.t. y = Ax,
X

where ||x||1 = |x1| + |x2| + -+ - + |xn].
@ (-Ball

y = Ax
¢°/¢* Equivalence Y

o ¢*-Minimization is convex. ‘h 10 ball
o Solution equal to £°-minimization.
i' A la
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bility of #1-Minimization

o (! near solution
y=Ax+e st |e|2<e

- 1-0 ball

M iiba
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Stability of £*-Minimization

o (! near solution
y=Ax+e st |e|2<e

- 1-0 ball

M iiba

o Bounded noise produces bounded ¢! solution
(P]) x* =argmin||x|j1 s.t. ||y — Ax||2 < e.
X

Restricted Isometry Property [Candés, Romberg, Tao 2004]: |[x* — xgl|2 < Ce.

eley.edu/~yang -Dimensional Multi-Model Estimation
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Stability of £*:-Minimization

o (! near solution
y=Ax+e st |e|2<e

- 1-0 ball

¥ I-1 ball

o Bounded noise produces bounded ¢! solution
(P]) x* =argmin||x|j1 s.t. ||y — Ax||2 < e.
X

Restricted Isometry Property [Candés, Romberg, Tao 2004]: |[x* — xgl|2 < Ce.

@ ¢ -minimization routines
@ Matching pursuit [Mallat 1993]
@ Basis pursuit [Chen 1998]
© Lasso [Tibshirani 1996]
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Partial Features on Extended Yale B Database

Features Nose | Right Eye | Mouth & Chin
Dimension 4,270 5,040 12,936
SRC [%] 87.3 93.7 983
nearest-neighbor [%] | 49.2 68.8 72.7
nearest-subspace [%] | 83.7 78.6 94.4
Linear SVM [%] 708 85.8 953

SRC: sparse-representation classifier

Reference:

Robust face recognition via sparse representation, (in press) PAMI, 2008.
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Occlusion Compensation
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Occlusion Compensation

@ Sparse representation + sparse error

@ Occlusion compensation

-Dimensional Multi-Model Estimation
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AR Database: 100 subjects, illumination, expression, occlusion

Figure: Training samples for Subject 1.

illumination & expression | sunglasses | scarves
[ 95% [ 975% [ 935% |

.edu/~yang High-Dimensional Multi-Model Estimation
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Classification
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Recognifon rate (%)

Recognition rate

=—a— Algorithm 1
=—8—PCA + NN
=¥ ICA |+ NN

b | NMF 4 NN

10 20 30 40 50 60 n 80 %0
Parcent occluded (%)
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Summary: Sparse Representation

@ Curse of dimensionality becomes blessing of dimensionality.
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: Sparse Representation

@ Curse of dimensionality becomes blessing of dimensionality.
@ Retains characteristics of human perception

o Feed-forward: noniterative, no model parameters to train.
o Representation is redundant: simultaneously solve for classification and occlusion compensation.
o Membership is encoded in the sparse representation.

Berkeley
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Summary: Sparse Representation

@ Curse of dimensionality becomes blessing of dimensionality.
@ Retains characteristics of human perception

o Feed-forward: noniterative, no model parameters to train.
o Representation is redundant: simultaneously solve for classification and occlusion compensation.
o Membership is encoded in the sparse representation.

© Algorithm achieves state-of-the-art performance.
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1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = argmax (y, vj).
Q@ A—AD x — (y,v)), y —y — xvi.
© Repeat until |ly|| < e.

o Basis pursuit [Chen 1998]

@ Start with number of sparse coefficients m = 1.
@ Select m linearly independent vectors B, in A as a basis

Xm = B;y.

© Repeat swapping one basis vector in B, with another vector not in By, if improve ||y — BmXm|-
Q If |ly — Bmxml||2 < €, stop; Otherwise, m < m + 1, repeat Step 2.

o Quadratic solvers: y = Axg +2z € RY, where ||z||2 < €

*

x* = argmin{|[x[l1 + Ally — Ax|l2}

[LASSO, Second-order cone programming]: Much more expensive.

Matlab Toolboxes for £X-Minimization

o /-Magic by Candes
@ SparseLab by Donoho
@ cvx by Boyd
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Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions
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Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions

@ Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

k
Asmyptotically with % < 0.5
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Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions

@ Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

k
Asmyptotically with % < 0.5

o Long answers
@ (In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:
[(a, b)|

(A, B) = sup
acabes [lafl[b]]

Ixllo < 3(1+ WI,B)) suffices. A and B have to be incoherent.

eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation


http://www.eecs.berkeley.edu/~yang

Acknowledgments
(o] T}

Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions

@ Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

k
Asmyptotically with % < 0.5

o Long answers
@ (In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:

wp L@
scabes al bl

(A, B) =

Ixllo < 3(1+ WIB)) suffices. A and B have to be incoherent.
@ Restricted Isometry [Candes & Tao 2005]:
Define 64(A) = minéd such that
(1= 8)IxI3 < I1AXI3 < (1+ 8)[xIZ Vk-sparse x.

S2k(A) < v/2 — 1 suffices. The columns of A should be uniformly well-spread. B
= erkeley
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k-Neighborlyness [Donoho 2006]

o Define cross polytope C and quotient polytope P such that P = AC.
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k-Neighborlyness [Donoho 2006]

o Define cross polytope C and quotient polytope P such that P = AC.

o If x is k-sparse, x lie in a (k — 1)-face of C in R".
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k-Neighborlyness [Donoho 2006]

o Define cross polytope C and quotient polytope P such that P = AC.
o If x is k-sparse, x lie in a (k — 1)-face of C in R".

o Necessary and Sufficient: If £1/¢° holds for all k-sparse x, all (k — 1)-faces of C must be the
faces of P on the boundary.

Berkeley

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation


http://www.eecs.berkeley.edu/~yang

	Introduction
	Motivation
	Outline

	Robust Segmentation
	GPCA
	Robust Algebraic Segmentation
	Segmentation via Minimum Lossy Coding Length
	Websites

	Classification of Mixture Subspaces
	Introduction
	Sparse Representation using Mixture Linear Models
	1-Minimization
	Experiments

	Acknowledgments
	Acknowldegments
	Appendix


