

Filename: nonlin February 3, 2007 12:57 pm

Prof. W. Kahan Math. 128B Page 1/3

An Assignment for Math. 128 B due Mon. 5 Feb. 2007 :

The task is to compare two ways to solve a vector equation

ƒ

(

z

) =

o

 for its vector solution(s)

z

 ,
given a M

ATLAB

 program that computes

ƒ

(

x

) . The two ways are …

• Newton’s Iteration

x

k+1

 :=

x

k

 –

ƒ'

(

x

k

)

–1

·

ƒ

(

x

k

) starting from some initial guess(es)

x

0

 ;
here

ƒ'

(x) :=

∂

ƒ

(

x

)/

∂

x

 is the

Jacobian

 matrix of first partial derivatives.

• Solve the differential equation d

x

(

τ

)/d

τ

 = –

ƒ'

(

x

(

τ

))

–1

·

ƒ

(

x

(

τ

)) numerically starting from
some initial guess(es)

x

(0) and running

τ

 from 0 up to a sufficiently big positive
number

T

 that

ƒ

(

x

(

T

)) is negligible. You may use M

ATLAB

’s ODE-solvers.

What evidence, if any, have you garnered to persuade you (and someone who dislikes you) that
you have computed

all

 the solutions

z

 ?

Here is the M

ATLAB

 program given to define ƒ(x) :

function y = f(v)
% y = f(v) takes a column 3-vector v and returns the column
% y = [v

'

*M*v + 2*m

'

*v + mu ; v

'

*A*v + 2*a

'

*v + alpha ; v

'

*T*v + 2*t

'

*v + theta]
% for coefficients that are filled in here:
M = [0 0 0 ; 0 1 1 ; 0 1 2] ;
m = [0 ; 2 ; 6] ;
mu = 18 ;
A = [1 0 -1 ; 0 1 1 ; -1 1 3] ;
a = [-1 ; 2 ; 7] ;
alpha = 17 ;
T = [1 0 -1 ; 0 1 1 ; -1 1 2] ;
t = [-1 ; 2 ; 3] ;
theta = 2 ;
%
y = [v

'

*M*v + 2*m

'

*v + mu ; v

'

*A*v + 2*a

'

*v + alpha ; v

'

*T*v + 2*t

'

*v + theta] ;

You may incorporate the foregoing statements into your own program(s), which need not call the
given program f(…) except to check that an alleged solution

z

 makes

ƒ

(

z

) negligible.

Repeat the assignment with a function

g

(

x

) in place of

ƒ

(

x

) and differing from it only in that
 [mu, alpha, theta] = [19 16 1] .

What follows are examples of M

ATLAB

 programs written to illustrate how well the foregoing
ways solve a simpler equation

p

(

z

) =

o

 , and to illustrate how these two numerical ways may
malfunction when det(

p'

(

x

)) vanishes at or too near points

x

 =

x

k

 or

x

 =

x

(

τ

) encountered
during the numerical process. In fact, det(

p'

(

x

)) = 0 on a parabola plotted below.

Filename: nonlin February 3, 2007 12:57 pm

Prof. W. Kahan Math. 128B Page 2/3

function y = p(v)
% y = p(v) takes a column 2-vector v and computes the column
% p(v) = a + B*V + C.v*v/2 = a + (B + 0.5*[v'*C(:,:,1); v'*C(:,:,2)])*v
% for coefficients arrays a, B, C filled in below.

%

C = cat(3, [1, 2; 2, 3], [2, 3; 3, 4]) ; % ... C is a bilinear operator
B = [1, -2; 0, 2] ; a = [-7.5; 11] ;

%

Cv = [v'*C(:,:,1); v'*C(:,:,2)] ; % ... C.v*u is a bilinear operation
y = a + (B + 0.5*Cv)*v ;

function y = dnewtp(v, w)
% y = dnewtp(v) takes a column 2-vector v and computes the column
% qp(v) = a + B*V + C.v*v/2 = a + (B + 0.5*[v'*C(:,:,1); v'*C(:,:,2)])*v
% and its derivative p1 = dp/dv , and returns the Newton step y = -p1\p
% for coefficients arrays a, B, C filled in below. If abs(p(v)) is no
% bigger than its roundoff bound, a global variable IsntNegligible is
% decreased by 1 and if it is negative then y is replaced by [0; 0] .
% y = dnewtp(v, w) sets v = w for use as an ODEfile dnewtp(t, v) .

%

C = cat(3, [1, 2; 2, 3], [2, 3; 3, 4]) ; % ... C is a bilinear operator
B = [1, -2; 0, 2] ; a = [-7.5; 11] ;

%

global IsntNegligible
if (nargin > 1), v = w ; end
Cv = [v'*C(:,:,1); v'*C(:,:,2)] ; % ... C.v*u is a bilinear operation
p1 = B + Cv ; %... = dp/dv
p = a + (B + 0.5*Cv)*v ;
% Compute a rough error-bound for roundoff in p :
av = abs(v) ; aC = abs(C) ;
aCv = [av'*aC(:,:,1); av'*aC(:,:,2)] ;
ep = (abs(a) + (abs(B) + 0.5*aCv)*av)*eps ; %... rough error-bound
y = (abs(p) > ep) ; %... compare p with its rough roundoff bound
if ~any(y(:)) % ... p is (nearly) negligible
 IsntNegligible = IsntNegligible - 1 ;
 if (IsntNegligible < 0), return, end, end %... y = [0; 0]
y = -(p1\p) ; %... the Newton step ...
y = y - p1\([p1, p]*[y;1]) ; %... iteratively refined to reduce roundoff

function [i, v] = iterp(v)
% [i, v] = iterp(v) counts iterations v = dnewtp(v) until
% it converges, if it ever does, to a zero v of p(v)
% up to a maximum of, say, 100 iterations. Meanwhile it
% displays each iterate's v' and the final residual = p(v)' .
global IsntNegligible
IsntNegligible = 3 ;
i = 0 ;
while (i < 100)&IsntNegligible
 v = v + dnewtp(v) ; i = i+1 ; V = v' , end
residual = p(v)'

function v = odep45(vo)
% v = odep45(vo) solves dv/dt = dnewtp(t, v) for a
% column 2-vector v(t) starting from v(0)

=

vo and
% ending at v = v(20) . The trajectory of v(t) is plotted.
global IsntNegligible
IsntNegligible = 2 ;
options = odeset('OutputFcn', 'odephas2') ;
[T, V] = ode45('dnewtp', [0, 20], vo, options) ;
v = V(length(T),:)' ;

Filename: nonlin February 3, 2007 12:57 pm

Prof. W. Kahan Math. 128B Page 3/3

Try a variety of initial guesses vo , like vo = [0; 0] , and then see what happens when programs
[i, v] = iterp(vo) and v = odep45(vo) are run.

-2 0 2 4 6 8 10 12
-5

-4

-3

-2

-1

0

1

2

3

o

o

v2

v1

 Det(p'(v)) = 0 on a parabola

