An Assignment for Math. 128 B due Mon. 5 Feb. 2007 :

The task is to compare two ways to solve a vector equation $\boldsymbol{f}(\mathbf{z})=\mathbf{0}$ for its vector solution(s) \mathbf{z}, given a MATLAB program that computes $\mathbf{f}(\mathbf{x})$. The two ways are ...

- Newton's Iteration $\mathbf{x}_{\mathrm{k}+1}:=\mathbf{x}_{\mathrm{k}}-\mathbf{f}^{\prime}\left(\mathbf{x}_{\mathrm{k}}\right)^{-1} \cdot \mathbf{f}\left(\mathbf{x}_{\mathrm{k}}\right)$ starting from some initial guess(es) \mathbf{x}_{0}; here $\boldsymbol{f}^{\prime}(\mathrm{x}):=\partial \boldsymbol{f}(\mathbf{x}) / \partial \mathbf{x}$ is the Jacobian matrix of first partial derivatives.
- Solve the differential equation $\mathrm{d} \mathbf{x}(\tau) / \mathrm{d} \tau=-\mathbf{f}^{\prime}(\mathbf{x}(\tau))^{-1} \cdot \mathbf{f}(\mathbf{x}(\tau))$ numerically starting from some initial guess(es) $\mathbf{x}(0)$ and running τ from 0 up to a sufficiently big positive number T that $f(\mathbf{x}(T))$ is negligible. You may use MATLAB's ODE-solvers.

What evidence, if any, have you garnered to persuade you (and someone who dislikes you) that you have computed all the solutions \mathbf{z} ?

Here is the MATLAB program given to define $f(\mathrm{x})$:

```
function y = f(v)
% y = f(v) takes a column 3-vector v and returns the column
% y = [v'*M*v + 2*m'*v + mu ; v'*A*v + 2*a'*v + alpha ; v'*T*v + 2*t'*v + theta]
% for coefficients that are filled in here:
M = [ 0 0 0 ; 0 1 1 ; 0 1 2 ] ;
m = [ 0 ; 2 ; 6 ] ;
mu = 18;
A = [ 1 0 -1 ; 0 1 1 ; -1 1 3 ] ;
a = [ -1 ; 2 ; 7 ] ;
alpha = 17 ;
T = [ 1 0 -1 ; 0 1 1 ; -1 1 2 ] ;
t = [ -1 ; 2 ; 3 ] ;
theta = 2 ;
%
y = [v'*M*v + 2*m'*v + mu ; v'*A*v + 2*a'*v + alpha ; v'*T*v + 2*t'*v + theta] ;
```

You may incorporate the foregoing statements into your own program(s), which need not call the given program $f(\ldots)$ except to check that an alleged solution \mathbf{z} makes $f(\mathbf{z})$ negligible.

Repeat the assignment with a function $\mathbf{g}(\mathbf{x})$ in place of $\boldsymbol{f}(\mathbf{x})$ and differing from it only in that $[\mathrm{mu}$, alpha, theta $]=\left[\begin{array}{lll}19 & 16 & 1\end{array}\right]$.

What follows are examples of MATLAB programs written to illustrate how well the foregoing ways solve a simpler equation $\mathbf{p}(\mathbf{z})=\mathbf{o}$, and to illustrate how these two numerical ways may malfunction when $\operatorname{det}\left(\mathbf{p}^{\prime}(\mathbf{x})\right)$ vanishes at or too near points $\mathbf{x}=\mathbf{x}_{\mathrm{k}}$ or $\mathbf{x}=\mathbf{x}(\tau)$ encountered during the numerical process. In fact, $\operatorname{det}\left(\mathbf{p}^{\prime}(\mathbf{x})\right)=0$ on a parabola plotted below.

```
function y = p(v)
% y = p(v) takes a column 2-vector v and computes the column
% p(v) = a + B*V + C.v*v/2 = a + (B + 0.5*[v'*C(:,:,1); v'*C(:,:,2)])*v
% for coefficients arrays a, B, C filled in below.
C
C = cat (3, [1, 2; 2, 3], [2, 3; 3, 4]) ; % ... C is a bilinear operator
B = [1, -2; 0, 2] ; a = [-7.5; 11] ;
CV = [v'*C(:,:,1); v'*C(:,:,2)] ; % ... C.v*u is a bilinear operation
y = a + (B + 0.5*Cv)*v ;
```

```
function y = dnewtp(v, w)
% y = dnewtp(v) takes a column 2-vector v and computes the column
qp(v) = a + B*V + C.v*v/2 = a + (B + 0.5*[v'*C(:,:,1); v'*C(:,:,2)])*v
    and its derivative p1 = dp/dv , and returns the Newton step y = -p1\p
for coefficients arrays a, B, C filled in below. If abs(p(v)) is no
bigger than its roundoff bound, a global variable IsntNegligible is
    decreased by 1 and if it is negative then y is replaced by [0; 0] .
    y = dnewtp(v, w) sets v = w for use as an ODEfile dnewtp(t, v) .
C = cat (3, [1, 2; 2, 3], [2, 3; 3, 4]) ; % ... C is a bilinear operator
B = [1, -2; 0, 2] ; a = [-7.5; 11] ;
%
global IsntNegligible
if (nargin > 1), v = w ; end
Cv = [v'*C(:,:,1); v'*C(:,:,2)] ; % ... C.v*u is a bilinear operation
p1 = B + Cv ; %... = dp/dv
p = a + (B + 0.5*Cv)*v ;
% Compute a rough error-bound for roundoff in p :
av = abs(v) ; aC = abs(C) ;
aCv = [av'*aC(:,:,1); av'*aC(:,:,2)] ;
ep = (abs(a) + (abs(B) + 0.5*aCv)*av)*eps ; %... rough error-bound
y = (abs(p) > ep) ; %... compare p with its rough roundoff bound
if ~any(y(:)) % ... p is (nearly) negligible
    IsntNegligible = IsntNegligible - 1 ;
    if (IsntNegligible < 0), return, end, end %... y = [0; 0]
y = -(p1\p) ; %... the Newton step ...
y = y - p1\( [p1, p]*[y;1] ) ; %... iteratively refined to reduce roundoff
```

function $[i, ~ v]=$ iterp(v)
\% [i, v] = iterp(v) counts iterations $v=$ dnewtp(v) until
\% it converges, if it ever does, to a zero v of $p(v)$
\% up to a maximum of, say, 100 iterations. Meanwhile it
\% displays each iterate's v^{\prime} and the final residual $=p(v)^{\prime}$.
global IsntNegligible
IsntNegligible $=3$;
i = 0 ;
while (i < 100)\&IsntNegligible
$\mathrm{v}=\mathrm{v}+\operatorname{dnewtp}(\mathrm{v}) ; i=i+1 ; \mathrm{V}=\mathrm{v}^{\prime}$, end
residual $=p(v)^{\prime}$
function $v=$ odep45(vo)
\% $v=o d e p 45(v o)$ solves $d v / d t=$ dnewtp(t, v) for a
\% column 2-vector $v(t)$ starting from $v(0)=v o$ and
\% ending at $v=v(20)$. The trajectory of $v(t)$ is plotted.
global IsntNegligible
IsntNegligible = 2 ;
options $=$ odeset ('OutputFcn', 'odephas2') ;
[T, V] = ode45('dnewtp', [0, 20], vo, options) ;
$\mathrm{v}=\mathrm{V}($ length (T), :)';

Try a variety of initial guesses vo, like vo $=[0 ; 0]$, and then see what happens when programs $[\mathrm{i}, \mathrm{v}]=\operatorname{iterp}(\mathrm{vo})$ and $\mathrm{v}=$ odep45(vo) are run.

