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An Assignment for Math. 128 B   due  Mon. 5 Feb. 2007 :

 

The task is to compare two ways to solve a vector equation  

 

ƒ

 

(

 

z

 

) = 

 

o

 

  for its vector solution(s)  

 

z

 

 ,  
given a  M

 

ATLAB

 

  program that computes  

 

ƒ

 

(

 

x

 

) .  The two ways are …

•  Newton’s Iteration  

 

x

 

k+1

 

 := 

 

x

 

k

 

 – 

 

ƒ'

 

(

 

x

 

k

 

)

 

–1

 

·

 

ƒ

 

(

 

x

 

k

 

)   starting from some initial guess(es)  

 

x

 

0

 

 ;
here  

 

ƒ'

 

(x) := 

 

∂

 

ƒ

 

(

 

x

 

)/

 

∂

 

x

 

  is the  

 

Jacobian

 

  matrix of first partial derivatives.

•  Solve the differential equation   d

 

x

 

(

 

τ

 

)/d

 

τ

 

 = –

 

ƒ'

 

(

 

x

 

(

 

τ

 

))

 

–1

 

·

 

ƒ

 

(

 

x

 

(

 

τ

 

))  numerically starting from
some initial guess(es)  

 

x

 

(0)  and running  

 

τ

 

  from  0  up to a sufficiently big positive
number  

 

T

 

  that  

 

ƒ

 

(

 

x

 

(

 

T

 

))  is negligible.  You may use  M

 

ATLAB

 

’s  ODE-solvers.

What evidence,  if any,  have you garnered to persuade you  (and someone who dislikes you)  that 
you have computed  

 

all

 

  the solutions  

 

z

 

 ?

Here is the  M

 

ATLAB

 

  program given to define  ƒ(x) :

 

function  y = f(v)
%  y = f(v)  takes a column  3-vector  v  and returns the column
%  y = [v

 

'

 

*M*v + 2*m

 

'

 

*v + mu ;  v

 

'

 

*A*v + 2*a

 

'

 

*v + alpha ;  v

 

'

 

*T*v + 2*t

 

'

 

*v + theta]
%  for coefficients that are filled in here:
M = [ 0  0  0 ;  0  1  1 ;  0  1  2 ] ;
m = [ 0 ;  2 ;  6 ] ;
mu = 18 ;
A = [ 1  0  -1 ;  0  1  1 ;  -1  1  3 ] ;
a = [ -1 ;  2 ;  7 ] ;
alpha = 17 ;
T = [ 1  0  -1 ;  0  1  1 ;  -1  1  2 ] ;
t = [ -1 ;  2 ;  3 ] ;
theta = 2 ;
%
y = [v

 

'

 

*M*v + 2*m

 

'

 

*v + mu ;  v

 

'

 

*A*v + 2*a

 

'

 

*v + alpha ;  v

 

'

 

*T*v + 2*t

 

'

 

*v + theta] ;

 

You may incorporate the foregoing statements into your own program(s),  which need not call the 
given program  f(…)  except to check that an alleged solution  

 

z

 

  makes  

 

ƒ

 

(

 

z

 

)  negligible.

Repeat the assignment with a function  

 

g

 

(

 

x

 

)  in place of  

 

ƒ

 

(

 

x

 

)  and differing from it only in that
  [mu, alpha, theta] = [19  16  1] .

What follows are examples of  M

 

ATLAB

 

  programs written to illustrate how well the foregoing 
ways solve a simpler equation  

 

p

 

(

 

z

 

) = 

 

o

 

 ,  and to illustrate how these two numerical ways may 
malfunction when   det(

 

p'

 

(

 

x

 

))  vanishes at or too near points  

 

x

 

 = 

 

x

 

k

 

  or  

 

x

 

 = 

 

x

 

(

 

τ

 

)  encountered 
during the numerical process.  In fact,  det(

 

p'

 

(

 

x

 

)) = 0  on a parabola plotted below.
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function  y = p(v)
%  y = p(v)  takes a column  2-vector  v  and computes the column
%  p(v) = a + B*V + C.v*v/2 = a + (B + 0.5*[v'*C(:,:,1); v'*C(:,:,2)])*v
%  for coefficients arrays  a, B, C  filled in below.

 

%

 

C = cat(3, [1, 2; 2, 3], [2, 3; 3, 4]) ;  % ... C  is a bilinear operator
B = [1, -2; 0, 2] ;  a = [-7.5; 11] ;

 

%

 

Cv = [v'*C(:,:,1); v'*C(:,:,2)] ;  % ... C.v*u  is a bilinear operation
y = a + (B + 0.5*Cv)*v ;

function  y = dnewtp(v, w)
%  y = dnewtp(v)  takes a column  2-vector  v  and computes the column
%  qp(v) = a + B*V + C.v*v/2 = a + (B + 0.5*[v'*C(:,:,1); v'*C(:,:,2)])*v
%  and its derivative  p1 = dp/dv ,  and returns the  Newton step  y = -p1\p 
%  for coefficients arrays  a, B, C  filled in below.  If  abs(p(v))  is no 
%  bigger than its roundoff bound,  a global variable  IsntNegligible  is
%  decreased by  1  and if it is negative then  y  is replaced by  [0; 0] .
%  y = dnewtp(v, w)  sets  v = w  for use as an  ODEfile  dnewtp(t, v) .

 

%

 

C = cat(3, [1, 2; 2, 3], [2, 3; 3, 4]) ;  % ... C  is a bilinear operator
B = [1, -2; 0, 2] ;  a = [-7.5; 11] ;

 

%

 

global  IsntNegligible
if (nargin > 1),  v = w ;  end
Cv = [v'*C(:,:,1); v'*C(:,:,2)] ;  % ... C.v*u  is a bilinear operation
p1 = B + Cv ;  %... = dp/dv
p = a + (B + 0.5*Cv)*v ;
%  Compute a rough error-bound for roundoff in  p :
av = abs(v) ;  aC = abs(C) ;
aCv = [av'*aC(:,:,1); av'*aC(:,:,2)] ;
ep = (abs(a) + (abs(B) + 0.5*aCv)*av)*eps ;  %...  rough error-bound
y = (abs(p) > ep) ;  %...  compare  p  with its rough roundoff bound
if ~any(y(:))  % ...  p  is  (nearly)  negligible
    IsntNegligible = IsntNegligible - 1 ;
    if (IsntNegligible < 0),  return,  end,  end  %...  y = [0; 0]
y = -(p1\p) ;  %...  the  Newton  step ...
y = y - p1\( [p1, p]*[y;1] ) ;  %... iteratively refined to reduce roundoff

function  [i, v] = iterp(v)
%  [i, v] = iterp(v)  counts iterations  v = dnewtp(v)  until
%  it converges,  if it ever does,  to a zero  v  of  p(v)
%  up to a maximum of,  say,  100  iterations.  Meanwhile it  
%  displays each iterate's  v' and the final  residual = p(v)' .
global IsntNegligible
IsntNegligible = 3 ;
i = 0 ;
while  (i < 100)&IsntNegligible
    v = v + dnewtp(v) ;  i = i+1 ;  V = v' ,  end
residual = p(v)'

function  v = odep45(vo)
%  v = odep45(vo)  solves  dv/dt = dnewtp(t, v)  for a
%  column 2-vector  v(t)  starting from  v(0)

 

 

 

=

 

 

 

vo  and
%  ending at  v = v(20) .  The trajectory of  v(t)  is plotted.
global IsntNegligible
IsntNegligible = 2 ;
options = odeset( 'OutputFcn', 'odephas2' ) ;
[T, V] = ode45('dnewtp', [0, 20], vo, options) ;
v = V(length(T),:)' ;
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Try a variety of initial guesses  vo ,  like  vo = [0; 0] ,  and then see what happens when programs  
[i, v] = iterp(vo)  and  v = odep45(vo)  are run.
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 Det( p'(v) )  =  0  on a parabola


