Spherical polar coordinates {R, H, A} convert to Cartesian (X, Y, Z):

$$\label{eq:R} \begin{split} R = radius, \quad H = angle \mbox{ of Elevation above horizon, } A = angle \mbox{ of Azimuth from compass North.} \\ R > 0 \ , \quad -\pi/2 \le H \le \pi/2 \ , \quad -\pi \le A \le \pi \ . \end{split}$$

X = distance North,Y = distance West,Z = distance Up ;X = R $\cdot \cos H \cdot \cos A$,Y = R $\cdot \cos H \cdot \sin A$,Z = R $\cdot \sin H$.

Neighboring stars: Put one at $(X, Y, Z) \iff \{R, H, A\}$ for any arbitrary R > 0; $X = R \cdot \cos H \cdot \cos A$, $Y = R \cdot \cos H \cdot \sin A$, $Z = R \cdot \sin H$; another at $(X+x, Y+y, Z+z) \iff \{R, H+h, A+a\}$; $X+x = R \cdot \cos(H+h) \cdot \cos(A+a)$, $Y+y = R \cdot \cos(H+h) \cdot \sin(A+a)$, $Z+z = R \cdot \sin(H+h)$.

The angle v subtended at the eye by the stars satisfies $(2 \cdot R \cdot \sin v/2)^2 = x^2 + y^2 + z^2$, so $(2 \cdot \sin v/2)^2 = (\cos(H+h) \cdot \cos(A+a) - \cos H \cdot \cos A)^2 + (\cos(H+h) \cdot \sin(A+a) - \cos H \cdot \sin A)^2 + (\sin(H+h) - \sin H)^2$ $= 2 - 2 \cdot \sin(H+h) \cdot \sin H - 2 \cdot \cos(H+h) \cdot \cos(H) \cdot \cos(a)$ $= 2 \cdot (1 - \cos(h)) + 2 \cdot (1 - \cos a) \cdot \cos(H+h) \cdot \cos(H)$ $= 4 \cdot \sin^2(h/2) + 4 \cdot \sin^2(a/2) \cdot \cos(H+h) \cdot \cos(H)$.

Conclusion: Of the two azimuths A and A+a only their difference a mod 2π matters; then $v = \arccos(\sin(H+h)\cdot\sin(H) + \cos(H+h)\cdot\cos(a))$

= $2 \cdot \arcsin \sqrt{(\sin^2(h/2) + \sin^2(a/2) \cdot \cos(H+h) \cdot \cos(H))}$.

The first formula malfunctions at small subtended angles. The second is numerically fine at small angles v but loses almost half the precision carried if $v \approx \pi$ though no cancellation occurs.

Example: $a = 179.999^{\circ}$, $h = 52^{\circ}$, $H = -26^{\circ}$; carrying 10 sig. dec., this $v = 180^{\circ}$ instead of 179.999101°.

We can do better. Since $-\pi/2 \le H \le \pi/2$ and $-\pi/2 \le H + h \le \pi/2$,

 $0 \le \cos(H+h) \cdot \cos(H) = (\cos(2H+h) + \cos(h))/2 = \cos^2(H+h/2) - \sin^2(h/2) = \cos^2(h/2) - \sin^2(H+h/2).$

Therefore

$$\begin{split} \tan^2(v/2) &= \sin^2(v/2)/(1 - \sin^2(v/2)) \\ &= \big(\sin^2(h/2) + \sin^2(a/2)\cdot\cos(H+h)\cdot\cos(H)\big)/\big(\cos^2(h/2) - \sin^2(a/2)\cdot\cos(H+h)\cdot\cos(H)\big) \\ &= \big(\sin^2(h/2)\cdot\cos^2(a/2) + \sin^2(a/2)\cdot\cos^2(H+h/2)\big)/\big(\cos^2(h/2)\cdot\cos^2(a/2) + \sin^2(a/2)\cdot\sin^2(H+h/2)\big) \,. \end{split}$$

Hence follows a numerically accurate and efficient formula:

 $v = 2 \cdot \arctan \sqrt{\left((th \cdot (1 + ta + TH) + ta) / (1 + TH \cdot (1 + ta \cdot (1 + th))) \right)}$

wherein $ta = tan^2(a/2)$, $th = tan^2(h/2)$ and $TH = tan^2(H+h/2)$. Only if h = 0 and $H = \pm \pi/2$ does $TH = \infty$. Therefore presubstitute $0 \cdot \infty = 0$ and $\infty/\infty = 1/TH$ to handle *all* special cases. (Actually, infinite floating-point values of tan(...) can't arise unless angles are in degrees.)

The same formula works with astronomical Declination instead of Elevation and Right Ascension instead of Azimuth. A similar formula would work for distance over the surface of the Earth, using Latitude instead of Elevation and Longitude instead of Azimuth, if the Earth were perfectly spherical.