Spherical polar coordinates $\{\mathrm{R}, \mathrm{H}, \mathrm{A}\}$ convert to $\operatorname{Cartesian}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$:
$\mathrm{R}=$ radius,$\quad \mathrm{H}=$ angle of Elevation above horizon, $\mathrm{A}=$ angle of Azimuth from compass North.

$$
\mathrm{R}>0, \quad-\pi / 2 \leq \mathrm{H} \leq \pi / 2, \quad-\pi \leq \mathrm{A} \leq \pi .
$$

$$
\begin{array}{lll}
\mathrm{X}=\text { distance North }, & \mathrm{Y}=\text { distance West, } & \mathrm{Z}=\text { distance } \mathrm{Up} ; \\
\mathrm{X}=\mathrm{R} \cdot \cos \mathrm{H} \cdot \cos \mathrm{~A}, & \mathrm{Y}=\mathrm{R} \cdot \cos \mathrm{H} \cdot \sin \mathrm{~A}, & \mathrm{Z}=\mathrm{R} \cdot \sin \mathrm{H}
\end{array}
$$

Neighboring stars: Put one at $(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \longleftrightarrow\{\mathrm{R}, \mathrm{H}, \mathrm{A}\}$ for any arbitrary $\mathrm{R}>0$;

$$
\mathrm{X}=\mathrm{R} \cdot \cos \mathrm{H} \cdot \cos \mathrm{~A}, \quad \mathrm{Y}=\mathrm{R} \cdot \cos \mathrm{H} \cdot \sin \mathrm{~A}, \quad \mathrm{Z}=\mathrm{R} \cdot \sin \mathrm{H} ;
$$

another at $(\mathrm{X}+\mathrm{x}, \mathrm{Y}+\mathrm{y}, \mathrm{Z}+\mathrm{z}) \longleftrightarrow\{\mathrm{R}, \mathrm{H}+\mathrm{h}, \mathrm{A}+\mathrm{a}\}$;

 $\mathrm{X}+\mathrm{x}=\mathrm{R} \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{A}+\mathrm{a}), \quad \mathrm{Y}+\mathrm{y}=\mathrm{R} \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \sin (\mathrm{A}+\mathrm{a}), \quad \mathrm{Z}+\mathrm{z}=\mathrm{R} \cdot \sin (\mathrm{H}+\mathrm{h})$.The angle v subtended at the eye by the stars satisfies $(2 \cdot R \cdot \sin v / 2)^{2}=x^{2}+y^{2}+z^{2}$, so
$(2 \cdot \sin \mathrm{v} / 2)^{2}=(\cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{A}+\mathrm{a})-\cos \mathrm{H} \cdot \cos \mathrm{A})^{2}+(\cos (\mathrm{H}+\mathrm{h}) \cdot \sin (\mathrm{A}+\mathrm{a})-\cos \mathrm{H} \cdot \sin \mathrm{A})^{2}+(\sin (\mathrm{H}+\mathrm{h})-\sin \mathrm{H})^{2}$

$$
\begin{aligned}
& =2-2 \cdot \sin (\mathrm{H}+\mathrm{h}) \cdot \sin \mathrm{H}-2 \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H}) \cdot \cos (\mathrm{a}) \\
& =2 \cdot(1-\cos (\mathrm{h}))+2 \cdot(1-\cos \mathrm{a}) \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H}) \\
& =4 \cdot \sin ^{2}(\mathrm{~h} / 2)+4 \cdot \sin ^{2}(\mathrm{a} / 2) \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H}) .
\end{aligned}
$$

Conclusion: Of the two azimuths A and $\mathrm{A}+\mathrm{a}$ only their difference $\operatorname{a} \bmod 2 \pi$ matters; then

$$
\begin{aligned}
\mathrm{v} & =\arccos (\sin (\mathrm{H}+\mathrm{h}) \cdot \sin (\mathrm{H})+\cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H}) \cdot \cos (\mathrm{a})) \\
& =2 \cdot \arcsin \sqrt{ }\left(\sin ^{2}(\mathrm{~h} / 2)+\sin ^{2}(\mathrm{a} / 2) \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H})\right) .
\end{aligned}
$$

The first formula malfunctions at small subtended angles. The second is numerically fine at small angles v but loses almost half the precision carried if $\mathrm{v} \approx \pi$ though no cancellation occurs.

Example: $\mathrm{a}=179.999^{\circ}, \mathrm{h}=52^{\circ}, \mathrm{H}=-26^{\circ}$; carrying 10 sig. dec., this $\mathrm{v}=180^{\circ}$ instead of 179.999101°.
We can do better. Since $-\pi / 2 \leq \mathrm{H} \leq \pi / 2$ and $-\pi / 2 \leq \mathrm{H}+\mathrm{h} \leq \pi / 2$,

$$
\begin{aligned}
0 \leq \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H})=(\cos (2 \mathrm{H}+\mathrm{h})+\cos (\mathrm{h})) / 2 & =\cos ^{2}(\mathrm{H}+\mathrm{h} / 2)-\sin ^{2}(\mathrm{~h} / 2) \\
& =\cos ^{2}(\mathrm{~h} / 2)-\sin ^{2}(\mathrm{H}+\mathrm{h} / 2)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\tan ^{2}(\mathrm{v} / 2) & =\sin ^{2}(\mathrm{v} / 2) /\left(1-\sin ^{2}(\mathrm{v} / 2)\right) \\
& =\left(\sin ^{2}(\mathrm{~h} / 2)+\sin ^{2}(\mathrm{a} / 2) \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H})\right) /\left(\cos ^{2}(\mathrm{~h} / 2)-\sin ^{2}(\mathrm{a} / 2) \cdot \cos (\mathrm{H}+\mathrm{h}) \cdot \cos (\mathrm{H})\right) \\
& =\left(\sin ^{2}(\mathrm{~h} / 2) \cdot \cos ^{2}(\mathrm{a} / 2)+\sin ^{2}(\mathrm{a} / 2) \cdot \cos ^{2}(\mathrm{H}+\mathrm{h} / 2)\right) /\left(\cos ^{2}(\mathrm{~h} / 2) \cdot \cos ^{2}(\mathrm{a} / 2)+\sin ^{2}(\mathrm{a} / 2) \cdot \sin ^{2}(\mathrm{H}+\mathrm{h} / 2)\right) .
\end{aligned}
$$

Hence follows a numerically accurate and efficient formula:

$$
\mathrm{v}=2 \cdot \arctan \sqrt{ }((\mathrm{th} \cdot(1+\mathrm{ta}+\mathrm{TH})+\mathrm{ta}) /(1+\mathrm{TH} \cdot(1+\mathrm{ta} \cdot(1+\mathrm{th}))))
$$

wherein $\operatorname{ta}=\tan ^{2}(\mathrm{a} / 2)$, $\mathrm{th}=\tan ^{2}(\mathrm{~h} / 2)$ and $\mathrm{TH}=\tan ^{2}(\mathrm{H}+\mathrm{h} / 2)$. Only if $\mathrm{h}=0$ and $\mathrm{H}= \pm \pi / 2$ does $\mathrm{TH}=\infty$. Therefore presubstitute $0 \cdot \infty=0$ and $\infty / \infty=1 / \mathrm{TH}$ to handle all special cases. (Actually, infinite floating-point values of $\tan (\ldots)$ can't arise unless angles are in degrees.)

The same formula works with astronomical Declination instead of Elevation and Right Ascension instead of Azimuth. A similar formula would work for distance over the surface of the Earth, using Latitude instead of Elevation and Longitude instead of Azimuth, if the Earth were perfectly spherical.

