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Spherical polar coordinates  {R, H, A}  convert to  Cartesian  (X, Y, Z) :

R = radius,   H = angle of Elevation above horizon,   A = angle of Azimuth from compass North.
R > 0 ,   -

 

π

 

/2 

 

≤

 

 H 

 

≤

 

 

 

π

 

/2 ,   -

 

π

 

 

 

≤

 

 A 

 

≤

 

 

 

π

 

 .

X = distance North, Y = distance West, Z = distance Up ;

X = R · cos H · cos A , Y = R · cos H · sin A , Z = R · sin H .

Neighboring stars:  Put one at  (X, Y, Z)  ‹—›  { R ,  H ,  A }  for any arbitrary  R > 0 ;
X = R·cos H · cos A ,   Y = R·cos H · sin A ,   Z = R·sin H ;

another at  (X+x, Y+y, Z+z)  ‹—›  { R ,  H+h ,  A+a } ;
X+x = R·cos(H+h)·cos(A+a) ,   Y+y = R·cos(H+h)·sin(A+a) ,   Z+z = R·sin(H+h) .

 

The angle  v  subtended at the eye by the stars satisfies   (2·R·sin v/2)

 

2

 

 = x

 

2

 

 + y

 

2

 

 + z

 

2

 

 ,   so

(2·sin v/2)

 

2

 

 = (cos(H+h)·cos(A+a) – cos H · cos A )

 

2 

 

+ ( cos(H+h)·sin(A+a) – cos H · sin A )

 

2 

 

+ ( sin(H+h) – sin H )

 

2

 

    =   2  –  2·sin(H+h)·sin H  - 2·cos(H+h)·cos(H)·cos(a)  
    =   2·(1 – cos(h))  +  2·(1 – cos a)·cos(H+h)·cos(H)  

    =   4·sin

 

2

 

(h/2)  +  4·sin

 

2

 

(a/2)·cos(H+h)·cos(H)  .

 

Conclusion:  Of the two azimuths  A  and  A+a  only their difference   a mod 2

 

π

 

   matters;  then
v  =  arccos( sin(H+h)·sin(H) + cos(H+h)·cos(H)·cos(a) )

    =  2·arcsin 

 

√

 

(

 

 sin

 

2

 

(h/2)  +  sin

 

2

 

(a/2)·cos(H+h)·cos(H) 

 

)

 

 .

The first formula malfunctions at small subtended angles.  The second is numerically fine at small 
angles  v  but loses almost half the precision carried if  v 

 

≈

 

 

 

π

 

  though no cancellation occurs.

 

Example:  a = 179

 

.

 

999˚ ,  h = 52˚ ,  H = –26˚ ;  carrying  10  sig. dec.,  this  v = 180˚  instead of  179

 

.

 

999101˚ .

We can do better.  Since  -

 

π

 

/2 

 

≤

 

 H 

 

≤

 

 

 

π

 

/2  and  -

 

π

 

/2 

 

≤

 

 H+h 

 

≤

 

 

 

π

 

/2 ,

0 

 

≤

 

  cos(H+h)·cos(H)  =  ( cos(2H+h) + cos(h) )/2  =  cos

 

2

 

(H+h/2) – sin

 

2

 

(h/2) 

=  cos

 

2

 

(h/2) - sin

 

2

 

(H+h/2) .
Therefore

        tan

 

2

 

(v/2) =  sin

 

2

 

(v/2)/(1 – sin

 

2

 

(v/2))  

=  

 

(

 

 sin

 

2

 

(h/2)  +  sin

 

2

 

(a/2)·cos(H+h)·cos(H) 

 

)/(

 

 cos

 

2

 

(h/2)  –  sin

 

2

 

(a/2)·cos(H+h)·cos(H) 

 

)

 

= 

 

(

 

 sin

 

2

 

(h/2)·cos

 

2

 

(a/2) + sin

 

2

 

(a/2)·cos

 

2

 

(H+h/2) 

 

)/(

 

 cos

 

2

 

(h/2)·cos

 

2

 

(a/2) + sin

 

2

 

(a/2)·sin

 

2

 

(H+h/2) 

 

) .

Hence follows a numerically accurate and efficient formula:

v  =  2·arctan 

 

√

 

((

 

 th·(1 + ta + TH) + ta 

 

)/(

 

 1 + TH·(1 + ta·(1+th)) 

 

))

 

wherein   ta = tan

 

2

 

(a/2) ,   th = tan

 

2

 

(h/2)   and   TH = tan

 

2

 

(H+h/2) .   Only if  h = 0  and  H = 

 

±π

 

/2  
does  TH = 

 

∞

 

 .  Therefore presubstitute  0·

 

∞

 

 = 0  and  

 

∞

 

/

 

∞

 

 = 1/TH  to handle 

 

all

 

  special cases.  
( Actually,  infinite floating-point values of  tan(…)  can’t arise unless angles are in degrees.)

The same formula works with astronomical  Declination  instead of  Elevation  and  Right 
Ascension  instead of  Azimuth.  A similar formula would work for distance over the surface of 
the  Earth,  using  Latitude  instead of  Elevation  and  Longitude  instead of  Azimuth,  if the  
Earth  were perfectly spherical.
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