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The  

 

Taylor Series

 

  of an infinitely differentiable vector-valued function  y(t)  of a scalar  t  is
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These derivatives can be computed for a solution of the  

 

Initial Value Problem

 

“  y(0) = y

 

0

 

  is given,   and   y
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(t) = ƒ(y(t))   for all  t 

 

≥

 

 0  ”
from the derivatives of the given vector-valued function  ƒ(y) .  In fact,  from the  

 

Chain Rule
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Then each derivative of  y(t)  can be evaluated at  t = 0  by evaluating each derivative of  ƒ(y)  at  
y = y(0) = y

 

0

 

 .  Note that the higher derivatives of  ƒ  are  

 

symmetric multilinear operators

 

;  for 
instance,  ƒ

 

"

 

(y)  is a  

 

symmetric bilinear

 

  operator:  ƒ

 

"

 

·u·v = ƒ

 

"

 

·v·u  is a vector-valued linear 
function of each vector  u  and  v  separately.  Because linear operators do not necessarily 
commute,    ƒ
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·ƒ·ƒ  in general,  though they are equal if  y’s  vector space is one-
dimensional.  If  y’s  vector space is  N-dimensional,  then  y  and  ƒ  can be represented by 

column vectors each with  N  components;  ƒ
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  by a matrix with  N

 

2

 

  components;  ƒ
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3

 

  components of which at most  (N+1)N
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/

 

2  can be distinct;  ƒ

 

"'

 

  by an array of  N

 

4

 

  
components … .  Higher derivatives’ arrays become huge when  N  is large.

Normally the  Taylor  series would be used to obtain  y(t+h)  from  y(t)  for any sufficiently small 
stepsize  h :

y(t+h) = y(t) + h·y
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in which the derivatives  dy(t+h)/dh  etc.  are computed at  h = 0  from the same formulas
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as before except that now  ƒ(y)  and its derivatives are computed at  y = y(t) .

A similar process generates a formal series for any one-step numerical method’s formula that 
advances an approximate solution  y = y(t)  through one step  h  to  Y = Y(t+h) ,  but now we 
differentiate with respect to  h  instead of  t  to get

Y(t+h) = y + h·Y
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in which  y = y(t)  and the derivatives  Y

 

'

 

  etc.  are derivatives of  Y(t+h)  with respect to  h  
evaluated at  h = 0 .  These derivatives depend upon the numerical method’s formula.  For 
example,  take the  (implicit)  

 

Trapezoidal Rule

 

  Y = y + h·(ƒ(y) + ƒ(Y))/2 .  Now,  at  t+h ,
Y

 

'

 

 = (ƒ(y) + ƒ(Y))/2 + h·ƒ
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Here every instance of  Y  or its derivatives is evaluated at  t+h .  For the  Taylor  series we set  
h = 0  in the foregoing formulas and substitute for derivatives of  Y  in succession to get

Y'  = ƒ ,   Y"  = ƒ'·ƒ ,   Y"'  = ( 3ƒ" ·ƒ + ƒ'2 )·ƒ/2 ,   …
in which now the derivatives of  Y  are evaluated at  t ,  and  ƒ  and its derivatives are evaluated at  
y(t) .  Hence,  the computed approximation

Y(t+h) = y(t) + h·ƒ + h2·ƒ'·ƒ/2 + h3·( 3ƒ" ·ƒ + ƒ'2 )·ƒ/12  + …
can be compared with the local solution

y(t+h) = y(t) + h·ƒ + h2·ƒ'·ƒ/2 + h3·( ƒ" ·ƒ + ƒ'2 )·ƒ/6 + … 
to reveal the  2nd-order  Trapezoidal Rule’s  local truncation error

y(t+h) – Y(t+h) = h3·( ƒ'2 – ƒ" ·ƒ)·ƒ/12 + … .
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Another example is the  (implicit)  Midpoint Rule  Y = y + h·ƒ((y+Y)/2) .  At  t+h , 
Y'  = ƒ((y+Y)/2) + h·ƒ'((y+Y)/2)·Y' /2 ,
Y"  = ƒ'((y+Y)/2)·Y'  + h·( ƒ" ((y+Y)/2)·Y'·Y' /4 + ƒ'((y+Y)/2)·Y" /2 ) ,
Y"'  = 3ƒ" ((y+Y)/2)·Y'·Y' /4 + 3ƒ'((y+Y)/2)·Y" /2 + h·( ƒ"'  … ) ,  etc.

Setting  h = 0  and substituting for derivatives of  Y  in succession yields

Y'  = ƒ ,   Y"  = ƒ'·ƒ ,   Y"'  = ( 3ƒ" ·ƒ + 6ƒ'2 )·ƒ/4 ,   …
in which now the derivatives of  Y  are evaluated at  t ,  and  ƒ  and its derivatives are evaluated at  
y(t) .  Hence,  by comparison with the  Taylor  series for  y(t+h)  we find the  2nd-order  Midpoint 
Rule’s  local truncation error to be

y(t+h) – Y(t+h) = h3·( ƒ" ·ƒ – 2ƒ'2 )·ƒ/24 + … .

The foregoing manipulations are tedious enough that only a computerized algebra system should 
perform them.  However,  programming  Maple  or  Mathematica  or  Derive  to perform them has 
been more difficult than it should be.  At least some of the difficulty arises,  I think,  because these 
languages disallow declaration of a variable’s linguistic  Type.  Besides the derivatives’ non-
commutative partially associative multiplication,  their multi-linear symmetry has to be taken into 
account in order to achieve correct simplifications of expressions like the fifth derivative

yv = ƒ"" ·ƒ·ƒ·ƒ·ƒ + 6ƒ"' ·ƒ'·ƒ·ƒ·ƒ + 4ƒ" ·ƒ" ·ƒ·ƒ·ƒ + 4ƒ" ·ƒ'2·ƒ·ƒ +

+ 3ƒ" ·ƒ'·ƒ·ƒ'·ƒ + ƒ'·ƒ"' ·ƒ·ƒ·ƒ + 3ƒ'·ƒ" ·ƒ'·ƒ·ƒ + ƒ'2·ƒ" ·ƒ·ƒ + ƒ'4·ƒ .
( I hope I’ve gotten it right.)

. . . . . .

The foregoing  formal  (because their convergence is undetermined)  Taylor  series expansions do 
not reveal an important property possessed by the computed solution  Y  of the  Initial Value 
Problem when it is obtained from a  Ref lexive  formula,  which is a formula in which  Y(t+h)  and  
y(t)  are merely swapped when the sign of  h  is reversed.  The  Midpoint  and  Trapezoidal Rules’  
formulas are reflexive.  The composition of  T/h  steps of a reflexive formula to approximate the 
true solution  y(T)  at a fixed  T ,  but using any sufficiently small stepsize  h  so long as  T/h  is an 
integer,  can be proved to produce a computed approximation  Y(T)  that depends upon  h  and 
differs from  y(T)  by an error

y(T) – Y(T) =  c2h
2 + c4h

4 + c6h
6 + …

whose formal expansion in powers of  h  contains only even powers.  The expansion need not 
converge for any  h > 0 ;  instead it is an  Asymptotic  expansion whose behavior is conveyed by 
its first few terms ever more accurately as  h → 0 .  Recomputations of  Y(T)  with diminishing 
stepsizes  h,  h/2,  h/4,  h/8, …  provides a sequence to which  Richardson’s Extrapolation  can be 
applied,  as in  Romberg  integration,  to achieve what amounts to higher-order convergence.


