The Taylor Series of an infinitely differentiable vector-valued function $y(t)$ of a scalar t is

$$
y(t)=y(0)+t \cdot y^{\prime}(0)+t^{2} \cdot y^{\prime \prime}(0) / 2+t^{3} \cdot y^{\prime \prime \prime}(0) / 6+t^{4} \cdot y^{\prime \prime \prime}(0) / 24+\ldots .
$$

These derivatives can be computed for a solution of the Initial Value Problem

$$
" \mathrm{y}(0)=\mathrm{y}_{0} \text { is given, and } \mathrm{y}^{\prime}(\mathrm{t})=f(\mathrm{y}(\mathrm{t})) \text { for all } \mathrm{t} \geq 0 "
$$

from the derivatives of the given vector-valued function $f(\mathrm{y})$. In fact, from the Chain Rule, $\mathrm{y}^{\prime}=f, \mathrm{y}^{\prime \prime}=f^{\prime} \cdot f, \mathrm{y}^{\prime \prime \prime}=f^{\prime \prime} \cdot f \cdot f+f^{\prime 2} \cdot f, \quad \mathrm{y}^{\prime \prime \prime}=f^{\prime \prime \prime} \cdot f \cdot f \cdot f+3 f^{\prime \prime} \cdot f \cdot \cdot f \cdot f+f^{\prime} \cdot f^{\prime \prime} \cdot f \cdot f+f^{\prime 3} \cdot f, \ldots$. Then each derivative of $\mathrm{y}(\mathrm{t})$ can be evaluated at $\mathrm{t}=0$ by evaluating each derivative of $f(\mathrm{y})$ at $y=y(0)=y_{0}$. Note that the higher derivatives of f are symmetric multilinear operators; for instance, $f^{\prime \prime}(\mathrm{y})$ is a symmetric bilinear operator: $f^{\prime \prime} \cdot \mathrm{u} \cdot \mathrm{v}=f^{\prime \prime} \cdot \mathrm{v} \cdot \mathrm{u}$ is a vector-valued linear function of each vector u and v separately. Because linear operators do not necessarily commute, $\quad f^{\prime \prime} \cdot f^{\prime} \cdot f \cdot f \neq f^{\prime} \cdot f^{\prime \prime} \cdot f \cdot f$ in general, though they are equal if y's vector space is onedimensional. If y's vector space is N -dimensional, then y and f can be represented by column vectors each with N components; f^{\prime} by a matrix with N^{2} components; $f^{\prime \prime}$ by an array with N^{3} components of which at most $(\mathrm{N}+1) \mathrm{N}^{2} / 2$ can be distinct; $f^{\prime \prime \prime}$ by an array of N^{4} components Higher derivatives' arrays become huge when N is large.

Normally the Taylor series would be used to obtain $y(t+h)$ from $y(t)$ for any sufficiently small stepsize h:

$$
y(t+h)=y(t)+h \cdot y^{\prime}(t)+h^{2} \cdot y^{\prime \prime}(t) / 2+h^{3} \cdot y^{\prime \prime \prime}(t) / 6+h^{4} \cdot y^{\prime \prime \prime}(t) / 24+\ldots,
$$

in which the derivatives $d y(t+h) / d h$ etc. are computed at $h=0$ from the same formulas $y^{\prime}=f, \quad y^{\prime \prime}=f^{\prime} \cdot f, \quad y^{\prime \prime \prime}=f^{\prime \prime} \cdot f \cdot f+f^{\prime 2} \cdot f, \quad y^{\prime \prime \prime}=f^{\prime \prime \prime} \cdot f \cdot f \cdot f+3 f^{\prime \prime} \cdot f \cdot f \cdot f+f^{\prime} \cdot f^{\prime \prime} \cdot f \cdot f+f^{\prime 3} \cdot f, \ldots$ as before except that now $f(\mathrm{y})$ and its derivatives are computed at $\mathrm{y}=\mathrm{y}(\mathrm{t})$.

A similar process generates a formal series for any one-step numerical method's formula that advances an approximate solution $y=y(t)$ through one step h to $Y=Y(t+h)$, but now we differentiate with respect to h instead of t to get

$$
Y(t+h)=y+h \cdot Y^{\prime}+h^{2} \cdot Y^{\prime \prime} / 2+h^{3} \cdot Y^{\prime \prime \prime} / 6+h^{4} \cdot Y^{\prime \prime}{ }^{\prime \prime} / 24+\ldots
$$

in which $\mathrm{y}=\mathrm{y}(\mathrm{t})$ and the derivatives Y^{\prime} etc. are derivatives of $\mathrm{Y}(\mathrm{t}+\mathrm{h})$ with respect to h evaluated at $\mathrm{h}=0$. These derivatives depend upon the numerical method's formula. For example, take the (implicit) Trapezoidal Rule $\mathrm{Y}=\mathrm{y}+\mathrm{h} \cdot(f(\mathrm{y})+f(\mathrm{Y})) / 2$. Now, at $\mathrm{t}+\mathrm{h}$,

$$
\begin{aligned}
& \mathrm{Y}^{\prime}=(f(\mathrm{y})+f(\mathrm{Y})) / 2+\mathrm{h} \cdot f^{\prime}(\mathrm{Y}) \cdot \mathrm{Y}^{\prime} / 2, \\
& \mathrm{Y}^{\prime \prime}=f^{\prime}(\mathrm{Y}) \cdot \mathrm{Y}^{\prime}+\mathrm{h} \cdot\left(f^{\prime \prime}(\mathrm{Y}) \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Y}^{\prime}+f^{\prime}(\mathrm{Y}) \cdot \mathrm{Y}^{\prime \prime}\right) / 2, \\
& \mathrm{Y}^{\prime \prime \prime}=3 f^{\prime \prime}(\mathrm{Y}) \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Y}^{\prime} / 2+f^{\prime}(\mathrm{Y}) \cdot \mathrm{Y}^{\prime \prime} / 2+\mathrm{h} \cdot\left(f^{\prime \prime \prime}(\mathrm{Y}) \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Y}^{\prime}+\ldots\right) / 2, \text { etc. }
\end{aligned}
$$

Here every instance of Y or its derivatives is evaluated at $\mathrm{t}+\mathrm{h}$. For the Taylor series we set $\mathrm{h}=0$ in the foregoing formulas and substitute for derivatives of Y in succession to get

$$
\mathrm{Y}^{\prime}=f, \quad \mathrm{Y}^{\prime \prime}=f^{\prime} \cdot f, \quad \mathrm{Y}^{\prime \prime \prime}=\left(3 f^{\prime \prime} \cdot f+f^{\prime 2}\right) \cdot f / 2, \quad \ldots
$$

in which now the derivatives of Y are evaluated at t , and f and its derivatives are evaluated at $y(t)$. Hence, the computed approximation

$$
\mathrm{Y}(\mathrm{t}+\mathrm{h})=\mathrm{y}(\mathrm{t})+\mathrm{h} \cdot f+\mathrm{h}^{2} \cdot f^{\prime} \cdot f / 2+\mathrm{h}^{3} \cdot\left(3 f^{\prime \prime} \cdot f+f^{\prime 2}\right) \cdot f / 12+\ldots
$$

can be compared with the local solution

$$
\mathrm{y}(\mathrm{t}+\mathrm{h})=\mathrm{y}(\mathrm{t})+\mathrm{h} \cdot f+\mathrm{h}^{2} \cdot f^{\prime} \cdot f / 2+\mathrm{h}^{3} \cdot\left(f^{\prime \prime} \cdot f+f^{\prime 2}\right) \cdot f / 6+\ldots
$$

to reveal the 2 nd-order Trapezoidal Rule's local truncation error

$$
\mathrm{y}(\mathrm{t}+\mathrm{h})-\mathrm{Y}(\mathrm{t}+\mathrm{h})=\mathrm{h}^{3} \cdot\left(f^{\prime 2}-f^{\prime \prime} \cdot f\right) \cdot f / 12+\ldots .
$$

Another example is the (implicit) Midpoint Rule $\mathrm{Y}=\mathrm{y}+\mathrm{h} \cdot f((\mathrm{y}+\mathrm{Y}) / 2)$. At $\mathrm{t}+\mathrm{h}$,

$$
\begin{aligned}
& Y^{\prime}=f((\mathrm{y}+\mathrm{Y}) / 2)+\mathrm{h} \cdot f^{\prime}((\mathrm{y}+\mathrm{Y}) / 2) \cdot \mathrm{Y}^{\prime} / 2, \\
& \mathrm{Y}^{\prime \prime}=f^{\prime}((\mathrm{y}+\mathrm{Y}) / 2) \cdot \mathrm{Y}^{\prime}+\mathrm{h} \cdot\left(f^{\prime \prime}((\mathrm{y}+\mathrm{Y}) / 2) \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Y}^{\prime} / 4+f^{\prime}((\mathrm{y}+\mathrm{Y}) / 2) \cdot \mathrm{Y}^{\prime \prime} / 2\right), \\
& \mathrm{Y}^{\prime \prime \prime}=3 f^{\prime \prime}((\mathrm{y}+\mathrm{Y}) / 2) \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Y}^{\prime} / 4+3 f^{\prime}((\mathrm{y}+\mathrm{Y}) / 2) \cdot \mathrm{Y}^{\prime \prime} / 2+\mathrm{h} \cdot\left(f^{\prime \prime \prime} \ldots\right), \text { etc. }
\end{aligned}
$$

Setting $\mathrm{h}=0$ and substituting for derivatives of Y in succession yields

$$
Y^{\prime}=f, \quad Y^{\prime \prime}=f^{\prime} \cdot f, \quad Y^{\prime \prime \prime}=\left(3 f^{\prime} \cdot f+6 f^{\prime 2}\right) \cdot f / 4, \quad \ldots
$$

in which now the derivatives of Y are evaluated at t, and f and its derivatives are evaluated at $\mathrm{y}(\mathrm{t})$. Hence, by comparison with the Taylor series for $\mathrm{y}(\mathrm{t}+\mathrm{h})$ we find the 2 nd-order Midpoint Rule's local truncation error to be

$$
\mathrm{y}(\mathrm{t}+\mathrm{h})-\mathrm{Y}(\mathrm{t}+\mathrm{h})=\mathrm{h}^{3} \cdot\left(f^{\prime \prime} \cdot f-2 f^{\prime 2}\right) \cdot f / 24+\ldots
$$

The foregoing manipulations are tedious enough that only a computerized algebra system should perform them. However, programming Maple or Mathematica or Derive to perform them has been more difficult than it should be. At least some of the difficulty arises, I think, because these languages disallow declaration of a variable's linguistic Type. Besides the derivatives' noncommutative partially associative multiplication, their multi-linear symmetry has to be taken into account in order to achieve correct simplifications of expressions like the fifth derivative

$$
\begin{aligned}
& \mathrm{y}^{\mathrm{v}}=f^{\prime \prime} ' \cdot \cdot f \cdot f \cdot f \cdot f+6 f^{\prime \prime} \cdot \cdot f^{\prime} \cdot f \cdot f \cdot f+4 f^{\prime} \cdot f^{\prime \prime} \cdot f \cdot f \cdot f+4 f^{\prime \prime} \cdot f^{\prime 2} \cdot f \cdot f+ \\
&+3 f^{\prime \prime} \cdot f^{\prime} \cdot f \cdot f^{\prime} \cdot f+f^{\prime} \cdot f^{\prime \prime \prime} \cdot f \cdot f \cdot f+3 f^{\prime} \cdot f^{\prime \prime} \cdot f^{\prime} \cdot f \cdot f+f^{\prime 2} \cdot f^{\prime \prime} \cdot f \cdot f+f^{\prime 4} \cdot f .
\end{aligned}
$$

(I hope I've gotten it right.)

The foregoing formal (because their convergence is undetermined) Taylor series expansions do not reveal an important property possessed by the computed solution Y of the Initial Value Problem when it is obtained from a Reflexive formula, which is a formula in which $\mathrm{Y}(\mathrm{t}+\mathrm{h})$ and $\mathrm{y}(\mathrm{t})$ are merely swapped when the sign of h is reversed. The Midpoint and Trapezoidal Rules' formulas are reflexive. The composition of T / h steps of a reflexive formula to approximate the true solution $y(T)$ at a fixed T, but using any sufficiently small stepsize h so long as T / h is an integer, can be proved to produce a computed approximation $\mathrm{Y}(\mathrm{T})$ that depends upon h and differs from $y(T)$ by an error

$$
\mathrm{y}(\mathrm{~T})-\mathrm{Y}(\mathrm{~T})=\mathrm{c}_{2} \mathrm{~h}^{2}+\mathrm{c}_{4} \mathrm{~h}^{4}+\mathrm{c}_{6} \mathrm{~h}^{6}+\ldots
$$

whose formal expansion in powers of h contains only even powers. The expansion need not converge for any $\mathrm{h}>0$; instead it is an Asymptotic expansion whose behavior is conveyed by its first few terms ever more accurately as $\mathrm{h} \rightarrow 0$. Recomputations of $\mathrm{Y}(\mathrm{T})$ with diminishing stepsizes $\mathrm{h}, \mathrm{h} / 2, \mathrm{~h} / 4, \mathrm{~h} / 8, \ldots$ provides a sequence to which Richardson's Extrapolation can be applied, as in Romberg integration, to achieve what amounts to higher-order convergence.

