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128 Squares of 128 Square Roots

 

Define a floating-point-valued function  F(X)  for nonnegative floating-point arguments  X  thus:

Y := 
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X  ; …  128 square roots …

F := ((…((Y
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 . …  128 squares.

This computation commits  256  rounding errors,  but no cancellations  (there are no subtractions)  
nor divisions by tiny numbers  (there are no divisions at all),  so a naive expectation is that  F(X)  
should match  X  within a few hundred units in the last digit carried during the computation.  
Something else happens;  here is a plot of  F(X)  versus  X :

The same thing happens on  Sun SPARCs,  on recent  (for twenty years)  hp calculators,  on  PCs  
and recent  (1995+)  Macintoshes  using recent versions  ( 5  or later)  of  MATLAB,  and so on.

How can this graph be explained?

Of course  F(0

 

.

 

0) = 0

 

.

 

0  and  F(1

 

.

 

0) = 1

 

.

 

0  when  F  commits no rounding errors.  But otherwise  Y  

must be a rounded approximation to  .  Let’s suppose that the computer rounds every square 
root correctly  (error smaller than  0.5  in the last digit retained).    If  X > 1  then  Y = 1  exactly;  
do you see why?  And then  F = 1  exactly too.  But if  0 < X < 1  then  Y = 0

 

.

 

999…999  or the the 
arithmetic’s binary floating-point number next less than  1 ;  do you see why?  And then raising 

that number  Y  to the power  2

 

128

 

  

 

Underflows

 

  (why?)  to  0

 

.

 

0 ,  which is returned as  F(X) .
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However,  some computers and calculators do something else;  here is their graph of  F(X) :

Why?

The previous page’s analysis leads us to conclude that this graph is produced on computers whose  
sqrt(x)  function does not always return  ( 

 

√

 

x correctly rounded ).  Instead,  if  x = 1 – 

 

µ

 

  is the 
floating-point number next less than  1 ,  namely  0.9999…999  in decimal arithmetic,  sqrt(x)  

returns  1  instead of  x  on those computers.  Actually   

 

√

 

x = 1 – 

 

µ

 

/

 

2 – 

 

µ

 

2

 

/

 

8 – …  falls so nearly 
halfway between  x  and  1  that  sqrt(x)  can be extremely nearly correctly rounded and yet be 
rounded wrongly in this case.  But this is not what can happen on the  Apple Mac Quadra’s  68040  
nor on  PCs’  Intel Pentiums  and their clones.  What can happen on them is far more bizarre.

 

Intel’s  floating-point arithmetic registers were designed in the late  1970s  to evaluate expressions in a format wider 
than the  8-byte  “double-precision”  format currently supported by  M

 

ATLAB

 

  and workstations like  Sun SPARCs,  
Silicon Graphics MIPs,  HP’s old PA-RISCs  and  IBM Power-PCs.  Registers in  Motorola’s  680x0  family  (used in  
Apple Macintoshes  before about  1993  when  John Sculley  switched  Macs  onto  Power-PCs,  and in  Sun’s  
workstations before they switched to their own proprietary  SPARCs),  behaved very much like  Intel’s.  These extra- 
wide registers provide  11  extra bits of precision and  4  extra bits of exponent range to help evaluate subexpressions 
in such a way that the worst effects of exponent over/underflow and roundoff would be confined to assignment 
operations that round evaluated expressions to one of the narrower  8-byte  “double”  or  4-byte  “float”  variables.  
But designers and implementors of programming languages,  with a few exceptions,  failed to appreciate the virtues 
of a third extra- wide floating-point format.  (Among the exceptions were  Apple’s  languages for old  680x0- based  
Macs,  Borland’s  languages for  PCs,  and  C99.)  In particular  Bill Gates Jr.,  Microsoft’s  language expert,  
disparaged the extra-wide format in  1982  with consequences that persist today in  Microsoft’s  languages for the  
PC.  Sun’s  Bill Joy  did likewise.  See  “How Java’s Floating-Point Hurts Everyone Everywhere”  and  “Marketing 

 

vs

 

. 
Mathematics”  on my web page  http://www.cs.berkeley.edu/~wkahan/… .

 

Some versions of  MATLAB  set bits that control rounding precision in the  PC’s  floating-point 
registers to mimic  SPARCs  and other workstations’  8-byte  floating-point,  thus rounding  
sqrt(8-byte)  once to  53  sig. bits.  These versions get the graph with the step at  x = 1 .  Other 
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versions of  M

 

ATLAB

 

  set those control bits to benefit from the extra-precise arithmetic in a few 
computations,  especially the accumulation of scalar products during multiplication of non-sparse  
matrices.  These versions round  sqrt(8-bytes)  twice,  first to extra-wide precision and then to  
M

 

ATLAB

 

’s  8-byte  stored variables.  These versions produce the graphs without a step at  1 .

Can you see why now?

 

Early versions  ( < 4 )  of  M

 

ATLAB

 

  allowed its user to reset those control bits so as to mimic  (or not)  on  PCs  and 
old  Macs  the rounded-to-8-byte  (or 4-byte)  arithmetic of workstations like  Sun SPARCs.  The graphs on previous 
pages were produced that way.  MATLAB 6  on  PCs  is again able to mimic workstations’ arithmetics to some extent.  
What cannot now be mimicked so easily is the arithmetic on old supercomputers and some calculators whose square 
root software rounded  sqrt(1

 

.

 

000…001)  to  1

 

.

 

000…001  instead of  1

 

.

 

000…000 .  The graph produced on these 
machines steps up to infinity at  1  because squaring  1

 

.

 

000…001  128 times overflows.

 

What’s the Point?

 

So an unnecessarily complicated computation of  F(X) = X  malfunctions because of roundoff.  
Why should we care?  Because most computations deemed  “numerically unstable”  malfunction 
in a similar way.  Examples include differential equation solvers and eigensystem solvers.

Suppose a floating-point program  F(X)  is intended to compute a function  ƒ(x) .  The program  
F(X)  you see is not the program you get.  Instead you get a function  f(x, r)  in which  r  is a 
column of rounding errors,  one for every arithmetic operation in  F(X)  susceptible to roundoff.  
Of course,  r  is unknown but tiny;  and if  F(X)  is algebraically correct then  f(x, o) = ƒ(x) .  

Consequently,  in most cases,  f(x, r) = ƒ(x) + (

 

∂

 

f/

 

∂
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r=0

 

·r + 
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(r)

 

2

 

 .  Here  

 

∂

 

f/

 

∂

 

r  is the  Jacobian  
matrix of first partial derivatives of  f(x, r)  with respect to variables in  r .  If  

 

∂

 

f/

 

∂

 

r  is not huge,  
the execution of program  F(X)  will produce  f(x, r)  with an error  f(x, r) – ƒ(x) 

 

≈

 

 (

 

∂

 

f/

 

∂

 

r)·r  that is 
negligible because every elemement of  r  is so tiny.  Otherwise,  when the error  f(x, r) – ƒ(x)  is 
intolerably big,  it must be so because some elements of  

 

∂

 

f/

 

∂

 

r  are gargantuan.

How can  

 

∂

 

f/

 

∂

 

r  become gargantuan?  Only if  x  is close,  in some sense,  to a  

 

Singularity

 

  of  
f(x, r)  where  

 

∂

 

f/

 

∂

 

r  would become infinite.  This singularity of  f  need not be a singularity of  ƒ ,  

but rather an artifact of the formula chosen for  F .  In our example,  F(x) =   for  N = 128  

and  ƒ(x) = x = F(x) ;  but,  if all but one crucial rounding error are ignored,  f(x, r) =   

and  

 

∂

 

f/

 

∂

 

r = 2

 

N

 

·f(x, r) .  Therefore  f(x, r) – ƒ(x) 

 

≈

 

 2

 

N

 

·r·ƒ(x) ,  and when  N = 128   we find that the 

relative error in  f(x, r)  is a rounding error  r  (perhaps not so big as  2

 

–53

 

 

 

≈

 

 10

 

–16 

 

)  amplified by  

2

 

128

 

 

 

≈

 

 10

 

38 

 

.  The singularity occurs when the parameter  N = 128  (which appears in  F  and  f  
but not  ƒ )  is replaced by  N = +

 

∞

 

 .  This replacement seems drastic at first;  actually it is a 
consequence of a singularity so strong that its effect is felt when  N  is big but not very big.

In general,  singularities whose nearness amplifies roundoff intolerably will be unobvious.  If they 
were always obvious,  error-analysts would be mostly unemployed.  Such is not the case.
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