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For some positive number  y

 

0

 

  the solution  y(x)  of the initial value problem
y(0) := y

 

0

 

   and    dy/dx = x – 1/y  for all  x 

 

≥

 

 0
remains positive and bounded;  this means that some constant  (bound)  ß  satisfies  ß > y(x) 

 

≥

 

 0  
for all  x 

 

≥

 

 0 .  Your task is to estimate  y

 

0

 

  as accurately as you can and justify your claims 
scientifically.  You may use any numerical techniques and software available to you provided you 
understand what they do and describe them well enough that your results can be replicated.

If  y

 

0

 

  is overestimated,  the solution  y(x)  will grow too big;  if  y(X)  is big enough for some  

X > 0  then  y(x)  will grow at least about as fast as  (x–X)

 

2

 

/2  grows as  x 

 

→

 

 +

 

∞

 

 .  Can you see 
why?  On the other hand,  if  y

 

0

 

  is underestimated then  y(x)  will plunge down to  y(X) = 0  for 
some  X > 0   and then no solution  y(x)  will exist for  x > X ;  can you see why the plunge must 
occur?  Numerical experiments may help.  It is possible to deduce that when the initial value  y

 

0

 

  
is just right then  1/(x+1) < y(x) < 1/x  for all  x > 0 ;  verifying this claim mathematically leads to 
a better understanding of the computational challenge involved in estimating the right  y

 

0

 

 .

 

Differential Inequalities

 

The simplest differential inequalities compare the solutions  y(x)  and  Y(x)  of two differential 
equations  dy/dx = ƒ(x, y)  and  dY/dx = F(x, Y)  when  y(0) < Y(0)  and  ƒ(x, z) < F(x, z)  for all  
z  and all  x 

 

≥

 

 0 ;  then also  y(X) < Y(X)  for all  X > 0  provided  y(x)  and  Y(x)  and their first 
derivatives remain finite while  0 

 

≤

 

 x < X .

 

This is so because the difference  Y–y  is differentiable and therefore continuous and consequently cannot reverse 
sign without vanishing first.  Let  X  be the infimum of positive arguments  x ,  if any,  for which  Y(x) – y(x) 

 

≤

 

 0 ;  
this would imply that  Y(x) – y(x) > 0  while  0 

 

≤

 

 x < X  but  Y(X) – y(X) = 0 ,  contradicting the sign of the 
derivative:  Y

 

'

 

(X) – y

 

'

 

(X) = F(X, Y(X)) – ƒ(X, y(X)) > 0  wherever  Y(X) = y(X) .

 

Similarly,  if  y(0) > Y(0)  and  ƒ(x, z) > F(x, z)  for all  z  and all  x 

 

≥

 

 0 ,  then  y(X) > Y(X)  for 
every  X > 0  provided 

 

etc

 

.  In fact,  for every  x > 0  each solution  y(x)  of  dy/dx = ƒ(x, y)  is a 
strictly increasing function of  y(0)  and of  ƒ(…)  provided they determine the solution uniquely.

The differential equation we wish to solve has  dy/dx = ƒ(x, y) := x – 1/y .  Wherever the graph of 
some solution  y(x)  cuts the graph of  1/x ,  the cut goes from left below to right above the latter 

graph because  y(x) = 1/x  at the cut implies  y

 

'

 

(x) = 0 > (1/x)

 

'

 

 = –1/x

 

2

 

  there;  this means that the 
graph of a solution  y(x)  can’t cut the graph of  1/x  more than once.  Consequently the graph of 
the desired bounded solution  y(x)  can’t cut the graph of  1/x  at all;  that this solution  (if it exists)  
must satisfy  y(x) < 1/x  for all  x > 0  follows from the following analysis:

 

Suppose there were some  X > 0  beyond which  y(x) > 1/x  for all  x 

 

≥

 

 X .  Then  y

 

'

 

(x) = x – 1/y(x) > 0  and so this  

y(x) > y(X) > 1/X  while  x 

 

≥

 

 X .  Then  y

 

'

 

(x) = x – 1/y(x) > x – X ,  so  y(x) > y(X) + 

 

∫

 

X
x 

 

(

 

ξ

 

–X)d

 

ξ

 

 > 1/X + (x–X)

 

2

 

/2 ,  
which grows unboundedly with  x > X .  Therefore only unbounded solutions  y  can ever violate  y(x) < 1/x .

 

If the graph of some solution  y(x)  cuts the graph of  1/(x+1) ,  the cut goes from left above to 

right below the latter graph since  y(x) = 1/(x+1)  implies  y

 

'

 

(x) = –1 < (1/(x+1))

 

'

 

 = –1/(x+1)

 

2

 

  
there,  so no solution’s graph can cut the graph of  1/(x+1)  more than once.  An analysis very like 
the foregoing shows that  y(x) > 1/(1+x)  if  y(x) > 0  for all  x 

 

≥

 

 0 ;  can you verify this?

 

This document was created with FrameMake

r 4 0 4



 

Second Assignment  for  Math 128B                                             

 

Due Fri. 1 Mar. 2002

 

Prof. W. Kahan                                                           page 2/6                                     March 15, 2002 12:58 pm

In fact,  if  0 < y(X) 

 

≤

 

 1/(X+1)  for some  X > 0  then  y(Z) = 0  for some positive  Z < X + 1/(X+1)  beyond which 
this solution  y(x)  cannot be continued;  further analysis reveals that  0 < y(x) 

 

≤

 

 

 

√

 

2Z–2x  for  0 

 

≤

 

 x 

 

≤

 

 Z ,  which 
reveals how abruptly such solutions  y(x)  plunge to zero.  This revelation accords with experience of numerical 
solutions started from too small an initial value  y

 

0

 

 .

 

To summarize:  If any solution  y(x)  exists that stays positive and bounded for all  x 

 

≥

 

 0 ,  it lies 
strictly between  1/(x+1)  and  1/x .  Now,  at most one such solution  y(x)  can exist because the 
differential equation  dy/dx = x – 1/y  is  

 

stable

 

  for  

 

decreasing

 

  x .  This means that the difference 
between nearby solutions diminishes as  x  decreases;  here is why:

 

Suppose  y(x)  and  y(x) + 

 

∆

 

y(x)  are two solutions with  y(X) + 

 

∆

 

y(X) > y(X) > 0  for some  X > 0 .  Provided both 
solutions stay positive throughout  0 

 

≤

 

 x 

 

≤

 

 X ,  the general existence and uniqueness theory of differential equations 
ensures that their graphs do not cross  (lest solutions through the crossing point not be determined uniquely).   
Therefore   y(x) + 

 

∆

 

y(x) > y(x) > 0  throughout  0 

 

≤

 

 x 

 

≤

 

 X ,  and then
d

 

∆

 

y/dx =  ƒ(x, y+

 

∆

 

y) – ƒ(x, y)  =  

 

∆

 

y(x)/(y(x)·(y(x)+

 

∆

 

y(x)))  > 0 ,
and thus  

 

∆

 

y(x)  must be an increasing function of  x .  This implies  0 < 

 

∆

 

y(0) < 

 

∆

 

y(X) .

If both solutions  y(x)  and  y(x)+

 

∆

 

y(x)  stayed positive and bounded for all  x 

 

≥

 

 0  then,  as we have seen above,  
1/X > y(X) + 

 

∆

 

y(X) > y(X) > 1/(X+1) .  Consequently  

 

∆

 

y(X) 

 

→

 

 0  as  X 

 

→

 

 +

 

∞

 

 ,  forcing  

 

∆

 

y(0) 

 

→

 

 0  too.  In other 
words,  both positive bounded solutions would have to be the same solution,  if it exists.

 

To prove that the desired positive bounded solution exists,  consider two solutions  y(x)  of the 
differential equation  dy/dx = ƒ(x, y) := x – 1/y .  One solution  y(x) = Y(x; X)  is determined by  
Y(X; X) := 1/X  for some  X > 0 ;  the other  solution  y(x) = Y(x; X)  has  Y(X; X) := 1/(X+1) .  
Because solutions  y(x)  are monotonic functions of initial or terminal values,  and because their 
graphs can cut the graphs of  1/x  and  1/(x+1)  at most once,  we infer for  0 

 

≤

 

 x < X  that

1/(x+1) < Y(x; X) = Y(0; X)

 

 

 

+ 

 

∫

 

0
x 

 

ƒ(

 

ξ

 

, Y(

 

ξ

 

; X)d

 

ξ

 

 < Y(x; X) = Y(0; X)

 

 

 

+ 

 

∫

 

0
x 

 

ƒ(

 

ξ

 

, Y(

 

ξ

 

; X)d

 

ξ

 

 < 1/x .
Because of stability as  x  decreases,  0 < Y(x; X) – Y(x; X) < Y(X; X) – Y(X; X) = 1/((X(X+1)) .  
Therefore,  as  X  increases towards  +

 

∞

 

  while  x  is held fixed,  Y(x; X)  decreases and  Y(x; X)  

 

increases

 

  (do you see why?)  towards the same limit-function  Ÿ(x) = Ÿ(0) +  

 

∫

 

0
x 

 

ƒ(

 

ξ

 

, Ÿ(

 

ξ

 

)d

 

ξ

 

 ;  
this limit is the desired positive bounded solution,  and  y

 

0

 

 = Ÿ(0)  is the desired starting value.

 

Numerical Application of the Foregoing Analysis

 

The foregoing analysis brings to mind two ways to compute the desired starting value  y

 

0

 

 .  One 
way runs right-to-left:  Compute  Y(0; X)  and  Y(0; X) ,  by numerically solving the differential 
equation  dy/dx = ƒ(x, y)  backwards from  Y(X; X) := 1/X  and  Y(X; X) := 1/(X+1) ,  for an 
increasing sequence of values  X  until the computed  Y(0; X)  and  Y(0; X)  approach each other 
closely enough that any number between them is an acceptable estimate of  y

 

0

 

 .  But what is to be 
made of computed values that violate the expected inequality  Y < Y ?

Another way runs left-to-right:  starting from any guess  Y

 

0

 

  obtain a numerical approximation  
Y(x)  to the solution of  dY/dx = ƒ(x, Y)  starting from  y(0) = Y

 

0

 

  and ending with  Y(X)  when 
first either  Y(X) 

 

≥

 

 1/X  or  Y(X) 

 

≤

 

 1/(X+1) .  These events can be detected during the numerical 
process used in the  ODE-solvers in,  say,  Matlab 5 by invoking …

 

 

 

OPTIONS = ODESET(OLDOPTS, ..., ‘events’, ‘on’, ...)

 

   and  
 

 

function  F = odefile(x, y, ‘events’, ...)

 

 ,  etc.  (Look them up.)
Then define a function  Ø(Y0) := 1/X  or  –1/X  respectively according to which event stops the  
ODE-solver,  and use a root-finder to solve  Ø(Y0) = 0  for  Y0 .  What if  Ø  is not monotonic?
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Differential Inequalities and Error-Estimation
Attempts to solve the  Ordinary Differential Equation  (ODE)  dy/dx = ƒ(x, y)  numerically incur 
errors from a variety of sources:

•  ƒ(x, y)  is computed contaminated by roundoff and other uncertainties.
•  The  ODE-solver’s  arithmetic is contaminated by roundoff.
•  The  ODE-solver  uses a discrete formula with a presumably tolerable error in each step.

The last source of error is normally the worst,  and the only source that will be discussed here.

Ideally the computed approximation  Y(x)  of the desired solution  y(x)  should satisfy a nearby 
differential equation  dY/dx = ƒ(x, Y) + ∆ƒ  upon which a tolerance  µ > |∆ƒ|  has been imposed 
by whoever invoked the  ODE-solver.  It would attempt to keep its discretization  error-per-unit-
step  below that tolerance by keeping its stepsizes barely small enough.  Assuming it succeeded,  
estimates that bracket the desired solution could be computed by invoking the  ODE-solver  upon

dY/dx = ƒ(x, Y) – µ    and    dY/dx = ƒ(x, Y) + µ
to obtain two numerical estimates of  Y  and  Y  that satisfied  Y < y < Y  despite discretization 
errors-per-unit-step  smaller than  µ  during their computation.  This would be so because,  for 
example,  the computed  Y  would actually satisfy  dY/dx = ƒ(x, Y) – µ + ∆ƒ < ƒ(x, Y) .  The 
tolerance  µ  is unlikely to be chosen much smaller than the uncertainty that  ƒ  inherits from its 
computation;  augmenting  µ  by that uncertainty in the two differential equations solved for  Y  
and  Y  provides an interval  Y < y < Y  that indicates how  ƒ’s  uncertainty propagates into  y .

But  ODE-solvers  like those in  Matlab 5  do not respect an imposed tolerance  µ  upon their 
discretization errors-per-unit-step.  Such a tolerance would force the  ODE-solver  to take too 
many too-tiny steps when solving either differential equations that change abruptly,  or stable 
differential equations whose solutions become lethargic after initial transient behavior has died 
away.  Characteristic of stable  ODEs  is their tendency to  “forget”  early errors;  consequently  
ODE-solvers  optimized for higher speed  (longer and fewer steps)  accept only tolerances upon 
their discretization  errors-per-step.  Consequently the error-estimation technique described in the 
previous paragraph cannot be used unless modified to take account of the  ODE-solver’s  
stepsizes.  I know no straightforward way to do this with  Matlab’s ODE-solvers.

Instead,  the simplest way to assess the accuracy of a computed solution may be to recompute it 
with error-tolerances at least an order of magnitude smaller than before and see how many figures 
agree in the two computed solutions.  This technique is simple but too vulnerable to deceptive 
phenomena,  especially when the  ODE  has more than one stable solution selectable by initial 
conditions,  as happens in simulations of switching circuits.  Every  ODE-solver’s  error is biased 
in a direction,  dependent upon the solution’s derivatives,  that persists when error-tolerances are 
diminished and may contribute decisively to the solution unless error-tolerances are far tinier than 
might at first have been thought sufficiently small.

Another way to assess accuracy is to use a few sufficiently different numerical methods to solve 
the same  ODE,  and see how well they agree.  This way is not foolproof either,  but it appears to 
be the way the designers of  Matlab’s  ODE-solvers  had in mind.  By practically precluding the 
imposition of a tolerance upon  error-per-unit-step,  they have inhibited the development and use 
of reliable  (and costly)  error-bounding techniques based upon differential inequalities that can 
take account of the  ODE’s  intrinsic uncertainty too.  Speed drives all else out of mind.
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Matlab  Programs to Compute Solutions Right-to-Left
Two numerical approximations  [Y(x),  Y(x)]  of the solution  y(x)  of the  ODE  dy/dx = x – 1/y  
were computed simultaneously over an interval  0 ≤ x ≤ Xend  starting at  x = Xend := 5  with  
[Y(Xend),  Y(Xend)] = 1.0 ./ [Xend,  1+Xend]  and running  x  down to  0 .  Other values  Xend  
greater than  4  gave very similar results.  The  ODEfile  defining  f(x, y) = x – 1/y  for both 
solutions  y = Y  and  y = Y  simultaneously was called  f2.m :

function  f = f2(x, y, flag)
%  f2  is a  Matlab ODEfile  to solve  y' = x - 1/y  for two solutions
%  [y1(x), y2(x)]  simultaneously,  differing in their initial values.
if (nargin<3)|isempty(flag),
     f = x - 1 . 0 ./ y(:) ;
  else switch(flag)
    case 'jacobian',
       f = diag( 1 . 0 ./ (y.*y) ) ;
    otherwise

   f2flag = flag,
   error('f2(x, y, Unknown Flag)')

   end,   end

Note how invoking  f2(x, y, ‘jacobian’)  delivers the  Jacobian  matrix of first partial derivatives of  

[f(x, Y);  f(x, Y)]  with respect to  [Y; Y] ,  namely   diag(1.0 ./ [Y2, Y2]) ,  for use by some of  
Matlab’s  five  ODE-solvers.  Scripts were written to invoke each of these with the same given  
Xend  and error-tolerances;  the script called  f2_113.m  invokes  ODE-solver  ode113 :

%  Matlabscript to run  ODE-solver  ode113  on  f2
Xend,  Atol, %  RelTol = 100*eps  is the minimum  Matlab  allows.
OPTIONS = odeset('RelTol',100*eps, 'AbsTol',Atol,  ...
                 'Jacobian','on', 'Vectorized','on') ;
Xspan = [Xend, 0] ;   Yend = 1.0 ./[Xend, 1+Xend] ;
[X,Y] = ode113('f2', Xspan, Yend, OPTIONS) ;
n = length(X),  XYY = [X(n), Y(n,:)]
plot(X,Y(:,1),'r', X,Y(:,2),'g')

Four more scripts  f2_15s.m ,   f2_45.m ,   f2_23.m ,   f2_23s.m   invoked their respective  ODE-
solvers.  Each script first displays previously assigned values  Xend  and tolerance  Atol  upon 
absolute error-per-step;  the tolerance  100*eps ≈ 2.2204e–14  upon relative error-per-step was the 
smallest  Matlab’s  ODE-solvers would accept.  Then the script sets  Xspan  to tell the  ODE-
solver to run independent variable  x  down from  Xend  to  0 ,  initializing  [Y(Xend), Y(Xend)]  
to  Yend  so that  Y > Y  and the true solution  y  lies between them except for numerical errors.  
After invoking the  ODE-solver to generate arrays  X  and  Y ,  the script displays the number  n  
of steps taken,  the final value  X(n) = 0  of  x ,  the computed solutions’   Y(n,:) = [Y(0),  Y(0)] ,  
and the solutions’ graphs.

Each  ODE-solver  tried to keep the error-per-step in each computed solution  Y(x)  smaller than  
100*eps*|Y(x)| + Atol .  Each such error tends to be forgotten exponentially,  as  x  decreases,  at 

a rate determined by  ∂f/∂y ≈ 1./Y(x)2 .  Numerical experiments indicated that  Y(x)  is slightly 
bigger than  1/(1+x) ,  so errors have to decay extremely rapidly when  x  is near  Xend,  slowly 
when  x  is near  0 .  Without knowing the ODE-solver’s stepsizes when  x  is near  0  we can’t say 
how much bigger than  100*eps*|Y(0)| + Atol  is the error in  Y(0) ;  not much bigger,  we hope.
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Numerical Results
Exhibited here are results for two values  10–6  and  10–12  of  Atol ,  the tolerance upon absolute 
error-per-step.  Tabulated for each of  Matlab’s  five  ODE-solvers  ode…  are the number  n  of 
steps  (actually the number-plus-one of steps not retried with a smaller stepsize to keep the local 
error below the assigned tolerance),  and the computed values  Y(0)  and  Y(0)  between which the 
desired  y0  would lie but for numerical errors.

These results come from  Matlab 5.3  run on a  Wintel PC;  results from a  Mac Quadra  (68040)  are almost the same.

Atol = 0.000001 :

The last column’s  Y(0) < Y(0)  is not a typo;  ode113  really did compute solutions  Y(x)  and  
Y(x)  whose graphs crossed instead of preserving the relationship  Y(x) > Y(x)  established at  
x = Xend .  This occurred because our  ODE  is too stiff for  ode113  to treat accurately when  x  is 
very near  Xend ;  the sharp upward surge in  Y(x)  was extrapolated too far.  Here are graphs:

Plots of  Y(x) (green)  and  Y(x) (red)

Barely visible near  x = 4.93  is the point where the graphs of  Y(x)  and  Y(x)  cross.

Each  ODE-solver’s  Y(0)  and  Y(0)  agree to at least  8  dec.,  but they cannot all be correct 
because the different solvers’ results agree to at most  5 dec.,  or  6  if  ode23s  is deemed an 
outlier.  Had only one  ODE-solver been invoked,  its results’ agreement would have misled us 
into overestimating their accuracy.

ode: ode23s ode23 ode15s ode45 ode113

n: 246 134 89 217 75

Y(0): 1.28358085363422 1.28359687743776 1.28359822084272 1.28359816310455 1.28359918899254

Y(0): 1.28358085363422 1.28359687743776 1.28359820787955 1.28359816310455 1.28359918905259
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Atol = 0.000000000001 :

Once again a solver,  this time  ode15s,  has crossed the graphs of  Y  and  Y .  Once again,  each 
solver’s results agree rather more closely,  better than  11 dec.,  than the  8 dec.  to which all five 
solvers’ results agree.  Once again,  ode23s  seems to be the outlier on the low side;  the other 
solvers’ results agree to almost  11 dec.  How many digits would you trust now?

Ch. 8 of  Using Matlab,  <…/matlab/help/pdfdocs/using_ml.pdf> ,  gives advice about  Matlab’s ODE-solvers,  
describing the circumstances for which each is recommended.  Still,  prudent scientists and engineers will trust their 
numerical results only if corroborated by mathematical proofs,  when they are not too tedious,  and always by 
recomputations using diverse numerical methods.  Proofs are precious,  and so are computable error-bounds;  but they 
are often more expensive than the results they corroborate are worth.  For instance,  error-bounds for  ODEs’  initial-
value problems rather more general than this assignment’s can be computed,  within limits posed by severe 
nonlinearity,  by a method outlined very roughly in class note   Ellipsoidal Error Bounds for Trajectory Calculations 

 <http://www.berkeley.edu/~wkahan/Math128/Ellipsoi.pdf>   .
The method augments a given  ODE  dy/dt = f(t, y)  of dimension  N  by an auxiliary  ODE  of dimension  N(N+1)/2  
to compute the error-bound simultaneously with the computed solution  y ,  and requires among other things that  
∂f/∂y  be made available.  The price is daunting when  N  is big.  If this method is the best available except in special 
cases,  then error-bounds for solutions of  ODEs  are unlikely to become commonplace.  Corroboration by 
recomputation may turn out to be the best that can be done except in special cases.

The Answer:   y0 = 1.283598710463599523… .
The foregoing task,  to find the critical initial value  y0 ,  was posed by  A. Tissier  as problem  #6551,  p. 694  in the  
Amer. Math. Monthly 94 (1987),  solved on  pp. 631-5  and  657-9  of  96 (1989)  with the aid of an  Airy  function.

When  x  is big enough,  y(x)  can be approximated by the first few terms of a series expansion

y(x) ≈  1/x – 1/x4 + 5/x7 – 44/x10 + 539/x13 – 8337/x16 + O(1/x19) 
which could not be obtained directly by  Maple V r3  on my  Mac Quadra  because of a division-by-zero error.  
Another approximation useful only when  x  is big enough is a continued fraction

y(x) ≈   .

Both expansions are obtained by treating  1/x  instead of  x  as the independent variable,  and seeking a solution  y(x)  
representable formally as a  (possibly nonconvergent)  power series in  1/x  around  1/x = 0 ;  then it turns out that  

x·y(x) → 1  as  1/x → 0 ,  and that the power series for  x·y(x)  involves only powers of  x–3 .  But neither expansion 
reveals  y(0) ,  for which the only method I know to work well is numerical integration of the  ODE  backwards from 
an estimate for sufficiently large  x  obtained from one of those expansions.  The result from a  Runge-Kutta  method 
carried out by  Maple V  with extravagant precision is  y0 = 1.2835987104635995… ;  and a  Fortran  program 
running a similar method carefully on an  IBM PC  carrying  64  sig. bits got  y0 = 1.2835987104635995234 .

ode: ode23s ode23 ode15s ode45 ode113

n: 24656 10432 613 3033 231

Y(0): 1.283598708681 1.28359871046153 1.28359871045841 1.2835987104635 1.28359871046502

Y(0): 1.283598708681 1.28359871046153 1.28359871045967 1.2835987104635 1.28359871046502
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