

Second Assignment for Math 128B

Due Fri. 1 Mar. 2002

Prof. W. Kahan page 1/6 March 15, 2002 12:58 pm

For some positive number y

0

 the solution y(x) of the initial value problem
y(0) := y

0

 and dy/dx = x – 1/y for all x

≥

 0
remains positive and bounded; this means that some constant (bound) ß satisfies ß > y(x)

≥

 0
for all x

≥

 0 . Your task is to estimate y

0

 as accurately as you can and justify your claims
scientifically. You may use any numerical techniques and software available to you provided you
understand what they do and describe them well enough that your results can be replicated.

If y

0

 is overestimated, the solution y(x) will grow too big; if y(X) is big enough for some

X > 0 then y(x) will grow at least about as fast as (x–X)

2

/2 grows as x

→

 +

∞

 . Can you see
why? On the other hand, if y

0

 is underestimated then y(x) will plunge down to y(X) = 0 for
some X > 0 and then no solution y(x) will exist for x > X ; can you see why the plunge must
occur? Numerical experiments may help. It is possible to deduce that when the initial value y

0

is just right then 1/(x+1) < y(x) < 1/x for all x > 0 ; verifying this claim mathematically leads to
a better understanding of the computational challenge involved in estimating the right y

0

 .

Differential Inequalities

The simplest differential inequalities compare the solutions y(x) and Y(x) of two differential
equations dy/dx = ƒ(x, y) and dY/dx = F(x, Y) when y(0) < Y(0) and ƒ(x, z) < F(x, z) for all
z and all x

≥

 0 ; then also y(X) < Y(X) for all X > 0 provided y(x) and Y(x) and their first
derivatives remain finite while 0

≤

 x < X .

This is so because the difference Y–y is differentiable and therefore continuous and consequently cannot reverse
sign without vanishing first. Let X be the infimum of positive arguments x , if any, for which Y(x) – y(x)

≤

 0 ;
this would imply that Y(x) – y(x) > 0 while 0

≤

 x < X but Y(X) – y(X) = 0 , contradicting the sign of the
derivative: Y

'

(X) – y

'

(X) = F(X, Y(X)) – ƒ(X, y(X)) > 0 wherever Y(X) = y(X) .

Similarly, if y(0) > Y(0) and ƒ(x, z) > F(x, z) for all z and all x

≥

 0 , then y(X) > Y(X) for
every X > 0 provided

etc

. In fact, for every x > 0 each solution y(x) of dy/dx = ƒ(x, y) is a
strictly increasing function of y(0) and of ƒ(…) provided they determine the solution uniquely.

The differential equation we wish to solve has dy/dx = ƒ(x, y) := x – 1/y . Wherever the graph of
some solution y(x) cuts the graph of 1/x , the cut goes from left below to right above the latter

graph because y(x) = 1/x at the cut implies y

'

(x) = 0 > (1/x)

'

 = –1/x

2

 there; this means that the
graph of a solution y(x) can’t cut the graph of 1/x more than once. Consequently the graph of
the desired bounded solution y(x) can’t cut the graph of 1/x at all; that this solution (if it exists)
must satisfy y(x) < 1/x for all x > 0 follows from the following analysis:

Suppose there were some X > 0 beyond which y(x) > 1/x for all x

≥

 X . Then y

'

(x) = x – 1/y(x) > 0 and so this

y(x) > y(X) > 1/X while x

≥

 X . Then y

'

(x) = x – 1/y(x) > x – X , so y(x) > y(X) +

∫

X
x

(

ξ

–X)d

ξ

 > 1/X + (x–X)

2

/2 ,
which grows unboundedly with x > X . Therefore only unbounded solutions y can ever violate y(x) < 1/x .

If the graph of some solution y(x) cuts the graph of 1/(x+1) , the cut goes from left above to

right below the latter graph since y(x) = 1/(x+1) implies y

'

(x) = –1 < (1/(x+1))

'

 = –1/(x+1)

2

there, so no solution’s graph can cut the graph of 1/(x+1) more than once. An analysis very like
the foregoing shows that y(x) > 1/(1+x) if y(x) > 0 for all x

≥

 0 ; can you verify this?

This document was created with FrameMake

r 4 0 4

Second Assignment for Math 128B

Due Fri. 1 Mar. 2002

Prof. W. Kahan page 2/6 March 15, 2002 12:58 pm

In fact, if 0 < y(X)

≤

 1/(X+1) for some X > 0 then y(Z) = 0 for some positive Z < X + 1/(X+1) beyond which
this solution y(x) cannot be continued; further analysis reveals that 0 < y(x)

≤

√

2Z–2x for 0

≤

 x

≤

 Z , which
reveals how abruptly such solutions y(x) plunge to zero. This revelation accords with experience of numerical
solutions started from too small an initial value y

0

 .

To summarize: If any solution y(x) exists that stays positive and bounded for all x

≥

 0 , it lies
strictly between 1/(x+1) and 1/x . Now, at most one such solution y(x) can exist because the
differential equation dy/dx = x – 1/y is

stable

 for

decreasing

 x . This means that the difference
between nearby solutions diminishes as x decreases; here is why:

Suppose y(x) and y(x) +

∆

y(x) are two solutions with y(X) +

∆

y(X) > y(X) > 0 for some X > 0 . Provided both
solutions stay positive throughout 0

≤

 x

≤

 X , the general existence and uniqueness theory of differential equations
ensures that their graphs do not cross (lest solutions through the crossing point not be determined uniquely).
Therefore y(x) +

∆

y(x) > y(x) > 0 throughout 0

≤

 x

≤

 X , and then
d

∆

y/dx = ƒ(x, y+

∆

y) – ƒ(x, y) =

∆

y(x)/(y(x)·(y(x)+

∆

y(x))) > 0 ,
and thus

∆

y(x) must be an increasing function of x . This implies 0 <

∆

y(0) <

∆

y(X) .

If both solutions y(x) and y(x)+

∆

y(x) stayed positive and bounded for all x

≥

 0 then, as we have seen above,
1/X > y(X) +

∆

y(X) > y(X) > 1/(X+1) . Consequently

∆

y(X)

→

 0 as X

→

 +

∞

 , forcing

∆

y(0)

→

 0 too. In other
words, both positive bounded solutions would have to be the same solution, if it exists.

To prove that the desired positive bounded solution exists, consider two solutions y(x) of the
differential equation dy/dx = ƒ(x, y) := x – 1/y . One solution y(x) = Y(x; X) is determined by
Y(X; X) := 1/X for some X > 0 ; the other solution y(x) = Y(x; X) has Y(X; X) := 1/(X+1) .
Because solutions y(x) are monotonic functions of initial or terminal values, and because their
graphs can cut the graphs of 1/x and 1/(x+1) at most once, we infer for 0

≤

 x < X that

1/(x+1) < Y(x; X) = Y(0; X)

+

∫

0
x

ƒ(

ξ

, Y(

ξ

; X)d

ξ

 < Y(x; X) = Y(0; X)

+

∫

0
x

ƒ(

ξ

, Y(

ξ

; X)d

ξ

 < 1/x .
Because of stability as x decreases, 0 < Y(x; X) – Y(x; X) < Y(X; X) – Y(X; X) = 1/((X(X+1)) .
Therefore, as X increases towards +

∞

 while x is held fixed, Y(x; X) decreases and Y(x; X)

increases

 (do you see why?) towards the same limit-function Ÿ(x) = Ÿ(0) +

∫

0
x

ƒ(

ξ

, Ÿ(

ξ

)d

ξ

 ;
this limit is the desired positive bounded solution, and y

0

 = Ÿ(0) is the desired starting value.

Numerical Application of the Foregoing Analysis

The foregoing analysis brings to mind two ways to compute the desired starting value y

0

 . One
way runs right-to-left: Compute Y(0; X) and Y(0; X) , by numerically solving the differential
equation dy/dx = ƒ(x, y) backwards from Y(X; X) := 1/X and Y(X; X) := 1/(X+1) , for an
increasing sequence of values X until the computed Y(0; X) and Y(0; X) approach each other
closely enough that any number between them is an acceptable estimate of y

0

 . But what is to be
made of computed values that violate the expected inequality Y < Y ?

Another way runs left-to-right: starting from any guess Y

0

 obtain a numerical approximation
Y(x) to the solution of dY/dx = ƒ(x, Y) starting from y(0) = Y

0

 and ending with Y(X) when
first either Y(X)

≥

 1/X or Y(X)

≤

 1/(X+1) . These events can be detected during the numerical
process used in the ODE-solvers in, say, Matlab 5 by invoking …

OPTIONS = ODESET(OLDOPTS, ..., ‘events’, ‘on’, ...)

 and

function F = odefile(x, y, ‘events’, ...)

 , etc. (Look them up.)
Then define a function Ø(Y0) := 1/X or –1/X respectively according to which event stops the
ODE-solver, and use a root-finder to solve Ø(Y0) = 0 for Y0 . What if Ø is not monotonic?

Second Assignment for Math 128B Due Fri. 1 Mar. 2002

Prof. W. Kahan page 3/6 March 15, 2002 12:58 pm

Differential Inequalities and Error-Estimation
Attempts to solve the Ordinary Differential Equation (ODE) dy/dx = ƒ(x, y) numerically incur
errors from a variety of sources:

• ƒ(x, y) is computed contaminated by roundoff and other uncertainties.
• The ODE-solver’s arithmetic is contaminated by roundoff.
• The ODE-solver uses a discrete formula with a presumably tolerable error in each step.

The last source of error is normally the worst, and the only source that will be discussed here.

Ideally the computed approximation Y(x) of the desired solution y(x) should satisfy a nearby
differential equation dY/dx = ƒ(x, Y) + ∆ƒ upon which a tolerance µ > |∆ƒ| has been imposed
by whoever invoked the ODE-solver. It would attempt to keep its discretization error-per-unit-
step below that tolerance by keeping its stepsizes barely small enough. Assuming it succeeded,
estimates that bracket the desired solution could be computed by invoking the ODE-solver upon

dY/dx = ƒ(x, Y) – µ and dY/dx = ƒ(x, Y) + µ
to obtain two numerical estimates of Y and Y that satisfied Y < y < Y despite discretization
errors-per-unit-step smaller than µ during their computation. This would be so because, for
example, the computed Y would actually satisfy dY/dx = ƒ(x, Y) – µ + ∆ƒ < ƒ(x, Y) . The
tolerance µ is unlikely to be chosen much smaller than the uncertainty that ƒ inherits from its
computation; augmenting µ by that uncertainty in the two differential equations solved for Y
and Y provides an interval Y < y < Y that indicates how ƒ’s uncertainty propagates into y .

But ODE-solvers like those in Matlab 5 do not respect an imposed tolerance µ upon their
discretization errors-per-unit-step. Such a tolerance would force the ODE-solver to take too
many too-tiny steps when solving either differential equations that change abruptly, or stable
differential equations whose solutions become lethargic after initial transient behavior has died
away. Characteristic of stable ODEs is their tendency to “forget” early errors; consequently
ODE-solvers optimized for higher speed (longer and fewer steps) accept only tolerances upon
their discretization errors-per-step. Consequently the error-estimation technique described in the
previous paragraph cannot be used unless modified to take account of the ODE-solver’s
stepsizes. I know no straightforward way to do this with Matlab’s ODE-solvers.

Instead, the simplest way to assess the accuracy of a computed solution may be to recompute it
with error-tolerances at least an order of magnitude smaller than before and see how many figures
agree in the two computed solutions. This technique is simple but too vulnerable to deceptive
phenomena, especially when the ODE has more than one stable solution selectable by initial
conditions, as happens in simulations of switching circuits. Every ODE-solver’s error is biased
in a direction, dependent upon the solution’s derivatives, that persists when error-tolerances are
diminished and may contribute decisively to the solution unless error-tolerances are far tinier than
might at first have been thought sufficiently small.

Another way to assess accuracy is to use a few sufficiently different numerical methods to solve
the same ODE, and see how well they agree. This way is not foolproof either, but it appears to
be the way the designers of Matlab’s ODE-solvers had in mind. By practically precluding the
imposition of a tolerance upon error-per-unit-step, they have inhibited the development and use
of reliable (and costly) error-bounding techniques based upon differential inequalities that can
take account of the ODE’s intrinsic uncertainty too. Speed drives all else out of mind.

Second Assignment for Math 128B Due Fri. 1 Mar. 2002

Prof. W. Kahan page 4/6 March 15, 2002 12:58 pm

Matlab Programs to Compute Solutions Right-to-Left
Two numerical approximations [Y(x), Y(x)] of the solution y(x) of the ODE dy/dx = x – 1/y
were computed simultaneously over an interval 0 ≤ x ≤ Xend starting at x = Xend := 5 with
[Y(Xend), Y(Xend)] = 1.0 ./ [Xend, 1+Xend] and running x down to 0 . Other values Xend
greater than 4 gave very similar results. The ODEfile defining f(x, y) = x – 1/y for both
solutions y = Y and y = Y simultaneously was called f2.m :

function f = f2(x, y, flag)
% f2 is a Matlab ODEfile to solve y' = x - 1/y for two solutions
% [y1(x), y2(x)] simultaneously, differing in their initial values.
if (nargin<3)|isempty(flag),
 f = x - 1 . 0 ./ y(:) ;
 else switch(flag)
 case 'jacobian',
 f = diag(1 . 0 ./ (y.*y)) ;
 otherwise

 f2flag = flag,
 error('f2(x, y, Unknown Flag)')

 end, end

Note how invoking f2(x, y, ‘jacobian’) delivers the Jacobian matrix of first partial derivatives of

[f(x, Y); f(x, Y)] with respect to [Y; Y] , namely diag(1.0 ./ [Y2, Y2]) , for use by some of
Matlab’s five ODE-solvers. Scripts were written to invoke each of these with the same given
Xend and error-tolerances; the script called f2_113.m invokes ODE-solver ode113 :

% Matlabscript to run ODE-solver ode113 on f2
Xend, Atol, % RelTol = 100*eps is the minimum Matlab allows.
OPTIONS = odeset('RelTol',100*eps, 'AbsTol',Atol, ...
 'Jacobian','on', 'Vectorized','on') ;
Xspan = [Xend, 0] ; Yend = 1.0 ./[Xend, 1+Xend] ;
[X,Y] = ode113('f2', Xspan, Yend, OPTIONS) ;
n = length(X), XYY = [X(n), Y(n,:)]
plot(X,Y(:,1),'r', X,Y(:,2),'g')

Four more scripts f2_15s.m , f2_45.m , f2_23.m , f2_23s.m invoked their respective ODE-
solvers. Each script first displays previously assigned values Xend and tolerance Atol upon
absolute error-per-step; the tolerance 100*eps ≈ 2.2204e–14 upon relative error-per-step was the
smallest Matlab’s ODE-solvers would accept. Then the script sets Xspan to tell the ODE-
solver to run independent variable x down from Xend to 0 , initializing [Y(Xend), Y(Xend)]
to Yend so that Y > Y and the true solution y lies between them except for numerical errors.
After invoking the ODE-solver to generate arrays X and Y , the script displays the number n
of steps taken, the final value X(n) = 0 of x , the computed solutions’ Y(n,:) = [Y(0), Y(0)] ,
and the solutions’ graphs.

Each ODE-solver tried to keep the error-per-step in each computed solution Y(x) smaller than
100*eps*|Y(x)| + Atol . Each such error tends to be forgotten exponentially, as x decreases, at

a rate determined by ∂f/∂y ≈ 1./Y(x)2 . Numerical experiments indicated that Y(x) is slightly
bigger than 1/(1+x) , so errors have to decay extremely rapidly when x is near Xend, slowly
when x is near 0 . Without knowing the ODE-solver’s stepsizes when x is near 0 we can’t say
how much bigger than 100*eps*|Y(0)| + Atol is the error in Y(0) ; not much bigger, we hope.

Second Assignment for Math 128B Due Fri. 1 Mar. 2002

Prof. W. Kahan page 5/6 March 15, 2002 12:58 pm

Numerical Results
Exhibited here are results for two values 10–6 and 10–12 of Atol , the tolerance upon absolute
error-per-step. Tabulated for each of Matlab’s five ODE-solvers ode… are the number n of
steps (actually the number-plus-one of steps not retried with a smaller stepsize to keep the local
error below the assigned tolerance), and the computed values Y(0) and Y(0) between which the
desired y0 would lie but for numerical errors.

These results come from Matlab 5.3 run on a Wintel PC; results from a Mac Quadra (68040) are almost the same.

Atol = 0.000001 :

The last column’s Y(0) < Y(0) is not a typo; ode113 really did compute solutions Y(x) and
Y(x) whose graphs crossed instead of preserving the relationship Y(x) > Y(x) established at
x = Xend . This occurred because our ODE is too stiff for ode113 to treat accurately when x is
very near Xend ; the sharp upward surge in Y(x) was extrapolated too far. Here are graphs:

Plots of Y(x) (green) and Y(x) (red)

Barely visible near x = 4.93 is the point where the graphs of Y(x) and Y(x) cross.

Each ODE-solver’s Y(0) and Y(0) agree to at least 8 dec., but they cannot all be correct
because the different solvers’ results agree to at most 5 dec., or 6 if ode23s is deemed an
outlier. Had only one ODE-solver been invoked, its results’ agreement would have misled us
into overestimating their accuracy.

ode: ode23s ode23 ode15s ode45 ode113

n: 246 134 89 217 75

Y(0): 1.28358085363422 1.28359687743776 1.28359822084272 1.28359816310455 1.28359918899254

Y(0): 1.28358085363422 1.28359687743776 1.28359820787955 1.28359816310455 1.28359918905259

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.2

0.4

0.6

0.8

1

1.2

X

Second Assignment for Math 128B Due Fri. 1 Mar. 2002

Prof. W. Kahan page 6/6 March 15, 2002 12:58 pm

Atol = 0.000000000001 :

Once again a solver, this time ode15s, has crossed the graphs of Y and Y . Once again, each
solver’s results agree rather more closely, better than 11 dec., than the 8 dec. to which all five
solvers’ results agree. Once again, ode23s seems to be the outlier on the low side; the other
solvers’ results agree to almost 11 dec. How many digits would you trust now?

Ch. 8 of Using Matlab, <…/matlab/help/pdfdocs/using_ml.pdf> , gives advice about Matlab’s ODE-solvers,
describing the circumstances for which each is recommended. Still, prudent scientists and engineers will trust their
numerical results only if corroborated by mathematical proofs, when they are not too tedious, and always by
recomputations using diverse numerical methods. Proofs are precious, and so are computable error-bounds; but they
are often more expensive than the results they corroborate are worth. For instance, error-bounds for ODEs’ initial-
value problems rather more general than this assignment’s can be computed, within limits posed by severe
nonlinearity, by a method outlined very roughly in class note Ellipsoidal Error Bounds for Trajectory Calculations

 <http://www.berkeley.edu/~wkahan/Math128/Ellipsoi.pdf> .
The method augments a given ODE dy/dt = f(t, y) of dimension N by an auxiliary ODE of dimension N(N+1)/2
to compute the error-bound simultaneously with the computed solution y , and requires among other things that
∂f/∂y be made available. The price is daunting when N is big. If this method is the best available except in special
cases, then error-bounds for solutions of ODEs are unlikely to become commonplace. Corroboration by
recomputation may turn out to be the best that can be done except in special cases.

The Answer: y0 = 1.283598710463599523… .
The foregoing task, to find the critical initial value y0 , was posed by A. Tissier as problem #6551, p. 694 in the
Amer. Math. Monthly 94 (1987), solved on pp. 631-5 and 657-9 of 96 (1989) with the aid of an Airy function.

When x is big enough, y(x) can be approximated by the first few terms of a series expansion

y(x) ≈ 1/x – 1/x4 + 5/x7 – 44/x10 + 539/x13 – 8337/x16 + O(1/x19)
which could not be obtained directly by Maple V r3 on my Mac Quadra because of a division-by-zero error.
Another approximation useful only when x is big enough is a continued fraction

y(x) ≈ .

Both expansions are obtained by treating 1/x instead of x as the independent variable, and seeking a solution y(x)
representable formally as a (possibly nonconvergent) power series in 1/x around 1/x = 0 ; then it turns out that

x·y(x) → 1 as 1/x → 0 , and that the power series for x·y(x) involves only powers of x–3 . But neither expansion
reveals y(0) , for which the only method I know to work well is numerical integration of the ODE backwards from
an estimate for sufficiently large x obtained from one of those expansions. The result from a Runge-Kutta method
carried out by Maple V with extravagant precision is y0 = 1.2835987104635995… ; and a Fortran program
running a similar method carefully on an IBM PC carrying 64 sig. bits got y0 = 1.2835987104635995234 .

ode: ode23s ode23 ode15s ode45 ode113

n: 24656 10432 613 3033 231

Y(0): 1.283598708681 1.28359871046153 1.28359871045841 1.2835987104635 1.28359871046502

Y(0): 1.283598708681 1.28359871046153 1.28359871045967 1.2835987104635 1.28359871046502

1

x
1

x
2 4

x
19

4x
2 535

19x
79432

535x
2

O
1
x
---()+

--------------------------------+
--+

--+
---+

---+
