

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 1/8

 When to Stop Slowly Convergent Iteration?

§0. Abstract

As k

→

∞

, iteration x

k+1

 := Ç·x

k

 + b is intended to converge to the fixed-point z = (I – Ç)

–1

·b

,
but rounding errors interfere by causing computed iterates x

k

 to dither rather than settle upon a
computed limit. Dithering is worst when convergence would be very slow without roundoff.

How should we decide to stop iterating before we have wasted too much
time dithering, and yet not before our last iterate x

n+1

 approximates z as
accurately as desired if not almost about as accurately as roundoff allows?

This question becomes most troublesome when the arithmetic’s precision does not much exceed
the accuracy desired in z

, as occurs sometimes when a computation that used to be carried out in
8-byte floating-point arithmetic (53 sig.bits

≈

 16 sig.dec.) is attempted in 4-byte floating-point
(24 sig.bits

≈

 7 sig.dec.) to increase speed and reduce energy dissipation.

§1. Introduction

While the

error

 e

k

 := x

k

 – z is unknown, some other byproduct of the iteration x

k+1

 := Ç·x

k

 + b
must be gauged to determine when to stop. In the absence of anything better, we shall be
compelled to stop when the

increment

∆

x

n

 := x

n+1

 – x

n

 = e

n+1

 – e

n

≈

 Ç·

∆

x

n-1

is deemed negligible although, if convergence is very slow, the error e

n+1

 may still be far bigger
than negligible. Why not deem

∆

x

n

 to be negligible if it is smaller or not much bigger than our
least over-estimate of roundoff’s contribution to it? That over-estimate turns out excessively big
when convergence is slow, as we shall see in §2 where dithering’s amplitude is over-estimated.

At the end of §3 a likelier estimate of that amplitude comes out of a probabilistic model of
roundoff in the iteration. Though still generally unknowable, this liklier estimate suggests a
plausible stopping criterion presented in §4

. An undesired by-product of this criterion is the
amplification of a computed solution’s uncertainty due to roundoff; slower convergence implies
worse amplification to an extent intolerable unless arithmetic’s precision exceeds adequately the
accuracy desired in the computed solution x

n+1

. An exception to this bleak analysis occupies §5.

§2. Unknowable Pessimistic Upper Bounds

Assume roundoff perturbs the pristine equation “

x

k+1

 = Ç·x

k

 + b

” to
 x

k+1

 := Ç·x

k

 + b + u

k

in which no more is known about roundoff’s contribution u

k

 than an elementwise bound
û >

|

u

k

|

. Roundoff accumulates to inflate the error:
 e

k+1

 = Ç·e

k

 + u

k

 for every k

≥

 0

 = Ç

k+1

·e

0

 +

∑

0

≤

j

≤

k

Ç

j

·u

k-j

 .

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 2/8

Absent roundoff, e

k

 would converge to o from every e

0

; therefore Ç

k

 converges to O

. Let ç
barely exceed the biggest magnitude of the eigenvalues of Ç

, so 0

≤

 ç < 1

. Some vector norm
‡...‡ must exist whose induced matrix norm ‡Ç‡ := max

v

≠

o

‡Ç·v‡

/

‡v‡

≤

 ç

; this unknown ‡Ç‡
exceeds the biggest

|

eigenvalue of Ç

|

 by as little as one wishes.

Some ü with

|

ü

|

≤

 û maximizes ‡ü‡

, and then ‡u

k

‡ < ‡ü‡ since each

|

u

k

|

 < û

. Consequently
the formula above for e

k+1

 implies ultimately that

 ‡e

∞

‡ <

∑

0

≤

j

≤∞

‡Ç‡

j

·‡ü‡

≤

 ‡ü‡

/

(1 – ç) ;
and a conceivable but very unlikely malicious conspiracy among rounding errors could prevent
every ‡e

k

‡ from falling much below that bound. It can be huge if convergence is slow because

then ç is very nearly 1

; this must happen when ‡(I – Ç)

–1

‡ is huge and may happen otherwise.

Besides pessimistic, that bound upon ‡e

∞

‡ is useless for a stopping criterion since e

k

, ç and
‡...‡ are so unlikely to be known during the iteration process. Otherwise iterating could be
stopped as soon as roundoff caused at most a few violations of the expected inequality

 “

‡e

n+1

‡ = ‡Ç·e

n

‡ ≤ ç·‡en‡ < ‡en‡ ” .

Instead of ek we can know every computed value of ...
 ∆xk = xk+1 – xk = ek+1 – ek = Ç·∆xk-1 + uk – uk-1

which would obey a similar expected inequality “ ‡∆xn+1‡ < ‡∆xn‡ ” in the absence of roundoff.
If a few roundoff-induced departures from such monotonic convergence could be detected, they
would supply ample incentive to stop iterating lest time be wasted dithering. But ‡...‡ is rarely
known and, when known, the cost of computing ‡∆xk‡ is rarely affordable.

How small must ‡∆xn‡ be to violate that ideally expected inequality “ ‡∆xn+1‡ < ‡∆xn‡ ”
because of roundoff? That inequality cannot be violated until

 ‡∆xn‡ ≤ ‡un+1 – un‡/(1 – ç) ≤ 2‡ü‡/(1 – ç) .
This inequality is consistent with another obtained from the deduced formula

 ∆xk = Çk·∆x0 – Çk–1·u0 + (Ç – I)·∑1≤j<k Ç
j–1·uk-j + uk

which can be bounded, again too pessimistically, as before:

 ‡∆x∞‡ < ‡Ç – I‡·∑1≤j<∞ ‡Ç‡j–1·‡ü‡ + ‡ü‡ ≤ 2‡ü‡/(1 – ç) .
As before, this bound also is useless for a stopping criterion. But not entirely useless ...

Huge error-bounds ‡e∞‡ < ‡ü‡/(1 – ç) and ‡∆x∞‡ < 2‡ü‡/(1 – ç) above come from very small
divisors (1 – ç) just when convergence is very slow, and then those huge bounds threaten the
accuracy achievable by iteration. Inaccuracy is threatened by slow convergence regardless of how
Well- or Ill-Conditioned the given equation “ z = Ç·z + b ” may be. An example Ç := –g·g' for

any column g with g'·g = 0.9999 has a condition number ||I – Ç||·||(I – Ç)–1|| < 2 but

1/(1 – ç) = 104 , so iteration could conceivably lose 4 sig. dec. just because convergence is slow.

However, the threat of inaccuracy is mitigated by known gross pessimism in those error-bounds.

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 3/8

§3. Probabilistic Over-Estimates
When convergence is slow, pessimism is due mostly to the tiny divisor (1 – ç) in §2’s bounds.
To obtain a smaller estimate for the likeliest accumulation in ∆xk of all the contributions uk-j
from roundoff, rounding errors shall be approximated by independent random variates that range
between predictable bounds. We expect to obtain a bigger divisor.

First let us summarize probabilistic terminology. Let t be a Random Variate (not necessarily
scalar) whose Cumulative Distribution µ(t) figures in the Expected Value Æf(t) of any
function f(t) thus:

 Æf(t) := ∫t f(t)·dµ(t) wherein dµ(t) ≥ 0 and Æ1 = 1 .

(Our notation for the expected value, also called “Mean Value”, must be confusing because
Æf(t) depends not upon the value of t but upon its distribution µ . This notation is widespread
among statisticians despite its confusion because it costs fewer names, — merely one name “ t ”
per random variate instead of a pair “{t, µ}” .)

The expected value of a sum is the sum of expected values; Æ(f(t1) + g(t2)) = Æf(t1) + Æg(t2)
regardless of whether t1 and t2 are the same or different random variates, correlated or not. If s
and t are Independent random variates then the expected value of a product is the product of
expected values: Æ(f(t)·g(s)) = Æf(t)·Æg(s) .

The Variance σ2f(t) := Æ(||f(t) – Æf(t)||2) is the square of a gauge, the Standard Deviation

σf(t) = √(σ2f(t)) , of the likely departure of f(t) from its mean value. Here ||v|| := √(v’·v) is the
Euclidean norm. Æ((f(t) – Æf(t))·(f(t) – Æf(t))') is the Covariance Matrix of a column f(t) . If
its elements are independent the matrix is diagonal. The variance of the sum of independent

variates is their variances’ sum: σ2(f(t) + g(s)) = σ2f(t) + σ2g(s) . Finally, if a scalar variate ƒ(t)
has mean Æƒ(t) = 0 then Æ|ƒ(t)| ≤ σƒ(t) ; the magnitude’s expected value cannot exceed the
standard deviation. This will help attenuate the pessimism of §2’s over-estimate of roundoff’s
accumulation in ∆x∞ .

IEEE Standard 754 arithmetic’s default rounding is unbiased; this means that each rounding error
can be approximated by an independent bounded random variate with mean zero. Such a variate’s
standard deviation must be smaller than its bound, usually a small fraction of it. Each element of

(Ç – I)·Çj–1·uk-j is such a variate; its standard deviation is some unknown fraction of unknowable

bound (ç+1)·çj–1·‡ü‡ . Therefore the standard deviation of each element of ∆x∞ turns out to be
some unknown but probably small fraction of

 ‡ü‡·√((ç+1)2·∑1≤j<∞ ç
2j–2 + 1) = ‡ü‡·√(2/(1 – ç)) ,

which is rather smaller than §2’s bound 2‡ü‡/(1 – ç) though still unknowable.

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 4/8

§4. Estimating the Unknowable
Estimates of ‡ü‡ and ç will be needed if iterating is to be stopped after every element of ∆xn is

not much bigger than ‡ü‡·√(2/(1 – ç)) , which is our estimate in §3 of dithering’s expected
amplitude. To guess at the unknowable seems better than to stay paralyzed by it.

In the absence of roundoff, for almost every ∆x0 ,
 ç ≈ Limk → ∞ (||∆xk||/||∆x0||)1/k

regardless of the choice of norm ||...|| . This suggests approximating ç by (||∆xk||/||∆x0||)1/k for
some big iteration-counts k not yet so big that ∆xk is contaminated too badly by roundoff. Such
approximations more often under-estimate ç than over-estimate it until after k gets big enough
to incur roundoff-induced dithering.

Unknowable ‡ü‡ came in §2 from û , the result of a rounding-error-analysis of the
programmed formula “ xk+1 := Ç·xk + b ” that produced û > |Ç·xk + b – xk+1| elementwise for
§2 . Since ‡...‡ is usually too big as well as unknown, little is lost by the adoption of ||...||∞ , the
biggest-element vector norm, to measure the magnitudes of ü , û and ∆xk . As norms go, ||...||∞
is among the smaller ones, especially when dimensions are large. By its adoption we choose to
approximate ç by

 ç ≈ (||∆xk||∞/||∆x0||∞)1/k
for sufficiently (but not too) big counts k . Now let us choose to stop iterating as soon as, say,

 ||∆xn||∞ ≤ 3·||û||∞·√(2/(1 – ç)) STOPPING CRITERION
for at most a few consecutive increments ∆xn , if not sooner. The “ 3 ” is another guess.

What can go wrong? If that stopping threshold is too big, iterating will stop too soon, before
xn+1 has come as close to the desired z as it would come after more iterations. More likely is a
threshold too small; then iterations will dither while recomputed estimates of ç increase, thus
increasing the threshold until it stops the iteration.

Something else can go wrong. Since ek = (Ç – I)–1·(uk + ∆xk) ,

 ||en||∞ ≤ ||(Ç – I)–1||∞·||û||∞·(1 + 3·√(2/(1 – ç)))
when iterating is stopped. The factor (1 + 3·√(2/(1 – ç))) amplifies roundoff’s unavoidable

contribution to the uncertainty ||(Ç – I)–1||∞·||û||∞ in every computed solution x = Ç·x + b + u
wherein roundoff injects a term u bounded by |u| < û . That amplification is due solely to the
choice of a slowly convergent iteration to solve the given fixed-point problem, which may be

well-conditioned in so far as ||(Ç – I)–1||∞ is not very big. Otherwise, when ||(Ç – I)–1||∞ is big,
that amplification may subtract extra accuracy intolerably from the arithmetic’s precision,

When iteration is performed in arithmetic carrying about 16 sig.dec., a loss to slow convergence
of a few digits beyond the several digits lost to ill-condition goes unnoticed. But when arithmetic
carries fewer than 8 sig.dec. the loss of a few extra digits comes as an unwelcome surprise.

How often does that extra loss occur? It is not often reported, if at all, but it can occur; here is a
didactic example:

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 5/8

Example:
All the computations on this page were performed by PC-MATLAB 3.5 on a 386/387-based Intel
302 taking advantage of the 387’s capability to control its arithmetic precision.

All input data Ç and b were stored as 4-byte wide floating-point variables with 24 sig.bits,
worth about 7 - 8 sig.dec. Arithmetic of this same precision was used to compute all the iterates

xk+1 := Ç·xk + b . The desired fixed-point z := (I – Ç)–1·b and – ç , the biggest in magnitude
among the eigenvalues of Ç , were computed more accurately in arithmetic with at least 53
sig.bits, worth at least 15 sig.dec.

and – ç ≈ – 0.9998912395141 > –1 is its eigenvalue of biggest magnitude, though every familiar
||Ç|| > 1 . Consequently the iteration converges to z extremely slowly in the absence of roundoff.

||(I – Ç)–1|| < 1.43 , so the equation “ z = Ç·z + b ” is quite well-conditioned and determines z
within a few units in the arithmetic’s last digit. Tabulated here are b , z and the dithering iterates
xn and xn±1 obtained several iterations after starting from x0 := b/2 :

The amplitude ||∆x∞||∞ = 610 of dithering is moderately bigger than the product of the expected

amplification factor √(2/(1 – ç)) ≈ 135.6 and a roundoff bound ||û||∞ ≈ 2 . Because dithering
began after several iterations, ç was soon over-estimated and then the STOPPING CRITERION
above stopped further iterating and left the last few sig.dec. of xn wrong, as predicted above,
though nothing about the rounding errors was random. “Accidental” describes them better.

xn is wrong solely because slow convergence exacerbated roundoff’s contribution.
It could have been worse.

But roundoff’s contribution from 8-byte floating-point carrying 53 sig.bits would go unnoticed.

814992 555704 5341046 895145 354535
2494324 2994674 5538020 1198341 5070571

Ç := – 124469 5863168 5195799 4248937 4634218/224

3068273 3969477 2396288 4876337 2977128
2752950 3447374 1868283 2882239 5928951

-0.048577309 -0.033122540 -0.31835115 -0.053354800 -0.021131933
-0.14867330 -0.17849648 -0.33009171 -0.071426690 -0.30222958

≈ -0.0074189305 -0.34947205 -0.30969375 -0.25325638 -0.27622092

-0.18288332 -0.23659927 -0.14282990 -0.29065233 -0.17745066
-0.16408861 -0.20547950 -0.11135834 -0.17179483 -0.35339302

b' = 8195868 15879334 19379998 14924160 14431199

xn' = 4098027.75 7939849.0 9690221. 7462251.0 7215764.5

z' ≈ 4098156.9237 7940098.5675 9690526.1056 7462485.7067 7215992.0155

xn±1' = 4098286.0 7940348.5 9690831. 7462720.5 7216219.0

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 6/8

§5. The Exceptional SOR Iteration
The iteration to be discussed next continues to converge despite dithering until its amplitude dies
down to the last few bits of the iterates xk no matter how slowly they converge. The criterion for
stopping this iteration can ignore the rate of convergence; no accuracy need be lost by stopping
before ∆xn is deemed negligible, though ill-condition may allow the final error en = xn – z to be
vastly bigger than negligible. However, this SOR iteration applies only to a special case:

We seek the solution z of A·z = b given b and a symmetric positive definite matrix A = A' . Its
diagonal elements must be positive and somewhat bigger than its off-diagonal elements in so far

as every aij
2 < aii ·ajj if i ≠ j . No generality is lost but simplicity is gained by assuming every

ajj = 1 ; this can be arranged in either of two ways. The first way divides each row of [A, b] by
its diagonal element, thus simplifying the iteration’s arithmetic. The second way divides each
row by the square root of its diagonal element and does likewise to each column of A , thus
imposing upon z a change that must be undone after z has been computed by iteration. Neither
way alters the fact nor the speed of convergence, but the second way simplifies the exposition, so
it shall be adopted. Then A = I – L – L' for some strictly lower-triangular matrix L , and the
SOR iteration’s formula becomes

 xk+1 := xk + Ω·(b + L·xk+1 – xk + L'·xk) = (I – Ω·L)–1·(Ω·b + (I – Ω + Ω·L')·xk)
in which Ω is a diagonal matrix whose diagonal elements, all strictly between 0 and 2 , are
chosen to boost the rate of convergence. The formula seems at first to determine xk+1 implicitly
but actually determines its elements explicitly and strictly sequentially from top to bottom.

“SOR” stands for “Successive Over-Relaxation”. It could also be called “Extrapolated Gauss-
Seidel Iteration”. The unextrapolated version with Ω = I was invented by Gauss for a geodetic
survey and later deprecated by Seidel, an astronomer, in the 19th century. In the early 20th
Southwell revived and generalized the iteration for loaded elastic structures, whence the name
“Relaxation”. Similar iterations were applied to passive electric circuits. In the 1940s and early
1950s SOR was the easiest way to solve big discretized elliptic boundary-value problems on
computers with memories infinitesimal by today’s standards. Over-Relaxation occurred for
diagonal elements of Ω strictly between 1 and 2 ; Under-Relaxation … 0 and 1 . For more
details see chapters 3 and 4 of the book by Varga [1962].

SOR seems at first too sequential to exploit concurrency on computers nowadays. However, if
the bandwidth of A is small compared with its dimension, a peristaltic (often wrongly called
“systolic”) process can begin the computation of xk+2 well before xk+1 is finished, and xk+3
before xk+2 is finished, and so on. Their computations’ concurrency requires synchronizations
that may be complicated to program. To reduce the cost of communications when xk must be
spread out among the distributed memories of many processors, SOR may be supplanted by a
“Chaotic Iteration” that will not be considered here; it requires constraints like || |L + L' | || < 1
among others according to D. Chazan and W.L. Miranker [1969], who disregarded roundoff.

SOR deserves to be considered here because, as iterations go, it is comparatively indifferent to
roundoff. To prove this, we shall replace Ω by Ωk and vary it from iteration to iteration. Doing
so permits the subscript k to be dropped, further simplifying a complicated convergence proof.

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 7/8

SOR converges because each iteration reduces the error e := x – z when measured in a norm
«e» := √(e'·A·e) that Southwell related to elastic energy of deformation. This «…» is a norm
for vectors since A is positive definite; but «…» generally differs from the unknowable norm
‡…‡ used above. Here follows a proof that, absent roundoff, «e+∆x» < «e» while e ≠ o :

Each SOR iteration replaces x by x + ∆x := x + Ω·(b + L·(x + ∆x) – x + L'·x) , changing its
error e to e + ∆x = e + Ω·(L·(e + ∆x) – e + L'·e) = e + Ω·L·∆x – Ω·A·e . Increment ∆x appears
to come from something resembling x ’s Residual r := b – A·x = –A·e but different; ∆x = Ω·c
where the elementwise Current Residual is

 c := b + L·(x + ∆x) – x + L'·x = L·∆x – A·e = (I – L')·∆x – A·(e + ∆x) .

Now we find c = –(I – L·Ω)–1·A·e ≠ o while e ≠ o , and then

 «e»2 – «e + ∆x»2 = (e – e – ∆x)'·A·(e + e + ∆x)
 = ∆x'·(c – L·∆x + c – (I – L')·∆x) from the previous equations
 = c'·Ω·(2I – Ω)·c because ∆x'·(L' – L)·∆x = 0
 > 0 since diagonal Ω lies strictly between 0 and 2 . []

Now restore subscript k to iterate xk , increment ∆xk = xk+1 – xk = ek+1 – ek , current residual

ck and diagonal Ωk to infer that ck = –(I – L·Ωk)
–1·A·ek ≠ o while ek ≠ o , and that then

 «ek»
2 – «ek+1»

2 = ck'·(2I – Ωk)·Ωk·ck > 0 .

This inequality is crucial. It is valid while ∆xk = Ωk·ck ≠ o and every element of diagonal Ωk is
nonnegative and strictly less than 2 , even if some diagonal elements and their elements of ∆xk
vanish. It forces the values «ek» to form a strictly descending sequence and therefore converge.

Must «ek» → 0 ?
Not necessarily. Not without some further constraint upon Ωk .

The simplest further constraint is constancy. If the one diagonal Ωk := Ω has diagonal elements
strictly between 0 and 2 , then the convergence of «ek» forces ck'·(2I – Ω)·Ω·ck → 0 , whence

follows ck → o and then ek = –A–1·(I – L·Ω)·ck → o too as desired. Moreover the sequence of
values «∆xk» can be shown to descend to 0 monotonically too. But roundoff spoils all that.

Because roundoff can prevent the convergence of ek to o , some other goal for SOR must be
accepted. Our chosen goal is to continue iterating no longer than while a diagonal Ωk exists in
O ≤ Ωk < 2I such that the computed nonzero ∆xk := xk+1 – xk and the true but not quite known
current residual ck satisfy ∆xk = Ωk·ck exactly, thus ensuring that «ek+1» = «ek+∆xk» < «ek» .

Drop subscript k again. Let u bound roundoff elementwise in the computed value c so that the
true current residual surely lies within c ± u ; for instance, while |∆x| ≤ |x| we may set, say,
u := (|b| + 2·|A|·|x|)·ε where ε is the arithmetic’s roundoff threshold. Let v bound roundoff in
the computed ∆x so that the computed new x + ∆x will surely lie within x + Ω·c ± v ; for
instance, we may set v := (|x| + 2Ω·|c|)·ε . The columns u and v of overestimates can be
computed simultaneously with c and ∆x , or else just once after x stops changing much.

File: SlowIter version dated June 21, 2013 8:50 am

Prof. W. Kahan from lecture notes for Math 128B, 273, and CS 279 8/8

Here are two ways to decide when to stop SOR iterating:

As the elements of the new x + ∆x are being computed in turn from top to bottom, leave a new
element unchanged (thus treating the corresponding element of ∆x as 0) if the corresponding
element of |c| ≤ u . Otherwise ∆x will have the correct sign but, to keep ∆x from getting too
big, reduce the corresponding diagonal element of Ω if necessary to keep it between 0 and
max{0, 2 – (2u+v)./|c| } . If 2I – Ω is not too small, a simpler alternative leaves unaltered any
element of x corresponding to an element of (2I – Ω)·|c| ≤ 2u + v . Either way, whenever a
computed (rounded) element of the new x + ∆x matches the old x , regard that element of ∆x
as 0 ; otherwise the new x + ∆x is better than the old x because «e + ∆x» < «e» .

STOP ITERATING as soon as all of ∆x = o , if not sooner.

This stopping criterion takes no notice of the rate of convergence, which can be arbitrarily slow
even if Ω was chosen to maximize it. Convergence must be slow if A is nearly singular, and
may be slow otherwise too, but continues without dithering until the residual r := b – A·x is not
much bigger than its uncertainty ±u due to roundoff in its own computation. After that the error

e = x – z = –A–1·r cannot much exceed the smallest uncertainty that the condition of A allows.

Choosing Ω optimally is a hard problem solved in the 1950s only partially for some special but
common cases. Under-Relaxation (Ω ≤ I) has accelerated convergence for a few matrices A ,
but Over-Relaxation (Ω ≥ I) has been found better for most others. In most of these other cases
2I – Ω ≈ 1 – ç is too small for the simpler alternative above; stopping when (2I – Ω)·|c| ≤ 2u + v
then stops too soon, sooner than signalled by §4’s probabilistic stopping criterion.

§6. Conclusion
If any further incentive were needed to avoid slowly convergent iterations, it would be supplied
by questions about stopping. They didn’t matter while arithmetic’s precision amply exceeded the
desired accuracy, but become troublesome when precision barely exceeds the accuracy desired.

§7. Citations

D. Chazan & W.L. Miranker [1969] “Chaotic Relaxation” in pp. 199-222 of Linear Algebra & its
Applications 2 (American Elsevier)

Richard S. Varga [1962] Matrix Iterative Analysis (Prentice-Hall, New Jersey)

