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 When to Stop Slowly Convergent Iteration?

 

§0.  Abstract

 

As  k 

 

→

 

 

 

∞

 

 

 

,  iteration  x

 

k+1

 

 := Ç·x

 

k

 

 + b  is intended to converge to the fixed-point  z = (I – Ç)

 

–1

 

·b

 

 

 

,  
but rounding errors interfere by causing computed iterates  x

 

k

 

  to dither rather than settle upon a 
computed limit.  Dithering is worst when convergence would be very slow without roundoff.

How should we decide to stop iterating before we have wasted too much 
time dithering,  and yet not before our last iterate  x

 

n+1 

 

 approximates  z  as
accurately as desired if not almost about as accurately as roundoff allows?

This question becomes most troublesome when the arithmetic’s precision does not much exceed 
the accuracy desired in  z

 

 

 

,  as occurs sometimes when a computation that used to be carried out in  
8-byte  floating-point arithmetic  (53 sig.bits 

 

≈

 

 16 sig.dec.)  is attempted in  4-byte  floating-point  
(24 sig.bits 

 

≈

 

 7 sig.dec.)  to increase speed and reduce energy dissipation.

 

§1.  Introduction

 

While the  

 

error

 

  e

 

k

 

 := x

 

k

 

 – z  is unknown,  some other byproduct of the iteration  x

 

k+1

 

 := Ç·x

 

k

 

 + b   
must be gauged to determine when to stop.  In the absence of anything better,  we shall be 
compelled to stop when the  

 

increment

 

 
       

 

∆

 

x

 

n

 

 := x

 

n+1

 

 – x

 

n

 

 = e

 

n+1

 

 – e

 

n

 

 

 

≈

 

 Ç·

 

∆

 

x

 

n-1

 

 
is deemed negligible although,  if convergence is very slow,  the error  e

 

n+1

 

  may still be far bigger 
than negligible.  Why not deem  

 

∆

 

x

 

n

 

  to be negligible if it is smaller or not much bigger than our 
least over-estimate of roundoff’s contribution to it?  That over-estimate turns out excessively big 
when convergence is slow,  as we shall see in  §2  where dithering’s amplitude is over-estimated.

At the end of  §3  a likelier estimate of that amplitude comes out of a probabilistic model of 
roundoff in the iteration.  Though still generally unknowable,  this liklier estimate suggests a 
plausible stopping criterion presented in  §4

 

 

 

.  An undesired by-product of this criterion is the 
amplification of a computed solution’s uncertainty due to roundoff;  slower convergence implies 
worse amplification to an extent intolerable unless arithmetic’s precision exceeds adequately the 
accuracy desired in the computed solution  x

 

n+1

 

 

 

.  An exception to this bleak analysis occupies  §5.

 

§2.  Unknowable Pessimistic Upper Bounds

 

Assume roundoff perturbs the pristine equation  “

 

 

 

x

 

k+1

 

 = Ç·x

 

k

 

 + b

 

 

 

”   to
 x

 

k+1

 

 := Ç·x

 

k

 

 + b + u

 

k 

 

in which no more is known about roundoff’s contribution  u

 

k

 

  than an elementwise bound  
û > 

 

|

 

u

 

k

 

| 

 

.  Roundoff accumulates to inflate the error:
 e

 

k+1

 

 = Ç·e

 

k

 

 + u

 

k

 

   for every  k 

 

≥

 

 0 

        = Ç

 

k+1

 

·e

 

0

 

 + 
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≤

 

j

 

≤
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k-j

 

 .
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Absent roundoff,  e

 

k

 

  would converge to  o  from every  e

 

0

 

 

 

;  therefore  Ç

 

k

 

  converges to  O

 

 

 

.  Let  ç  
barely exceed the biggest magnitude of the eigenvalues of  Ç

 

 

 

,  so  0 

 

≤

 

 ç < 1

 

 

 

.  Some vector norm  
‡...‡  must exist whose induced matrix norm  ‡Ç‡ := max

 

v

 

≠

 

o 

 

‡Ç·v‡

 

/

 

‡v‡ 

 

≤

 

 ç

 

 

 

;  this unknown  ‡Ç‡  
exceeds the biggest  

 

|

 

 

 

eigenvalue of Ç

 

 

 

|

 

  by as little as one wishes.  

Some  ü  with  

 

|

 

ü

 

|

 

 

 

≤

 

 û  maximizes  ‡ü‡

 

 

 

,  and then  ‡u

 

k

 

‡ < ‡ü‡  since each  

 

|

 

u

 

k

 

|

 

 < û

 

 

 

.  Consequently 
the formula above for  e

 

k+1

 

  implies ultimately that

  ‡e

 

∞

 

‡ <  

 

∑

 

0

 

≤

 

j

 

≤∞

 

 

 

‡Ç‡

 

j

 

·‡ü‡  

 

≤

 

 ‡ü‡

 

/

 

(1 – ç) ; 
and a conceivable but very unlikely malicious conspiracy among rounding errors could prevent 
every  ‡e

 

k

 

‡  from falling much below that bound.  It can be huge if convergence is slow because 

then  ç  is very nearly  1

 

 

 

;  this must happen when  ‡(I – Ç)

 

–1

 

‡  is huge and may happen otherwise.

Besides pessimistic,  that bound upon  ‡e

 

∞

 

‡  is useless for a stopping criterion since  e

 

k

 

 

 

,  ç  and  
‡...‡  are so unlikely to be known during the iteration process.  Otherwise iterating could be 
stopped as soon as roundoff caused at most a few violations of the expected inequality

    “

 

 

 

‡e

 

n+1

 

‡ = ‡Ç·e

 

n

 

‡ ≤ ç·‡en‡ < ‡en‡ ”  .

Instead of  ek  we can know every computed value of ...
 ∆xk = xk+1 – xk = ek+1 – ek = Ç·∆xk-1 + uk – uk-1 

which would obey a similar expected inequality  “ ‡∆xn+1‡ < ‡∆xn‡ ”  in the absence of roundoff.  
If a few roundoff-induced departures from such monotonic convergence could be detected,  they 
would supply ample incentive to stop iterating lest time be wasted dithering.  But  ‡...‡  is rarely 
known and,  when known,  the cost of computing  ‡∆xk‡  is rarely affordable.

How small must  ‡∆xn‡  be to violate that ideally expected inequality  “ ‡∆xn+1‡ < ‡∆xn‡ ”  
because of roundoff?  That inequality cannot be violated until

  ‡∆xn‡ ≤ ‡un+1 – un‡/(1 – ç) ≤ 2‡ü‡/(1 – ç) .
This inequality is consistent with another obtained from the deduced formula 

 ∆xk = Çk·∆x0 – Çk–1·u0 + (Ç – I)·∑1≤j<k Ç
j–1·uk-j + uk 

which can be bounded,  again too pessimistically,  as before:

  ‡∆x∞‡ <  ‡Ç – I‡·∑1≤j<∞ ‡Ç‡j–1·‡ü‡ + ‡ü‡  ≤ 2‡ü‡/(1 – ç) .
As before,  this bound also is useless for a stopping criterion.  But not entirely useless ...

Huge error-bounds  ‡e∞‡ < ‡ü‡/(1 – ç)  and  ‡∆x∞‡ < 2‡ü‡/(1 – ç)  above come from very small 
divisors  (1 – ç)  just when convergence is very slow,  and then those huge bounds threaten the 
accuracy achievable by iteration.  Inaccuracy is threatened by slow convergence regardless of how  
Well- or Ill-Conditioned  the given equation  “ z = Ç·z + b ”  may be.  An example  Ç := –g·g'   for 

any column  g  with  g'·g = 0.9999  has a condition number  ||I – Ç||·||(I – Ç)–1|| < 2  but  

1/(1 – ç) = 104 ,  so iteration could conceivably lose  4 sig. dec.  just because convergence is slow.

However,  the threat of inaccuracy is mitigated by known gross pessimism in those error-bounds.
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§3.  Probabilistic Over-Estimates
When convergence is slow,  pessimism is due mostly to the tiny divisor  (1 – ç)  in  §2’s  bounds.  
To obtain a smaller estimate for the likeliest accumulation in  ∆xk  of all the contributions  uk-j  
from roundoff,  rounding errors shall be approximated by independent random variates that range 
between predictable bounds.  We expect to obtain a bigger divisor.

First let us summarize probabilistic terminology.  Let  t  be a  Random Variate  (not necessarily 
scalar)  whose  Cumulative Distribution  µ(t)  figures in the  Expected Value  Æf(t)  of any 
function  f(t)  thus:

 Æf(t) := ∫t f(t)·dµ(t)  wherein  dµ(t) ≥ 0  and  Æ1 = 1 . 

(Our notation for the expected value,  also called  “Mean Value”,  must be confusing because  
Æf(t)  depends not upon the value of  t  but upon its distribution  µ .  This notation is widespread 
among statisticians despite its confusion because it costs fewer names, — merely one name  “ t ”  
per random variate instead of a pair  “{t, µ}”  .)

The expected value of a sum is the sum of expected values;  Æ(f(t1) + g(t2)) = Æf(t1) + Æg(t2)  
regardless of whether  t1  and  t2  are the same or different random variates,  correlated or not.  If  s  
and  t  are  Independent  random variates then the expected value of a product is the product of 
expected values:  Æ(f(t)·g(s)) = Æf(t)·Æg(s) .

The  Variance  σ2f(t) := Æ(||f(t) – Æf(t)||2)  is the square of a gauge,  the  Standard Deviation  

σf(t) = √(σ2f(t)) ,  of the likely departure of  f(t)  from its mean value.  Here  ||v|| := √(v’·v)  is the  
Euclidean  norm.  Æ((f(t) – Æf(t))·(f(t) – Æf(t))')  is the  Covariance Matrix  of a column  f(t) .  If 
its elements are independent the matrix is diagonal.  The variance of the sum of independent 

variates is their variances’ sum:  σ2(f(t) + g(s)) = σ2f(t) + σ2g(s) .  Finally,  if a scalar variate  ƒ(t)  
has mean  Æƒ(t) = 0  then  Æ|ƒ(t)| ≤ σƒ(t) ;  the magnitude’s expected value cannot exceed the 
standard deviation.  This will help attenuate the pessimism of  §2’s  over-estimate of roundoff’s 
accumulation in  ∆x∞ .

IEEE Standard 754 arithmetic’s default rounding is unbiased;  this means that each rounding error 
can be approximated by an independent bounded random variate with mean zero.  Such a variate’s 
standard deviation must be smaller than its bound,  usually a small fraction of it.  Each element of  

(Ç – I)·Çj–1·uk-j  is such a variate;  its standard deviation is some unknown fraction of unknowable 

bound  (ç+1)·çj–1·‡ü‡ .  Therefore the standard deviation of each element of  ∆x∞  turns out to be 
some unknown but probably small fraction of

  ‡ü‡·√( (ç+1)2·∑1≤j<∞ ç
2j–2 + 1 ) = ‡ü‡·√( 2/(1 – ç) ) , 

which is rather smaller than  §2’s  bound  2‡ü‡/(1 – ç)  though still unknowable.
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§4.  Estimating the Unknowable
Estimates of  ‡ü‡  and  ç  will be needed if iterating is to be stopped after every element of  ∆xn  is 

not much bigger than  ‡ü‡·√( 2/(1 – ç) ) ,  which is our estimate in  §3  of dithering’s expected 
amplitude.  To guess at the unknowable seems better than to stay paralyzed by it.

In the absence of roundoff,  for almost every  ∆x0 ,
  ç ≈ Limk → ∞ ( ||∆xk||/||∆x0|| )1/k  

regardless of the choice of norm  ||...|| .  This suggests  approximating  ç  by  ( ||∆xk||/||∆x0|| )1/k  for 
some big iteration-counts  k  not yet so big that  ∆xk  is contaminated too badly by roundoff.  Such 
approximations more often under-estimate  ç  than over-estimate it until after  k  gets big enough 
to incur roundoff-induced dithering.

Unknowable  ‡ü‡  came in  §2  from  û ,  the result of a rounding-error-analysis of the 
programmed formula  “ xk+1 := Ç·xk + b ”  that produced  û > |Ç·xk + b – xk+1|  elementwise for  
§2 .  Since  ‡...‡  is usually too big as well as unknown,  little is lost by the adoption of  ||...||∞ ,  the 
biggest-element vector norm,  to measure the magnitudes of  ü ,  û  and  ∆xk .  As norms go,  ||...||∞  
is among the smaller ones,  especially when dimensions are large.  By its adoption we choose to 
approximate  ç  by

      ç ≈ ( ||∆xk||∞/||∆x0||∞ )1/k  
for sufficiently  (but not too)  big counts  k .   Now let us choose to stop iterating as soon as,  say,

   ||∆xn||∞  ≤  3·||û||∞·√( 2/(1 – ç) )         STOPPING CRITERION 
for at most a few consecutive increments  ∆xn ,  if not sooner.  The  “ 3 ”  is another guess.

What can go wrong?  If that stopping threshold is too big,  iterating will stop too soon,  before  
xn+1  has come as close to the desired  z  as it would come after more iterations.  More likely is a 
threshold too small;  then iterations will dither while recomputed estimates of  ç  increase,  thus 
increasing the threshold until it stops the iteration.

Something else can go wrong.  Since  ek = (Ç – I)–1·(uk + ∆xk) ,

 ||en||∞ ≤ ||(Ç – I)–1||∞·||û||∞·( 1 + 3·√( 2/(1 – ç) ) ) 
when iterating is stopped.  The factor  ( 1 + 3·√( 2/(1 – ç) ) )  amplifies roundoff’s unavoidable 

contribution to the uncertainty  ||(Ç – I)–1||∞·||û||∞  in every computed solution  x = Ç·x + b + u  
wherein roundoff injects a term  u  bounded by  |u| < û .  That amplification is due solely to the 
choice of a slowly convergent iteration to solve the given fixed-point problem,  which may be 

well-conditioned in so far as  ||(Ç – I)–1||∞  is not very big.  Otherwise,  when  ||(Ç – I)–1||∞  is big,  
that amplification may subtract extra accuracy intolerably from the arithmetic’s precision,

When iteration is performed in arithmetic carrying about  16  sig.dec.,  a loss to slow convergence 
of a few digits beyond the several digits lost to ill-condition goes unnoticed.  But when arithmetic 
carries fewer than  8 sig.dec.  the loss of a few extra digits comes as an unwelcome surprise.

How often does that extra loss occur?  It is not often reported,  if at all,  but it can occur;  here is a 
didactic example:
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Example:
All the computations on this page were performed by  PC-MATLAB  3.5  on a  386/387-based Intel 
302  taking advantage of the  387’s  capability to control its arithmetic precision.

All input data  Ç  and  b  were stored as  4-byte wide  floating-point variables with  24 sig.bits,  
worth about  7 - 8 sig.dec.  Arithmetic of this same precision was used to compute all the iterates    

xk+1 := Ç·xk + b .  The desired fixed-point  z := (I – Ç)–1·b  and  – ç ,  the biggest in magnitude 
among the eigenvalues of  Ç ,  were computed more accurately in arithmetic with at least  53 
sig.bits,  worth at least  15 sig.dec.

and  – ç ≈ – 0.9998912395141 > –1  is its eigenvalue of biggest magnitude,  though every familiar  
||Ç|| > 1 .  Consequently the iteration converges to  z  extremely slowly in the absence of roundoff.  

||(I – Ç)–1|| < 1.43 ,  so the equation  “ z = Ç·z + b ”  is quite well-conditioned and determines  z  
within a few units in the arithmetic’s last digit.  Tabulated here are  b ,  z  and the dithering iterates  
xn  and  xn±1  obtained several iterations after starting from  x0 := b/2 :

The amplitude  ||∆x∞||∞ = 610  of dithering is moderately bigger than the product of the expected 

amplification factor  √( 2/(1 – ç) ) ≈ 135.6  and a roundoff bound  ||û||∞ ≈ 2 .  Because dithering 
began after several iterations,  ç  was soon over-estimated and then the  STOPPING CRITERION  
above stopped further iterating and left the last few sig.dec.  of  xn  wrong,  as predicted above,  
though nothing about the rounding errors was  random.  “Accidental”  describes them better.

xn  is wrong solely because slow convergence exacerbated roundoff’s contribution.
It could have been worse.

But roundoff’s contribution from  8-byte floating-point carrying  53 sig.bits  would go unnoticed.

814992 555704 5341046 895145 354535
2494324 2994674 5538020 1198341 5070571

Ç := – 124469 5863168 5195799 4248937 4634218/224

3068273 3969477 2396288 4876337 2977128
2752950 3447374 1868283 2882239 5928951 

-0.048577309 -0.033122540 -0.31835115 -0.053354800 -0.021131933 
-0.14867330 -0.17849648 -0.33009171 -0.071426690 -0.30222958

≈ -0.0074189305 -0.34947205 -0.30969375 -0.25325638 -0.27622092

-0.18288332 -0.23659927 -0.14282990 -0.29065233 -0.17745066
-0.16408861 -0.20547950 -0.11135834 -0.17179483 -0.35339302 

b'  = 8195868 15879334 19379998 14924160 14431199 

xn'  = 4098027.75 7939849.0 9690221. 7462251.0 7215764.5

z'  ≈ 4098156.9237 7940098.5675 9690526.1056 7462485.7067 7215992.0155

xn±1'  = 4098286.0 7940348.5 9690831. 7462720.5 7216219.0
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§5. The Exceptional  SOR  Iteration
The iteration to be discussed next continues to converge despite dithering until its amplitude dies 
down to the last few bits of the iterates  xk  no matter how slowly they converge.  The criterion for 
stopping this iteration can ignore the rate of convergence;  no accuracy need be lost by stopping 
before  ∆xn  is deemed negligible,  though ill-condition may allow the final error  en = xn – z  to be 
vastly bigger than negligible.  However,  this  SOR  iteration applies only to a special case:

We seek the solution  z  of  A·z = b  given  b  and a symmetric positive definite matrix  A = A'  .  Its 
diagonal elements must be positive and somewhat bigger than its off-diagonal elements in so far 

as every  aij
2 < aii ·ajj   if  i ≠ j .  No generality is lost but simplicity is gained by assuming every  

ajj  = 1 ;  this can be arranged in either of two ways.  The first way divides each row of  [A, b]  by 
its diagonal element,  thus simplifying the iteration’s arithmetic.  The second way divides each 
row by the square root of its diagonal element and does likewise to each column of  A ,  thus 
imposing upon  z  a change that must be undone after  z  has been computed by iteration.  Neither 
way alters the fact nor the speed of convergence,  but the second way simplifies the exposition,  so 
it shall be adopted.  Then  A = I – L – L'   for some strictly lower-triangular matrix  L ,  and the
SOR  iteration’s formula becomes

 xk+1 :=  xk + Ω·( b + L·xk+1 – xk + L'·xk )  =  (I – Ω·L)–1·( Ω·b + (I – Ω + Ω·L')·xk ) 
in which  Ω  is a diagonal matrix whose diagonal elements,  all strictly between  0  and  2 ,  are 
chosen to boost the rate of convergence.  The formula seems at first to determine  xk+1  implicitly 
but actually determines its elements explicitly and strictly sequentially from top to bottom.

“SOR”  stands for  “Successive Over-Relaxation”.  It could also be called  “Extrapolated Gauss-
Seidel Iteration”.  The unextrapolated version with  Ω = I  was invented by  Gauss  for a geodetic 
survey and later deprecated by   Seidel,  an astronomer,  in the  19th century.  In the early  20th  
Southwell  revived and generalized the iteration for loaded elastic structures,  whence the name  
“Relaxation”.  Similar iterations were applied to passive electric circuits.  In the  1940s  and early  
1950s  SOR  was the easiest way to solve big discretized elliptic boundary-value problems on 
computers with memories infinitesimal by today’s standards.  Over-Relaxation  occurred for 
diagonal elements of  Ω  strictly between  1  and  2 ;  Under-Relaxation  …  0  and  1 .  For more 
details see chapters  3  and  4  of the book by  Varga [1962].

SOR  seems at first too sequential to exploit concurrency on computers nowadays.  However,  if 
the bandwidth of  A  is small compared with its dimension,  a peristaltic  (often wrongly called  
“systolic”)  process can begin the computation of  xk+2  well before  xk+1  is finished,  and  xk+3  
before  xk+2  is finished,  and so on.  Their computations’ concurrency requires synchronizations 
that may be complicated to program.  To reduce the cost of communications when  xk  must be 
spread out among the distributed memories of many processors,  SOR  may be supplanted by a  
“Chaotic Iteration”  that will not be considered here;  it requires constraints like  || |L + L' | || < 1  
among others according to  D. Chazan and W.L. Miranker [1969],  who disregarded roundoff.

SOR  deserves to be considered here because,  as iterations go,  it is comparatively indifferent to 
roundoff.  To prove this,  we shall replace  Ω  by  Ωk  and vary it from iteration to iteration.  Doing 
so permits the subscript  k  to be dropped,  further simplifying a complicated convergence proof.
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SOR  converges because each iteration reduces the error  e := x – z  when measured in a norm  
«e» := √(e'·A·e)  that  Southwell  related to elastic energy of deformation.  This  «…»  is a norm 
for vectors since  A  is positive definite;  but  «…»  generally differs from the unknowable norm  
‡…‡  used above.  Here follows a proof that,  absent roundoff,  «e+∆x» < «e»  while  e ≠ o :

Each  SOR  iteration replaces  x  by  x + ∆x := x + Ω·( b + L·(x + ∆x) – x + L'·x ) ,  changing its 
error  e  to  e + ∆x = e + Ω·( L·(e + ∆x) – e + L'·e ) = e + Ω·L·∆x – Ω·A·e .  Increment  ∆x  appears 
to come from something resembling  x ’s  Residual  r := b – A·x = –A·e  but different;  ∆x = Ω·c  
where the elementwise  Current Residual  is

  c := b + L·(x + ∆x) – x + L'·x  =  L·∆x – A·e  =  (I – L')·∆x – A·(e + ∆x) . 

Now we find  c = –(I – L·Ω)–1·A·e ≠ o  while  e ≠ o ,  and then

  «e»2 – «e + ∆x»2 = (e – e – ∆x)'·A·(e + e + ∆x) 
     = ∆x'·( c – L·∆x + c – (I – L')·∆x )   from the previous equations 
    = c'·Ω·(2I – Ω)·c  because  ∆x'·(L'  – L)·∆x = 0 
    > 0   since diagonal  Ω  lies strictly between  0  and  2 .                 []

Now restore subscript  k  to iterate  xk ,  increment  ∆xk = xk+1 – xk = ek+1 – ek ,  current residual  

ck  and diagonal  Ωk  to infer that  ck = –(I – L·Ωk)
–1·A·ek ≠ o  while  ek ≠ o ,  and that then

 «ek»
2 – «ek+1»

2 =  ck'·(2I – Ωk)·Ωk·ck  > 0 .

This inequality is crucial.  It is valid while  ∆xk = Ωk·ck ≠ o  and every element of diagonal  Ωk  is 
nonnegative and strictly less than  2 ,  even if some diagonal elements and their elements of  ∆xk  
vanish.  It forces the values «ek»  to form a strictly descending sequence and therefore converge.

Must  «ek» → 0 ?
Not necessarily.  Not without some further constraint upon  Ωk .

The simplest further constraint is constancy.  If the one diagonal  Ωk := Ω  has diagonal elements 
strictly between  0  and 2 ,  then the convergence of  «ek»  forces  ck'·(2I – Ω)·Ω·ck → 0 ,  whence 

follows  ck → o  and then  ek = –A–1·(I – L·Ω)·ck → o  too as desired.  Moreover the sequence of 
values  «∆xk»  can be shown to descend to  0  monotonically too.  But roundoff spoils all that.

Because roundoff can prevent the convergence of  ek  to  o ,  some other goal for  SOR  must be 
accepted.  Our chosen goal is to continue iterating no longer than while a diagonal  Ωk  exists in  
O ≤ Ωk < 2I  such that the computed nonzero  ∆xk := xk+1 – xk  and the true but not quite known 
current residual  ck  satisfy  ∆xk = Ωk·ck  exactly,  thus ensuring that   «ek+1» = «ek+∆xk» < «ek» .   

Drop subscript  k  again.  Let  u  bound roundoff elementwise in the computed value  c  so that the 
true current residual surely lies within  c ± u ;  for instance,  while  |∆x| ≤ |x|  we may set,  say,  
u := ( |b| + 2·|A|·|x| )·ε  where  ε  is the arithmetic’s roundoff threshold.  Let  v  bound roundoff in 
the computed  ∆x  so that the computed new  x + ∆x  will surely lie within  x + Ω·c ± v ;  for 
instance,  we may set  v := ( |x| + 2Ω·|c| )·ε .  The columns  u  and  v  of overestimates can be 
computed simultaneously with  c  and  ∆x ,  or else just once after  x  stops changing much.
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Here are two ways to decide when to stop  SOR  iterating:

As the elements of the new  x + ∆x  are being computed in turn from top to bottom,  leave a new 
element unchanged  (thus treating the corresponding element of  ∆x  as  0 )  if the corresponding 
element of  |c| ≤ u .  Otherwise  ∆x  will have the correct sign but,  to keep  ∆x  from getting too 
big,  reduce the corresponding diagonal element of  Ω  if necessary to keep it between  0  and  
max{0,  2 – (2u+v)./|c| }  .  If  2I – Ω  is not too small,  a simpler alternative leaves unaltered any 
element of  x  corresponding to an element of  (2I – Ω)·|c| ≤ 2u + v .  Either way,  whenever a 
computed  (rounded)  element of the new  x + ∆x  matches the old  x ,  regard that element of  ∆x  
as  0 ;  otherwise the new  x + ∆x  is better than the old  x  because  «e + ∆x» < «e» .

STOP ITERATING  as soon as all of  ∆x = o ,  if not sooner.

This stopping criterion takes no notice of the rate of convergence,  which can be arbitrarily slow 
even if  Ω  was chosen to maximize it.  Convergence must be slow if  A  is nearly singular,  and 
may be slow otherwise too,  but continues without dithering until the residual  r := b – A·x  is not 
much bigger than its uncertainty  ±u  due to roundoff in its own computation.  After that the error  

e = x – z = –A–1·r  cannot much exceed the smallest uncertainty that the condition of  A  allows.

Choosing  Ω  optimally is a hard problem solved in the  1950s  only partially for some special but 
common cases.  Under-Relaxation (Ω ≤ I)  has accelerated convergence for a few matrices  A ,  
but  Over-Relaxation (Ω ≥ I)  has been found better for most others.  In most of these other cases  
2I – Ω ≈ 1 – ç  is too small for the simpler alternative above;  stopping when  (2I – Ω)·|c| ≤ 2u + v  
then stops too soon,  sooner than signalled by  §4’s  probabilistic stopping criterion.

§6.  Conclusion
If any further incentive were needed to avoid slowly convergent iterations,  it would be supplied 
by questions about stopping.  They didn’t matter while arithmetic’s precision amply exceeded the 
desired accuracy,  but become troublesome when precision barely exceeds the accuracy desired.
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