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Notes on  Nonlinear Newton Iterations  at a  Typical Singularity

 

Given a nonlinear  n-vector-valued function  ƒ(x)  of an  n-vector  x

 

 

 

,  a solution  z  of the equation  
ƒ(z) = o  is often sought by means of  

 

Newton’s Iteration

 

  x

 

k+1

 

 := Nƒ(x

 

k

 

)  wherein  

 

Newton’s 

Iterating Function

 

  Nƒ(x) := x – ƒ

 

'

 

(x)

 

–1

 

·ƒ(x)

 

 

 

.  Here  ƒ

 

'

 

(x) := 

 

∂

 

ƒ(x)/

 

∂

 

x  is the  n-by-n  

 

Jacobian 
Matrix

 

  of first partial derivatives;  it is usually presumed adequately differentiable and invertible 
at all  x  in some open neighborhood of the desired solution  z ,  and then  

Nƒ(x) – z 

 

=

 

 ƒ

 

'

 

(x)

 

–1

 

·

 

(

 

 

 

ƒ

 

"

 

(x)·(x–z) + …

 

 

 

)

 

·(x–x) 

 

≈

 

 

 

O

 

(x–z)

 

2

 

  as  x 

 

→

 

 z .  
Those presumptions imply at least  

 

Quadratic Convergence

 

.  This happens almost always.

The iteration’s behavior is not so easy to characterize in some singular situations.  Among these 
the most common has  det(ƒ

 

'

 

(x)) = 0  but  

 

∂

 

 

 

det(ƒ

 

'

 

(x))/

 

∂

 

x 

 

≠

 

 o

 

`

 

  at  x = z

 

 

 

.  Thus  det(ƒ

 

'

 

(x)) = 0  
along some curve (n = 2)  or  (hyper)surface (n 

 

≥

 

 3)  that passes through  z  but does not intersect 
itself there,  not even tangentially.  Call this locus  “

 

 

 

$

 

 

 

”

 

 

 

.  It divides some open neighborhood of  z  
into two open regions in which  det(ƒ

 

'

 

(x))  takes opposite signs.  Nƒ(x)  is either ambiguous or 
infinite on  $  because  ƒ

 

'

 

(x)  is not invertible there.  These notes explore the behavior of  Newton’s  
iteration when it converges to  z  but no iterate falls into  $

 

 

 

.  Convergence turns out to be  

 

Linear

 

  
rather than quadratic,  and iterates approaching  z  usually tend to avoid  $

 

 

 

,  as we shall see.  Our 
conclusions are summarized on  p. 3  and illustrated by examples on  p. 4.

 

The  Derivative  row  h`(x) := 

 

∂

 

det(ƒ'(x))/

 

∂

 

x .

 

Jacobi’s Formula

 

  for the derivative of a determinant says  d

 

 

 

det(B) = Trace(Adj(B)·dB)  wherein 
the  Trace  is the sum of all diagonal elements,  and  Adj(B)  is the  

 

Classical Adjoint

 

  or 

 

Adjugate

 

 

 

:  

Adj(B) := det(B)·B

 

–1

 

  when  det(B) 

 

≠

 

 0  and is otherwise defined by the continuity of what turns 
out to be a polynomial function of the elements of  B  defined by  B·Adj(B) 

 

≡

 

 Adj(B)·B 

 

≡

 

 det(B)·I  
in general.  There are other equivalent definitions of  Adj(B)  in terms of determinants or the  

 

Characteristic Polynomial

 

  of  B ,  but all we need from them is this fact:  Adj(B) 

 

≠

 

 O  just when 
the  n-by-n  matrix  B  has  Rank(B) 

 

≥

 

 n–1 ,  and then  Rank(Adj(B)) = n – (n–1)·(n – Rank(B)) .  
Jacobi’s  formula is derived at  

 

<www.cs.berkeley.edu/~wkahan/MathH110/jacobi.pdf>

 

.

Jacobi’s  formula says  d

 

 

 

det(ƒ

 

'

 

(x)) = Trace(Adj(ƒ

 

'

 

(x))·ƒ

 

"

 

(x)·dx)  wherein the second derivative  
ƒ

 

"

 

  is a bilinear operator that maps  n-vectors  y  and  z  each linearly to an  n-vector  ƒ

 

"

 

(x)·y·z  
that,  in general,  varies nonlinearly with  x  and,  if continuously,  ƒ

 

"

 

(x)·y·z = ƒ

 

"

 

(x)·z·y .  In 
particular  ƒ

 

"

 

(x)·dx  is a matrix whose every element depends linearly upon column  dx ,  so there 
must be some row  n-vector  h

 

`

 

(x) = 

 

∂

 

 

 

det(ƒ

 

'

 

(x))/

 

∂

 

x  satisfying  d

 

 

 

det(ƒ

 

'

 

(x)) = h

 

`

 

(x)·dx  for all  dx ;  
and if  h

 

`

 

(z) 

 

≠

 

 o

 

`

 

  then the equation of the plane tangent to  $  at  z  is  h

 

`

 

(z)·(x–z) = 0 .

We assume henceforth that  h

 

`

 

(z) 

 

≠

 

 o

 

`

 

  and  det(ƒ

 

'

 

(z)) = 0 ,  whence  Rank(ƒ

 

'

 

(z)) = n–1  and hence  
Rank(Adj(ƒ

 

'

 

(z))) = 1 ,  so  Adj(ƒ

 

'

 

(z)) = w·v

 

`

 

  for two nonzero vectors satisfying  ƒ

 

'

 

(z)·w = o  and  
v

 

`

 

·ƒ

 

'

 

(z) = o

 

`

 

 .  Consequently
 h

 

`

 

(z)·dx = Trace(Adj(ƒ

 

'

 

(z))·ƒ

 

"

 

(z)·dx) = Trace(w·v

 

`

 

·ƒ

 

"

 

(z)·dx) = Trace(v

 

`

 

·ƒ

 

"

 

(z)·w·dx) 
and therefore  h

 

`

 

(z) = v

 

`

 

·ƒ"(z)·w = ∂ det(ƒ'(x))/∂x  at  x = z .  We shall need this formula later.
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A  Taylor Series  expansion of  ƒ  will be presumed valid for  x  in some open neighborhood of  z :

         ƒ(x) = o + ƒ'(z)·(x–z) + ƒ"(z)·(x–z)·(x–z) + ƒ'"(z)·(x–z)·(x–z)·(x–z) + … .

         ƒ'(x) = ƒ'(z) + ƒ"(z)·(x–z) + ƒ'"(z)·(x–z)·(x–z) + … ;   det(ƒ'(z)) = 0 ;   Adj(ƒ'(z)) = w·v` .

         det(ƒ'(x)) = h`·(x–z) + …  wherein   h` := v`·ƒ"(z)·w ≠ o` .
Needed next is a  Taylor  series expansion for  Newton’s  iterating function:

         Nƒ(x) = x – ƒ'(x)–1·ƒ(x) 

         = z + (ƒ' + ƒ"·(x–z) + ƒ'"·(x–z)·(x–z) + … )–1·(ƒ"·(x–z) + ƒ'"·(x–z)·(x–z) + … )·(x–z)

in which all derivatives of  ƒ(x)  are evaluated at  x = z .  This is too messy.  It must be simplified.

A Change of Coordinates.
By a process akin to  Gaussian Elimination  with  Pivotal Exchanges  of both rows and columns,  

we can obtain a diagonal matrix   L–1·ƒ'(z)·U–1 = M :=   using suitably permuted lower- and 

upper-triangular matrices  L  and  U .  These figure in a simplifying change of variables from  x  to  

u := U·(x–z) .  Let  g(u) := L–1·ƒ(z + U–1·u)  so that  Newton’s  iterating function for  g  is  

Ng(u) := u – g'(u)–1·g(u) = U·(Nƒ(z + U–1·u) – z) .  In other words,  the iteration  xk+1 := Nƒ(xk)  
starting from  x0  is mimicked by the iteration   uk+1 := Ng(uk)  starting from  u0 := U·(x0 – z)  in 
so far as every  uk = U·(xk – z) .  Iterates  xk → z  just as fast  (if at all)  as  uk → o .

Thus no generality is lost by assuming  z = o = ƒ(o) ,  ƒ'(o) = M := ,   Adj(ƒ'(o)) = = v·v`  

in which  w` = v` = [o`   1] ,  and the foregoing  Taylor  series for  Nƒ(x)  is simplified to … 

         Nƒ(x) = (M + ƒ"·x + ƒ'"·x·x + … )–1·(ƒ"·x + ƒ'"·x·x + … )·x 

        = x – (M + ƒ"·x + ƒ'"·x·x + … )–1·(M – ƒ'"·x·x + … )·x  

in which all derivatives of  ƒ(x)  are evaluated at  x = o .  Further progress requires a partition of  

ƒ"·x =    in which  Xx  is an  (n–1)-by-(n–1)  matrix whose every element is a linear 

function of  x .  Similarly for the column  C·x ,  the row  x`·R`  and the scalar  h`·x .  In fact  
h`·x = v`·ƒ"·x·v = v`·ƒ"·v·x = [v`·R`   h`·v]·x  so  h` = [v`·R`   h`·v] = ∂ det(ƒ'(x))/∂x  at  x = o  as 
expected,  and  h` ≠ o`  has been assumed.  Later much of our analysis will be affected by whether 
the last element of  h` ,  namely  h`·v ,  is zero.

Let       := ƒ'(x)–1 = (M + ƒ"·x + ƒ'"·x·x + … )–1 = (  + ƒ'"·x·x + …)–1 .

Here a process akin to  Gaussian  elimination provides estimates

 µ(x) = det(I + Xx + O(x)2)/det(ƒ'(x)) = 1/( h`·x + O(x)2 ) , 

 column  c(x) = –(I–Xx)·C·x + O(x)2 , 

 row  r`(x) = –x`·R`·(I–Xx) + O(x)2 ,   and  

 matrix  W(x) = I–Xx + µ(x)·c(x)·r`(x) + O(x)2   as  x → o .
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These estimates produce an estimate of   Nƒ(x) = ·x + µ(x)·O(x)3 .

What happens next depends upon whether  x  approaches  z  ( = o )  too nearly tangentially to the 

surface  $  on which  det(ƒ'(x)) = 0 .  If so,  h`·x = O(x)2 ,  and then   µ(x) = 1/O(x)2  can be 

arbitrarily big,  so big that the computation of  ƒ'(x)–1·ƒ(x)  and thus  Nƒ(x)  malfunctions because 
of roundoff if not division by zero.

To avoid that malfunction we must keep  |h`·x| >> O(x)2
 ,  though  h`·x = O(x) ,  so that terms like  

µ(x)·O(x)2  stay no bigger than  O(x)  as  x → o .  Under these circumstances  W(x) = I + O(x)  

and then   Nƒ(x) = ([–µ·r`   1]·x)·v + O(x)2 = O(x)·v + O(x)2 .  Thus,  if  Nƒ(x)  is not  O(x)2  it 

is likely to take the form  Nƒ(x) = ß·v + O(ß)2  for some tiny scalar  ß = O(x) .  Whether these 
circumstances persist and avoid malfunctions depends upon whether the last element  h`·v  of  h`  
is zero.

If,  as is most likely,  h`·v ≠ 0  then iterates of the form  x = ß·v + O(ß)2  for sufficiently tiny 

nonzero scalars  ß  turn into  Nƒ(x) = ß·v + O(ß)2 ≈ x  because  µ(x) = 1/(ß·h`·v + O(ß)2)  is 

not too tiny,  and then convergence is linear with rate  log(2)  and iterates approach  z  along a 
direction  v  that is  Transverse  (not tangential)  to the surface  $ .

In tbe unlikely case that  h`·v = 0  the iteration’s behavior is difficult to predict because,  although 

iterates  x  tend often to come close to the form  x = ß·v + O(ß)2
 ,  it is too nearly tangential to  $ .

Summary.
If  ƒ(z) = o  and  det(ƒ'(z)) = 0  and  Newton’s  iteration is started close enough to  z  but not too 
much closer to the locus  $  on which  det(ƒ'(x)) = 0 ,  the iteration’s convergence to  z  is linear 
with rate  log(2)  provided a technical condition  ( ∂ det(ƒ'(x))/∂x  at  x = z )·Adj(ƒ'(z)) ≠ o`  is 
satisfied by the second derivative  ƒ"(z) ,  as is usually the case.  This technical condition can be 
described in terms of nonzero null-vectors  v` ≠ o` = v`·ƒ'(z)  and  w ≠ o = ƒ'(z)·w  of singular 

matrix  ƒ'(z) :  it is that  v`·ƒ"(z)·w·w ≠ 0 .  And then iterates  xk+1 := xk – ƒ'(xk)–1·ƒ(xk)  approach 

the desired zero  z  very nearly like  z + (ß/2k)·w  for some small nonzero scalar constant  ß .

Example p :

For column  2-vector arguments  x  let column  2-vector  p(x) := a + B·x + /2  in which  

a = , B = , C1 = , C2 = .   Now  p( ) = o  and  p'( ) = /2  is 

nonsingular,  so  Newton’s  iteration converges quadratically to this zero of  p  as expected.  But

1
2
--- I W– o

µ– r⋅ ' 1

1
2
---

1
2
--- 1

2
---
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p( ) = o  has a singular  p'( ) = ;  now  v` = [1  0] ,  w =    and   v`·ƒ"(z)·w·w = 5 ≠ 0 ,  

so  Newton’s  iterates  xk  tend to this “double” zero  z  of  p  linearly like  z + (ß/2k)·w .  Try it!

Newton’s  iterating function   Np(x) := x – p'(x)–1·p(x)   may tend to infinity as  x  tends to the 

parabola on which   det(p'(x)) = 0 .  The equation   –det(p'( )) = (ξ+η–7)2 + 5ξ – 51 = 0   of the 

parabola is solved by its parametrization:   ξ = ξ(τ) := 7 + 8τ – 5τ2  and  η = η(τ) := 5τ2 – 3τ – 4 .  

Np(x)  becomes indeterminate at two points on this parabola:  One is the “double” zero  z =   

and the second is the point  x =  .  As  x  approaches a third point    on the parabola,  the 

direction of  Np(x)–x = –p'(x)–1·p(x)  approaches tangency with the parabola;  elsewhere than 
near these three points,  the direction of  Np(x)–x  throws  Newton’s  iterate  Np(x)  violently 
across the parabola as  x  approaches it.

Example q :

For column  2-vector arguments  x  let column  2-vector  q(x) := a + B·x + /2  in which  

a = , B = , C1 = , C2 = .   Now  q( ) = o  and  q'( ) = O  has rank  0  so the 

analysis displayed above cannot explain the linear convergence of  Newton’s  iteration to this zero  
z .  Worse,  q(x) = o  all along the line whose equation is  [1   1]·x = –2  and thereon,  except at this 
zero  z ,   q'(x)  is a nonzero scalar multiple of  [1   1]·[1   1]` ,  so  v`  and  w`  are nonzero scalar 
multiples of  [1   -1]  whence  v`·ƒ"(z)·w·w = 0 .  Consequently the analysis displayed above does 
not explain why  Newton’s  iterates  xk  converge to no zero of  q  on that line other than the zero  

z = ,  and converges to it like   z + (ß/2k)·w .  Try it!
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