Notes on Nonlinear Newton Iterations at a Typical Singularity

Given a nonlinear n -vector-valued function $f(\mathrm{x})$ of an n -vector x , a solution z of the equation $f(\mathrm{z})=\mathrm{o}$ is often sought by means of Newton's Iteration $\mathrm{x}_{\mathrm{k}+1}:=\mathrm{N} f\left(\mathrm{x}_{\mathrm{k}}\right)$ wherein Newton's
Iterating Function $\mathrm{N} f(\mathrm{x}):=\mathrm{x}-f^{\prime}(\mathrm{x})^{-1} \cdot f(\mathrm{x})$. Here $f^{\prime}(\mathrm{x}):=\partial f(\mathrm{x}) / \partial \mathrm{x}$ is the $\mathrm{n}-$ by -n Jacobian Matrix of first partial derivatives; it is usually presumed adequately differentiable and invertible at all x in some open neighborhood of the desired solution z, and then

$$
\mathrm{N} f(\mathrm{x})-\mathrm{z}=f^{\prime}(\mathrm{x})^{-1} \cdot\left(f^{\prime \prime}(\mathrm{x}) \cdot(\mathrm{x}-\mathrm{z})+\ldots\right) \cdot(\mathrm{x}-\mathrm{x}) \approx O(\mathrm{x}-\mathrm{z})^{2} \text { as } \mathrm{x} \rightarrow \mathrm{z}
$$

Those presumptions imply at least Quadratic Convergence. This happens almost always.
The iteration's behavior is not so easy to characterize in some singular situations. Among these the most common has $\operatorname{det}\left(f^{\prime}(x)\right)=0$ but $\partial \operatorname{det}\left(f^{\prime}(x)\right) / \partial x \neq 0$ at $x=z$. Thus $\operatorname{det}\left(f^{\prime}(x)\right)=0$ along some curve $(\mathrm{n}=2$) or (hyper)surface $(\mathrm{n} \geq 3)$ that passes through z but does not intersect itself there, not even tangentially. Call this locus " $\$$ ". It divides some open neighborhood of z into two open regions in which $\operatorname{det}\left(f^{\prime}(\mathrm{x})\right)$ takes opposite signs. $\mathrm{N} f(\mathrm{x})$ is either ambiguous or infinite on $\$$ because $f^{\prime}(x)$ is not invertible there. These notes explore the behavior of Newton's iteration when it converges to z but no iterate falls into $\$$. Convergence turns out to be Linear rather than quadratic, and iterates approaching z usually tend to avoid $\$$, as we shall see. Our conclusions are summarized on p. 3 and illustrated by examples on p. 4.

The Derivative row $h^{\prime}(x):=\partial \operatorname{det}\left(f^{\prime}(x)\right) / \partial \mathbf{x}$.

Jacobi's Formula for the derivative of a determinant says $\mathrm{d} \operatorname{det}(\mathrm{B})=\operatorname{Trace}(\operatorname{Adj}(\mathrm{B}) \cdot \mathrm{dB})$ wherein the Trace is the sum of all diagonal elements, and $\operatorname{Adj}(\mathrm{B})$ is the Classical Adjoint or Adjugate: $\operatorname{Adj}(B):=\operatorname{det}(B) \cdot B^{-1}$ when $\operatorname{det}(B) \neq 0$ and is otherwise defined by the continuity of what turns out to be a polynomial function of the elements of B defined by $B \cdot \operatorname{Adj}(B) \equiv \operatorname{Adj}(B) \cdot B \equiv \operatorname{det}(B) \cdot I$ in general. There are other equivalent definitions of $\operatorname{Adj}(B)$ in terms of determinants or the Characteristic Polynomial of B, but all we need from them is this fact: $\operatorname{Adj}(B) \neq O$ just when the $n-b y-n$ matrix B has $\operatorname{Rank}(B) \geq n-1$, and then $\operatorname{Rank}(\operatorname{Adj}(B))=n-(n-1) \cdot(n-\operatorname{Rank}(B))$. Jacobi’s formula is derived at <www.cs.berkeley.edu/~wkahan/MathH110/jacobi.pdf>.

Jacobi's formula says $d \operatorname{det}\left(f^{\prime}(x)\right)=\operatorname{Trace}\left(\operatorname{Adj}\left(f^{\prime}(x)\right) \cdot f^{\prime \prime}(x) \cdot d x\right)$ wherein the second derivative $f^{\prime \prime}$ is a bilinear operator that maps n-vectors y and z each linearly to an n-vector $f^{\prime \prime}(x) \cdot \mathrm{y} \cdot \mathrm{z}$ that, in general, varies nonlinearly with x and, if continuously, $f^{\prime \prime}(x) \cdot y \cdot z=f^{\prime \prime}(x) \cdot z \cdot y$. In particular $f^{\prime \prime}(\mathrm{x}) \cdot \mathrm{dx}$ is a matrix whose every element depends linearly upon column dx , so there must be some row n-vector $h^{\prime}(x)=\partial \operatorname{det}\left(f^{\prime}(x)\right) / \partial x$ satisfying $d \operatorname{det}\left(f^{\prime}(x)\right)=h^{\prime}(x) \cdot d x$ for all $d x$; and if $h^{`}(z) \neq o^{`}$ then the equation of the plane tangent to $\$$ at z is $h^{`}(z) \cdot(x-z)=0$.

We assume henceforth that $\mathrm{h}^{`}(\mathrm{z}) \neq \mathrm{o}^{`}$ and $\operatorname{det}\left(f^{\prime}(\mathrm{z})\right)=0$, whence $\operatorname{Rank}\left(f^{\prime}(\mathrm{z})\right)=\mathrm{n}-1$ and hence $\operatorname{Rank}\left(\operatorname{Adj}\left(f^{\prime}(z)\right)\right)=1$, so $\operatorname{Adj}\left(f^{\prime}(z)\right)=w \cdot v^{`}$ for two nonzero vectors satisfying $f^{\prime}(z) \cdot \mathrm{w}=\mathrm{o}$ and $\mathrm{v}^{`} \cdot f^{\prime}(\mathrm{z})=o^{`}$. Consequently
$h^{\prime}(\mathrm{z}) \cdot \mathrm{dx}=\operatorname{Trace}\left(\operatorname{Adj}\left(f^{\prime}(\mathrm{z})\right) \cdot f^{\prime \prime}(\mathrm{z}) \cdot \mathrm{dx}\right)=\operatorname{Trace}\left(\mathrm{w} \cdot \mathrm{v}^{`} \cdot f^{\prime \prime}(\mathrm{z}) \cdot \mathrm{dx}\right)=\operatorname{Trace}\left(\mathrm{v}^{`} \cdot f^{\prime \prime}(\mathrm{z}) \cdot \mathrm{w} \cdot \mathrm{dx}\right)$ and therefore $h^{\prime}(z)=v^{`} \cdot f^{\prime \prime}(z) \cdot w=\partial \operatorname{det}\left(f^{\prime}(x)\right) / \partial x$ at $x=z$. We shall need this formula later.

A Taylor Series expansion of f will be presumed valid for x in some open neighborhood of z :

$$
\begin{aligned}
& f(\mathrm{x})=\mathrm{o}+f^{\prime}(\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z})+\frac{1}{2} f^{\prime \prime}(\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z})+\frac{1}{6} f^{\prime \prime \prime}(\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z})+\ldots . \\
& f^{\prime}(\mathrm{x})=f^{\prime}(\mathrm{z})+f^{\prime \prime}(\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z})+\frac{1}{2} f^{\prime \prime \prime}(\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z})+\ldots ; \operatorname{det}\left(f^{\prime}(\mathrm{z})\right)=0 ; \operatorname{Adj}\left(f^{\prime}(\mathrm{z})\right)=\mathrm{w} \cdot \mathrm{v}^{`} . \\
& \operatorname{det}\left(f^{\prime}(\mathrm{x})\right)=\mathrm{h}^{\prime} \cdot(\mathrm{x}-\mathrm{z})+\ldots \text { wherein } \quad \mathrm{h}^{`}:=\mathrm{v}^{`} \cdot f^{\prime \prime}(\mathrm{z}) \cdot \mathrm{w} \neq \mathrm{o}^{`} .
\end{aligned}
$$

Needed next is a Taylor series expansion for Newton's iterating function:

$$
\begin{aligned}
& \mathrm{N} f(\mathrm{x})=\mathrm{x}-f^{\prime}(\mathrm{x})^{-1} \cdot f(\mathrm{x}) \\
& =\mathrm{z}+\frac{1}{2}\left(f^{\prime}+f^{\prime \prime} \cdot(\mathrm{x}-\mathrm{z})+\frac{1}{2} f^{\prime \prime} \cdot \cdot(\mathrm{x}-\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z})+\ldots\right)^{-1} \cdot\left(f^{\prime \prime} \cdot(\mathrm{x}-\mathrm{z})+\frac{2}{3} f^{\prime \prime \prime} \cdot(\mathrm{x}-\mathrm{z}) \cdot(\mathrm{x}-\mathrm{z})+\ldots\right) \cdot(\mathrm{x}-\mathrm{z})
\end{aligned}
$$

in which all derivatives of $f(\mathrm{x})$ are evaluated at $\mathrm{x}=\mathrm{z}$. This is too messy. It must be simplified.

A Change of Coordinates.

By a process akin to Gaussian Elimination with Pivotal Exchanges of both rows and columns, we can obtain a diagonal matrix $L^{-1} \cdot f^{\prime}(\mathrm{z}) \cdot \mathrm{U}^{-1}=\mathrm{M}:=\left[\begin{array}{ll}\mathrm{I} & 0 \\ \mathrm{o}^{\prime} & 0\end{array}\right]$ using suitably permuted lower- and upper-triangular matrices L and U. These figure in a simplifying change of variables from x to $\mathrm{u}:=\mathrm{U} \cdot(\mathrm{x}-\mathrm{z})$. Let $\mathrm{g}(\mathrm{u}):=\mathrm{L}^{-1} \cdot f\left(\mathrm{z}+\mathrm{U}^{-1} \cdot \mathrm{u}\right)$ so that Newton's iterating function for g is $\mathrm{Ng}(\mathrm{u}):=\mathrm{u}-\mathrm{g}^{\prime}(\mathrm{u})^{-1} \cdot \mathrm{~g}(\mathrm{u})=\mathrm{U} \cdot\left(\mathrm{N} f\left(\mathrm{z}+\mathrm{U}^{-1} \cdot \mathrm{u}\right)-\mathrm{z}\right)$. In other words, the iteration $\mathrm{x}_{\mathrm{k}+1}:=\mathrm{N} f\left(\mathrm{x}_{\mathrm{k}}\right)$ starting from x_{0} is mimicked by the iteration $u_{k+1}:=\operatorname{Ng}\left(u_{k}\right)$ starting from $u_{0}:=U \cdot\left(x_{0}-z\right)$ in so far as every $u_{k}=U \cdot\left(x_{k}-z\right)$. Iterates $x_{k} \rightarrow z$ just as fast (if at all) as $u_{k} \rightarrow 0$.

Thus no generality is lost by assuming $\mathrm{z}=\mathrm{o}=f(\mathrm{o}), f^{\prime}(\mathrm{o})=\mathrm{M}:=\left[\begin{array}{cc}\mathrm{I} & 0 \\ \mathrm{o}^{\prime} & 0\end{array}\right], \quad \operatorname{Adj}\left(f^{\prime}(\mathrm{o})\right)=\left[\begin{array}{ll}\mathrm{O} & 0 \\ \mathrm{o}^{\prime} & 1\end{array}\right]=\mathrm{v} \cdot \mathrm{v}^{\prime}$ in which $\mathrm{w}^{`}=\mathrm{v}^{`}=\left[\begin{array}{ll}\mathrm{o}^{`} & 1\end{array}\right]$, and the foregoing Taylor series for $\mathrm{N} f(\mathrm{x})$ is simplified to \ldots

$$
\begin{aligned}
\mathrm{N} f(\mathrm{x}) & =\frac{1}{2}\left(\mathrm{M}+f^{\prime \prime} \cdot \mathrm{x}+\frac{1}{2} f^{\prime \prime \prime} \cdot \mathrm{x} \cdot \mathrm{x}+\ldots\right)^{-1} \cdot\left(f^{\prime \prime} \cdot \mathrm{x}+\frac{2}{3} f^{\prime \prime \prime} \cdot \mathrm{x} \cdot \mathrm{x}+\ldots\right) \cdot \mathrm{x} \\
& =\frac{1}{2} \mathrm{x}-\frac{1}{2}\left(\mathrm{M}+f^{\prime \prime} \cdot \mathrm{x}+\frac{1}{2} f^{\prime \prime \prime} \cdot \mathrm{x} \cdot \mathrm{x}+\ldots\right)^{-1} \cdot\left(\mathrm{M}-\frac{1}{6} f^{\prime \prime} \cdot \mathrm{x} \cdot \mathrm{x}+\ldots\right) \cdot \mathrm{x}
\end{aligned}
$$

in which all derivatives of $f(\mathrm{x})$ are evaluated at $\mathrm{x}=\mathrm{o}$. Further progress requires a partition of $f^{\prime \prime} \cdot x=\left[\begin{array}{cc}X x & C \cdot x \\ X^{\prime} \cdot R^{\prime} & h^{\prime} \cdot x\end{array}\right]$ in which $X x$ is an (n-1)-by-(n-1) matrix whose every element is a linear function of x. Similarly for the column $C \cdot x$, the row $x^{`} \cdot R^{\prime}$ and the scalar $h \cdot x$. In fact $h^{\prime} \cdot x=v^{`} \cdot f^{\prime \prime} \cdot x \cdot v=v^{`} \cdot f^{\prime \prime} \cdot v \cdot x=\left[v^{`} \cdot R^{`} \quad h \cdot v\right] \cdot x$ so $h^{`}=\left[v^{`} \cdot R^{`} \quad h^{\prime} \cdot v\right]=\partial \operatorname{det}\left(f^{\prime}(x)\right) / \partial x$ at $x=0$ as expected, and $h^{`} \neq \mathrm{o}^{`}$ has been assumed. Later much of our analysis will be affected by whether the last element of $\mathrm{h}^{`}$, namely $\mathrm{h} \cdot \mathrm{v}$, is zero.

Let $\left[\begin{array}{cc}\mathrm{W} & \mu \cdot \mathrm{c} \\ \mu \cdot \mathrm{r}^{\prime} & \mu\end{array}\right]:=f^{\prime}(\mathrm{x})^{-1}=\left(\mathrm{M}+f^{\prime \prime} \cdot \mathrm{x}+\frac{1}{2} f^{\prime \prime \prime} \cdot \mathrm{x} \cdot \mathrm{x}+\ldots\right)^{-1}=\left(\left[\begin{array}{cc}\mathrm{I}+\mathrm{Xx} & \mathrm{C} \cdot \mathrm{x} \\ \mathrm{x}^{\prime} \cdot \mathrm{R}^{\prime} & h^{\prime} \cdot x\end{array}\right]+\frac{1}{2} f^{\prime \prime \prime} \cdot \mathrm{x} \cdot \mathrm{x}+\ldots\right)^{-1}$.
Here a process akin to Gaussian elimination provides estimates

$$
\begin{aligned}
& \mu(\mathrm{x})=\operatorname{det}\left(\mathrm{I}+\mathrm{Xx}+O(\mathrm{x})^{2}\right) / \operatorname{det}\left(f^{\prime}(\mathrm{x})\right)=1 /\left(\mathrm{h} \cdot \mathrm{x}+O(\mathrm{x})^{2}\right), \\
& \operatorname{column} \mathrm{c}(\mathrm{x})=-(\mathrm{I}-\mathrm{Xx}) \cdot \mathrm{C} \cdot \mathrm{x}+O(\mathrm{x})^{2} \\
& \text { row } \mathrm{r}^{\prime}(\mathrm{x})=-\mathrm{x}^{\prime} \cdot \mathrm{R}^{\prime} \cdot(\mathrm{I}-\mathrm{Xx})+O(\mathrm{x})^{2}, \text { and } \\
& \text { matrix } \mathrm{W}(\mathrm{x})=\mathrm{I}-\mathrm{Xx}+\mu(\mathrm{x}) \cdot \mathrm{c}(\mathrm{x}) \cdot \mathrm{r}^{\prime}(\mathrm{x})+O(\mathrm{x})^{2} \text { as } \mathrm{x} \rightarrow 0 .
\end{aligned}
$$

These estimates produce an estimate of $N f(x)=\frac{1}{2}\left[\begin{array}{cc}\mathrm{I}-\mathrm{W} & \mathrm{o} \\ -\mu \cdot \mathrm{r}^{\prime} & 1\end{array}\right] \cdot \mathrm{x}+\mu(\mathrm{x}) \cdot O(\mathrm{x})^{3}$.
What happens next depends upon whether x approaches $\mathrm{z}(=0)$ too nearly tangentially to the surface $\$$ on which $\operatorname{det}\left(f^{\prime}(x)\right)=0$. If so, $h^{`} \cdot x=O(x)^{2}$, and then $\mu(x)=1 / O(x)^{2}$ can be arbitrarily big, so big that the computation of $f^{\prime}(\mathrm{x})^{-1} \cdot f(\mathrm{x})$ and thus $\mathrm{N} f(\mathrm{x})$ malfunctions because of roundoff if not division by zero.

To avoid that malfunction we must keep $\left|\mathrm{h}^{`} \cdot \mathrm{x}\right| \ggg(\mathrm{x})^{2}$, though $\mathrm{h}^{`} \cdot \mathrm{x}=O(\mathrm{x})$, so that terms like $\mu(\mathrm{x}) \cdot O(\mathrm{x})^{2}$ stay no bigger than $O(\mathrm{x})$ as $\mathrm{x} \rightarrow \mathrm{o}$. Under these circumstances $\mathrm{W}(\mathrm{x})=\mathrm{I}+O(\mathrm{x})$ and then $\mathrm{N} f(\mathrm{x})=\frac{1}{2}\left(\left[\begin{array}{ll}-\mu \cdot \mathrm{r}^{`} & 1\end{array}\right] \cdot \mathrm{x}\right) \cdot \mathrm{v}+O(\mathrm{x})^{2}=O(\mathrm{x}) \cdot \mathrm{v}+O(\mathrm{x})^{2}$. Thus, if $\mathrm{N} f(\mathrm{x})$ is not $O(\mathrm{x})^{2}$ it is likely to take the form $\mathrm{N} f(\mathrm{x})=\beta \cdot \mathrm{v}+O(\beta)^{2}$ for some tiny scalar $\beta=O(\mathrm{x})$. Whether these circumstances persist and avoid malfunctions depends upon whether the last element $h \cdot v$ of h is zero.

If, as is most likely, $h \cdot v \neq 0$ then iterates of the form $x=\beta \cdot v+O(\beta)^{2}$ for sufficiently tiny nonzero scalars β turn into $\mathrm{N} f(\mathrm{x})=\frac{1}{2} \beta \cdot \mathrm{v}+O(\beta)^{2} \approx \frac{1}{2} \mathrm{x}$ because $\mu(\mathrm{x})=1 /\left(\beta \cdot \mathrm{h} \cdot \mathrm{v}+O(\beta)^{2}\right)$ is not too tiny, and then convergence is linear with rate $\log (2)$ and iterates approach z along a direction v that is Transverse (not tangential) to the surface $\$$.

In tbe unlikely case that $h^{`} \cdot v=0$ the iteration's behavior is difficult to predict because, although iterates x tend often to come close to the form $\mathrm{x}=\beta \cdot \mathrm{v}+O(\beta)^{2}$, it is too nearly tangential to $\$$.

Summary.

If $f(z)=0$ and $\operatorname{det}\left(f^{\prime}(z)\right)=0$ and Newton's iteration is started close enough to z but not too much closer to the locus $\$$ on which $\operatorname{det}\left(f^{\prime}(x)\right)=0$, the iteration's convergence to z is linear with rate $\log (2)$ provided a technical condition $\left(\partial \operatorname{det}\left(f^{\prime}(\mathrm{x})\right) / \partial \mathrm{x}\right.$ at $\left.\mathrm{x}=\mathrm{z}\right) \cdot \operatorname{Adj}\left(f^{\prime}(\mathrm{z})\right) \neq \mathrm{o}^{`}$ is satisfied by the second derivative $f^{\prime \prime}(z)$, as is usually the case. This technical condition can be described in terms of nonzero null-vectors $\mathrm{v}^{`} \neq \mathrm{o}^{`}=\mathrm{v}^{`} \cdot f^{\prime}(\mathrm{z})$ and $\mathrm{w} \neq \mathrm{o}=f^{\prime}(\mathrm{z}) \cdot \mathrm{w}$ of singular matrix $f^{\prime}(\mathrm{z})$: it is that $\mathrm{v}^{`} \cdot f^{\prime \prime}(\mathrm{z}) \cdot \mathrm{w} \cdot \mathrm{w} \neq 0$. And then iterates $\mathrm{x}_{\mathrm{k}+1}:=\mathrm{x}_{\mathrm{k}}-f^{\prime}\left(\mathrm{x}_{\mathrm{k}}\right)^{-1} \cdot f\left(\mathrm{x}_{\mathrm{k}}\right)$ approach the desired zero z very nearly like $z+\left(\beta / 2^{k}\right) \cdot w$ for some small nonzero scalar constant β.

Example p :

For column 2-vector arguments x let column 2-vector $p(x):=a+B \cdot x+\left[\begin{array}{l}x^{\prime} \cdot C_{1} \cdot x \\ x^{\prime} \cdot c_{2} \cdot x\end{array}\right] / 2$ in which $\mathrm{a}=\left[\begin{array}{c}-15 / 2 \\ 11\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & -2 \\ 0 & 2\end{array}\right], \mathrm{C}_{1}=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], \mathrm{C}_{2}=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$. Now $\mathrm{p}\left(\left[\begin{array}{c}17 / 2 \\ -9 / 2\end{array}\right]\right)=0$ and $\mathrm{p}^{\prime}\left(\left[\begin{array}{cc}17 / 2 \\ -9 / 2\end{array}\right]\right)=\left[\begin{array}{cc}1 & 3 \\ 7 & 19\end{array}\right] / 2$ is nonsingular, so Newton's iteration converges quadratically to this zero of p as expected. But
$\mathrm{p}\left(\left[\begin{array}{c}7 \\ -4\end{array}\right]\right)=\mathrm{o}$ has a singular $\mathrm{p}^{\prime}\left(\left[\begin{array}{c}7 \\ -4\end{array}\right]\right)=\left[\begin{array}{cc}0 & 0 \\ 2 & 7\end{array}\right] ;$ now $\mathrm{v}^{`}=\left[\begin{array}{ll}1 & 0\end{array}\right], \mathrm{w}=\left[\begin{array}{c}7 \\ -2\end{array}\right]$ and $\mathrm{v}^{`} \cdot f^{\prime \prime}(\mathrm{z}) \cdot \mathrm{w} \cdot \mathrm{w}=5 \neq 0$, so Newton's iterates x_{k} tend to this "double" zero z of p linearly like $z+\left(\beta / 2^{k}\right) \cdot w$. Try it!

Newton's iterating function $\mathrm{Np}(\mathrm{x}):=\mathrm{x}-\mathrm{p}^{\prime}(\mathrm{x})^{-1} \cdot \mathrm{p}(\mathrm{x})$ may tend to infinity as x tends to the parabola on which $\operatorname{det}\left(\mathrm{p}^{\prime}(\mathrm{x})\right)=0$. The equation $-\operatorname{det}\left(\mathrm{p}^{\prime}\left(\left[\begin{array}{l}\xi \\ \eta\end{array}\right)\right)=(\xi+\eta-7)^{2}+5 \xi-51=0\right.$ of the parabola is solved by its parametrization: $\xi=\xi(\tau):=7+8 \tau-5 \tau^{2}$ and $\eta=\eta(\tau):=5 \tau^{2}-3 \tau-4$. $\mathrm{Np}(\mathrm{x})$ becomes indeterminate at two points on this parabola: One is the "double" zero $\mathrm{z}=\left[\begin{array}{c}7 \\ -4\end{array}\right]$ and the second is the point $\mathrm{x}=\left[\begin{array}{c}8.4 \\ -4.4\end{array}\right]$. As x approaches a third point $\left[\begin{array}{c}338 / 45 \\ -188 / 45\end{array}\right]$ on the parabola, the direction of $N p(x)-x=-p^{\prime}(x)^{-1} \cdot p(x)$ approaches tangency with the parabola; elsewhere than near these three points, the direction of $N p(x)-x$ throws Newton's iterate $N p(x)$ violently across the parabola as x approaches it.

Exampleq:

For column 2-vector arguments x let column 2-vector $q(x):=a+B \cdot x+\left[\begin{array}{l}x^{\prime} \cdot c_{1} \cdot x \\ x^{\prime} \cdot c_{2} \cdot x\end{array}\right] / 2$ in which $a=\left[\begin{array}{c}-6 \\ -4\end{array}\right], B=\left[\begin{array}{cc}-2 & 0 \\ 0 & 2\end{array}\right], C_{1}=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right], C_{2}=\left[\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right]$. Now $q\left(\left[\begin{array}{c}-6 \\ 4\end{array}\right]\right)=0$ and $q^{\prime}\left(\left[\begin{array}{c}-6 \\ 4\end{array}\right]\right)=O$ has rank 0 so the analysis displayed above cannot explain the linear convergence of Newton's iteration to this zero z. Worse, $q(x)=0$ all along the line whose equation is $\left[\begin{array}{ll}1 & 1\end{array}\right] \cdot x=-2$ and thereon, except at this zero $\mathrm{z}, \mathrm{q}^{\prime}(\mathrm{x})$ is a nonzero scalar multiple of $\left[\begin{array}{ll}1 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 1\end{array}\right]$, so $\mathrm{v}^{`}$ and $\mathrm{w}^{`}$ are nonzero scalar multiples of $\left[\begin{array}{ll}1 & -1\end{array}\right]$ whence $v^{`} \cdot f^{\prime \prime}(z) \cdot w \cdot w=0$. Consequently the analysis displayed above does not explain why Newton's iterates x_{k} converge to no zero of q on that line other than the zero $\mathrm{Z}=\left[\begin{array}{c}-6 \\ 4\end{array}\right]$, and converges to it like $\mathrm{z}+\left(\beta / 2^{\mathrm{k}}\right) \cdot \mathrm{w}$. Try it!

