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Problem: 

 

  Solve the equation   z = (1 – exp(–p·z))/(p·z)   for  z 

 

≥

 

 0  as a function of  p 

 

≥

 

 0 .  In 
particular,  we are interested in  z  when  p  is extremely tiny and roundoff corrupts the equation 

by introducing spurious roots  z  instead of the one true root  z = 1 – p/2 + 5p
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To obtain numbers of reasonable size when  p  is tiny,  we shall recast the equation in terms of the 
number  u := 1 ulp of 1 ,  which is the difference between  1  and the floating–point number next 
less than  1 .  Let  p := P·u .  Now we seek the set of roots  z = Z(P)  of the equation

z = (1 – Rounded

 

(

 

exp(–P·z·u)

 

)

 

)/(P·z·u) .

Next,  for small integer values  k = 0, 1, 2, 3, …, 100  in turn,  define  y

 

–1

 

 := 0  and  y

 

k

 

  to satisfy   
“ exp(–y·u)  rounds to  1 – k·u  throughout  y

 

k-1

 

 < y < y

 

k

 

 .”  Were  exp(…)  correctly rounded 

we’d find   Rounded

 

(

 

exp(–y·u)

 

)

 

 = 1 – k·u   just when   1 – (k+1/2)·u < exp(–y·u) < 1 – (k–1/2)·u ,  

which would determine  y

 

k

 

 =  –ln(1 – (k+1/2)·u)/u  

 

≈

 

  k + 1/2 + (k+1/2)

 

2

 

·u/2 + … .  In fact,  the 
last equation merely approximates  y

 

k

 

  because  exp(…)  is not quite correctly rounded;  still,  any 
respectable implementation of  exp(…)  should be monotonic in the sense that its rounded value 
does not decrease when its argument increases,  so  y

 

k

 

  should be well-defined and monotonic too:  
0 = y

 

–1

 

 < y

 

0

 

 < y

 

1

 

 < y

 

2

 

 < … .  These values have to be computed by applying binary chop to 
“solve”  (1 – exp(–y

 

k

 

·u))/u  =  k + 1/2  for  y

 

k

 

  on your computer.

Roundoff in  exp(…)  turns the equation to be solved into  z = k/(P·z)  while  y

 

k–1

 

 < P·z < y

 

k

 

 .  In 

other words,  a root is  z = Z

 

k

 

(P) := 

 

√

 

(k/P)  while  y

 

k–1
2

 

/k < P < y

 

k
2

 

/k ,  and on that interval  Zk(P)  
is a decreasing function:  k/yk–1 > Zk(P) > k/yk .  ( The case  k = 0  is a special case;  Z0(0) = 1  
and  Z0(P) := 0  for all  P > 0  although the equation involves  0/0  then.)  But numerical root-
finders find more  “roots”  z  generated by the jumps in the rounded values of  exp(…)  as follows:

Let  ø  stand for any sufficiently tiny positive number.  Then  Rounded(exp(–(yk–ø)·u)) = 1 – k·u  

and  Rounded(exp(–(yk+ø)·u)) = 1 – (k+1)·u .  Therefore,  while  x ≈ (yk±ø)/P  we find that the 

computed value of  f(x) :=  x – (1 – Rounded(exp(–P·x·u)))/(P·x·u)  jumps down from very nearly   
f((yk–ø)/P) ≈ yk/P – k/yk  > 0   to very nearly   f((yk+ø)/P) ≈ yk/P – (k+1)/yk  < 0  provided  

yk
2/(k+1) < P < yk

2/k .  On this interval the sign-changing jump of  f(x)  generates another 
spurious  “root”   z = Sk(P) := yk/P  that also decreases monotonically:  (k+1)/yk > Sk(P) > k/yk .

The graphs of  Zk  and  Sk  on their respective intervals connect each other alternately to form a 
single zig-zag curve.  See page 25 of   “Personal Calculator Has Key to Solve Any Equation  
f(x) = 0.” Hewlett–Packard Journal 30 #12 (Dec. 1979)  pp. 20-26.  ( A scanned copy is at  
http://www.cs.berkeley.edu/~wkahan/Math128/SOLVEkey.pdf .)  The following figure,  
produced by  Matlab 5  on a  µ68040-based Macintosh Quadra 950  shows true root  Z(P)  as a 
nearly horizontal dotted line;  the roots  Zk(P)  are shown solid red and blue,  and  Sk(P)  dashed or 
grey.  The figure after that was produced by the same  Matlab 5  program on a  Power Mac 8500,  
whose  exp(…)  is less accurate;  its missing legend on the left is a  Matlab -> PICT -> PDF  bug.  
On both computers,  numerical root-finders can find as many as five  “roots”  instead of one.
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function  y = solvezag(R, pts)
%  solvezag(R)  exhibits a zig-zag graph of the nonnegative roots  z  of the 
%  equation  z = ( 1 - exp(-u*P*z) )/(u*P*z)  where  u = eps/2  and  0 < P < R
%  and roundoff corrupts the equation  ( mainly by corrupting  exp(...) ) .
%  Restriction:  2 < R < 100 .  y = solvezag(R)  returns a column of the first
%  several  ( about  R )  points  y  where  ( 1 - exp(-y*u) )/u  jumps;  they
%  should be very near the consecutive half-integers  0.5, 1.5, 2.5, ... .
%  solvezag(R, pts)  plots at a density of  pts/R  instead of  128/R .  And
%  R = 10  by default if omitted.
if  ( nargin < 2 ),  pts = 128 ;  end
if  ( nargin < 1 ),  R = 10 ;  end
if  (R<2)|(R>100),  error( ' solvezag( R  out of range )' ),  end
K = round(R) ;  y = yk(K) ;
h = R/pts ;  P = h*[0:pts]' ;  Pend = P(1+pts) ;
u = eps/2 ;  Zt = 1 - 0.5*u*P.*(1 - (5/6)*u*P) ;  % ...  Zt = true root. 
Z0 = 0*P ;  Z0(1) = 1 ;  % ...  Z0 = degenerate root.
SP0 = [ y(1)^2 : h : Pend ]' ;  S0 = y(1)./SP0 ;  % ...  S0 = 1st spurious root
plot( SP0,S0,'--', P,Zt,'.',  P,Z0 )
ytop = max( [ S0(1), 2/y(2) ]) + 0.05 ;
axis( [0, R-1, -0.05, ytop ] ) ;  hold on ;
for  k = 1:(K-1) ,  % ...  superpose graphs of  "roots"  Zk  and  Sk .
     pl = y(k)*y(k)/k ;  pr = y(k+1)*y(k+1)/k ;  % ...  ends of range for  Zk
     prl = pr - pl ;  ptsk = round( prl/h ) + 1 ;
     ZPk = pl + (prl/ptsk)*[0:ptsk]' ;

 Zk = sqrt( k ./ ZPk ) ;
 pl = y(k+1)*y(k+1)/(k+1) ;  %  adjust left end of range for  Sk
 prl = pr - pl ;  ptsk = round( prl/h ) + 1 ;

     SPk = pl + (prl/ptsk)*[0:ptsk]' ;
 Sk = y(k+1) ./ SPk ;
 plot( ZPk,Zk, '-',  SPk,Sk, '--')  

   end  % ...  k
hold off ,  xlabel(' Parameter  P'),  ylabel(' Roots  Z' )
title( ' Roundoff Generates Multiple and Spurious Roots  Z(P) ')

function  y = yk(K)
%  yk(K) = [ yc(0.5), yc(1.5), yc(2.5), ..., yc(K+0.5) ]'  for  yc  below,
%  and for  nonnegative integer  K < 101 .
k = round(K)+1 ;
if  (k<1)|(k>101),  error('  yk( K  out of range )'),  end
y = zeros( k, 1) ;
for  j = [1:k]
      y(j) = yc(j - 0.5) ;
   end

function  y = yc(c)
%  yc(c) = solution  y  of  ef(y) = c ,  which see below,  by binary chop.
y = c-1.25 ;  fl = ef(y)-c ;  if  fl==0,  return,  end
yl = y ;
y = c+1.25 ;  fr = ef(y)-c ;  if  fr==0,  return,  end
yr = y ;
if  fl*fr > 0 ,  error('Oops!  Missed the sign reversal!'), end
y = (yl + yr)*0.5 ;
while  (y ~= yl) & (y ~= yr)
     f = ef(y)-c ;  if  f==0,  return,  end

 if  f*fr > 0 ,  yr = y ;  fr = f ;
else      yl = y ;  fl = f ;  end

     y = (yl + yr)*0.5 ;
  end

function  y = ef(x)
%  ef(x) = (1 - exp(-u*x))/u   where  u = eps/2 .
u = eps/2 ;
y = (1 - exp(-u*x))/u ;


