

Math. 128B

SOLVEzag

 Prof. W. Kahan

August 1, 1999 6:31 am Page 1

Problem:

 Solve the equation z = (1 – exp(–p·z))/(p·z) for z

≥

 0 as a function of p

≥

 0 . In
particular, we are interested in z when p is extremely tiny and roundoff corrupts the equation

by introducing spurious roots z instead of the one true root z = 1 – p/2 + 5p

2

/12 – … .
·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

To obtain numbers of reasonable size when p is tiny, we shall recast the equation in terms of the
number u := 1 ulp of 1 , which is the difference between 1 and the floating–point number next
less than 1 . Let p := P·u . Now we seek the set of roots z = Z(P) of the equation

z = (1 – Rounded

(

exp(–P·z·u)

)

)/(P·z·u) .

Next, for small integer values k = 0, 1, 2, 3, …, 100 in turn, define y

–1

 := 0 and y

k

 to satisfy
“ exp(–y·u) rounds to 1 – k·u throughout y

k-1

 < y < y

k

 .” Were exp(…) correctly rounded

we’d find Rounded

(

exp(–y·u)

)

 = 1 – k·u just when 1 – (k+1/2)·u < exp(–y·u) < 1 – (k–1/2)·u ,

which would determine y

k

 = –ln(1 – (k+1/2)·u)/u

≈

 k + 1/2 + (k+1/2)

2

·u/2 + … . In fact, the
last equation merely approximates y

k

 because exp(…) is not quite correctly rounded; still, any
respectable implementation of exp(…) should be monotonic in the sense that its rounded value
does not decrease when its argument increases, so y

k

 should be well-defined and monotonic too:
0 = y

–1

 < y

0

 < y

1

 < y

2

 < … . These values have to be computed by applying binary chop to
“solve” (1 – exp(–y

k

·u))/u = k + 1/2 for y

k

 on your computer.

Roundoff in exp(…) turns the equation to be solved into z = k/(P·z) while y

k–1

 < P·z < y

k

 . In

other words, a root is z = Z

k

(P) :=

√

(k/P) while y

k–1
2

/k < P < y

k
2

/k , and on that interval Zk(P)
is a decreasing function: k/yk–1 > Zk(P) > k/yk . (The case k = 0 is a special case; Z0(0) = 1
and Z0(P) := 0 for all P > 0 although the equation involves 0/0 then.) But numerical root-
finders find more “roots” z generated by the jumps in the rounded values of exp(…) as follows:

Let ø stand for any sufficiently tiny positive number. Then Rounded(exp(–(yk–ø)·u)) = 1 – k·u

and Rounded(exp(–(yk+ø)·u)) = 1 – (k+1)·u . Therefore, while x ≈ (yk±ø)/P we find that the

computed value of f(x) := x – (1 – Rounded(exp(–P·x·u)))/(P·x·u) jumps down from very nearly
f((yk–ø)/P) ≈ yk/P – k/yk > 0 to very nearly f((yk+ø)/P) ≈ yk/P – (k+1)/yk < 0 provided

yk
2/(k+1) < P < yk

2/k . On this interval the sign-changing jump of f(x) generates another
spurious “root” z = Sk(P) := yk/P that also decreases monotonically: (k+1)/yk > Sk(P) > k/yk .

The graphs of Zk and Sk on their respective intervals connect each other alternately to form a
single zig-zag curve. See page 25 of “Personal Calculator Has Key to Solve Any Equation
f(x) = 0.” Hewlett–Packard Journal 30 #12 (Dec. 1979) pp. 20-26. (A scanned copy is at
http://www.cs.berkeley.edu/~wkahan/Math128/SOLVEkey.pdf .) The following figure,
produced by Matlab 5 on a µ68040-based Macintosh Quadra 950 shows true root Z(P) as a
nearly horizontal dotted line; the roots Zk(P) are shown solid red and blue, and Sk(P) dashed or
grey. The figure after that was produced by the same Matlab 5 program on a Power Mac 8500,
whose exp(…) is less accurate; its missing legend on the left is a Matlab -> PICT -> PDF bug.
On both computers, numerical root-finders can find as many as five “roots” instead of one.

This document was created with FrameMaker 4 0 4

Math. 128B SOLVEzag Prof. W. Kahan

August 1, 1999 6:31 am Page 2

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Parameter P

 Roundoff Generates Multiple and Spurious Roots Z(P)

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

 Parameter P

 Roundoff Generates Multiple and Spurious Roots Z(P)

Math. 128B SOLVEzag Prof. W. Kahan

August 1, 1999 6:31 am Page 3

function y = solvezag(R, pts)
% solvezag(R) exhibits a zig-zag graph of the nonnegative roots z of the
% equation z = (1 - exp(-u*P*z))/(u*P*z) where u = eps/2 and 0 < P < R
% and roundoff corrupts the equation (mainly by corrupting exp(...)) .
% Restriction: 2 < R < 100 . y = solvezag(R) returns a column of the first
% several (about R) points y where (1 - exp(-y*u))/u jumps; they
% should be very near the consecutive half-integers 0.5, 1.5, 2.5,
% solvezag(R, pts) plots at a density of pts/R instead of 128/R . And
% R = 10 by default if omitted.
if (nargin < 2), pts = 128 ; end
if (nargin < 1), R = 10 ; end
if (R<2)|(R>100), error(' solvezag(R out of range)'), end
K = round(R) ; y = yk(K) ;
h = R/pts ; P = h*[0:pts]' ; Pend = P(1+pts) ;
u = eps/2 ; Zt = 1 - 0.5*u*P.*(1 - (5/6)*u*P) ; % ... Zt = true root.
Z0 = 0*P ; Z0(1) = 1 ; % ... Z0 = degenerate root.
SP0 = [y(1)^2 : h : Pend]' ; S0 = y(1)./SP0 ; % ... S0 = 1st spurious root
plot(SP0,S0,'--', P,Zt,'.', P,Z0)
ytop = max([S0(1), 2/y(2)]) + 0.05 ;
axis([0, R-1, -0.05, ytop]) ; hold on ;
for k = 1:(K-1) , % ... superpose graphs of "roots" Zk and Sk .
 pl = y(k)*y(k)/k ; pr = y(k+1)*y(k+1)/k ; % ... ends of range for Zk
 prl = pr - pl ; ptsk = round(prl/h) + 1 ;
 ZPk = pl + (prl/ptsk)*[0:ptsk]' ;

 Zk = sqrt(k ./ ZPk) ;
 pl = y(k+1)*y(k+1)/(k+1) ; % adjust left end of range for Sk
 prl = pr - pl ; ptsk = round(prl/h) + 1 ;

 SPk = pl + (prl/ptsk)*[0:ptsk]' ;
 Sk = y(k+1) ./ SPk ;
 plot(ZPk,Zk, '-', SPk,Sk, '--')

 end % ... k
hold off , xlabel(' Parameter P'), ylabel(' Roots Z')
title(' Roundoff Generates Multiple and Spurious Roots Z(P) ')

function y = yk(K)
% yk(K) = [yc(0.5), yc(1.5), yc(2.5), ..., yc(K+0.5)]' for yc below,
% and for nonnegative integer K < 101 .
k = round(K)+1 ;
if (k<1)|(k>101), error(' yk(K out of range)'), end
y = zeros(k, 1) ;
for j = [1:k]
 y(j) = yc(j - 0.5) ;
 end

function y = yc(c)
% yc(c) = solution y of ef(y) = c , which see below, by binary chop.
y = c-1.25 ; fl = ef(y)-c ; if fl==0, return, end
yl = y ;
y = c+1.25 ; fr = ef(y)-c ; if fr==0, return, end
yr = y ;
if fl*fr > 0 , error('Oops! Missed the sign reversal!'), end
y = (yl + yr)*0.5 ;
while (y ~= yl) & (y ~= yr)
 f = ef(y)-c ; if f==0, return, end

 if f*fr > 0 , yr = y ; fr = f ;
else yl = y ; fl = f ; end

 y = (yl + yr)*0.5 ;
 end

function y = ef(x)
% ef(x) = (1 - exp(-u*x))/u where u = eps/2 .
u = eps/2 ;
y = (1 - exp(-u*x))/u ;

