Problem: Solve the equation $z=(1-\exp (-p \cdot z)) /(p \cdot z)$ for $z \geq 0$ as a function of $p \geq 0$. In particular, we are interested in z when p is extremely tiny and roundoff corrupts the equation by introducing spurious roots z instead of the one true root $z=1-p / 2+5 p^{2} / 12-\ldots$.

To obtain numbers of reasonable size when p is tiny, we shall recast the equation in terms of the number $u:=1$ ulp of 1 , which is the difference between 1 and the floating-point number next less than 1. Let $\mathrm{p}:=\mathrm{P} \cdot \mathrm{u}$. Now we seek the set of roots $\mathrm{z}=\mathrm{Z}(\mathrm{P})$ of the equation

$$
\mathrm{z}=(1-\operatorname{Rounded}(\exp (-\mathrm{P} \cdot \mathrm{z} \cdot \mathbf{u}))) /(\mathrm{P} \cdot \mathrm{z} \cdot \mathbf{u}) .
$$

Next, for small integer values $\mathrm{k}=0,1,2,3, \ldots, 100$ in turn, define $\mathrm{y}_{-1}:=0$ and y_{k} to satisfy " $\exp (-\mathrm{y} \cdot \mathrm{u})$ rounds to $1-\mathrm{k} \cdot \mathrm{u}$ throughout $\mathrm{y}_{\mathrm{k}-1}<\mathrm{y}<\mathrm{y}_{\mathrm{k}}$." Were $\exp (\ldots)$ correctly rounded we'd find $\operatorname{Rounded}(\exp (-\mathrm{y} \cdot \mathrm{u}))=1-\mathrm{k} \cdot \mathrm{u}$ just when $1-(\mathrm{k}+1 / 2) \cdot \mathrm{u}<\exp (-\mathrm{y} \cdot \mathrm{u})<1-(\mathrm{k}-1 / 2) \cdot \mathrm{u}$, which would determine $y_{k}=-\ln (1-(k+1 / 2) \cdot u) / u \approx k+1 / 2+(k+1 / 2)^{2} \cdot u / 2+\ldots$. In fact, the last equation merely approximates y_{k} because $\exp (\ldots)$ is not quite correctly rounded; still, any respectable implementation of $\exp (\ldots)$ should be monotonic in the sense that its rounded value does not decrease when its argument increases, so y_{k} should be well-defined and monotonic too: $0=y_{-1}<y_{0}<y_{1}<y_{2}<\ldots$. These values have to be computed by applying binary chop to "solve" $\left(1-\exp \left(-\mathrm{y}_{\mathrm{k}} \cdot \mathbf{u}\right)\right) / \mathrm{u}=\mathrm{k}+1 / 2$ for y_{k} on your computer.

Roundoff in $\exp (\ldots)$ turns the equation to be solved into $\mathrm{z}=\mathrm{k} /(\mathrm{P} \cdot \mathrm{z})$ while $\mathrm{y}_{\mathrm{k}-1}<\mathrm{P} \cdot \mathrm{z}<\mathrm{y}_{\mathrm{k}}$. In other words, a root is $\mathrm{z}=\mathrm{Z}_{\mathrm{k}}(\mathrm{P}):=\sqrt{ }(\mathrm{k} / \mathrm{P})$ while $\mathrm{y}_{\mathrm{k}-1}{ }^{2} / \mathrm{k}<\mathrm{P}<\mathrm{y}_{\mathrm{k}}{ }^{2} / \mathrm{k}$, and on that interval $\mathrm{Z}_{\mathrm{k}}(\mathrm{P})$ is a decreasing function: $\mathrm{k} / \mathrm{y}_{\mathrm{k}-1}>\mathrm{Z}_{\mathrm{k}}(\mathrm{P})>\mathrm{k} / \mathrm{y}_{\mathrm{k}}$. (The case $\mathrm{k}=0$ is a special case; $\mathrm{Z}_{0}(0)=1$ and $\mathrm{Z}_{0}(\mathrm{P}):=0$ for all $\mathrm{P}>0$ although the equation involves $0 / 0$ then.) But numerical rootfinders find more "roots" z generated by the jumps in the rounded values of $\exp (\ldots)$ as follows:

Let \varnothing stand for any sufficiently tiny positive number. Then $\operatorname{Rounded}\left(\exp \left(-\left(\mathrm{y}_{\mathrm{k}}-\varnothing\right) \cdot \mathrm{u}\right)\right)=1-\mathrm{k} \cdot \mathrm{u}$ and $\operatorname{Rounded}\left(\exp \left(-\left(y_{k}+\varnothing\right) \cdot u\right)\right)=1-(k+1) \cdot u$. Therefore, while $x \approx\left(y_{k} \pm \emptyset\right) / P$ we find that the computed value of $\mathrm{f}(\mathrm{x}):=\mathrm{x}-(1-\operatorname{Rounded}(\exp (-\mathrm{P} \cdot \mathrm{x} \cdot \mathrm{u}))) /(\mathrm{P} \cdot \mathrm{x} \cdot \mathrm{u})$ jumps down from very nearly $\mathrm{f}\left(\left(\mathrm{y}_{\mathrm{k}}-\varnothing\right) / \mathrm{P}\right) \approx \mathrm{y}_{\mathrm{k}} / \mathrm{P}-\mathrm{k} / \mathrm{y}_{\mathrm{k}}>0$ to very nearly $\mathrm{f}\left(\left(\mathrm{y}_{\mathrm{k}}+\varnothing\right) / \mathrm{P}\right) \approx \mathrm{y}_{\mathrm{k}} / \mathrm{P}-(\mathrm{k}+1) / \mathrm{y}_{\mathrm{k}}<0$ provided $y_{k}{ }^{2} /(k+1)<P<y_{k}{ }^{2} / k$. On this interval the sign-changing jump of $f(x)$ generates another spurious "root" $z=S_{k}(P):=y_{k} / P$ that also decreases monotonically: $(k+1) / y_{k}>S_{k}(P)>k / y_{k}$.

The graphs of Z_{k} and S_{k} on their respective intervals connect each other alternately to form a single zig-zag curve. See page 25 of "Personal Calculator Has Key to Solve Any Equation $\mathrm{f}(\mathrm{x})=0$." Hewlett-Packard Journal 30 \#12 (Dec. 1979) pp. 20-26. (A scanned copy is at http://www.cs.berkeley.edu/~wkahan/Math128/SOLVEkey.pdf.) The following figure, produced by Matlab 5 on a $\mu 68040$-based Macintosh Quadra 950 shows true root $\mathrm{Z}(\mathrm{P})$ as a nearly horizontal dotted line; the roots $\mathrm{Z}_{\mathrm{k}}(\mathrm{P})$ are shown solid red and blue, and $\mathrm{S}_{\mathrm{k}}(\mathrm{P})$ dashed or grey. The figure after that was produced by the same Matlab 5 program on a Power Mac 8500, whose $\exp (\ldots)$ is less accurate; its missing legend on the left is a Matlab -> PICT -> PDF bug. On both computers, numerical root-finders can find as many as five "roots" instead of one.


```
function y = solvezag(R, pts)
% solvezag(R) exhibits a zig-zag graph of the nonnegative roots z of the
% equation z = ( 1 - exp (-u*P*z) )/(u*P*z) where u = eps/2 and 0< P < R
% and roundoff corrupts the equation ( mainly by corrupting exp(...) ) .
% Restriction: 2 < R < 100. y = solvezag(R) returns a column of the first
% several ( about R ) points y where ( 1 - exp(-y*u) )/u jumps; they
% should be very near the consecutive half-integers 0.5, 1.5, 2.5, ... .
% solvezag(R, pts) plots at a density of pts/R instead of 128/R . And
% R = 10 by default if omitted.
if ( nargin < 2 ), pts = 128 ; end
if ( nargin < 1 ), R = 10 ; end
if (R<2)|(R>100), error( ' solvezag( R out of range )' ), end
K = round(R) ; y = yk(K) ;
h = R/pts ; P = h*[0:pts]' ; Pend = P(1+pts) ;
u = eps/2 ; Zt = 1 - 0.5*u*P.* (1 - (5/6)*u*P) ; % ... Zt = true root.
Z0 = 0*P ; ZO(1) = 1 ; % ... Z0 = degenerate root.
SPO = [ Y(1)^2 : h : Pend ]' ; SO = y(1)./SPO ; % ... SO = 1st spurious root
plot( SP0,S0,'--', P,Zt,'.', P,Z0 )
ytop = max( [ S0(1), 2/y(2) ]) + 0.05 ;
axis( [0, R-1, -0.05, ytop ] ) ; hold on ;
for k = 1:(K-1) , % ... superpose graphs of "roots" Zk and Sk .
    pl = y(k)*y(k)/k ; pr = y (k+1)*y(k+1)/k ; % ... ends of range for Zk
    prl = pr - pl ; ptsk = round( prl/h ) + 1 ;
    ZPk = pl + (prl/ptsk)*[0:ptsk]' ;
        Zk = sqrt( k ./ ZPk ) ;
        pl = y(k+1)*y(k+1)/(k+1) ; % adjust left end of range for Sk
        prl = pr - pl ; ptsk = round( prl/h ) + 1 ;
        SPk = pl + (prl/ptsk)*[0:ptsk]' ;
        Sk = y(k+1) ./ SPk ;
        plot( ZPk,Zk, '-', SPk,Sk, '--')
    end % ... k
hold off , xlabel(' Parameter P'), ylabel(' Roots Z' )
title( ' Roundoff Generates Multiple and Spurious Roots Z(P) ')
function y = yk(K)
% yk(K) = [ yc(0.5), yc(1.5), yc(2.5), ..., yc(K+0.5) ]' for yc below,
% and for nonnegative integer K < 101.
k = round (K) +1 ;
if (k<1)|(k>101), error(' yk( K out of range )'), end
y = zeros( k, 1) ;
for j = [1:k]
    y(j) = yc(j - 0.5) ;
    end
function y = yc(c)
% yc(c) = solution y of ef(y) = c , which see below, by binary chop.
y = c-1.25 ; fl = ef(y)-c ; if fl==0, return, end
yl = y ;
y = c+1.25 ; fr = ef(y)-c ; if fr==0, return, end
yr = y ;
if fl*fr > 0 , error('Oops! Missed the sign reversal!'), end
y = (yl + yr)*0.5 ;
while (y ~= yl) & (y ~= yr)
            f = ef(y)-c ; if f==0, return, end
                if f*fr>0, yr=y ; fr = f ;
                    else yl = y ; fl = f ; end
        y = (yl + yr)*0.5 ;
    end
function y = ef(x)
% ef (x) = (1 - exp (-u*x))/u where u = eps/2.
u = eps/2 ;
y = (1 - exp (-u*x))/u ;
```

