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An Assignment for  Math. 128 B  due  Thurs. 6 Apr. 2006

 

1.

 

  What is the largest integer  N  for which  M

 

ATLAB

 

’s  C = poly(1:N)  produces the row of 

coefficients of  p(x) := 

 

∏

 

1

 

≤

 

k

 

≤

 

N 

 

(x – k) = C(1)·x

 

N

 

 + C(2)·x

 

N–1

 

 + … + C(N)·x + C(N+1)   exactly 
despite roundoff,  and what evidence have you to support your claim?

 

2.

 

  Having computed  N  and  C  in problem  1

 

 

 

,  let  G = [0, abs(C(2:N+1))]  and find the smallest  
|ß|  such that  C + ß*G  is the row of coefficients of a polynomial —  M

 

ATLAB

 

  would compute it 
as  polyval(C+ß*G, x) —  with a real double zero,  and explain why your  ß  is fairly accurate.

 

Model Solutions:  

 

                            (Covering far more methods than any one student is expected to try.)

 

1.

 

  The largest  N = 18 .  Four ways come to mind to determine whether  M

 

ATLAB

 

  has computed 
coefficient row  

 

C = poly(1:N)

 

  uncorrupted by rounding errors:

•(o)  Use the  

 

Inexact Flag

 

  mandated by  IEEE Standard 754  for Floating-Point Arithmetic.  This
flag is accessible through some  

 

C

 

  compilers,  but not through  

 

Java

 

  nor  M

 

ATLAB

 

,  alas.

•(i)  Compare  M

 

ATLAB

 

’s  

 

C

 

  with the coefficients computed exactly by an automated algebra
system like  

 

Maple

 

,  

 

Mathematica

 

  or  

 

Derive

 

.   Roundoff during  Binary - Decimal 
conversion could obscure  M

 

ATLAB

 

’s  

 

C

 

  for all we know,  so its elements should be
displayed in  

 

Hexadecimal

 

  using  M

 

ATLAB

 

’s  format  

 

hex

 

  and compared with the exact
values,  all integers,  displayed in hexadecimal adjusted for floating-point normalization.

When  N = 19  the coefficients of  x

 

5

 

  and  x

 

4

 

  cannot fit exactly into  53  sig. bits.

•(ii)  Compute  

 

Z = polyval(C, [1:N]

 

'

 

)

 

 .  It should be a column  

 

Z

 

  of  N  zeros if no rounding
error has corrupted  

 

C = poly(1:N)

 

  nor  

 

Z = polyval(C, [1:N]

 

'

 

)

 

 .  But what if  

 

Z

 

  has 
been corrupted?  This question undermines faith in  

 

polyval

 

 ,  so we replace it below by a
M

 

ATLAB

 

  program  

 

rpolyval

 

  intended to  

 

Iteratively Refine

 

  

 

polyval

 

’s  accuracy.

•(iii)  Each step of  M

 

ATLAB

 

’s recurrence that computes  

 

C = poly(1:N)

 

  uses only one subtract 
and one multiply,  so augmenting each step by the computation of a residual may expose
any rounding error that corrupts the step.  M

 

ATLAB

 

  program  

 

cpoly

 

  below tries that.

 

M

 

ATLAB

 

’s  Binary Floating-Point Arithmetic:

 

Normally its variables are stored in  8-byte  words with  53  sig. bits conforming to the  

 

Double 
Precision

 

  format of  IEEE Standard 754.  A description of the standard convenient for students in 
this course is posted at  <http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF>.  
Normally  M

 

ATLAB

 

  rounds its every atomic arithmetic operation  (+, –, *, /, 

 

√

 

 )  on real variables 
to  53  sig. bits.  M

 

ATLAB

 

  does this on most  UNIX  machines like  Sun SPARCs  and  SGI MIPs.

Most versions of  M

 

ATLAB

 

  can do something else when multiplying matrices on a few other very 
widely used computers,  so different versions of  M

 

ATLAB

 

  on the same hardware,  and the same 
version on different hardware,  can deliver different results for many computations.
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IBM’s  

 

Power PC

 

  architecture,  used also in  Apple

 

 Power Mac

 

s,  

 

iMac

 

s,  

 

G3

 

s  and 

 

 G4

 

s,  has a  

 

Fused Multiply-Add

 

  operation that evaluates expressions like  

 

±

 

x 

 

±

 

 y*z  with only one rounding 
error after the  add/subtract operation;  the product  x*y  is generated exactly in a double-width 
internal register.  M

 

ATLAB

 

 5.2  on those  Apple  computers uses fused multiply-add operations 
only for the accumulations of scalar products  

 

∑

 

k 

 

X(i,k)*Y(k,j)  during matrix multiplications  
X*Y  provided the matrices fit into the computer’s cache.  Consequently the  M

 

ATLAB

 

  expression  

 

[eps–1, 1]*[eps+1; 1]

 

  evaluates to  0  but  

 

[1, eps–1]*[1; eps+1]

 

  evaluates to  eps

 

2

 

  on 
those computers,  and they evaluate  

 

[pi, –pi]*[pi; pi]

 

  to  1

 

.

 

429…e-16  instead of  0 .  This 
behavior will sometimes help certain polynomial expressions to be evaluated more accurately 
than if each multiply were rounded to  53  sig. bits before the subsequent rounded add/subtract.

Some computer architectures can perform atomic floating-point operations in a few extra-precise 
registers carrying  64  sig. bits instead of just  53.  Among these processors are the near-ubiquitous  
Intel x86,  

 

Pentium

 

,  

 

Centrino

 

,  …  and their clones by  AMD  in computers running  Microsoft 

 

Windows

 

  or,  less numerous,  

 

LINUX

 

.  Similar extra-precise registers exist also in the current  
Intel 

 

Itanium

 

,  and in the old  Motorola 68040  in my old  Apple 

 

Macintosh

 

 

 

Quadra

 

,  and in a few 
other processors now mostly forgotten.  Access to the extra-precise registers is denied by many 
programming languages  (like  

 

Java

 

)  and by most compilers  (like  Microsoft’s),  which is why 
some versions of  M

 

ATLAB

 

  can accumulate scalar products extra-precisely during at least some 
matrix multiplications on those processors,  and other versions cannot.  Among versions that can 
are versions  3.5, 4.2 and 5.2  on old  Quadras,  and versions  3.5, 4.2,  6.5  and maybe  7.0  on  
Wintel PCs;  version 6.5  requires the command  

 

system_dependent('setprecision', 64)

 

  to 
enable extra-precise accumulation during multiplications of matrices small enough to fit into the 
computer’s cache.  When extra-precise accumulation is in effect,

 

t = 0.5^32 ;   u = [t-1, 1]*[t+1; 1] ,  v = [1, t-1]*[1; t+1]  

 

delivers not  0  but  1

 

/

 

2

 

64

 

 = 5

 

.

 

421…e-20  for  

 

both

 

  u  and  v .  But after that  MATLAB 7.0  does 
something weird;  see  weird.m  below.  What it may be doing is adding scalar products like  
∑k X(i,k)*Y(k,j)   in a different order than for  k = 1, 2, 3., …  in turn.  For instance,  two sums  

∑k X(i,2k)*Y(2k,j)  and  ∑k X(i,2k–1)*Y(2k–1,j)  could be accumulated in separate registers in 
parallel and then added,  thus achieving higher speed overall by keeping the arithmetic pipeline 
full.  Whatever the order of summation,  extra-precise accumulation will help certain polynomial 
expressions to be evaluated more accurately than if each multiply were rounded to  53  sig. bits 
before the subsequent rounded add/subtract.

Checking  MATLAB’s  poly(1:N)  against  cpoly(N) :
Given a column or row  Z = [z1, z2, z3, …, zN]  we expect  C = poly(Z)  to deliver the row  C  of 
coefficients  C(k)  of the polynomial  

p(x) := prod(x-Z) = ∏1≤k≤N (x–zk) = ∑0≤k≤N C(k+1)·xN–k = polyval(C, x) 
in the absence of roundoff.  The recurrence that generates the coefficients works as follows:  Let  
E  be the row of coefficients of polynomial   q(x) := ∏1≤k<N (x–zk) = p(x)/(x–zN) .  Then 

  C = [1, -Z(N)]*[[E, 0]; [0, E]] ; 
in other words  C(k) = E(k) – zN·E(k–1)  for  k = 1, 2, 3, …, N+1  assuming  E(0) := E(N+1) := 0 .
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Note that,  when every  z > 0  (as is the case for  poly(1:N) ),  the coefficients in  E  and  C  
alternate in sign and so every step of the recurrence generates integer coefficients each bigger in 

magnitude than its ancestors.  Therefore no roundoff can occur until some magnitude exceeds  253  
and perhaps not even then if that magnitude is divisible by a sufficiently big power of  2 .  Because 

every coefficient of  poly(1:17)  is smaller in magnitude than  251  it fits easily into  53  sig. bits,  
so the biggest  N  for which  poly(1:N)  is exactly right must be at least  17 .

As  N  increases through  N = 17, 18, 19, …  the first rounding error to blight the recurrence can 
occur in one of only three places:  The multiply  zN·E(k–1) ,  the subtract  E(k) – zN·E(k–1) ,  or 
the store  C(k) = …  if the previous two operations have been performed extra-precisely.  The first 
assignment’s first task amounts to detecting that first rounding error when  N > 17 .

If that first rounding error occurs at the multiply operation and is not obscured by a subsequent 
rounding error at the subtract or store operations,  a different first rounding error will very likely 
occur if the array  Z  is permuted before  poly(Z)  is invoked,  so we might expect it to differ 
from,  say,  poly(flipud(Z(:))) ,  which reverses the order of the zeros in  Z  without changing 
the polynomial  p(x)  nor its coefficients  C  except for roundoff.  N = 20  was the first integer at 
which  norm(poly(1:N) - poly(N:-1:1), inf)   turned out nonzero;  it did so on all my  Macs  
and  PCs,  and for all versions of  MATLAB  mentioned so far.  Therefore  poly(1:20)  and/or  
poly(20:-1:1)  is inexact;  we cannot yet say which.  Only an unlikely cancellation of rounding 
errors could leave one of them exactly right,  so we may well suspect that the biggest  N  for 
which  poly(1:N)  must be exact cannot exceed  19 .

To determine that biggest  N  more reliably,  we must try to detect the recurrence’s first rounding 
error by computing a residual that exploits exact cancellation when sufficiently nearby numbers 
are subtracted.  After storing  C = [1, -Z(N)]*[[E, 0]; [0, E]]  approximately,  we compute 
the difference   dC = [1, -1, -Z(N)]*[[E, 0]; C; [0, E]]   in which only the multiplication 
by  Z(N)  can generate a rounding error,  and this won’t happen if  Z(N)  is  1  or  2 .  Therefore we 
reverse the order of the zeros of  p(x)  by setting   Z = N:-1:1   so that the first rounding error will 
arise after either the subtract or the store operation.  This error will be exposed when  dC  is not all 
zeros.  The  MATLAB  program  cpoly(N)  below does the trick:

cpoly(N)  agrees with  poly(1:N)  for  N = 1, 2, 3, …, 17, 18  and  19  but signals inexactness 
first when  N = 19  at the recurrence’s last step where  Z(19) = 1 .  The first rounding error occurs 
at the subtract or store operation and is captured perfectly.  cpoly(N)  disagrees with  poly(1:N)  
for  N ≥ 20  and signals inexactness at the recurrence’s last three or more steps.  Consequently …

 N = 18  seems to be the biggest  N  for which  poly(1:N)  is exact. 

Comparing  MATLAB’s   poly(1:N)   with  Recomputations in Redirected Rounding Modes :
This somewhat flakey scheme works only for a few versions of  MATLAB  on one or two almost 
ubiquitous computer architectures.

Nowadays practically all desktop and laptop computer hardware conforms to  IEEE Standard 754 
for Binary Floating-Point Arithmetic.  Almost no compilers support this  Standard  properly.  
Consequently certain capabilities of the hardware are accessible to almost no programmers.  One 
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such capability is  Directed Rounding:  By default  (in the absence of a command to do otherwise) 
every floating-point operation,  if not exact like  2.0 + 2.0 = 4.0 ,   Rounds to Nearest,  which 
means that the rounding error cannot exceed half a unit in the last bit retained.  The  Standard  
mandates that a programmer be able to command the hardware to round in her choice of any of 
three other directions:  Round Up  towards  +∞ ,  Round Down  towards  –∞ ,  and  Round 
Towards Zero.  The rounding error in these  Directed Rounding Modes  is strictly smaller than one 
unit in the last bit retained but may exceed half a unit.

Moreover the drafters of the  Standard  intended  (but we failed to make this clear enough)  that 
the programmer be able to rerun any subprogram in each of those four  Rounding Modes  so as to 
generate four samples of the influence of redirected roundoff upon the results.  Rounding modes’ 
effects upon a  Math.  library of transcendental functions like  log(…)  and  cos(…)  are uncertain 
because the  Standard  does not specify them.

The rounding mode could be altered in  MATLAB 3.5  on  PCs  and  Macintoshes  only via an 
intervention by the computer’s operating system.  MATLABs 4.x and 5.x  thwarted every such 
intervention.  MATLABs 6.5 and 7.0  on  PCs  offer a way to alter rounding modes to some extent:

system_dependent('setround', DIRECTION) 

with  DIRECTION = 0.5 for  Round to Nearest,
 DIRECTION = 0.0 for  Round Towards Zero,
 DIRECTION = +inf for  Round Up towards +∞ ,
 DIRECTION = -inf for  Round Down towards  –∞ .

Ideally these commands should redirect the roundings of every subsequent rational operation  
(+, –, *, /),  the algebraic operation  √  ,  Binary ↔ Decimal Conversion,  and some conversions to 
integers.  Instead these commands redirect the rational operations’ roundoff but leave  sqrt(…)  
and  round(…)  unaltered.  (In  MATLAB 3.5  redirection altered all of them.)

To test the commands’ effects,  interleave them among repeated evaluations of an expression like
  [ x+y;  x-y;  x*y;  x/y;  sqrt(x);  round(y);  log(x);  str2num(DECIMAL) ]

in which the variables have suitable values preassigned  outside  the  MATLAB  script or function 
containing repetitions of this expression.  Preassignment  “outside”  prevents  MATLAB’s  script-
and-function compiler from evaluating what are deemed to be constant expressions in the default 
rounding mode at compile-time,  rather than later in the altered modes at run-time.  Differences 
between different evaluations of that long expression reveal the effects of redirected roundings.

Differences appear among the four evaluations of  poly(1:N)  under all four rounding modes 
only when  N > 18 .  This test proves that  poly(1:18)  is uncontaminated by roundoff.  The test 
does not rule out the possibility that,  under the default mode,  rounding errors in  poly(1:N)  
may cancel out for some  N ≥ 19,  but that seems unlikely.

Checking  MATLAB’s   mod(poly(1:N), 2^m)   against   polymod2(m, 1:N) :
Given a column or row  Z = [z1, z2, z3, …, zN]  we expect  C = poly(Z)  to deliver the row  C  of 
coefficients  C(k)  of the polynomial  

p(x) := prod(x-Z) = ∏1≤k≤N (x–zk) = ∑0≤k≤N C(k+1)·xN–k = polyval(C, x) 
in the absence of roundoff which may blight the last few bits of some coefficients.  When all the 
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zeros in  Z  are integers,  so are all the coefficients in  C ,  and their last few bits can be computed 
perfectly by  Modular Arithmetic:  MATLAB’s  mod(K, M) = K - floor(K/M)*M   is intended to 
deliver a remainder between  0  and  M  when integer  K  is divided by integer  M .  Versions of  
MATLAB  earlier than  5.x  must use  rem(K, M)  instead.  Alas,  roundoff can interfere when  K  
gets too big.  For instance  mod(2.0.^[52:67], 3)  and  rem(2.0.^[52:67], 3)  produce …

[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2]  for  v’s. 3.5 & 4.2  on a Mac Quadra,  and  v. 4.2 on a PC.

[1 2 1 2 1 2 1 2 1 2 1 2 1 0 0 0]  for  v. 3.5  on a  PC.

[1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0]  from  mod  for v. 5.2 on a Mac Quadra,  and from both  mod  and
rem  for v. 5.2 on a Power Mac,  and for v’s. 5.3, 6.5 & 7.0 on a PC.

[1 2 1 2 4 8 16  32  64 … 8192]  from  rem  for v. 5.2 on a Mac Quadra,  and from both  mod  and
rem  for v’s. 6.5 &7.0 after  system_dependent(‘setprecision’, 64) .

Only the first is correct.

We avoid all such roundoff-induced aberrations entirely by restricting  M := 2m  for some positive 
integer  m < 27 .  This is what the  MATLAB  program  polymod2(m, L)  supplied below does.  It 
computes exactly the last  m  bits of the integer coefficient array  C  for a polynomial whose zeros 
are all integers in an array  L .  Therefore  any(polymod2(m, 1:N) == mod(C, 2^m))  should be  
0  whenever  C = poly(1:N)  has been computed exactly,  and  1  otherwise,  provided  m  is not 
too small.  With  m := 26  this exactness test is passed when  1 ≤ N ≤ 18  and failed when  N ≥ 19  
for all versions of  MATLAB  and on all computers mentioned above.  This test  proves  that …

 N = 18  is the biggest  N  for which  poly(1:N)  is exact. 

Checking  MATLAB’s  C = poly(1:N)  against  polyval(C, 1:N) :
Given a column or row  Z = [z1, z2, z3, …, zN]  we expect  C = poly(Z)  to deliver the row  C  of 
coefficients  C(k)  of the polynomial  

p(x) := prod(x-Z) = ∏1≤k≤N (x–zk) = ∑0≤k≤N C(k+1)·xN–k = polyval(C, x) 
in the absence of roundoff.  Then we expect  P = polyval(C, Z)  to generate a vector of zeros.  
But,  for all we know now,  rounding errors inside  polyval  may generate misleading results:

•  Some elements of  P  may be nonzero even though  C  is exactly right.

•  All elements of  P  may be zero even though  C  is slightly inexact.

When the expression   any(polyval(poly(1:N), 1:N))   is evaluated for  N = 1, 2, 3, …  in turn 
it produces  0  for  1 ≤ N ≤ 18  and  1  for  N ≥ 19 ,  and does so on  PCs  and  Macs  for every 
version of  MATLAB  mentioned above.  On any one machine these results imply that  N = 18  is  
the biggest  N  for which  poly(1:N)  is exact provided no rounding error occurs inside  polyval;  
but this proviso is problematical. It seems unlikely for at least some of the larger values of  N .

Because binary multiplication is exact,  rounding errors inside  polyval  can be restricted to  
add/subtract  operations by evaluating  any(polyval(poly(1:N), [1,2,4,8,16]))   just for  
N ≥ 16 .  These evaluations produce  0  for  16 ≤ N ≤ 18  and  1  for  N ≥ 19  again,  leaving the 
same problematical question about roundoff inside  polyval  unanswered.
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Since the value of a polynomial evaluated by  Horner’s Recurrence  (i.e. nested multiplications)  
can be construed as the last element of the solution of a system of linear equations,  its accuracy 
may be improved by iterative refinement provided a residual can be computed extra-precisely.  
The  MATLAB  program  rpolyval(C, X)  below does so whenever  MATLAB  accumulates scalar 
products extra-precisely,  and does so sometimes when they are accumulated on  Power Macs  
using fused multiply-adds.  The residual is computed simultaneously with the refinement’s 
correction  dp  in the statement  dp = [C(m), p, op, dp]*x2 .

When the expression   any(rpolyval(poly(1:N), [1,2,4,8,16]))   is evaluated just for  
N = 16, 17, 18, …  in turn it produces  0  for  16 ≤ N ≤ 18  and  1  for  N ≥ 19 ,  and does so on  
PCs  and  Macs  for every version of  MATLAB  mentioned above.  On any one machine these 
results suggest that  N = 18  is  the biggest  N  for which  poly(1:N)  is exact provided rounding 
errors inside  rpolyval  have been offset adequately by iterative refinement.

What follows is an attempt to assess how much more accurate than  polyval  is  rpolyval .  The 
assessments vary with the version of  MATLAB  and the computer on which it runs.  Each test 
compares  polyval  and  rpolyval  with a sufficiently accurate evaluation of the polynomial 
under test.  Here are a few test results:

Test #1:  Polynomial  p(x) = prod(x - [1:18])  has coefficients  C = poly([1:18])  exactly.

With extra-precisely accumulated scalar products 

With fused multiply-adds 

With no extra-precise arithmetic 

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.58403 -76286600135.58403 -76286600156. 
15.125 -76286600135.58403 -76286600135.58403 -76164317290. 

4 + 1/210 510102608.4994386 510102608.4639658 510104157. 

15 – 1/210 510102608.4994385 510073677.3643785 615021841. 

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.58403 -76286600218.6133 -76286600156. 
15.125 -76286600135.58403 -76399896318.5432 -76164317290. 

4 + 1/210 510102608.499439 510103060.829811 510104157. 

15 – 1/210 510102608.499438 520948386.105919 615021841. 

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.58403 -76286599734.74647 -76286600156. 
15.125 -76286600135.58403 -76164317290. -76164317290. 

4 + 1/210 510102608.4994387 510103342.7073206 510104157. 

15 – 1/210 510102608.4994384 529906517.7198682 615021841. 
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MATLAB 5.3 on a PC  produces results like those in the last tabulation except that its second-last 
column duplicates the last because iterative refinement by  rpolyval(C, X)  is thwarted by the 
way this version of  MATLAB  accumulates scalar products:  It accumulates  ∑k X(i,k)*Y(k,j)  
with no extra-precise arithmetic and in descending order  k = …, 3, 2, 1  instead of the ascending 
order  v. 5.2 on Macs  and  v. 6.5 on PCs  follow when matrices fit in the computer’s cache.  Two 
evaluations  [-1, 1, eps]*[1; 1; eps]  and  [eps, 1, -1]*[eps; 1; 1]  expose the order.

MATLAB 7.0 on a PC  accumulates scalar products extra-precisely  (sometimes differently before  
system_dependent(‘setprecision’, 64)  than after),  and in an order that depends upon the 
dimensions of matrices in  weird  ways I have not yet figured out.  Here are its test results:

MATLAB 7.0 on a PC 

Test #2:  Roundoff corrupts  C = poly(1:19)  producing the row of coefficients of a polynomial  
p(x) := prod(x – [1:19]) + 16*(x-2)*x*x*x*x .  Roundoff corrupts  polyval(C, x)  so that 
it differs from  p(x) .  Iterative refinement usually brings  rpolyval(C, x)  nearer  p(x)  provided 
residuals are accumulated extra-precisely.  Then,  for instance,  for x = [-4:23]  we find every  
rpolyval(C, x) == p(x)  but half the values  polyval(C, x) ~= p(x) .  And the differences  
rpolyval(C, x) - p(x)  are a few orders of magnitude smaller than  polyval(C, x) - p(x)  
for   x = 0.5 + [-1:22] ,  and for  x = [sqrt(2); exp(1); pi; sqrt(377)] .  Activate extra-
precise accumulation by  MATLAB 6.5  via  system_dependent('setprecision', 64) .  This 
command is unnecessary for  v. 7.0  on  PCs  but does alter a few results slightly.  Without extra-
precise accumulation  (v. 5.3  on  PCs  and  v. 6.5 without that command),  and regardless of fused 
multiply-adds  (v. 5.2  on  Power-Macs),  rpolyval  is no more accurate than  polyval  for this 
test.

These test results accord with what we had learned elsewhere about the iterative refinement of 
computed solutions of linear systems.  With extra-precisely accumulated residuals,  they and the 
solution’s accuracy are improved by refinement.  It may worsen accuracy without extra-precise 
accumulation if the linear system is ill-conditioned.

The Significance of Exactly Computed Coefficients:
Why should we care whether  C = poly(1:N)  is computed exactly?  A reason will appear when 
the accuracy of  R = roots(C)  is assessed for  N = 1, 2, 3, … .  Rounding errors will cause  R  to 
depart from a permutation of the integers  [1, 2, 3, …, N] .  Whose rounding errors?  Blaming  
roots  for rounding errors committed by  poly,  or  vice-versa,  would be unfair,  and would spoil 
attempts to compute  ß  for part  2  of this assignment.  Tabulated below are some computed sets of  
roots(poly(1:18))  from different versions of  MATLAB  run on a few different computers.

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.584 -76286600136.1108 -76286600156. 
15.125 -76286600135.584 -76286635021.3008 -76164317290. 

4 + 1/210 510102608.499439 510102607.926758 510104157. 

15 – 1/210 510102608.499438 510040748.883789 615021841. 



File:  S23Mar06                                                                                          version dated  April 17, 2006 2:34 am

Prof. W. Kahan                                                      for  Math. 128 B                                                              Page 8/14

Versions of  MATLAB’s  Computed  roots(poly(1:18))  

“on PC (64)”  means after the command  system_dependent('setprecision', 64) 

v. 3.5 on PC & 
Mac Quadra

v. 4.2 on PC
v. 4.2 on Mac 

Quadra
v. 5.2 on Mac 

Quadra
v. 5.2 on Power 

Mac

17.99999 17.99999 18.000006 18.00001 18.000009

17.0001 17.00006 16.99995 16.9999 16.99992

15.9996 15.9998 16.0002 16.0005 16.0004

15.001 15.0005 14.9997 14.999 14.999

13.998 13.9994 14.0004 14.002 14.002

13.002 13.0006 12.9997 12.998 12.997

11.999 11.9997 12.0001 12.002 12.003

11.0008 11.0001 11.00006 10.999 10.998

9.9997 9.99998 9.99991 10.0004 10.001

9.00009 8.99999 9.00005 8.99991 8.9996

7.99998 8.000005 7.99998 8.000004 8.0001

7.000001 6.999999 7.000005 7.000005 6.99997

5.99999999 6.0000001 5.9999993 5.999999 6.000005

4.999999994 4.999999993 5.00000006 5.0000002 4.9999995

3.999999999 4.0000000006 3.9999999992 3.99999998 4.00000004

3.0000000002 2.99999999991 2.9999999998 3.0000000006 2.999999999

1.99999999999 2.000000000004 2.000000000007 1.999999999993 2.00000000002

1.0000000000001 0.99999999999997 0.99999999999995 1.00000000000002 1.00000000000007

v. 5.3 on PC v. 6.5 on PC v. 6.5 on PC (64) v. 7.0 on PC v. 7.0 on PC (64)

17.999996 18.000008 18.000009 17.999997 17.999997

17.00003 16.99991 16.99992 17.00001 17.00003

15.99991 16.0005 16.0004 16.00002 15.9999

15.0002 14.999 14.9990 14.9997 15.0004

13.9998 14.002 14.002 14.0008 13.9992

13.0003 12.997 12.998 12.998 13.001

11.9996 12.003 12.002 12.002 11.999

11.0004 10.998 10.999 10.998 11.0008

9.9997 10.0007 10.0006 10.001 9.9996

9.0001 8.9998 8.9998 8.9995 9.0002

7.99995 8.00002 8.00005 8.0002 7.99996

7.00001 7.000005 6.99999 6.99996 7.000008

5.999998 5.999998 6.000001 6.000006 5.9999991

5.0000002 5.0000003 4.9999999 4.9999995 5.00000006

3.999999996 3.99999998 4.00000001 4.00000003 3.9999999991

2.9999999997 3.00000000001 2.9999999997 2.9999999993 2.99999999997

2.00000000002 2.00000000002 2.000000000005 2.000000000001 2.0000000000006

0.9999999999998 0.9999999999998 0.99999999999996 1.00000000000007 0.99999999999997
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Why are accuracies so similar though results vary from one computer to another and from one 
version of  MATLAB  to another?  Without knowing the details about  QR  iteration and matrix 
multiplication within  MATLAB’s  eig(…),  invoked within  roots(C)  to compute its values as 
eigenvalues of the  Companion Matrix  of polynomial  polyval(C, x) ,  we have to speculate:

•  Results differ because rounding errors differ during the different orderings and precisions of the 
matrix multiplications within the  QR-iterations  that reduce the  Hessenberg Form  of the 
companion matrix to an upper-triangular  Schur  form with the desired eigenvalues  (roots)  on its 
diagonal.  The different orderings are intended to take near-optimal advantage of the computer’s 
memory architecture,  especially its cache(s).  Precisions differ according to whether extra-precise 
accumulation is enabled during matrix multiplication,  or whether multiply-adds are fused.

•  Though computed eigenvalues  (roots)  differ,  their accuracies are similar because these depend 
heavily upon  MATLAB’s  eig  program’s thresholds chosen to stop  QR-iteration  as soon as the  
Hessenberg  matrices’ sub-diagonal elements have become small enough to be deemed negligible.

So sensitive to those rounding errors and thresholds are some eigenvalues  (roots)  that computing 
them loses most of the digits carried by the arithmetic.  Roots near  13  in the tabulations above 
are so senstive,  and consequently are called  “ill-conditioned”.  They are ill-conditioned no matter 
how we try to compute them from the coefficients  C = poly(1:18)  so long as our procedure 
commits rounding errors whose effect is tantamount to perturbing the coefficients’ end-figures.  
Roundoff is like that in  roots(C)  and in  polyval(C, x) ,  so computing a root  r  from either

   r = fzero( 'polyval(poly(1:18), x)', [12.5, 13.5], eps)         or
  rr = fzero('rpolyval(poly(1:18), x)', [12.5, 13.5], eps)      (refined)  

yields      r = 13.00003        from an unrefined  polyval,    or
  rr = 13.00003        in  MATLAB 5.3  on a  PC     (refinement thwarted) ,
  rr = 12.99994        in  MATLAB 6.5  on a  PC     (refinement not extra-precise) ,
  rr = 12.999999      in  MATLAB 5.2  on a  Power Mac  (helped by its fused multiply-add),  
  rr = 13.0000001    in  MATLAB 5.2  on a  Mac Quadra and  v. 6.5  on a PC  (… 64),
  rr = 12.9999998   in  MATLAB 7.0  on a  PC  (performs extra-precise refinement),

instead of the correct root  13 .

Why are ill-conditioned roots so sensitive to tiny perturbations in a polynomial’s coefficients?  
Their hypersensitivity is explained if comparably tiny perturbations can alter the multiplicities of 
ill-conditioned roots.  This is what we shall see happen in part  2  of this assignment.
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2.  The smallest  |ß|  belongs to  ß ≈ 1.4217594218419e-14  for which  p(x) + ß·g(x)  has a double 
zero at  x ≈ 13.513354361516 .  Here 

 p(x) := ∏1≤k≤N (x – k) =  C(1)·xN + C(2)·xN–1 + … + C(N)·x + C(N+1)   and   N = 18 ,  
so coefficient row   C = poly(1:N)   exactly,  and  

 g(x) :=  |C(2)|·xN–1 + … + |C(N)|·x + |C(N+1)|  > 0  for all  x ≥ 0 .

It is easy to confirm that   g(x) =  (–1)N·(p(–x) – (–x)N)  =  ∏1≤k≤N (x + k) – xN .  This implies 

soon that  |p(x)/g(x)| > 1/2  if  x ≤ 0 ,  so  p(x) + ß·g(x)  cannot have a nonpositive double zero 
unless  |ß| > 1/2 .  If  |ß|  is to be tiny,  the desired real double zero  z  must be positive .

Now,  z  is a double zero of  p(x) + ß·g(x)  just when both   p(z) + ß·g(z) = 0  and the derivative  
p'(z) + ß·g'(z) = 0 ;  and then  ß = –p(z)/g(z) = –p'(z)/g'(z) ,  whence follows a polynomial 
equation   p'(z)·g(z) – g'(z)·p(z) = 0 .  This is the equation that must be solved for some of its  
2N–2 = 34  roots  z .  Let’s not compute the polynomial’s coefficients and invoke  roots(...)  or  
fzero(polyval(...)) ;  they’re likely to produce poor approximations from coefficients blurred 
by roundoff if recent experience is a guide.  Instead the polynomial equation will be turned into an 
equivalent rational equation   p'(z)/p(z) – g'(z)/g(z) = 0 .  In this equation  p'(x)/p(x)  can be 
computed accurately enough from   p'(x)/p(x) = ∑1≤k≤N 1/(x–k)   because its graph is fairly steep 

in the range that will matter later:   (p'(x)/p(x))' = –∑1≤k≤N 1/(x–k)2 < –8  if  1 < x < N .

(Can you see why  “… < –8 ” ?  Actually it’s  “… < – 8.874… ” ,  but the exact value won’t matter to what follows.)

A more complicated expression provides an analogous  (and unobvious)  way to compute

g'(x)/g(x) = ( ∏1≤k≤N (x + k)·∑1≤j≤N 1/(x–j)  –  N·xN–1 )/( ∏1≤k≤N (x + k) – xN )  = … 

    =  N/x  –  (1/x)·( ∑1≤k≤N k/(x+k) )/( 1  –  ∏1≤k≤N x/(x+k) )      after some algebra.
This expression leads to

ƒ(x) := x·( p'(x)/p(x) – g'(x)/g(x) )  = … (more algebra) 

       =  ∑1≤k≤N k/(x–k)  +  ( ∑1≤k≤N k/(x+k) )/( 1  –  ∏1≤k≤N x/(x+k) ) .
Now the rational equation   ƒ(z) = 0   has the same roots  z > 0  as has the polynomial equation  
p'(z)·g(z) – g'(z)·p(z) = 0 .  To help locate those roots we examine the  Poles  of  ƒ(x)  (where it 
becomes infinite).  For  K = 1, 2, …  and  N  we find   ƒ(x) ≈ K/(x–K)  when  x ≈ K ,  so  ƒ(x)  
reverses sign as  x  crosses the pole at  x = K .  Therefore  ƒ(x)  also reverses sign at least once as  
x  increases from one such pole to the next.  We have found at least  N–1  positive zeros of  ƒ(x) .

Are there any other positive zeros of  ƒ(x) ?  No;  here is why:

ƒ(x) < 0  while  0 < x < 1 .  This is true because then   g(x) > 0 ,   g'(x) > 0   and
 ƒ(x)/x = p'(x)/p(x) – g'(x)/g(x) < p'(x)/p(x) =  ∑1≤k≤N 1/(x–k)  < 0 .  

ƒ(x) > 0  for all  x > N .  To see why this is true,  verify that  (N–1)·g(x) – x·g'(x) > 0  for all  such  
x ,  so  p'(x)/p(x) – g'(x)/g(x) > ∑1≤k≤N 1/(x–k) – (N–1)/x = 1/x + (1/x)·∑1≤k≤N k/(x–k) > 0 .

Therefore all the positive zeros of  ƒ(x)  lie strictly between its poles at  x = 1, 2, 3, … and  N .

How many zeros of  ƒ(x)  lie between adjacent poles?  The easiest way to answer this question is 
to plot  ƒ(x) .  It is plotted below for  N = 6 ;  the plot for  N = 18  is similar but busier.
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Apparently  ƒ(x)  vanishes just once between adjacent poles.  This is confirmed by a proof  (best 
skipped during a first reading)  that,  when  1 < x < N ,  the derivative

ƒ'(x) := ( x·p'(x)/p(x) – x·g'(x)/g(x) )' 

is negative.  The first term  ( x·p'(x)/p(x) )' = ( ∑1≤k≤N x/(x–k) )' = –∑1≤k≤N k/(x–k)2 < –8·√2 .

To handle the second term  ( –x·g'(x)/g(x) )'  we shall first determine a rough bound for every 

zero  ζ = –ξ + ıη  of  g(x) = ∏1≤k≤N (x + k) – xN .  We find every  Real(ζ) = –ξ ≤ –1/2  because 

otherwise,  were  ξ < 1/2 ,  we would find that  |k–ξ + ıη|2 > |–ξ + ıη|2  for all  k ≥ 1 ,  and this 

would imply that  ∏1≤k≤N |ζ + k| > |ζ|N  whence  g(ζ) ≠ 0 .  Thus,   g(x) = –C(2)·∏1≤k≤N–1 (x – ζk)  

in which every  ζk = –ξk + ıηk  has  ξk ≥ 1/2 .  Moreover,  because  g(x)  has real coefficients,  its 
every non-real zero  ζ = –ξ + ıη  comes paired with its complex conjugate zero  ζ = –ξ – ıη .

Now the second term   ( –x·g'(x)/g(x) )' = –( ∑1≤k≤N x/(x–ζk) )' = ∑1≤k≤N ζk/(x–ζk)2   can be 

handled;  this sum will be shown to be negative:  In this sum every term  ζ/(x–ζ)2  with a real zero  

ζ = –ξ ≤ –1/2  has the form  –ξ/(x+ξ)2 < 0 .  Every pair of complex conjugate terms adds up to   

ζ/(x–ζ)2 + ζ/(x–ζ)2 = ( ζ·(x–ζ)2 + ζ·(x–ζ)2 )/|x–ζ|4   = –2(ξ2 + x·ξ + η2)/|x–ζ|4 < 0 .  Therefore  
ƒ'(x) < –8·√2 ≈ –11.3137  for  1 < x < N  and consequently  ƒ(x)  must vanish just once between 
adjacent poles just as appears from its plotted graph.    (Actually  ƒ'(x) < –15.475  when  N = 18 .)

MATLAB  program  betas(N)  appended below computes all  N–1  positive zeros  z  of  ƒ(x)  and 
the corresponding values of  ß  from which the smallest is selected to complete the assignment.
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MATLAB  Programs Cited Above:

function  [m, n] = weird(k)
%  [m, n] = weird(k)  tests  Matlab's  scalar products of
%  vectors of length  2k .  If no extra-precise arithmetic is
%  used  [m, n]  should be  [0, 0] ,  as it is for  Matlabs
%  5.3 and 6.5  on  Wintel PCs.  If scalar products are
%  accumulated extra-precisely to  64  sig. bits before they
%  are delivered rounded to  53  sig. bits,  [m, n]  should
%  be  [k, k] ,  as it is for  Matlab 3.5 and 4.2  on  PCs 
%  and old  680x0-based Macs,  and for  Matlab 6.5 on  PCs
%  after the command  system_dependent('setprecision', 64) .
%  In  Matlab 5.2  on  Power Macs  their fused multiply-adds
%  produce  [m, n] = [1, 0] .  But something weird and,  so 
%  far,  unexplained happens in  Matlab 7.0  on  Wintel PCs:
%   k   m   n       k   m   n       k   m   n       k   m   n
%   1   1   1       5   5   3       9   9   5      13   9  17
%   2   2   1       6   8   8      10   8  16      14   8  16
%   3   3   2       7   9   9      11   9  17      15   9  17
%   4   4   2       8   8   4      12   8  16      16   8   8
%                                  W. Kahan,  29 March 2006
if  ((k<1)|(k~=round(k))),  k = k
  error('weird(k) requires a positive integer  k.'),  end
u = ones(1,k) ;
a = -2281422937 ;  b = 4042815511 ;  %...  a*b = 1 - 2^63
c = 2^31 ;  d = c+c ;  e = 1-d ;  f = 1+d ;
%  c = 2^31 ,  d = 2^32 ,  e = 1 - 2^32 ,  f = 1 + 2^32 .
CA = [c*u; a*u] ;  CA = CA(:) ;  %... = [c a c a c a ...]
DB = [d*u; b*u] ;  DB = DB(:) ;  %... = [d b d b d b ...]
m = CA'*DB ;  %... = (2^63 + (1 - 2^63))*k   if exact
ED = [e*u; d*u] ;  ED = ED(:) ;  %... = [e d e d e d ...]
FD = [f*u; d*u] ;  FD = FD(:) ;  %... = [f d f d f d ...]
n = ED'*FD ;  %... = ((1 - 2^64) + 2^64)*k   if exact

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  C = cpoly(n, m)
%  C = cpoly(n, m)  is the row of coefficients of a 
%  polynomial whose zeros are  [m:n] ,  but differs
%  from  poly(m:n)  by checking whether  C  is free 
%  from rounding errors,  as it is on a  Mac Quadra 
%  950  for  (n,m) = (18,1), (19,2), (20,4), (21,6),
%  (22,7), (23,9), (24,10), (25,12), ... .
%  If  m  is omitted it defaults to  m = 1 .
if ( nargin < 2 ),  m = 1 ;  end
L = n-m+1 ;  C = zeros(1, L+1) ;  C(1) = 1 ;
for  k = (-n):(-m)
    E = C ;  oE = [0, E(1:L)] ;
    C = [1, k]*[E; oE] ;
    dC = [1, -1, k]*[E; C; oE] ; %...  residual
    if any(dC(:))  n_m_k = [n, m, -k] ,
        disp(' cpoly(n, m)  was computed inexactly.')
      end,  end
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= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  C = polymod2(m, L)
%  C = polymod2(m, L)  is the row of coefficients  mod 2^m
%  of a polynomial whose zeros are all integers in array  L .
%  This works for  0 < integer m < 27  in  Matlabs 5.2 - 7.0.
if ((m ~= round(m))|(m < 1)|(m > 26 )),  m = m
    error('polymod2(m,L) needs  0 < integer m < 27 .'),  end
M = 2^m ;  L = L(:) ;  if  any(L ~= round(L))
    error('polymod2(m,L) needs L to be all integers.'),  end
L = mod(L, M) ;  n = length(L) ;
C = zeros(1, n+1) ;  C(1) = 1 ;
for  k = 1:n
    oE = [0, C(1:n)] ;
    C = mod( [1, -L(k)]*[C; oE], M) ;  end

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  P = rpolyval(C, X)
%  P = rpolyval(C, X)  is an array of the same size as  X 
%  containing the respective values of the polynomial 
%  p(x) = C(1)*x^n + C(2)*x^(n-1) + ... C(n)*x + C(n+1)
%  wherein  n+1 = length(C) .  The computed values have 
%  been  Iteratively Refined  once in a way that exploits
%  whatever extra-precise arithmetic or fused multiply-
%  add operation is available during matrix multiplication.
[rx,cx] = size(X) ;  X = X(:) ;  P = X ;  n = length(C) ;
for  k = 1:length(X)
    x1 = [1; X(k)] ;  x2 = [1; -1; X(k); X(k)] ;
    p = 0 ;  dp = 0 ;  
    for  m = 1:n
        op = p ;
        p = [C(m), op]*x1 ;
        dp = [C(m), p, op, dp]*x2 ;  end %... m
    P(k) = p + dp ;  end %... k
P = reshape(P, rx,cx) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  Y = f(X, n)
%  f(x, n) = sum([1:n]./(x-[1:n])) + sum([1:n]./(x+[1:n])) 
%                                    ----------------------
%                                    1 - prod(x./(x+[1:n]))
%  for an array  x .  If omitted,  n  defaults to  18 .
if (nargin < 2),  n = 18 ;  end
[rx, cx] = size(X) ;  X = X(:) ;  L = length(X) ;
N = [1:n] ;  Y = X ;
for  j = 1:L

x = X(j) ;
    y = sum(N./(x-N))+sum(N./(x+N))/(1 - prod(x./(x+N))) ;
    Y(j) = y ;  end
Y = reshape(Y, rx, cx) ;

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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function  [B, Z] = betas(n)
%  [B, Z] = betas(N)  provides columns of candidates for class
%  assignment #2 :  B = two columns of candidates for  beta
%  (they should match),  and  Z = a column of corresponding
%  double zeros of  p(x) + beta*g(x)  where  p(x) = prod(x-[1:N])
%  and  g(x) = (p(-x) - (-x)^N)*(-1)^N .  The best candidate
%  has the minimum |beta| .  Use only  N = 18  in  MATLAB v. 7 .
Z = zeros(n-1,1) ;  B = [Z, Z] ;  N = [1:n] ;
G = abs(poly(N)) ;  G = G(2:n+1) ;  %... coefficients of  g(x)
G1 = G.*(n-N) ;  G1 = G1(1:n-1) ;   %... and of  g'(x)
for  k = 1:n-1

z = fzero('f', [k+0.001, k+0.999], eps, [], n) ;
%...  For  MATLAB v. 7  omit these last two ~~~~~~~  arguments.

Z(k) = z ;  p = prod(z-N) ;  p1 = p*sum(1.0./(z-N)) ;
B(k,1) = -p/polyval(G,z) ;  B(k,2) = -p1/polyval(G1,z) ;

  end

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Results from  [B, Z] = betas(18) :

beta beta z

    7.38317832764355e-13      7.38317832764329e-13        17.7031785287344
   -1.18826070111930e-13     -1.18826070111929e-13        16.6358994232629
    3.78599411067942e-14      3.78599411067942e-14        15.5878476335195
   -1.92286101885325e-14     -1.92286101885327e-14        14.5482030390300
    1.42175942184190e-14      1.42175942184190e-14        13.5133543615164
   -1.46073512056147e-14     -1.46073512056148e-14        12.4815873694852
    2.03388743546567e-14      2.03388743546568e-14        11.4519209064207
   -3.79253582198457e-14     -3.79253582198455e-14        10.4237172002160
    9.44820694884286e-14      9.44820694884287e-14         9.39651627655296
   -3.16311667240260e-13     -3.16311667240261e-13         8.36995171255620
    1.44334556004274e-12      1.44334556004274e-12         7.34369877012772
   -9.19423774548570e-12     -9.19423774548568e-12         6.31743284329871
    8.48527106283812e-11      8.48527106283814e-11         5.29078229816549
   -1.20109201067620e-09     -1.20109201067620e-09         4.26325247166429
    2.85669177857461e-08      2.85669177857461e-08         3.23406142808911
   -1.34105658375384e-06     -1.34105658375384e-06         2.20166395679235
    0.00017686254475282       0.00017686254475282          1.16156230865673
»

These values  ß  seem accurate in all but their last digit or two because  all  pairs agree that closely 
despite that they reflect two utterly different ways to compute  g'(x)/g(x) ,  one for  f(X, n)  and 
the other for  betas(n) ,  each generating rounding errors in its own way different from the other.

Note how the ill-condition of a zero of  polyval(poly(1:18), x) ,  as revealed by the loss of 
accuracy of its tabulated approximations computed by  roots(poly(1:18))  earlier,  correlates 
with the smallness of a perturbation  ß  big enough to merge that zero with one of its neighbors.


