File: S23Mar06 version dated April 17, 2006 2:34 am

An Assignment for Math. 128 B due Thurs. 6 Apr. 2006

1. What isthelargest integer N for which MATLAB's C = poly(1:N) produces the row of
coefficients of p(x) := [11<xeny (X —K) = C(A)xN + C2)xNL+ ... + C(N)-x + C(N+1) exactly
despite roundoff, and what evidence have you to support your claim?

2. Having computed N and C inproblem 1, let G =[0, abs(C(2:N+1))] and find the smallest
3] suchthat C+ 3*G istherow of coefficients of a polynomial — MATLAB would compute it
as polyval (C+3*G, x) — with area double zero, and explain why your (3 isfairly accurate.

M odel Solutions: (Covering far more methods than any one student is expected to try.)

1. Thelargest N =18. Four ways come to mind to determine whether MATLAB has computed
coefficient row C = pol y(1: N) uncorrupted by rounding errors:

*(0) Usethe Inexact Flag mandated by IEEE Standard 754 for Floating-Point Arithmetic. This
flag is accessible through some C compilers, but not through Java nor MATLAB, alas.

(i) Compare MATLAB’s C with the coefficients computed exactly by an automated algebra
system like Maple, Mathematica or Derive. Roundoff during Binary - Decimal
conversion could obscure MATLAB’s C for all we know, so its elements should be
displayed in Hexadecimal using MATLAB’s format hex and compared with the exact
values, al integers, displayed in hexadecimal adjusted for floating-point normalization.

When N =19 the coefficientsof x> and x* cannot fit exactly into 53 sig. bits.

o(ii) Compute z = polyval (C, [1:N]") . It should beacolumn z of N zerosif norounding
error hascorrupted C = poly(1:N) nor Z = polyval (C, [1:N') . Butwhatif z has
been corrupted? This question underminesfaithin pol yval , sowereplaceit below by a
MATLAB program rpol yval intendedto Iteratively Refine pol yval ’s accuracy.

o(iii) Each step of MATLAB’srecurrence that computes C = pol y(1: N) usesonly one subtract
and one multiply, so augmenting each step by the computation of aresidual may expose
any rounding error that corrupts the step. MATLAB program cpol y below tries that.

MATLAB’s Binary Floating-Point Arithmetic:

Normally its variables are stored in 8-byte wordswith 53 sig. bits conforming to the Double
Precision format of |EEE Standard 754. A description of the standard convenient for studentsin
thiscourseisposted at  <http://www.cs.berkel ey.edu/~wkahan/ieee754status/| EEE754.PDF>.
Normally MATLAB roundsits every atomic arithmetic operation (+, — *,/, V') onreal variables
to 53 sig. bits. MATLAB doesthison most UNIX machineslike Sun SPARCs and SGI MIPs.

Most versionsof MATLAB can do something else when multiplying matrices on afew other very
widely used computers, so different versions of MATLAB on the same hardware, and the same
version on different hardware, can deliver different results for many computations.

Prof. W. Kahan for Math. 128 B Page 1/14



File: S23Mar06 version dated April 17, 2006 2:34 am

IBM’s Power PC architecture, used asoin Apple Power Macs, iMacs, G3s and G4s, hasa
Fused Multiply-Add operation that evaluates expressionslike +x + y*z with only one rounding
error after the add/subtract operation; the product x*y isgenerated exactly in a double-width
internal register. MATLAB 5.2 onthose Apple computers uses fused multiply-add operations
only for the accumulations of scalar products  , X(i,k)*Y (k,j) during matrix multiplications
X*Y provided the matricesfit into the computer’s cache. Consequently the MATLAB expression
[eps—1, 1]*[eps+1; 1] evaluatesto O but [1, eps-1]*[1; eps+1] evaluatesto eps2 on
those computers, and they evaluate [pi, —pi]*[pi; pi] to 1.429...e-16 instead of 0. This
behavior will sometimes help certain polynomial expressions to be evaluated more accurately
than if each multiply were rounded to 53 sig. bits before the subsequent rounded add/subtract.

Some computer architectures can perform atomic floating-point operations in afew extra-precise
registerscarrying 64 sig. bitsinstead of just 53. Among these processors are the near-ubiquitous
Intel x86, Pentium, Centrino, ... and their clonesby AMD in computers running Microsoft
Windows or, lessnumerous, LINUX. Similar extra-precise registers exist also in the current
Intel Itanium, and intheold Motorola 68040 inmy old Apple Macintosh Quadra, andinafew
other processors now mostly forgotten. Access to the extra-precise registersis denied by many
programming languages (like Java) and by most compilers (like Microsoft’'s), which iswhy
some versions of MATLAB can accumulate scalar products extra-precisely during at least some
matrix multiplications on those processors, and other versions cannot. Among versions that can
areversions 3.5, 4.2 and 5.2 onold Quadras, and versions 3.5, 4.2, 6.5 and maybe 7.0 on
Wintel PCs; version 6.5 requiresthe command syst em dependent (' set preci sion', 64) to
enable extra-precise accumul ation during multiplications of matrices small enough to fit into the
computer’s cache. When extra-precise accumulation isin effect,

t = 0.5"32 ; u=J[t-21, 1]*[t+1; 1] , v =1[1, t-1]*[1; t+1]
deliversnot 0 but 1/2%4=5.421...e-20 for both u and v . But after that MATLAB 7.0 does
something weird; see wei rd. m below. What it may be doing is adding scalar products like
>k X(i,k)*Y (k,j) inadifferent order thanfor k=1,2, 3., ... inturn. For instance, two sums
>k X(1,2k)* Y (2k,j) and Y X(i,2k=1)*Y (2k-1,j) could be accumulated in separate registersin
parallel and then added, thus achieving higher speed overall by keeping the arithmetic pipeline
full. Whatever the order of summation, extra-precise accumulation will help certain polynomial
expressions to be evaluated more accurately than if each multiply were rounded to 53 sig. bits
before the subsequent rounded add/subtract.

Checking MATLAB’s poly(1:N) against cpoly(N) :
Givenacolumnorrow Z =[zy, zp, Z3, ..., Zy] weexpect C = pol y(2) todelivertherow C of
coefficients C(k) of the polynomial

PO) 1= prod(x-2) = [Tyeken 02 = Yosken Clk+1) XN = pol yval (¢, x)
in the absence of roundoff. The recurrence that generates the coefficients works as follows: Let
E bethe row of coefficients of polynomial q(x) := [11<ken (X=2) = P(X)/(Xx=2zy) . Then

C=1[1 -Z(N]*[[E O]; [0, EI ;
in other words C(k) = E(k) —zy-E(k-1) for k=1,2,3, ..., N+1 assuming E(0) := E(N+1):=0.

Prof. W. Kahan for Math. 128 B Page 2/14



File: S23Mar06 version dated April 17, 2006 2:34 am

Note that, when every z>0 (asisthecasefor pol y(1: N) ), thecoefficientsin E and C
alternate in sign and so every step of the recurrence generates integer coefficients each bigger in

magnitude than itsancestors. Therefore no roundoff can occur until some magnitude exceeds 253
and perhaps not even then if that magnitude is divisible by a sufficiently big power of 2. Because

every coefficient of pol y(1:17) issmaller in magnitudethan 2°! it fitseasily into 53 sig. bits,
sothebiggest N for which pol y(1: N) isexactly right must be at least 17 .

As N increasesthrough N =17, 18, 19, ... thefirst rounding error to blight the recurrence can
occur in one of only three places: The multiply zy-E(k-1) , the subtract E(k) —zy-E(k-1) , or
thestore C(k) = ... if the previous two operations have been performed extra-precisely. Thefirst
assignment’sfirst task amounts to detecting that first rounding error when N > 17.

If that first rounding error occurs at the multiply operation and is not obscured by a subsequent
rounding error at the subtract or store operations, adifferent first rounding error will very likely
occur if thearray Z ispermuted before pol y(z) isinvoked, sowe might expect it to differ
from, say, pol y(flipud(Z(:))) , whichreversesthe order of the zerosin Z without changing
the polynomial p(x) nor its coefficients C except for roundoff. N =20 wasthefirst integer at
which norm(pol y(1: N) - poly(N -1:1), inf) turnedout nonzero; itdidsoonall my Macs
and PCs, and for all versions of MATLAB mentioned so far. Therefore pol y(1: 20) and/or
pol y(20: -1: 1) isinexact; we cannot yet say which. Only an unlikely cancellation of rounding
errors could leave one of them exactly right, so we may well suspect that the biggest N for
which pol y(1: N) must be exact cannot exceed 19.

To determine that biggest N more reliably, we must try to detect the recurrence’s first rounding
error by computing aresidual that exploits exact cancellation when sufficiently nearby numbers

are subtracted. After storing C = [1, -Z(N)]*[[E, 0]; [0, E]] approximately, we compute
thedifference dC = [1, -1, -Z(N]*[[E 0]; C [0, E]] inwhichonlythemultiplication
by Z(N) can generate arounding error, and thiswon't happenif Z(N) is 1 or 2. Thereforewe
reversethe order of thezerosof p(x) by setting z = N.-1: 1 sothat thefirst rounding error will
arise after either the subtract or the store operation. Thiserror will be exposed when dcC isnot all
zeros. The MATLAB program cpol y(N) below does the trick:

cpol y(N) agreeswith poly(1:N) for N=1,2,3,...,17,18 and 19 but signalsinexactness
first when N =19 at the recurrence’'slast step where Z(19) = 1. Thefirst rounding error occurs
at the subtract or store operation and is captured perfectly. cpol y(N) disagreeswith pol y(1: N)
for N =20 and signalsinexactness at the recurrence’s last three or more steps. Consequently ...

N =18 seemsto bethebiggest N for which pol y(1: N) isexact.

Comparing MATLAB’s poly(1:N) with Recomputationsin Redirected Rounding Modes:
This somewhat flakey scheme works only for afew versionsof MATLAB on one or two amost
ubiquitous computer architectures.

Nowadays practically all desktop and laptop computer hardware conformsto |EEE Standard 754
for Binary Floating-Point Arithmetic. Almost no compilers support this Standard properly.
Consequently certain capabilities of the hardware are accessible to amost no programmers. One

Prof. W. Kahan for Math. 128 B Page 3/14



File: S23Mar06 version dated April 17, 2006 2:34 am

such capability is Directed Rounding: By default (in the absence of acommand to do otherwise)
every floating-point operation, if not exact like 2.0 +2.0=4.0, Roundsto Nearest, which
means that the rounding error cannot exceed half aunit in the last bit retained. The Standard
mandates that a programmer be able to command the hardware to round in her choice of any of
three other directions. Round Up towards +o0 , Round Down towards — , and Round
Towards Zero. Therounding error in these Directed Rounding Modes is strictly smaller than one
unit in the last bit retained but may exceed half a unit.

Moreover the drafters of the Standard intended (but we failed to make this clear enough) that
the programmer be able to rerun any subprogram in each of those four Rounding Modes so asto
generate four samples of the influence of redirected roundoff upon the results. Rounding modes
effectsupon a Math. library of transcendental functionslike log(...) and cos(...) are uncertain
because the Standard does not specify them.

The rounding mode could be ateredin MATLAB 3.5 on PCs and Macintoshes only viaan
intervention by the computer’s operating system. MATLABs4.x and 5.x thwarted every such

intervention. MATLABs6.5and 7.0 on PCs offer away to alter rounding modes to some extent:
syst em dependent (' setround', DI RECTI ON)

with DI RECTION = 0.5 for Round to Nearest,
DI RECTION = 0.0 for Round Towards Zero,
DI RECTI ON = +i nf for Round Up towards +oo ,
DI RECTI ON = -i nf for Round Down towards —co .

|deally these commands should redirect the roundings of every subsequent rational operation
(+,— *,/), thealgebraic operation v , Binary — Decimal Conversion, and some conversionsto
integers. Instead these commands redirect the rational operations’ roundoff but leave sgrt(...)
and round(...) unaltered. (In MATLAB 3.5 redirection altered all of them.)

To test the commands' effects, interleave them among repeated evaluations of an expression like
[ x+y; x-y; x*y; x/y; sqrt(x); round(y); log(x); str2num DECIVAL) ]
in which the variables have suitable values preassigned outside the MATLAB script or function
containing repetitions of this expression. Preassignment “outside” prevents MATLAB'S script-
and-function compiler from evaluating what are deemed to be constant expressions in the default
rounding mode at compile-time, rather than later in the altered modes at run-time. Differences
between different evaluations of that long expression reveal the effects of redirected roundings.

Differences appear among the four evaluations of pol y(1: N) under al four rounding modes
only when N >18. Thistest provesthat pol y(1: 18) isuncontaminated by roundoff. The test
does not rule out the possibility that, under the default mode, rounding errorsin pol y(1: N)
may cancel out for some N = 19, but that seems unlikely.

Checking MATLAB's mod(poly(1:N), 2*m) against polymod2(m, 1:N) :
Givenacolumnor row Z =[z,, 2, Z3, ..., Z\y] weexpect C = pol y(Z) todelivertherow C of
coefficients C(k) of the polynomial

P(X) :=prod(x-2) = []1<ken X—2Zk) = 2 0<keN C(k+1)-xN¥ = pol yval (C, x)
in the absence of roundoff which may blight the last few bits of some coefficients. When all the

Prof. W. Kahan for Math. 128 B Page 4/14



File: S23Mar06 version dated April 17, 2006 2:34 am

zerosin Z areintegers, so are all the coefficientsin C, and their last few bits can be computed
perfectly by Modular Arithmetic: MATLAB’S mod(K, M = K - floor (K/ M*M isintended to
deliver aremainder between 0 and M wheninteger K isdivided by integer M . Versions of
MATLAB earlier than 5.x must use rem(K, M instead. Alas, roundoff can interfere when K
getstoo big. For instance mod(2.0.~[52:67], 3) and ren(2.0.7[52:67], 3) produce...

[1212121212121212] for v's.3.5& 4.2 onaMac Quadra, and v. 4.2onaPC.
[1212121212121000] for v.3.5 ona PC.

[1200000000000000] from mod for v. 5.2 on aMac Quadra, and from both mod and
rem for v. 5.2 on aPower Mac, and for v's. 5.3,6.5& 7.0onaPC.

[12124816 32 64 ... 8192] from rem for v. 5.2 on aMac Quadra, and from both mod and
rem forv's. 6.5&7.0 after system dependent (* setprecision’, 64) .

Only thefirst is correct.

We avoid all such roundoff-induced aberrations entirely by restricting M := 2™ for some positive
integer m< 27. Thisiswhat the MATLAB program pol ynod2(m L) supplied below does. It
computes exactly thelast m bits of the integer coefficient array C for a polynomia whose zeros
aredl integersinanarray L . Therefore any(pol ymod2(m 1: N) == nod(C, 2”m)) should be
0 whenever C = pol y(1: N has been computed exactly, and 1 otherwise, provided m isnot
too small. With m :=26 thisexactnesstest ispassed when 1< N < 18 and failed when N > 19
for al versionsof MATLAB and on all computers mentioned above. Thistest proves that ...

N =18 isthebiggest N for which pol y(1: N) isexact.

Checking MATLAB’'s C = poly(1:N) against polyval(C, 1:N):
Givenacolumnor row Z =[z,, 2, Z3, ..., Z\y] weexpect C = pol y(Z) todelivertherow C of
coefficients C(k) of the polynomial

P(X) :=prod(x-2) = []1<ken X—2Zk) = D o<keN C(k+1)xNX = pol yval (C, x)
in the absence of roundoff. Then we expect P = pol yval (C, Z) to generate avector of zeros.
But, for all we know now, rounding errorsinside pol yval may generate misleading results:

» Some elements of P may be nonzero even though C isexactly right.
» All elementsof P may be zero even though C isdightly inexact.

When the expression any(pol yval (pol y(1: N), 1:N)) isevaluatedfor N=1,2,3, ... inturn
it produces O for 1<N<18 and 1 for N=19, and doessoon PCs and Macs for every
version of MATLAB mentioned above. On any one machine these resultsimply that N =18 is
thebiggest N for which pol y(1: N) isexact provided no rounding error occursinside pol yval ;
but this proviso is problematical. It seems unlikely for at least some of the larger valuesof N .

Because binary multiplication is exact, rounding errorsinside pol yval can be restricted to
add/subtract operations by evaluating any(pol yval (poly(1:N), [1,2,4,8,16])) justfor
N =>16. Theseevauations produce O for 16 <N <18 and 1 for N =19 again, leaving the
same problematical question about roundoff inside polyval unanswered.

Prof. W. Kahan for Math. 128 B Page 5/14



File: S23Mar06 version dated April 17, 2006 2:34 am

Since the value of a polynomial evaluated by Horner’s Recurrence (i.e. nested multiplications)
can be construed as the last element of the solution of a system of linear equations, its accuracy
may be improved by iterative refinement provided aresidual can be computed extra-precisely.
The MATLAB program rpol yval (C, X) below doessowhenever MATLAB accumulates scalar
products extra-precisely, and does so sometimes when they are accumulated on Power Macs
using fused multiply-adds. The residual is computed simultaneously with the refinement’s
correction dp inthestatement dp = [C(m), p, op, dp]*x2.

When the expression any(rpol yval (poly(1: N), [1,2,4,8,16])) isevauatedjustfor

N =16,17,18, ... inturnit produces O for 16 <N <18 and 1 for N >19, and does so on
PCs and Macs for every version of MATLAB mentioned above. On any one machine these
results suggest that N = 18 is thebiggest N for which pol y(1: N) isexact provided rounding
errorsinside rpol yval have been offset adequately by iterative refinement.

What followsis an attempt to assess how much more accurate than pol yval is rpol yval . The
assessments vary with the version of MATLAB and the computer on which it runs. Each test
compares pol yval and rpol yval with asufficiently accurate evaluation of the polynomial
under test. Here are afew test results:

Test #1: Polynomia p(x) = prod(x - [1:18]) hascoefficients C = pol y([1: 18]) exactly.
With extra-precisely accumulated scalar products

X prod(x—1:18]) rpolyval(C, x) polyval(C, x)
3.875 -76286600135.58403 | -76286600135.58403 | -76286600156.
15.125 -76286600135.58403 | -76286600135.58403 | -76164317290.
4 + 1/210 510102608.4994386 | 510102608.4639658 | 510104157.
15— 1/210 | 510102608.4994385 | 510073677.3643785 | 615021841.

With fused multiply-adds

X prod(x—{1:18]) rpolyval(C, x) polyval(C, x)
3.875 -76286600135.58403 | -76286600218.6133 | -76286600156.
15.125 -76286600135.58403 | -76399896318.5432 | -76164317290.
4 + 1/210 510102608.499439 | 510103060.829811 510104157.
15—1/210 | 510102608.499438 | 520948386.105919 | 615021841.

With no extra-precise arithmetic

X prod(x— 1:18]) rpolyval(C, x) polyval(C, x)
3.875 -76286600135.58403 | -76286599734.74647 | -76286600156.
15.125 -76286600135.58403 | -76164317290. -76164317290.
4 + 1/210 510102608.4994387 | 510103342.7073206 | 510104157.
15— 1/210 | 510102608.4994384 | 529906517.7198682 | 615021841.

Prof. W. Kahan for Math. 128 B Page 6/14



File: S23Mar06 version dated April 17, 2006 2:34 am

MATLAB 5.3 on aPC produces results like those in the last tabulation except that its second-last
column duplicates the last because iterative refinement by r pol yval (C, X) isthwarted by the
way thisversion of MATLAB accumulates scalar products: It accumulates Y X(i,k)*Y (k,j)
with no extra-precise arithmetic and in descending order k= ..., 3, 2, 1 instead of the ascending
order v. 5.2 on Macs and v. 6.5 on PCs follow when matrices fit in the computer’s cache. Two
evaluations [-1, 1, eps]*[1; 1; eps] and [eps, 1, -1]*[eps; 1; 1] exposethe order.

MATLAB 7.0 on aPC accumulates scalar products extra-precisely (sometimes differently before
syst em dependent (‘ set preci sion’, 64) thanafter), andin an order that depends upon the
dimensions of matricesin wei rd ways| have not yet figured out. Here areitstest results:

MATLAB 7.0onaPC

X prod(x—1:18]) rpolyval(C, x) polyval(C, x)
3.875 -76286600135.584 -76286600136.1108 | -76286600156.
15.125 -76286600135.584 -76286635021.3008 | -76164317290.

4+1/20 | 510102608.499439 | 510102607.926758 | 510104157.
15_1/210 | 510102608.499438 | 510040748.883789 | 615021841.

Test #2: Roundoff corrupts C = pol y(1: 19) producing the row of coefficients of a polynomial

p(X) :=prod(x — [1:19]) + 16*(x-2)*x*x*x*x . Roundoff corrupts pol yval (C, x) sothat
it differsfrom p(x) . Iterative refinement usually brings r pol yval (C, x) nearer p(x) provided
residuals are accumulated extra-precisely. Then, for instance, for x = [-4:23] wefind every
rpol yval (C, x) == p(x) buthalf thevalues pol yval (C, x) ~= p(x) . And thedifferences
rpol yval (C, x) - p(x) areafew ordersof magnitude smaller than pol yval (C, x) - p(x)

for x = 0.5 + [-1:22] , andfor x = [sqrt(2); exp(1l); pi; sqrt(377)] . Activate extra-
precise accumulation by MATLAB 6.5 via syst em dependent (' set precision', 64) . This

command is unnecessary for v. 7.0 on PCs but does alter afew results slightly. Without extra-
precise accumulation (v. 5.3 on PCs and v. 6.5 without that command), and regardless of fused
multiply-adds (v. 5.2 on Power-Macs), r pol yval isno more accuratethan pol yval for this

test.

These test results accord with what we had learned el sawhere about the iterative refinement of
computed solutions of linear systems. With extra-precisely accumulated residuals, they and the
solution’s accuracy are improved by refinement. It may worsen accuracy without extra-precise
accumulation if the linear system isill-conditioned.

The Significance of Exactly Computed Coefficients:

Why should we care whether C = pol y(1: N) iscomputed exactly? A reason will appear when
theaccuracy of R = roots(C) isassessedfor N=1,2,3,.... Rounding errorswill cause R to
depart from a permutation of the integers [1, 2, 3, ..., N] . Whose rounding errors? Blaming
root s for rounding errors committed by poly, or vice-versa, would be unfair, and would spoil
attemptsto compute 3 for part 2 of thisassignment. Tabulated bel ow are some computed sets of
root s(pol y(1:18)) from different versonsof MATLAB run on afew different computers.

Prof. W. Kahan for Math. 128 B Page 7/14



File: S23Mar06 version dated April 17, 2006 2:34 am
Versions of MATLAB’s Computed r oot s( pol y(1: 18))
v.3.50nPC & V. 4.2 on Mac v. 5.2 on Mac v. 5.2 on Power
Mac Quadra v.4.20nPC Quadra Quadra Mac
17.99999 17.99999 18.000006 18.00001 18.000009
17.0001 17.00006 16.99995 16.9999 16.99992
15.9996 15.9998 16.0002 16.0005 16.0004
15.001 15.0005 14.9997 14.999 14.999
13.998 13.9994 14.0004 14.002 14.002
13.002 13.0006 12.9997 12.998 12.997
11.999 11.9997 12.0001 12.002 12.003
11.0008 11.0001 11.00006 10.999 10.998
9.9997 9.99998 9.99991 10.0004 10.001
9.00009 8.99999 9.00005 8.99991 8.9996
7.99998 8.000005 7.99998 8.000004 8.0001
7.000001 6.999999 7.000005 7.000005 6.99997
5.99999999 6.0000001 5.9999993 5.999999 6.000005
4.,999999994 4.999999993 5.00000006 5.0000002 4.9999995
3.999999999 4.0000000006 3.9999999992 3.99999998 4.00000004
3.0000000002 2.99999999991 2.9999999998 3.0000000006 2.999999999
1.99999999999 2.000000000004 2.000000000007 1.999999999993 2.00000000002
1.0000000000001 | 0.99999999999997 | 0.99999999999995 | 1.00000000000002 | 1.00000000000007
v.5.30onPC v.6.50n PC v. 6.5 0n PC (64) v.7.00nPC v. 7.0 on PC (64)
17.999996 18.000008 18.000009 17.999997 17.999997
17.00003 16.99991 16.99992 17.00001 17.00003
15.99991 16.0005 16.0004 16.00002 15.9999
15.0002 14.999 14.9990 14.9997 15.0004
13.9998 14.002 14.002 14.0008 13.9992
13.0003 12.997 12.998 12.998 13.001
11.9996 12.003 12.002 12.002 11.999
11.0004 10.998 10.999 10.998 11.0008
9.9997 10.0007 10.0006 10.001 9.9996
9.0001 8.9998 8.9998 8.9995 9.0002
7.99995 8.00002 8.00005 8.0002 7.99996
7.00001 7.000005 6.99999 6.99996 7.000008
5.999998 5.999998 6.000001 6.000006 5.9999991
5.0000002 5.0000003 4.9999999 4.9999995 5.00000006
3.999999996 3.99999998 4.00000001 4.00000003 3.9999999991
2.9999999997 3.00000000001 2.9999999997 2.9999999993 2.99999999997
2.00000000002 2.00000000002 2.000000000005 2.000000000001 2.0000000000006
0.9999999999998 | 0.9999999999998 | 0.99999999999996 | 1.00000000000007 | 0.99999999999997
“on PC (64)” means after the command syst em dependent (' set preci sion', 64)
Prof. W. Kahan for Math. 128 B Page 8/14




File: S23Mar06 version dated April 17, 2006 2:34 am

Why are accuracies so similar though results vary from one computer to another and from one
version of MATLAB to another? Without knowing the details about QR iteration and matrix
multiplication within MATLAB’s ei g(...), invoked within r oot s(C) to computeitsvalues as
eigenvalues of the Companion Matrix of polynomia pol yval (C, x) , we have to speculate:

* Results differ because rounding errors differ during the different orderings and precisions of the
matrix multiplications within the QR-iterations that reduce the Hessenberg Form of the
companion matrix to an upper-triangular Schur form with the desired eigenvalues (roots) onits
diagonal. The different orderings are intended to take near-optimal advantage of the computer’s
memory architecture, especialy itscache(s). Precisionsdiffer according to whether extra-precise
accumulation is enabled during matrix multiplication, or whether multiply-adds are fused.

» Though computed eigenvalues (roots) differ, their accuracies are similar because these depend
heavily upon MATLAB’S ei g program’s thresholds chosen to stop QR-iteration as soon asthe
Hessenberg matrices sub-diagonal elements have become small enough to be deemed negligible.

So sensitive to those rounding errors and thresholds are some eigenvalues (roots) that computing
them loses most of the digits carried by the arithmetic. Roots near 13 in the tabulations above
are so senstive, and consequently arecalled “ill-conditioned”. They areill-conditioned no matter
how we try to compute them from the coefficients C = pol y(1: 18) solong as our procedure
commits rounding errors whose effect is tantamount to perturbing the coefficients’ end-figures.
Roundoff islikethat in roots(C) andin pol yval (C, x) , Socomputing aroot r from either
r = fzero( 'polyval (poly(1:18), x)', [12.5, 13.5], eps) or

rr = fzero('rpolyval (poly(1:18), x)', [12.5, 13.5], eps) (refined)
yields r=13.00003 from an unrefined polyval, or

rr = 13.00003 in MATLAB 5.3 ona PC (refinement thwarted) ,

rr = 12.99994 in MATLAB 6.5 ona PC (refinement not extra-precise) ,

rr=12.999999 in MATLAB 5.2 ona Power Mac (helped by its fused multiply-add),

rr = 13.0000001 in MATLAB 5.2 ona Mac Quadraand v. 6.5 onaPC (... 64),

rr=12.9999998 in MATLAB 7.0 ona PC (performs extra-precise refinement),
instead of the correct root 13 .

Why are ill-conditioned roots so sensitive to tiny perturbations in a polynomial’s coefficients?
Their hypersensitivity is explained if comparably tiny perturbations can alter the multiplicities of
ill-conditioned roots. Thisiswhat we shall see happenin part 2 of this assignment.

Prof. W. Kahan for Math. 128 B Page 9/14



File: S23Mar06 version dated April 17, 2006 2:34 am

2. Thesmallest |B| belongsto B= 1.4217594218419e-14 for which p(x) + R-g(x) hasadouble
zeroat x = 13.513354361516 . Here

p(X) = [1<keny (X —K) = CQ)xN + C2)xNL + ... + C(N)-x + C(N+1) and N =18,
so coefficientrow C = poly(1: N) exactly, and

g(x) == |CQ@)xNT+ ... +|C(N)|:x + |C(N+1)| >0 foral x=0.
Itiseasy to confirmthat g(x) = (~L)N-(p(=x) = (=ON) = [T1ken (X + K) =xN . Thisimplies
soon that [p(x)/g(x)|>1/2 if x<0, so p(x) + R-g(x) cannot have a nonpositive double zero
unless |3]>1/2. If |3 istobetiny, the desired real double zero z must be positive.

Now, z isadouble zero of p(x) + 3-g(x) just when both p(z) + 3g(z) =0 and the derivative
p'(2) + Rg'(2) =0; andthen R=—-p(2)/9(2) = ' (2)/g'(z) , whence follows a polynomial
equation p'(2)-9(z) —g'(2)-p(z) =0. Thisisthe equation that must be solved for some of its
2N-2 = 34 roots z . Let’snot compute the polynomial’s coefficientsand invoke roots(...) or
fzero(pol yval (...)) ; they’'relikely to produce poor approximations from coefficients blurred
by roundoff if recent experienceisaguide. Instead the polynomial equation will be turned into an
equivalent rational equation p'(2)/p(z) —g'(2)/g(z) =0. Inthisequation p'(x)/p(x) can be
computed accurately enough from p'(X)/p(x) = Y 1<k<n Y/(X—K) becauseits graphisfairly steep
in the range that will matter later:  (p'(X)/p(X))" = =3 1<keny V(xK)?> <8 if 1<x<N.

(Canyouseewhy “...<-8" ? Actualyit's “... <—8.874... ", but the exact value won’t matter to what follows.)

A more complicated expression provides an analogous (and unobvious) way to compute
g ()/9() = ( Masien X+ K)- Y agen Vo) = NV Magean X+ k) =xN) = ..
= N/X = (WX)( S 1<ieen KIHK) ) (1 = [Tosheen X/(X+K) ) after some algebra.
This expression leads to
f(X) :==x(p' (X)/p(x) =g (X)/g(x) ) = ... (morealgebra)
= Y1k KIOK) + (Y 1gean KIOHK) ) (1 = [Tagean X(6+K) ) -

Now therational equation f(z) =0 hasthe sameroots z> 0 as has the polynomial equation
p'(2)-9(z2) —g'(2)-p(z) = 0. To help locate those roots we examine the Poles of f(x) (whereit
becomesinfinite). For K=1,2,... and N wefind f(x)=K/(x—K) when x=K, so f(X)
reversessign as x crossesthepoleat x =K. Therefore f(x) alsoreversessign at least once as
X increases from one such pole to the next. We have found at least N—1 positive zeros of f(X) .

Arethere any other positive zerosof f(x) ? No; hereiswhy:

f(x) <0 while 0<x<1. Thisistrue becausethen g(x) >0, g'(x) >0 and
f)/x = P ()/p(x) — g (¥)/g(x) < p'(X)/p(X) = 3 1<ken V(xK) <O0.

f(x)>0 foral x>N. Toseewhy thisistrue, verify that (N-1)-g(x) —x-g'(x) >0 for al such
X, S0 P'(X)/p(x) =g ()/g(x) > ¥ 1cksn V(xK) = (N=1)/x = Lx + (1/%)-3 1cken K/ (x—K) > 0.

Therefore all the positive zerosof f(x) liestrictly betweenitspolesat x=1,2,3,... and N.

How many zerosof f(x) lie between adjacent poles? The easiest way to answer this question is
toplot f(x). Itisplotted below for N =6; theplot for N =18 issimilar but busier.

Prof. W. Kahan for Math. 128 B Page 10/14



File: S23Mar06 version dated April 17, 2006 2:34 am

f(x) for N=6
20 3 T T T T T T

151 n

101 n

220 H] ! ! ! ! 1 1
0 1 2 3 4 5 6 7 8

X

Apparently f(x) vanishesjust once between adjacent poles. Thisis confirmed by a proof (best
skipped during afirst reading) that, when 1 <x <N, thederivative

f'(x) := (xp' ()/p(x) —x-g' (x)/g(x) )’
isnegative. Thefirstterm (x-p'(X)/p(X) )" = (T 1eken X/(XK) )" = =3 1cpen K/(xK)% < 82 .

To handle the second term (—x-g'(x)/g(x) )' we shall first determine arough bound for every
zero {=—£ +1n of g(x) = [T1eken (X + K) —xN . Wefind every Real(7) = — <-1/2 because
otherwise, were & <1/2, wewould find that [k—& + 2> |-€ +in|? foral k=1, andthis
would imply that [y<en I + kI > [N whence g(@) #0. Thus, g(x) =-C(2) [ l1gken-1 (X~
inwhich every {, =& +Iny has & >1/2. Moreover, because g(x) hasrea coefficients, its
every non-real zero { =—¢ +1n comes paired with its complex conjugate zero { =—€ —1n .

Now the second term  (—x-g' (X)/g(X) )' =~ 3 1cken X/(x~0) )' = ¥ 1cken Ll (x-L)*  can be
handled; thissum will be shown to be negative: In thissum every term Z/(x—Z)2 with area zero
( =—¢ <-1/2 hastheform —E/(x+£)2 < 0. Every pair of complex conjugate terms adds up to
U0+ U (x0? = (L(x0)? + T(x0)? ) IxL[* =-2(8% +xE +n?)/|x|*< 0. Therefore
f'(x) <—-8v2=-11.3137 for 1<x <N and consequently f(x) must vanish just once between
adjacent poles just as appears from its plotted graph.  (Actualy f'(x) <-15.475 when N =18 )

MATLAB program bet as(N) appended below computesall N—1 positive zeros z of f(x) and
the corresponding values of 13 from which the smallest is selected to compl ete the assignment.

Prof. W. Kahan for Math. 128 B Page 11/14



File: S23Mar06 version dated April 17, 2006 2:34 am

MATLAB Programs Cited Above:

function [m n] = weird(k)

% [m n] = weird(k) tests WMatlab's scalar products of

% vectors of length 2k . |If no extra-precise arithnetic is
% used [m n] should be [0, 0] , as it is for Matlabs
% 5.3 and 6.5 on Wntel PCs. |If scalar products are

% accumul ated extra-precisely to 64 sig. bits before they
% are delivered rounded to 53 sig. bits, [m n] should
% be [k, k] , as it is for Matlab 3.5 and 4.2 on PCs
% and old 680x0-based Macs, and for Matlab 6.5 on PCs
% after the command system dependent (' setprecision', 64)
% In Mtlab 5.2 on Power Macs their fused multiply-adds

% produce [m n] =1[1, 0] . But sonething weird and, so
% far, unexplained happens in Mitlab 7.0 on Wntel PCs:
% k m n k m n k m n k m n
% 1 1 1 5 5 3 9 9 5 13 9 17
% 2 2 1 6 8 8 10 8 16 14 8 16
% 3 3 2 7 9 9 11 9 17 15 9 17
% 4 4 2 8 8 4 12 8 16 16 8 8
% W Kahan, 29 March 2006

if ((k<l)](k~=round(k))), k =Kk
error('weird(k) requires a positive integer k.'), end

u = ones(1,k) ;

a = -2281422937 ; b = 4042815511 ; %.. a*b =1 - 2763
c=2"31; d=ct+tc; e=1-d,; f =1+ ;

% c =2"31, d=2"32, e=1-2"32, f =1+ 2732 .
CA =J[c*u; a*ru] ; CA=CA(:);, %.. =[cacaca...]
DB = [d*u; b*u] ; DB=DB(:) ; %.. =[dbdbdb...]J
m=CA*DB; %.. = (263 + (1 - 2"63))*k i f exact

ED = [e*u; d*u] ; ED=ED(:) ; %.. =[ededed...]
FD = [f*u; d*u] ; FD=FD:) ; %.. =[f df df d...]
n=ED*FD; %.. = ((1 - 2764) + 2"64)*k if exact

function C = cpoly(n, m
% C = cpoly(n, M is the row of coefficients of a
% pol ynonmi al whose zeros are [mn] , but differs
% from poly(mn) by checking whether C is free
% fromrounding errors, as it is on a Mc Quadra
% 950 for (n,m = (18,1), (19,2), (20,4), (21,6),
% (22,7), (23,9), (24,10), (25,12),
% If m is onmtted it defaults to m=1.
if ( nargin<2), m=1; end
L=n-ml; C=zeros(l, L+1) ; C(1) =1 ;
for k =(-n):(-m
E=C; oE=1][0, E(1:L)] ;
C=1[1 KkI*[E of] ;
dC =11, -1, k]*[E C oF ; %.. residual
if any(dC(:)) n_mk =[n, m -Kk] ,

di sp('" cpoly(n, mM was conputed inexactly.")

end, end

Prof. W. Kahan for Math. 128 B

Page 12/14



File: S23Mar06 version dated April 17, 2006 2:34 am

function C = polynpd2(m L)
% C = polynod2(m L) is the row of coefficients nod 2"m

% of a polynonm al whose zeros are all integers in array L .
% This works for O <integer m< 27 in Matlabs 5.2 - 7.0.

if (m~=round(mM)|(m< 1)|(m>26)), m=m
error (' polynmod2(mL) needs O < integer m< 27 ."), end

M=2"m; L =1L(:); if any(L ~= round(L))
error (' polynod2(mVL) needs L to be all integers.'), end
L mod(L, M ; n = length(L)

C = zeros(1, n+l) ; C(1) =1 ;
for k = 1:n
oE = [0, C(1:n)]

C = mod( [1, -L(K)]*[C oF], M : end

function P = rpolyval (C X
% P =rpolyval (C, X) is an array of the same size as X
% containing the respective values of the polynom al
% p(x) = CL1*x*n + C(2)*x"(n-1) + ... C(n)*x + C(n+1)
% wherein n+l = length(C) . The conputed val ues have
% been Iteratively Refined once in a way that exploits
% whatever extra-precise arithnetic or fused multiply-
% add operation is available during matrix multiplication.
[rx,cx] =size(X) ; X=X:); P=X; n=length(C
for k 1: 1 ength(X)

[1 X(k)] + x2 =1[1; -1; X(Kk); X(k)]

p=[Cm, op]*x1 ;

dp = [C(m, p, op, dp]*x2 ; end %.. m
P(k) =p +dp; end %.. k

P = reshape(P, rx,cx)

function Y = f(X n)

% f(x, n) =sum([1l:n]./(x-[1:n])) + sunm([1:n]./(x+[1:n]))

% e e e e e e e e e

% 1 - prod(x./(x+[1:n]))

% for an array x . |If omtted, n defaults to 18 .

if (nargin <2), n=18; end

[rx, cx] =size(X) ; X =X(:) ; L =length(X

N=1[1l:n] ; Y=X;

for j = 1:L

= X(j)

y sun{N./ (x-N)) +sum(N. / (x+N))/ (1 - prod(x./(x+N)))
Y(j) =y ; end

Y = reshape(Y, rx, cXx)

Prof. W. Kahan for Math. 128 B

Page 13/14



File: S23Mar06 version dated April 17, 2006 2:34 am
function [B, Z] = betas(n)

% [B, Z] = betas(N) provides colunmms of candi dates for class

% assignment #2 : B = two colums of candidates for beta

% (they should natch),
% doubl e zeros of

p(x) + beta*g(x)
% and g(x) = (p(-x) - (-x)"N)*(-1)"N .

where p(x)

and Z = a columm of correspondi ng

= prod(x-[1:N])
The best candi date

% has the m ni mum | bet a| Use only N =18 in MATLAB v. 7 .
Z = zeros(n-1,1) B=1[2 Z N =[1:n]
G = abs(pol y(N)) G = (4 2:n+l) % .. coefficients of g(x)
GL=G*(n-N ; GL =GL(1:n-1) % .. and of g'(x)
for k = 1:n-1
z = fzero('f', [k+0.001, k+0.999], eps, [], ;
% .. For MATLAB v. 7 omt these last two ~~~~~~~ argumnents.
Z(k) =z ; p = prod(z-N pl = p*sum(1.0./(z-N))
B(k,1) = -p/polyval (G z) B(k, 2) = -pl/polyval (GL, 2)
end
Resultsfrom [B, Z] = betas(18) :
beta beta z
7.38317832764355e- 13 7.38317832764329e- 13 17.7031785287344
-1.18826070111930e- 13 -1.18826070111929e- 13 16. 6358994232629
3.78599411067942e- 14 3.78599411067942e- 14 15. 5878476335195
-1.92286101885325e- 14 -1.92286101885327e- 14 14. 5482030390300
1.42175942184190e- 14 1.42175942184190e- 14 13. 5133543615164
-1.46073512056147e- 14 -1.46073512056148e- 14 12. 4815873694852
2.03388743546567e- 14 2.03388743546568e- 14 11. 4519209064207
- 3.79253582198457e- 14 - 3.79253582198455e- 14 10. 4237172002160
9. 44820694884286e- 14 9. 44820694884287e- 14 9. 39651627655296
-3.16311667240260e- 13 -3.16311667240261e- 13 8.36995171255620
1. 44334556004274e- 12 1. 44334556004274e- 12 7.34369877012772
-9.19423774548570e- 12 -9.19423774548568e- 12 6.31743284329871
8.48527106283812e- 11 8.48527106283814e- 11 5.29078229816549
-1.20109201067620e- 09 -1.20109201067620e- 09 4.26325247166429
2.85669177857461e- 08 2.85669177857461e- 08 3.23406142808911
-1.34105658375384e- 06 -1.34105658375384e- 06 2.20166395679235
0. 00017686254475282 0. 00017686254475282 1.16156230865673

»

These values 3 seem accuratein all but their last digit or two because all pairsagreethat closely
despite that they reflect two utterly different ways to compute g'(x)/g(x) , onefor f(X, n) and
the other for bet as(n) , each generating rounding errorsin its own way different from the other.

Note how theill-condition of azero of pol yval (pol y(1:18), x) , asrevealed by theloss of
accuracy of its tabulated approximations computed by r oot s(pol y(1: 18)) earlier, correlates
with the smallness of a perturbation 3 big enough to merge that zero with one of its neighbors.

Prof. W. Kahan for Math. 128 B Page 14/14



