

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 1/14

An Assignment for Math. 128 B due Thurs. 6 Apr. 2006

1.

 What is the largest integer N for which M

ATLAB

’s C = poly(1:N) produces the row of

coefficients of p(x) :=

∏

1

≤

k

≤

N

(x – k) = C(1)·x

N

 + C(2)·x

N–1

 + … + C(N)·x + C(N+1) exactly
despite roundoff, and what evidence have you to support your claim?

2.

 Having computed N and C in problem 1

, let G = [0, abs(C(2:N+1))] and find the smallest
|ß| such that C + ß*G is the row of coefficients of a polynomial — M

ATLAB

 would compute it
as polyval(C+ß*G, x) — with a real double zero, and explain why your ß is fairly accurate.

Model Solutions:

 (Covering far more methods than any one student is expected to try.)

1.

 The largest N = 18 . Four ways come to mind to determine whether M

ATLAB

 has computed
coefficient row

C = poly(1:N)

 uncorrupted by rounding errors:

•(o) Use the

Inexact Flag

 mandated by IEEE Standard 754 for Floating-Point Arithmetic. This
flag is accessible through some

C

 compilers, but not through

Java

 nor M

ATLAB

, alas.

•(i) Compare M

ATLAB

’s

C

 with the coefficients computed exactly by an automated algebra
system like

Maple

,

Mathematica

 or

Derive

. Roundoff during Binary - Decimal
conversion could obscure M

ATLAB

’s

C

 for all we know, so its elements should be
displayed in

Hexadecimal

 using M

ATLAB

’s format

hex

 and compared with the exact
values, all integers, displayed in hexadecimal adjusted for floating-point normalization.

When N = 19 the coefficients of x

5

 and x

4

 cannot fit exactly into 53 sig. bits.

•(ii) Compute

Z = polyval(C, [1:N]

'

)

 . It should be a column

Z

 of N zeros if no rounding
error has corrupted

C = poly(1:N)

 nor

Z = polyval(C, [1:N]

'

)

 . But what if

Z

 has
been corrupted? This question undermines faith in

polyval

 , so we replace it below by a
M

ATLAB

 program

rpolyval

 intended to

Iteratively Refine

polyval

’s accuracy.

•(iii) Each step of M

ATLAB

’s recurrence that computes

C = poly(1:N)

 uses only one subtract
and one multiply, so augmenting each step by the computation of a residual may expose
any rounding error that corrupts the step. M

ATLAB

 program

cpoly

 below tries that.

M

ATLAB

’s Binary Floating-Point Arithmetic:

Normally its variables are stored in 8-byte words with 53 sig. bits conforming to the

Double
Precision

 format of IEEE Standard 754. A description of the standard convenient for students in
this course is posted at <http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF>.
Normally M

ATLAB

 rounds its every atomic arithmetic operation (+, –, *, /,

√

) on real variables
to 53 sig. bits. M

ATLAB

 does this on most UNIX machines like Sun SPARCs and SGI MIPs.

Most versions of M

ATLAB

 can do something else when multiplying matrices on a few other very
widely used computers, so different versions of M

ATLAB

 on the same hardware, and the same
version on different hardware, can deliver different results for many computations.

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 2/14

IBM’s

Power PC

 architecture, used also in Apple

 Power Mac

s,

iMac

s,

G3

s and

 G4

s, has a

Fused Multiply-Add

 operation that evaluates expressions like

±

x

±

 y*z with only one rounding
error after the add/subtract operation; the product x*y is generated exactly in a double-width
internal register. M

ATLAB

 5.2 on those Apple computers uses fused multiply-add operations
only for the accumulations of scalar products

∑

k

X(i,k)*Y(k,j) during matrix multiplications
X*Y provided the matrices fit into the computer’s cache. Consequently the M

ATLAB

 expression

[eps–1, 1]*[eps+1; 1]

 evaluates to 0 but

[1, eps–1]*[1; eps+1]

 evaluates to eps

2

 on
those computers, and they evaluate

[pi, –pi]*[pi; pi]

 to 1

.

429…e-16 instead of 0 . This
behavior will sometimes help certain polynomial expressions to be evaluated more accurately
than if each multiply were rounded to 53 sig. bits before the subsequent rounded add/subtract.

Some computer architectures can perform atomic floating-point operations in a few extra-precise
registers carrying 64 sig. bits instead of just 53. Among these processors are the near-ubiquitous
Intel x86,

Pentium

,

Centrino

, … and their clones by AMD in computers running Microsoft

Windows

 or, less numerous,

LINUX

. Similar extra-precise registers exist also in the current
Intel

Itanium

, and in the old Motorola 68040 in my old Apple

Macintosh

Quadra

, and in a few
other processors now mostly forgotten. Access to the extra-precise registers is denied by many
programming languages (like

Java

) and by most compilers (like Microsoft’s), which is why
some versions of M

ATLAB

 can accumulate scalar products extra-precisely during at least some
matrix multiplications on those processors, and other versions cannot. Among versions that can
are versions 3.5, 4.2 and 5.2 on old Quadras, and versions 3.5, 4.2, 6.5 and maybe 7.0 on
Wintel PCs; version 6.5 requires the command

system_dependent('setprecision', 64)

 to
enable extra-precise accumulation during multiplications of matrices small enough to fit into the
computer’s cache. When extra-precise accumulation is in effect,

t = 0.5^32 ; u = [t-1, 1]*[t+1; 1] , v = [1, t-1]*[1; t+1]

delivers not 0 but 1

/

2

64

 = 5

.

421…e-20 for

both

 u and v . But after that MATLAB 7.0 does
something weird; see weird.m below. What it may be doing is adding scalar products like
∑k X(i,k)*Y(k,j) in a different order than for k = 1, 2, 3., … in turn. For instance, two sums

∑k X(i,2k)*Y(2k,j) and ∑k X(i,2k–1)*Y(2k–1,j) could be accumulated in separate registers in
parallel and then added, thus achieving higher speed overall by keeping the arithmetic pipeline
full. Whatever the order of summation, extra-precise accumulation will help certain polynomial
expressions to be evaluated more accurately than if each multiply were rounded to 53 sig. bits
before the subsequent rounded add/subtract.

Checking MATLAB’s poly(1:N) against cpoly(N) :
Given a column or row Z = [z1, z2, z3, …, zN] we expect C = poly(Z) to deliver the row C of
coefficients C(k) of the polynomial

p(x) := prod(x-Z) = ∏1≤k≤N (x–zk) = ∑0≤k≤N C(k+1)·xN–k = polyval(C, x)
in the absence of roundoff. The recurrence that generates the coefficients works as follows: Let
E be the row of coefficients of polynomial q(x) := ∏1≤k<N (x–zk) = p(x)/(x–zN) . Then

 C = [1, -Z(N)]*[[E, 0]; [0, E]] ;
in other words C(k) = E(k) – zN·E(k–1) for k = 1, 2, 3, …, N+1 assuming E(0) := E(N+1) := 0 .

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 3/14

Note that, when every z > 0 (as is the case for poly(1:N)), the coefficients in E and C
alternate in sign and so every step of the recurrence generates integer coefficients each bigger in

magnitude than its ancestors. Therefore no roundoff can occur until some magnitude exceeds 253
and perhaps not even then if that magnitude is divisible by a sufficiently big power of 2 . Because

every coefficient of poly(1:17) is smaller in magnitude than 251 it fits easily into 53 sig. bits,
so the biggest N for which poly(1:N) is exactly right must be at least 17 .

As N increases through N = 17, 18, 19, … the first rounding error to blight the recurrence can
occur in one of only three places: The multiply zN·E(k–1) , the subtract E(k) – zN·E(k–1) , or
the store C(k) = … if the previous two operations have been performed extra-precisely. The first
assignment’s first task amounts to detecting that first rounding error when N > 17 .

If that first rounding error occurs at the multiply operation and is not obscured by a subsequent
rounding error at the subtract or store operations, a different first rounding error will very likely
occur if the array Z is permuted before poly(Z) is invoked, so we might expect it to differ
from, say, poly(flipud(Z(:))) , which reverses the order of the zeros in Z without changing
the polynomial p(x) nor its coefficients C except for roundoff. N = 20 was the first integer at
which norm(poly(1:N) - poly(N:-1:1), inf) turned out nonzero; it did so on all my Macs
and PCs, and for all versions of MATLAB mentioned so far. Therefore poly(1:20) and/or
poly(20:-1:1) is inexact; we cannot yet say which. Only an unlikely cancellation of rounding
errors could leave one of them exactly right, so we may well suspect that the biggest N for
which poly(1:N) must be exact cannot exceed 19 .

To determine that biggest N more reliably, we must try to detect the recurrence’s first rounding
error by computing a residual that exploits exact cancellation when sufficiently nearby numbers
are subtracted. After storing C = [1, -Z(N)]*[[E, 0]; [0, E]] approximately, we compute
the difference dC = [1, -1, -Z(N)]*[[E, 0]; C; [0, E]] in which only the multiplication
by Z(N) can generate a rounding error, and this won’t happen if Z(N) is 1 or 2 . Therefore we
reverse the order of the zeros of p(x) by setting Z = N:-1:1 so that the first rounding error will
arise after either the subtract or the store operation. This error will be exposed when dC is not all
zeros. The MATLAB program cpoly(N) below does the trick:

cpoly(N) agrees with poly(1:N) for N = 1, 2, 3, …, 17, 18 and 19 but signals inexactness
first when N = 19 at the recurrence’s last step where Z(19) = 1 . The first rounding error occurs
at the subtract or store operation and is captured perfectly. cpoly(N) disagrees with poly(1:N)
for N ≥ 20 and signals inexactness at the recurrence’s last three or more steps. Consequently …

 N = 18 seems to be the biggest N for which poly(1:N) is exact.

Comparing MATLAB’s poly(1:N) with Recomputations in Redirected Rounding Modes :
This somewhat flakey scheme works only for a few versions of MATLAB on one or two almost
ubiquitous computer architectures.

Nowadays practically all desktop and laptop computer hardware conforms to IEEE Standard 754
for Binary Floating-Point Arithmetic. Almost no compilers support this Standard properly.
Consequently certain capabilities of the hardware are accessible to almost no programmers. One

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 4/14

such capability is Directed Rounding: By default (in the absence of a command to do otherwise)
every floating-point operation, if not exact like 2.0 + 2.0 = 4.0 , Rounds to Nearest, which
means that the rounding error cannot exceed half a unit in the last bit retained. The Standard
mandates that a programmer be able to command the hardware to round in her choice of any of
three other directions: Round Up towards +∞ , Round Down towards –∞ , and Round
Towards Zero. The rounding error in these Directed Rounding Modes is strictly smaller than one
unit in the last bit retained but may exceed half a unit.

Moreover the drafters of the Standard intended (but we failed to make this clear enough) that
the programmer be able to rerun any subprogram in each of those four Rounding Modes so as to
generate four samples of the influence of redirected roundoff upon the results. Rounding modes’
effects upon a Math. library of transcendental functions like log(…) and cos(…) are uncertain
because the Standard does not specify them.

The rounding mode could be altered in MATLAB 3.5 on PCs and Macintoshes only via an
intervention by the computer’s operating system. MATLABs 4.x and 5.x thwarted every such
intervention. MATLABs 6.5 and 7.0 on PCs offer a way to alter rounding modes to some extent:

system_dependent('setround', DIRECTION)

with DIRECTION = 0.5 for Round to Nearest,
 DIRECTION = 0.0 for Round Towards Zero,
 DIRECTION = +inf for Round Up towards +∞ ,
 DIRECTION = -inf for Round Down towards –∞ .

Ideally these commands should redirect the roundings of every subsequent rational operation
(+, –, *, /), the algebraic operation √ , Binary ↔ Decimal Conversion, and some conversions to
integers. Instead these commands redirect the rational operations’ roundoff but leave sqrt(…)
and round(…) unaltered. (In MATLAB 3.5 redirection altered all of them.)

To test the commands’ effects, interleave them among repeated evaluations of an expression like
 [x+y; x-y; x*y; x/y; sqrt(x); round(y); log(x); str2num(DECIMAL)]

in which the variables have suitable values preassigned outside the MATLAB script or function
containing repetitions of this expression. Preassignment “outside” prevents MATLAB’s script-
and-function compiler from evaluating what are deemed to be constant expressions in the default
rounding mode at compile-time, rather than later in the altered modes at run-time. Differences
between different evaluations of that long expression reveal the effects of redirected roundings.

Differences appear among the four evaluations of poly(1:N) under all four rounding modes
only when N > 18 . This test proves that poly(1:18) is uncontaminated by roundoff. The test
does not rule out the possibility that, under the default mode, rounding errors in poly(1:N)
may cancel out for some N ≥ 19, but that seems unlikely.

Checking MATLAB’s mod(poly(1:N), 2^m) against polymod2(m, 1:N) :
Given a column or row Z = [z1, z2, z3, …, zN] we expect C = poly(Z) to deliver the row C of
coefficients C(k) of the polynomial

p(x) := prod(x-Z) = ∏1≤k≤N (x–zk) = ∑0≤k≤N C(k+1)·xN–k = polyval(C, x)
in the absence of roundoff which may blight the last few bits of some coefficients. When all the

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 5/14

zeros in Z are integers, so are all the coefficients in C , and their last few bits can be computed
perfectly by Modular Arithmetic: MATLAB’s mod(K, M) = K - floor(K/M)*M is intended to
deliver a remainder between 0 and M when integer K is divided by integer M . Versions of
MATLAB earlier than 5.x must use rem(K, M) instead. Alas, roundoff can interfere when K
gets too big. For instance mod(2.0.^[52:67], 3) and rem(2.0.^[52:67], 3) produce …

[1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2] for v’s. 3.5 & 4.2 on a Mac Quadra, and v. 4.2 on a PC.

[1 2 1 2 1 2 1 2 1 2 1 2 1 0 0 0] for v. 3.5 on a PC.

[1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0] from mod for v. 5.2 on a Mac Quadra, and from both mod and
rem for v. 5.2 on a Power Mac, and for v’s. 5.3, 6.5 & 7.0 on a PC.

[1 2 1 2 4 8 16 32 64 … 8192] from rem for v. 5.2 on a Mac Quadra, and from both mod and
rem for v’s. 6.5 &7.0 after system_dependent(‘setprecision’, 64) .

Only the first is correct.

We avoid all such roundoff-induced aberrations entirely by restricting M := 2m for some positive
integer m < 27 . This is what the MATLAB program polymod2(m, L) supplied below does. It
computes exactly the last m bits of the integer coefficient array C for a polynomial whose zeros
are all integers in an array L . Therefore any(polymod2(m, 1:N) == mod(C, 2^m)) should be
0 whenever C = poly(1:N) has been computed exactly, and 1 otherwise, provided m is not
too small. With m := 26 this exactness test is passed when 1 ≤ N ≤ 18 and failed when N ≥ 19
for all versions of MATLAB and on all computers mentioned above. This test proves that …

 N = 18 is the biggest N for which poly(1:N) is exact.

Checking MATLAB’s C = poly(1:N) against polyval(C, 1:N) :
Given a column or row Z = [z1, z2, z3, …, zN] we expect C = poly(Z) to deliver the row C of
coefficients C(k) of the polynomial

p(x) := prod(x-Z) = ∏1≤k≤N (x–zk) = ∑0≤k≤N C(k+1)·xN–k = polyval(C, x)
in the absence of roundoff. Then we expect P = polyval(C, Z) to generate a vector of zeros.
But, for all we know now, rounding errors inside polyval may generate misleading results:

• Some elements of P may be nonzero even though C is exactly right.

• All elements of P may be zero even though C is slightly inexact.

When the expression any(polyval(poly(1:N), 1:N)) is evaluated for N = 1, 2, 3, … in turn
it produces 0 for 1 ≤ N ≤ 18 and 1 for N ≥ 19 , and does so on PCs and Macs for every
version of MATLAB mentioned above. On any one machine these results imply that N = 18 is
the biggest N for which poly(1:N) is exact provided no rounding error occurs inside polyval;
but this proviso is problematical. It seems unlikely for at least some of the larger values of N .

Because binary multiplication is exact, rounding errors inside polyval can be restricted to
add/subtract operations by evaluating any(polyval(poly(1:N), [1,2,4,8,16])) just for
N ≥ 16 . These evaluations produce 0 for 16 ≤ N ≤ 18 and 1 for N ≥ 19 again, leaving the
same problematical question about roundoff inside polyval unanswered.

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 6/14

Since the value of a polynomial evaluated by Horner’s Recurrence (i.e. nested multiplications)
can be construed as the last element of the solution of a system of linear equations, its accuracy
may be improved by iterative refinement provided a residual can be computed extra-precisely.
The MATLAB program rpolyval(C, X) below does so whenever MATLAB accumulates scalar
products extra-precisely, and does so sometimes when they are accumulated on Power Macs
using fused multiply-adds. The residual is computed simultaneously with the refinement’s
correction dp in the statement dp = [C(m), p, op, dp]*x2 .

When the expression any(rpolyval(poly(1:N), [1,2,4,8,16])) is evaluated just for
N = 16, 17, 18, … in turn it produces 0 for 16 ≤ N ≤ 18 and 1 for N ≥ 19 , and does so on
PCs and Macs for every version of MATLAB mentioned above. On any one machine these
results suggest that N = 18 is the biggest N for which poly(1:N) is exact provided rounding
errors inside rpolyval have been offset adequately by iterative refinement.

What follows is an attempt to assess how much more accurate than polyval is rpolyval . The
assessments vary with the version of MATLAB and the computer on which it runs. Each test
compares polyval and rpolyval with a sufficiently accurate evaluation of the polynomial
under test. Here are a few test results:

Test #1: Polynomial p(x) = prod(x - [1:18]) has coefficients C = poly([1:18]) exactly.

With extra-precisely accumulated scalar products

With fused multiply-adds

With no extra-precise arithmetic

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.58403 -76286600135.58403 -76286600156.
15.125 -76286600135.58403 -76286600135.58403 -76164317290.

4 + 1/210 510102608.4994386 510102608.4639658 510104157.

15 – 1/210 510102608.4994385 510073677.3643785 615021841.

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.58403 -76286600218.6133 -76286600156.
15.125 -76286600135.58403 -76399896318.5432 -76164317290.

4 + 1/210 510102608.499439 510103060.829811 510104157.

15 – 1/210 510102608.499438 520948386.105919 615021841.

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.58403 -76286599734.74647 -76286600156.
15.125 -76286600135.58403 -76164317290. -76164317290.

4 + 1/210 510102608.4994387 510103342.7073206 510104157.

15 – 1/210 510102608.4994384 529906517.7198682 615021841.

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 7/14

MATLAB 5.3 on a PC produces results like those in the last tabulation except that its second-last
column duplicates the last because iterative refinement by rpolyval(C, X) is thwarted by the
way this version of MATLAB accumulates scalar products: It accumulates ∑k X(i,k)*Y(k,j)
with no extra-precise arithmetic and in descending order k = …, 3, 2, 1 instead of the ascending
order v. 5.2 on Macs and v. 6.5 on PCs follow when matrices fit in the computer’s cache. Two
evaluations [-1, 1, eps]*[1; 1; eps] and [eps, 1, -1]*[eps; 1; 1] expose the order.

MATLAB 7.0 on a PC accumulates scalar products extra-precisely (sometimes differently before
system_dependent(‘setprecision’, 64) than after), and in an order that depends upon the
dimensions of matrices in weird ways I have not yet figured out. Here are its test results:

MATLAB 7.0 on a PC

Test #2: Roundoff corrupts C = poly(1:19) producing the row of coefficients of a polynomial
p(x) := prod(x – [1:19]) + 16*(x-2)*x*x*x*x . Roundoff corrupts polyval(C, x) so that
it differs from p(x) . Iterative refinement usually brings rpolyval(C, x) nearer p(x) provided
residuals are accumulated extra-precisely. Then, for instance, for x = [-4:23] we find every
rpolyval(C, x) == p(x) but half the values polyval(C, x) ~= p(x) . And the differences
rpolyval(C, x) - p(x) are a few orders of magnitude smaller than polyval(C, x) - p(x)
for x = 0.5 + [-1:22] , and for x = [sqrt(2); exp(1); pi; sqrt(377)] . Activate extra-
precise accumulation by MATLAB 6.5 via system_dependent('setprecision', 64) . This
command is unnecessary for v. 7.0 on PCs but does alter a few results slightly. Without extra-
precise accumulation (v. 5.3 on PCs and v. 6.5 without that command), and regardless of fused
multiply-adds (v. 5.2 on Power-Macs), rpolyval is no more accurate than polyval for this
test.

These test results accord with what we had learned elsewhere about the iterative refinement of
computed solutions of linear systems. With extra-precisely accumulated residuals, they and the
solution’s accuracy are improved by refinement. It may worsen accuracy without extra-precise
accumulation if the linear system is ill-conditioned.

The Significance of Exactly Computed Coefficients:
Why should we care whether C = poly(1:N) is computed exactly? A reason will appear when
the accuracy of R = roots(C) is assessed for N = 1, 2, 3, … . Rounding errors will cause R to
depart from a permutation of the integers [1, 2, 3, …, N] . Whose rounding errors? Blaming
roots for rounding errors committed by poly, or vice-versa, would be unfair, and would spoil
attempts to compute ß for part 2 of this assignment. Tabulated below are some computed sets of
roots(poly(1:18)) from different versions of MATLAB run on a few different computers.

x prod(x–[1:18]) rpolyval(C, x) polyval(C, x)

3.875 -76286600135.584 -76286600136.1108 -76286600156.
15.125 -76286600135.584 -76286635021.3008 -76164317290.

4 + 1/210 510102608.499439 510102607.926758 510104157.

15 – 1/210 510102608.499438 510040748.883789 615021841.

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 8/14

Versions of MATLAB’s Computed roots(poly(1:18))

“on PC (64)” means after the command system_dependent('setprecision', 64)

v. 3.5 on PC &
Mac Quadra

v. 4.2 on PC
v. 4.2 on Mac

Quadra
v. 5.2 on Mac

Quadra
v. 5.2 on Power

Mac

17.99999 17.99999 18.000006 18.00001 18.000009

17.0001 17.00006 16.99995 16.9999 16.99992

15.9996 15.9998 16.0002 16.0005 16.0004

15.001 15.0005 14.9997 14.999 14.999

13.998 13.9994 14.0004 14.002 14.002

13.002 13.0006 12.9997 12.998 12.997

11.999 11.9997 12.0001 12.002 12.003

11.0008 11.0001 11.00006 10.999 10.998

9.9997 9.99998 9.99991 10.0004 10.001

9.00009 8.99999 9.00005 8.99991 8.9996

7.99998 8.000005 7.99998 8.000004 8.0001

7.000001 6.999999 7.000005 7.000005 6.99997

5.99999999 6.0000001 5.9999993 5.999999 6.000005

4.999999994 4.999999993 5.00000006 5.0000002 4.9999995

3.999999999 4.0000000006 3.9999999992 3.99999998 4.00000004

3.0000000002 2.99999999991 2.9999999998 3.0000000006 2.999999999

1.99999999999 2.000000000004 2.000000000007 1.999999999993 2.00000000002

1.0000000000001 0.99999999999997 0.99999999999995 1.00000000000002 1.00000000000007

v. 5.3 on PC v. 6.5 on PC v. 6.5 on PC (64) v. 7.0 on PC v. 7.0 on PC (64)

17.999996 18.000008 18.000009 17.999997 17.999997

17.00003 16.99991 16.99992 17.00001 17.00003

15.99991 16.0005 16.0004 16.00002 15.9999

15.0002 14.999 14.9990 14.9997 15.0004

13.9998 14.002 14.002 14.0008 13.9992

13.0003 12.997 12.998 12.998 13.001

11.9996 12.003 12.002 12.002 11.999

11.0004 10.998 10.999 10.998 11.0008

9.9997 10.0007 10.0006 10.001 9.9996

9.0001 8.9998 8.9998 8.9995 9.0002

7.99995 8.00002 8.00005 8.0002 7.99996

7.00001 7.000005 6.99999 6.99996 7.000008

5.999998 5.999998 6.000001 6.000006 5.9999991

5.0000002 5.0000003 4.9999999 4.9999995 5.00000006

3.999999996 3.99999998 4.00000001 4.00000003 3.9999999991

2.9999999997 3.00000000001 2.9999999997 2.9999999993 2.99999999997

2.00000000002 2.00000000002 2.000000000005 2.000000000001 2.0000000000006

0.9999999999998 0.9999999999998 0.99999999999996 1.00000000000007 0.99999999999997

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 9/14

Why are accuracies so similar though results vary from one computer to another and from one
version of MATLAB to another? Without knowing the details about QR iteration and matrix
multiplication within MATLAB’s eig(…), invoked within roots(C) to compute its values as
eigenvalues of the Companion Matrix of polynomial polyval(C, x) , we have to speculate:

• Results differ because rounding errors differ during the different orderings and precisions of the
matrix multiplications within the QR-iterations that reduce the Hessenberg Form of the
companion matrix to an upper-triangular Schur form with the desired eigenvalues (roots) on its
diagonal. The different orderings are intended to take near-optimal advantage of the computer’s
memory architecture, especially its cache(s). Precisions differ according to whether extra-precise
accumulation is enabled during matrix multiplication, or whether multiply-adds are fused.

• Though computed eigenvalues (roots) differ, their accuracies are similar because these depend
heavily upon MATLAB’s eig program’s thresholds chosen to stop QR-iteration as soon as the
Hessenberg matrices’ sub-diagonal elements have become small enough to be deemed negligible.

So sensitive to those rounding errors and thresholds are some eigenvalues (roots) that computing
them loses most of the digits carried by the arithmetic. Roots near 13 in the tabulations above
are so senstive, and consequently are called “ill-conditioned”. They are ill-conditioned no matter
how we try to compute them from the coefficients C = poly(1:18) so long as our procedure
commits rounding errors whose effect is tantamount to perturbing the coefficients’ end-figures.
Roundoff is like that in roots(C) and in polyval(C, x) , so computing a root r from either

 r = fzero('polyval(poly(1:18), x)', [12.5, 13.5], eps) or
 rr = fzero('rpolyval(poly(1:18), x)', [12.5, 13.5], eps) (refined)

yields r = 13.00003 from an unrefined polyval, or
 rr = 13.00003 in MATLAB 5.3 on a PC (refinement thwarted) ,
 rr = 12.99994 in MATLAB 6.5 on a PC (refinement not extra-precise) ,
 rr = 12.999999 in MATLAB 5.2 on a Power Mac (helped by its fused multiply-add),
 rr = 13.0000001 in MATLAB 5.2 on a Mac Quadra and v. 6.5 on a PC (… 64),
 rr = 12.9999998 in MATLAB 7.0 on a PC (performs extra-precise refinement),

instead of the correct root 13 .

Why are ill-conditioned roots so sensitive to tiny perturbations in a polynomial’s coefficients?
Their hypersensitivity is explained if comparably tiny perturbations can alter the multiplicities of
ill-conditioned roots. This is what we shall see happen in part 2 of this assignment.

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 10/14

2. The smallest |ß| belongs to ß ≈ 1.4217594218419e-14 for which p(x) + ß·g(x) has a double
zero at x ≈ 13.513354361516 . Here

 p(x) := ∏1≤k≤N (x – k) = C(1)·xN + C(2)·xN–1 + … + C(N)·x + C(N+1) and N = 18 ,
so coefficient row C = poly(1:N) exactly, and

 g(x) := |C(2)|·xN–1 + … + |C(N)|·x + |C(N+1)| > 0 for all x ≥ 0 .

It is easy to confirm that g(x) = (–1)N·(p(–x) – (–x)N) = ∏1≤k≤N (x + k) – xN . This implies

soon that |p(x)/g(x)| > 1/2 if x ≤ 0 , so p(x) + ß·g(x) cannot have a nonpositive double zero
unless |ß| > 1/2 . If |ß| is to be tiny, the desired real double zero z must be positive .

Now, z is a double zero of p(x) + ß·g(x) just when both p(z) + ß·g(z) = 0 and the derivative
p'(z) + ß·g'(z) = 0 ; and then ß = –p(z)/g(z) = –p'(z)/g'(z) , whence follows a polynomial
equation p'(z)·g(z) – g'(z)·p(z) = 0 . This is the equation that must be solved for some of its
2N–2 = 34 roots z . Let’s not compute the polynomial’s coefficients and invoke roots(...) or
fzero(polyval(...)) ; they’re likely to produce poor approximations from coefficients blurred
by roundoff if recent experience is a guide. Instead the polynomial equation will be turned into an
equivalent rational equation p'(z)/p(z) – g'(z)/g(z) = 0 . In this equation p'(x)/p(x) can be
computed accurately enough from p'(x)/p(x) = ∑1≤k≤N 1/(x–k) because its graph is fairly steep

in the range that will matter later: (p'(x)/p(x))' = –∑1≤k≤N 1/(x–k)2 < –8 if 1 < x < N .

(Can you see why “… < –8 ” ? Actually it’s “… < – 8.874… ” , but the exact value won’t matter to what follows.)

A more complicated expression provides an analogous (and unobvious) way to compute

g'(x)/g(x) = (∏1≤k≤N (x + k)·∑1≤j≤N 1/(x–j) – N·xN–1)/(∏1≤k≤N (x + k) – xN) = …

 = N/x – (1/x)·(∑1≤k≤N k/(x+k))/(1 – ∏1≤k≤N x/(x+k)) after some algebra.
This expression leads to

ƒ(x) := x·(p'(x)/p(x) – g'(x)/g(x)) = … (more algebra)

 = ∑1≤k≤N k/(x–k) + (∑1≤k≤N k/(x+k))/(1 – ∏1≤k≤N x/(x+k)) .
Now the rational equation ƒ(z) = 0 has the same roots z > 0 as has the polynomial equation
p'(z)·g(z) – g'(z)·p(z) = 0 . To help locate those roots we examine the Poles of ƒ(x) (where it
becomes infinite). For K = 1, 2, … and N we find ƒ(x) ≈ K/(x–K) when x ≈ K , so ƒ(x)
reverses sign as x crosses the pole at x = K . Therefore ƒ(x) also reverses sign at least once as
x increases from one such pole to the next. We have found at least N–1 positive zeros of ƒ(x) .

Are there any other positive zeros of ƒ(x) ? No; here is why:

ƒ(x) < 0 while 0 < x < 1 . This is true because then g(x) > 0 , g'(x) > 0 and
 ƒ(x)/x = p'(x)/p(x) – g'(x)/g(x) < p'(x)/p(x) = ∑1≤k≤N 1/(x–k) < 0 .

ƒ(x) > 0 for all x > N . To see why this is true, verify that (N–1)·g(x) – x·g'(x) > 0 for all such
x , so p'(x)/p(x) – g'(x)/g(x) > ∑1≤k≤N 1/(x–k) – (N–1)/x = 1/x + (1/x)·∑1≤k≤N k/(x–k) > 0 .

Therefore all the positive zeros of ƒ(x) lie strictly between its poles at x = 1, 2, 3, … and N .

How many zeros of ƒ(x) lie between adjacent poles? The easiest way to answer this question is
to plot ƒ(x) . It is plotted below for N = 6 ; the plot for N = 18 is similar but busier.

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 11/14

Apparently ƒ(x) vanishes just once between adjacent poles. This is confirmed by a proof (best
skipped during a first reading) that, when 1 < x < N , the derivative

ƒ'(x) := (x·p'(x)/p(x) – x·g'(x)/g(x))'

is negative. The first term (x·p'(x)/p(x))' = (∑1≤k≤N x/(x–k))' = –∑1≤k≤N k/(x–k)2 < –8·√2 .

To handle the second term (–x·g'(x)/g(x))' we shall first determine a rough bound for every

zero ζ = –ξ + ıη of g(x) = ∏1≤k≤N (x + k) – xN . We find every Real(ζ) = –ξ ≤ –1/2 because

otherwise, were ξ < 1/2 , we would find that |k–ξ + ıη|2 > |–ξ + ıη|2 for all k ≥ 1 , and this

would imply that ∏1≤k≤N |ζ + k| > |ζ|N whence g(ζ) ≠ 0 . Thus, g(x) = –C(2)·∏1≤k≤N–1 (x – ζk)

in which every ζk = –ξk + ıηk has ξk ≥ 1/2 . Moreover, because g(x) has real coefficients, its
every non-real zero ζ = –ξ + ıη comes paired with its complex conjugate zero ζ = –ξ – ıη .

Now the second term (–x·g'(x)/g(x))' = –(∑1≤k≤N x/(x–ζk))' = ∑1≤k≤N ζk/(x–ζk)2 can be

handled; this sum will be shown to be negative: In this sum every term ζ/(x–ζ)2 with a real zero

ζ = –ξ ≤ –1/2 has the form –ξ/(x+ξ)2 < 0 . Every pair of complex conjugate terms adds up to

ζ/(x–ζ)2 + ζ/(x–ζ)2 = (ζ·(x–ζ)2 + ζ·(x–ζ)2)/|x–ζ|4 = –2(ξ2 + x·ξ + η2)/|x–ζ|4 < 0 . Therefore
ƒ'(x) < –8·√2 ≈ –11.3137 for 1 < x < N and consequently ƒ(x) must vanish just once between
adjacent poles just as appears from its plotted graph. (Actually ƒ'(x) < –15.475 when N = 18 .)

MATLAB program betas(N) appended below computes all N–1 positive zeros z of ƒ(x) and
the corresponding values of ß from which the smallest is selected to complete the assignment.

0 1 2 3 4 5 6 7 8
-20

-15

-10

-5

0

5

10

15

20

 X

 ƒ(x) for N = 6

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 12/14

MATLAB Programs Cited Above:

function [m, n] = weird(k)
% [m, n] = weird(k) tests Matlab's scalar products of
% vectors of length 2k . If no extra-precise arithmetic is
% used [m, n] should be [0, 0] , as it is for Matlabs
% 5.3 and 6.5 on Wintel PCs. If scalar products are
% accumulated extra-precisely to 64 sig. bits before they
% are delivered rounded to 53 sig. bits, [m, n] should
% be [k, k] , as it is for Matlab 3.5 and 4.2 on PCs
% and old 680x0-based Macs, and for Matlab 6.5 on PCs
% after the command system_dependent('setprecision', 64) .
% In Matlab 5.2 on Power Macs their fused multiply-adds
% produce [m, n] = [1, 0] . But something weird and, so
% far, unexplained happens in Matlab 7.0 on Wintel PCs:
% k m n k m n k m n k m n
% 1 1 1 5 5 3 9 9 5 13 9 17
% 2 2 1 6 8 8 10 8 16 14 8 16
% 3 3 2 7 9 9 11 9 17 15 9 17
% 4 4 2 8 8 4 12 8 16 16 8 8
% W. Kahan, 29 March 2006
if ((k<1)|(k~=round(k))), k = k
 error('weird(k) requires a positive integer k.'), end
u = ones(1,k) ;
a = -2281422937 ; b = 4042815511 ; %... a*b = 1 - 2^63
c = 2^31 ; d = c+c ; e = 1-d ; f = 1+d ;
% c = 2^31 , d = 2^32 , e = 1 - 2^32 , f = 1 + 2^32 .
CA = [c*u; a*u] ; CA = CA(:) ; %... = [c a c a c a ...]
DB = [d*u; b*u] ; DB = DB(:) ; %... = [d b d b d b ...]
m = CA'*DB ; %... = (2^63 + (1 - 2^63))*k if exact
ED = [e*u; d*u] ; ED = ED(:) ; %... = [e d e d e d ...]
FD = [f*u; d*u] ; FD = FD(:) ; %... = [f d f d f d ...]
n = ED'*FD ; %... = ((1 - 2^64) + 2^64)*k if exact

= =

function C = cpoly(n, m)
% C = cpoly(n, m) is the row of coefficients of a
% polynomial whose zeros are [m:n] , but differs
% from poly(m:n) by checking whether C is free
% from rounding errors, as it is on a Mac Quadra
% 950 for (n,m) = (18,1), (19,2), (20,4), (21,6),
% (22,7), (23,9), (24,10), (25,12),
% If m is omitted it defaults to m = 1 .
if (nargin < 2), m = 1 ; end
L = n-m+1 ; C = zeros(1, L+1) ; C(1) = 1 ;
for k = (-n):(-m)
 E = C ; oE = [0, E(1:L)] ;
 C = [1, k]*[E; oE] ;
 dC = [1, -1, k]*[E; C; oE] ; %... residual
 if any(dC(:)) n_m_k = [n, m, -k] ,
 disp(' cpoly(n, m) was computed inexactly.')
 end, end

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 13/14

= =

function C = polymod2(m, L)
% C = polymod2(m, L) is the row of coefficients mod 2^m
% of a polynomial whose zeros are all integers in array L .
% This works for 0 < integer m < 27 in Matlabs 5.2 - 7.0.
if ((m ~= round(m))|(m < 1)|(m > 26)), m = m
 error('polymod2(m,L) needs 0 < integer m < 27 .'), end
M = 2^m ; L = L(:) ; if any(L ~= round(L))
 error('polymod2(m,L) needs L to be all integers.'), end
L = mod(L, M) ; n = length(L) ;
C = zeros(1, n+1) ; C(1) = 1 ;
for k = 1:n
 oE = [0, C(1:n)] ;
 C = mod([1, -L(k)]*[C; oE], M) ; end

= =

function P = rpolyval(C, X)
% P = rpolyval(C, X) is an array of the same size as X
% containing the respective values of the polynomial
% p(x) = C(1)*x^n + C(2)*x^(n-1) + ... C(n)*x + C(n+1)
% wherein n+1 = length(C) . The computed values have
% been Iteratively Refined once in a way that exploits
% whatever extra-precise arithmetic or fused multiply-
% add operation is available during matrix multiplication.
[rx,cx] = size(X) ; X = X(:) ; P = X ; n = length(C) ;
for k = 1:length(X)
 x1 = [1; X(k)] ; x2 = [1; -1; X(k); X(k)] ;
 p = 0 ; dp = 0 ;
 for m = 1:n
 op = p ;
 p = [C(m), op]*x1 ;
 dp = [C(m), p, op, dp]*x2 ; end %... m
 P(k) = p + dp ; end %... k
P = reshape(P, rx,cx) ;

= =

function Y = f(X, n)
% f(x, n) = sum([1:n]./(x-[1:n])) + sum([1:n]./(x+[1:n]))
% ----------------------
% 1 - prod(x./(x+[1:n]))
% for an array x . If omitted, n defaults to 18 .
if (nargin < 2), n = 18 ; end
[rx, cx] = size(X) ; X = X(:) ; L = length(X) ;
N = [1:n] ; Y = X ;
for j = 1:L

x = X(j) ;
 y = sum(N./(x-N))+sum(N./(x+N))/(1 - prod(x./(x+N))) ;
 Y(j) = y ; end
Y = reshape(Y, rx, cx) ;

= =

File: S23Mar06 version dated April 17, 2006 2:34 am

Prof. W. Kahan for Math. 128 B Page 14/14

function [B, Z] = betas(n)
% [B, Z] = betas(N) provides columns of candidates for class
% assignment #2 : B = two columns of candidates for beta
% (they should match), and Z = a column of corresponding
% double zeros of p(x) + beta*g(x) where p(x) = prod(x-[1:N])
% and g(x) = (p(-x) - (-x)^N)*(-1)^N . The best candidate
% has the minimum |beta| . Use only N = 18 in MATLAB v. 7 .
Z = zeros(n-1,1) ; B = [Z, Z] ; N = [1:n] ;
G = abs(poly(N)) ; G = G(2:n+1) ; %... coefficients of g(x)
G1 = G.*(n-N) ; G1 = G1(1:n-1) ; %... and of g'(x)
for k = 1:n-1

z = fzero('f', [k+0.001, k+0.999], eps, [], n) ;
%... For MATLAB v. 7 omit these last two ~~~~~~~ arguments.

Z(k) = z ; p = prod(z-N) ; p1 = p*sum(1.0./(z-N)) ;
B(k,1) = -p/polyval(G,z) ; B(k,2) = -p1/polyval(G1,z) ;

 end

= =

Results from [B, Z] = betas(18) :

beta beta z

 7.38317832764355e-13 7.38317832764329e-13 17.7031785287344
 -1.18826070111930e-13 -1.18826070111929e-13 16.6358994232629
 3.78599411067942e-14 3.78599411067942e-14 15.5878476335195
 -1.92286101885325e-14 -1.92286101885327e-14 14.5482030390300
 1.42175942184190e-14 1.42175942184190e-14 13.5133543615164
 -1.46073512056147e-14 -1.46073512056148e-14 12.4815873694852
 2.03388743546567e-14 2.03388743546568e-14 11.4519209064207
 -3.79253582198457e-14 -3.79253582198455e-14 10.4237172002160
 9.44820694884286e-14 9.44820694884287e-14 9.39651627655296
 -3.16311667240260e-13 -3.16311667240261e-13 8.36995171255620
 1.44334556004274e-12 1.44334556004274e-12 7.34369877012772
 -9.19423774548570e-12 -9.19423774548568e-12 6.31743284329871
 8.48527106283812e-11 8.48527106283814e-11 5.29078229816549
 -1.20109201067620e-09 -1.20109201067620e-09 4.26325247166429
 2.85669177857461e-08 2.85669177857461e-08 3.23406142808911
 -1.34105658375384e-06 -1.34105658375384e-06 2.20166395679235
 0.00017686254475282 0.00017686254475282 1.16156230865673
»

These values ß seem accurate in all but their last digit or two because all pairs agree that closely
despite that they reflect two utterly different ways to compute g'(x)/g(x) , one for f(X, n) and
the other for betas(n) , each generating rounding errors in its own way different from the other.

Note how the ill-condition of a zero of polyval(poly(1:18), x) , as revealed by the loss of
accuracy of its tabulated approximations computed by roots(poly(1:18)) earlier, correlates
with the smallness of a perturbation ß big enough to merge that zero with one of its neighbors.

