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Reflections,  Rotations  and  QR Factorization

 

QR Factorization

 

  figures in  

 

Least-Squares

 

  problems and  

 

Singular-Value Decompositions

 

  
among other things numerical.  These notes explain some reflections and rotations that do it,  and 
offer  M

 

ATLAB

 

  implementations;  in its notation,   x

 

'

 

 := (complex conjugate transpose of  x) .

 

Householder Reflections

 

A  

 

Householder Reflection

 

  is  W = I – w·w

 

'

 

 = W

 

'

 

 = W

 

–1

 

  for any column  w  satisfying  w

 

'

 

·w = 2

 

 

 

.  
If  y = W·x  then  y

 

'

 

·y

 

 

 

=

 

 

 

x

 

'

 

·x ,  and  y

 

'

 

·x

 

 

 

=

 

 

 

x

 

'

 

·y  is real even if  x, y  and  w  are complex.  W  is a 
reflection because  W·w = –w  and  W·p = p  whenever  w

 

'

 

·p = 0 .  Numerical analysts name this 
reflection after  Alston S. Householder  because he introduced it to them in the mid  1950s  as part 
of an improved way to solve  

 

Least-Squares

 

  problems.

Given columns  x  and  e := [1, 0, 0, …, 0]

 

'

 

  so that  e

 

'

 

·x = x

 

1

 

 ,  we seek column  w  so that  
w

 

'

 

·w = 2  and  W := I – w·w

 

'

 

  reflects  x  to  W·x = e·ß  for some scalar  ß .  Its  |ß| = ||x|| := 

 

√

 

(x

 

'

 

·x)
and  x

 

'

 

·W·x = x

 

'

 

·e·ß = x

 

1

 

'

 

·ß  must be real,  so  ß = 

 

±

 

||x||·x

 

1

 

/|x

 

1

 

|   if  x

 

1

 

 

 

≠

 

 0 .

 

Construction:

 

  Set  Ñ := ||x|| ,   ß := 

 

±

 

Ñ·x

 

1

 

/|x

 

1

 

| ,   d :=  x – e·ß ,   and    w := d

 

/

 

√

 

(d

 

'

 

·d/2)  unless  
d = o ,  in which case set  w := o .  But all bets are off if  UNDERFLOW  degrades  x

 

'

 

·x .

 

Proof:

 

  Let  p := x + e·ß  so that  p

 

'

 

·d = 0 = p

 

'

 

·w .  Then  W·d = –d  and  W·p = p ,  whereupon  
2W·x = W·(p+d) = p–d = 2e·ß  as desired.

How is the sign  

 

±

 

  in  ß  chosen?  The simplest way maximizes   

 

Ω

 

2

 

 := d

 

'

 

·d/2 = Ñ·(Ñ – (

 

±

 

)|x

 

1

 

|)   
by setting  ß := –Ñ·x

 

1

 

/|x

 

1

 

| ,  as we’ll see.  Of course,  any  

 

±

 

  sign works when  x

 

1

 

 = 0 .

 

Detailed Construction:

 

  Let  v := x – e·x

 

1

 

 ,  so that  e

 

'

 

·v = v

 

1

 

 = 0 ,  and let   

 

µ

 

 := v

 

'

 

·v > 0 ,  so that  

Ñ := 

 

√

 

(x

 

'

 

·x) = 

 

√

 

( 

 

µ

 

 + |x

 

1

 

|

 

2

 

 ) .  Next set  ç := x

 

1

 

/|x

 

1

 

| = sign(x

 

1

 

)  except that we reset  ç := 1  if  
x

 

1

 

 = 0 .  Next we choose  ß := 

 

±

 

ç·Ñ .  Numerical stability requires two cases to be distinguished:

If  ß = –ç·Ñ  set  d := x – e·ß = x + e·ç·Ñ  by copying  x  to  d  and then resetting
  d

 

1

 

 

 

:=

 

 

 

x

 

1

 

 – ß = ç·(|x

 

1

 

| + Ñ) .

If  ß = +ç·Ñ  set  d := x – e·ß = x – e·ç·Ñ  by copying  x  to  d  and then resetting 
 d

 

1

 

 := x

 

1

 

 + ß = –ç·

 

µ

 

/(|x

 

1

 

| + Ñ) .

Next  

 

Ω

 

 := 

 

√

 

(

 

 

 

(|d

 

1

 

|

 

2 

 

+ 

 

µ

 

)

 

/

 

2

 

 

 

)

 

 = 

 

√

 

(

 

 

 

|d

 

1

 

|·Ñ

 

 

 

)

 

    and  w := d

 

/

 

Ω

 

 .  Return  [w, ß] = hshldrw(x) .
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QR Factorization:

 

Given an  m-by-n  matrix  F  with no fewer rows than columns  (so  m ≥ n ),  we wish to factorize  
F = Q·R ,  with  Q'·Q = I  and  R  upper-triangular,  by using  Householder  reflections thus:  

Wn·…·W2·W1·F =   in which each reflection  Wj = Wj' = Wj
–1  is constructed to annihilate all 

subdiagonal elements in column  j  of  Fj–1 := Wj-1·…·W2·W1·F .  Then  Q := W1·W2·…Wn·  .  

Each  Wj = I – wj·wj'  has  wj'·wj = 2  (or  0 )  and no nonzero element in  wj  above row  j .  Each  
Fj = Wj·Fj–1  has the same first  j–1  rows as  Fj–1  and no nonzero subdiagonal elements in its first  

j  columns.  Each  Qj := Wj·Wj+1·…Wn·   has ones on the diagonal and zeros elsewhere in its 

first  j–1  rows and columns,  so  Qj = Wj·Qj+1  is obtained by altering only rows and columns of  
Qj+1  with indices no less than  j .

Detailed Construction in  MATLAB:
Start with  F0 := F .  For  j = 1, 2, …, n  in turn get  [wj, ßj] := hshldrw(Fj(j:m, j))  as above,  and 
store  wj  in place of  Fj(j:m, j) ;  then if  j < n  overwrite  Fj(j:m, j+1:n) – wj·(wj'·Fj(j:m, j+1:n))  
onto  Fj(j:m, j+1:n)  to get  Fj+1(j:m, j+1:n) .

Next,  R := Diag([ß1, ß2, …, ßn]) + triu(Fn(1:n, 1:n), 1) .

Finally,  set  Gn+1 := Fn  and,  for  j = n, n–1, …, 1  in turn,  extract  wj  from  Gj+1(j:m, j) ,  
overwrite column  [oj–1; 1; om–j]  onto  Gj+1(:, j) ,  and then onto  Gj+1(j:m, j:n)  overwrite  
Gj(j:m, j:n) := Gj+1(j:m, j:n) – wj·(wj'·Gj+1(j:m, j:n)) .  Then  Q := G1 .

Return  [Q, R] = hshldrqr(F) .

Numerical experiments indicate that  MATLAB  uses the same method to get  [Q, R] = qr(F, 0) .

QR Factorization  by  Givens Rotations

A  Givens Rotation  is  Q :=   so chosen that a  2-vector  v =   is rotated to  Q·v =   

wherein  |r|2 = v'·v ,  so  c2 + s'·s = 1  when  (by convention)  we choose  c ≥ 0 .  Here  v'  is the 
complex conjugate transpose of  v ,  and  s'  is the complex conjugate of  s .  The rotation is named 
after  Wallace Givens  who introduced this rotation to numerical analysts in the  1950s  while he 
was working at  Argonne National Labs  near  Chicago.  The rotation is encoded in one complex 
number  t := (y/x)'  from which are derived  c := 1/√(1 + t'·t) ,  s := c·t  and  r := x/c .  In the 
special case that  t = ∞  (presumably because  x = 0 ),  we set  c := 0 ,  s := 1  and  r := y .  In any 

event,  note that  Q–1 = Q' .  Return  [c, s, t, r] = givenst(x, y) .

R

O

I

O

I

O

c s

s'– c

x

y

r

0
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Bottom-Up  QR Factorization:
Given an  m-by-n  matrix  F  with no fewer rows than columns  (so  m ≥ n ),  we wish to factorize  
F = Q·R ,  with  Q'·Q = I  and  R  upper-triangular,  by using  Givens  rotations thus:

For  1 ≤ i ≤ m–1  and  1 ≤ j ≤ n  let  Qij  be the  Givens  rotation that acts upon an  m-by-n  matrix  

Z  to overwrite  Qij·  =   onto   .  We shall premultiply  F  by a sequence of 

rotations  Qij  in this order  (from right to left):

for  j = 1 up to  n  in turn  { for  i = m–1 down to  j  in turn  { premultiply by  Qij }}.

Since each  Qij  affects only rows  i  and  i+1  of columns  j  to  n  of the product,  we may store  tij  
in place of the product’s zero element in position  (i+1, j)  since it will not figure in subsequent 
premultiplications.  After the last premultiplication we find  R  in the product’s first  n  rows and 
columns after ignoring the subdiagonal elements that hold  tijs .  Then these are used to construct  

Q  as a product of inverse rotations  Qij'  premultiplying    in this reverse order  (from right to 

left):

for  j = n down to  1  in turn  { for  i = j  up to  m–1  in turn  { premultiply by  Qij' }}.

Each premultiplication by  Qij'  affects only rows  i  and  i+1  of columns  j  to  n  of the product 
after  tij  was extracted from location  (i+1, j)  and replaced by  0 .

Return  [Q, R] = gvnsupqr(F) .

This is not the only way to use  Givens  rotations for  QR  factorizations.  Another is …

Top-Down  QR Factorization:
Given an  m-by-n  matrix  F  with no fewer rows than columns  (so  m ≥ n ),  we wish to factorize  
F = Q·R ,  with  Q'·Q = I  and  R  upper-triangular,  by using  Givens  rotations thus:

For   1 ≤ j ≤ n  and  j+1 ≤ i ≤ m  let  Qij  be the  Givens  rotation that acts upon an  m-by-n  matrix  

Z  to overwrite  Qij·  =   onto   .  We shall premultiply  F  by a sequence of rotations  

Qij  in this order  (from right to left):

for  j = 1 up to  n  in turn  { for  i = j+1 up to  m  in turn  { premultiply by  Qij }}.

Since each  Qij  affects only rows  i  and  j  of columns  j  to  n  of the product,  we may store  tij  in 
place of the product’s zero element in position  (i, j)  since it will not figure in subsequent 

zi j,

zi 1+ j,

ri j,

0

zi j,

zi 1+ j,

I

O

zj j,

zi j,

r j j,

0

zj j,

zi j,
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premultiplications.  After the last premultiplication we find  R  in the product’s first  n  rows and 
columns after ignoring the subdiagonal elements that hold  tijs .  Then these are used to construct  

Q  as a product of inverse rotations  Qij'  premultiplying    in this reverse order  (from right to 

left):

for  j = n down to  1  in turn  { for  i = m  down to  j+1  in turn  { premultiply by  Qij' }}.

Each premultiplication by  Qij'  affects only rows  i  and  j  of columns  j  to  n  of the product after  
tij  was extracted from location  (i, j)  and replaced by  0 .

Return  [Q, R] = gvnsdnqr(F) .

MATLAB  appears to use  Householder  reflections to get its  [Q, R] = qr(F, 0) .  There is no reason 
to expect any two of the three different  [Q, R]  factorizations to agree though they must be related 

in the absence of roundoff:   R1·R2
–1  = Q1'·Q2   must be a diagonal unitary matrix.

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

MATLAB  Programs

function  [F, R] = hshldrqr(F)
%  [Q, R] = hshldrqr(F)  uses  Householder Reflections  to
%  factorize  F = Q*R  so that  R  is upper-triangular and
%  Q  has orthonormal columns;  Q'*Q = I .  This works only 
%  if  F  has no more columns than rows,  and if underflow
%  does not degrade  F'*F .  Uses  hshldrw.m .
[m, n] = size(F) ;
if (m < n),
    error(' F  has more columns than rows in  hshldrqr(F).'),  end
z = zeros(1, n) ;  w = zeros(m, 1) ;
for  j = 1:n
    [w, z(j)] = hshldrw(F(j:m, j)) ;
    F(j:m, j) = w ;
    if (j < n),
        F(j:m, j+1:n) = F(j:m, j+1:n) - w*(w'*F(j:m, j+1:n)) ;
  end,  end % ... j = 1:n
R = diag(z) + triu(F(1:n, 1:n), 1) ;
for  j = n:-1:1
    w = F(j:m, j) ;  F(:, j) = zeros(m,1) ;  F(j, j) = 1 ;
    F(j:m, j:n) = F(j:m, j:n) - w*(w'*F(j:m, j:n)) ;
  end % ... j = n:-1:1

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

I

O
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function  [w, z] = hshldrw(x)
%  [w, z] = hshldrw(x)  yields  w  with  w'·w = 2  or  0 ,
%  so  W = I - w*w' = W' = W^-1  reflects the given column 
%  x  to  W*x = [z; 0; 0; ...; 0]  with  |z| = norm(x) .
%  But all bets are off if  UNDERFLOW  degrades  x'*x .
w = x(:) ;  m = length(w) ;  x1 = w(1) ;  a1 = abs(x1) ;
if (m < 2),  w = 0 ;  z = x1 ;  return,  end
if (a1),  s = x1/a1 ;  else  s = 1 ;  end
vv = w(2:m)'*w(2:m) ;  ax = sqrt(a1*a1 + vv) ;
z = -s*ax ;  a1 = a1 + ax ;  w(1) = s*a1 ;
dd2 = a1*ax ;
if (dd2), w = w/sqrt(dd2) ;  end  %...  so  w'*w = 2  unless  w = o .

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [c, s, t, r] = givenst(x, y)
%  [c, s, t, r] = givenst(x, y)  satisfies  c >= 0 ,
%  c^2 + |s|^2 = 1 ,  r = c*x + s*y ,  t' = x/y = s'/c .
%  So  [c     s]* [x]  =  [r]   and  c = 1/sqrt(1 + t'*t)
%      [-s'   c]  [y]     [0]        s = c*t ,  r = x/c .
if (x ~= 0)
    t = conj(y/x) ;  u = sqrt(1 + t'*t) ;
    r = u*x ;  c = 1/u ;  s = c*t ;
  else
    t = inf ;  r = y ;  c = 0 ;  s = 1 ;
  end

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [F, R] = gvnsupqr(F)
%  [Q, R] = gvnsupqr(F)  uses  Givens Rotations  to
%  factorize  F = Q*R  so that  R  is upper-triangular and
%  Q  has orthonormal columns;  Q'*Q = I .  This works only 
%  if  F  has no more columns than rows,  and if underflow
%  does not degrade  F'*F .  Uses  givenst.m  bottom-up.
[m, n] = size(F) ;
if (m < n),
    error(' F  has more columns than rows in  gvnsupqr(F).'),  end
for  j = 1:n ,  for  i = m-1:-1:j
    [c, s, F(i+1, j), F(i, j)] = givenst(F(i, j), F(i+1, j)) ;
    if (j < n),
        F(i:i+1, j+1:n) = [c, s; -s', c]*F(i:i+1, j+1:n) ;  end
  end,  end % ... i = m-1:-1:j ,  j = 1:n
R = triu(F(1:n, 1:n)) ;
for  j = n:-1:1 ,  F(1:j, j) = zeros(j,1) ;  F(j,j) = 1 ;
    for i = j:m-1
        t = F(i+1, j) ;  F(i+1, j) = 0 ;  c = 1/sqrt(1 + t'*t) ;
        if (c~=0),  s = c*t ;  else  s = 1 ;  end
        F(i:i+1, j:n) = [c, -s; s', c]*F(i:i+1, j:n) ;
  end,  end % ... i = j:m-1,  j = n:-1:1

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
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function  [F, R] = gvnsdnqr(F)
%  [Q, R] = gvnsdnqr(F)  uses  Givens Rotations  to
%  factorize  F = Q*R  so that  R  is upper-triangular and
%  Q  has orthonormal columns;  Q'*Q = I .  This works only 
%  if  F  has no more columns than rows,  and if underflow
%  does not degrade  F'*F .  Uses  givenst.m  top-down.
[m, n] = size(F) ;
if (m < n),
    error(' F  has more columns than rows in  gvnsdnqr(F).'),  end
for  j = 1:n ,  for  i = j+1:m
    [c, s, F(i, j), F(j, j)] = givenst(F(j, j), F(i, j)) ;
    if (j < n),
        F([j,i], j+1:n) = [c, s; -s', c]*F([j,i], j+1:n) ;  end
  end,  end % ... i = j+1:m ,  j = 1:n
R = triu(F(1:n, 1:n)) ;
for  j = n:-1:1 ,  F(1:j, j) = zeros(j,1) ;  F(j,j) = 1 ;
    for i = m:-1:j+1
        t = F(i, j) ;  F(i, j) = 0 ;  c = 1/sqrt(1 + t'*t) ;
        if (c~=0),  s = c*t ;  else  s = 1 ;  end
        F([j,i], j:n) = [c, -s; s', c]*F([j,i], j:n) ;
  end,  end % ... i = m:-1:j+1,  j = n:-1:1

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


