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Refineig

 

:   a Program to Refine Eigensystems

 

§0:  Abstract

 

Software to compute eigenvalues and eigenvectors of matrices can hardly be deemed infallible.  Results are often 
rather less accurate than deserved by the data,  sometimes far less accurate than different software could have 
provided at the same cost.  

 

Refineig

 

  attempts to tidy up those results at less cost than if the whole computation 
were repeated carrying higher precision throughout.  

 

Refineig

 

  uses a novel iterative refinement algorithm 
designed to cope well with the most common cause of inaccuracy,  namely isolated pairs of 

 

nearly

 

  coincident 
eigenvalues.  (

 

 

 

No way can exist to cope economically with all possible pathologies.)  Examples abound for which  

 

refineig

 

  improves accuracy spectacularly,  but usually the improvement is modest.  Curiously,  

 

refineig

 

    
works far better with the more popular floating-point arithmetics than with the more expensive ones  ( though all 
purport to conform to the same  IEEE Standard  754  for floating-point arithmetic ),  and works far better with 
earlier than latest versions of  M

 

ATLAB

 

.
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§1:  Introduction to Troubles

 

Function  

 

eig

 

  in  M

 

ATLAB

 

 [1993]  is typical of good software for computing eigensystems.  
The  M

 

ATLAB

 

  assignment   

 

 

 

[Q, V] = eig(B)

 

   is intended to deliver a nonsingular matrix  Q  
whose columns are the eigenvectors of the given square matrix  B

 

 

 

,  and a diagonal matrix  V  of 

its eigenvalues.  Ideally we should find  B = Q·V·Q

 

–1

 

  exactly.  Instead,  rounded arithmetic can 

at best produce the eigensystem of some nearby matrix   B – 

 

∆

 

B := Q·V·Q

 

–1

 

   perturbed by a  

 

∆

 

B  comparable with roundoff in  B

 

 

 

.  Perturbations  

 

∆

 

B  rather worse than several rounding 
errors can occur;  the probability of encountering them increases with dimension.

Even when  

 

∆

 

B  is minuscule,  Q  and  V  can be grossly inaccurate for  systematic reasons that 
are artifacts of the algorithms  

 

eig

 

  uses.  For example,  although  B  and its transpose  B

 

'

 

  have 
the same eigenvalues with the same sensitivities to perturbation,  examples will be exhibited for 
which  

 

eig(B)

 

  is systematically and substantially less accurate than  

 

eig(B.’)

 

 

 

.   ( Here  

 

B.’

 

  
is  M

 

ATLAB

 

’s  notation for  B

 

T

 

 

 

.)  Such examples are symptoms of  

 

eig

 

’s   susceptibility to 
mathematically trivial but numerically damaging accidents in the presentation of data.

All eigensystem-computing programs,  not just  

 

eig

 

 ,  suffer from comparable susceptibilities,  
if recent work by  Ming Gu [1995]  can be taken at face value.  He showed why reasonable 
attempts to attenuate the susceptibility of computed eigensystems to roundoff must overcome 
combinatorial obstacles which,  in worst cases,  grow exponentially more complex as dimension 
increases.  Those obstacles frustrate attempts by software to decide reliably whether a computed 
invariant subspace of  B  should be left unreduced or reduced further to a sum of ultimately  

 

I

 

rreducible 

 

I

 

nvariant 

 

S

 

ubspaces

 

.  Here are some examples to illustrate the difficulty:
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Consider   B

 

j

 

(

 

x

 

) = C·X

 

j

 

(

 

x

 

)·C

 

–1

 

  where  C  is any well-conditioned  6-by-6  matrix and  X

 

j

 

(

 

x

 

)  is 
one of

,      ,      

,               or          .

If  

 

x

 

 

 

≠

 

 0  all have the same six distinct eigenvalues of magnitude  |

 

x

 

|  since each  B

 

j

 

(

 

x

 

)

 

6

 

 = 

 

x

 

6

 

I

 

 

 

,  
but the noise from roundoff makes their numerically  Irreducible Invariant Subspaces  difficult 

to discern both unambiguously and robustly,  especially as decreasing  |

 

x

 

|  carries first  

 

x

 

6

 

,  then  

 

x

 

5

 

,  ...,  then  

 

x

 

2

 

  below the noise level.  The number of discernable invariant subspaces for each  
B

 

j

 

(

 

x

 

)   should drop as  

 

x

 

  decreases through various thresholds,  different for each  j

 

 

 

,  until  |

 

x

 

|  
becomes so tiny that the numerically  

 

I

 

rreducible 

 

I

 

nvariant 

 

S

 

ubspaces  become indistinguishable 
from those of  B

 

j

 

(0)

 

 

 

.  The respective numbers  #IIS

 

j

 

  of those final subspaces are ...
#IIS

 

1

 

  =  #IIS

 

2

 

  =  3 ,           #IIS

 

4

 

  =  #IIS

 

5

 

  =  2 ,             #IIS

 

3

 

  =  #IIS

 

6

 

  =  1 .
Since  B

 

j

 

(0)  has at most three eigenvectors,  one per irreducible invariant subspace,  

 

eig

 

  should 
fail to diagonalize it;  but  

 

[Q,V] = eig(B

 

j

 

(0))

 

  still delivers six alleged eigenvectors in  Q  
and their eigenvalues in  V

 

 

 

,  usually inconsistent with   

 

eig(B

 

j

 

(0).’)

 

 

 

.  Instead of zeros,  the 

computed eigenvalues are typically of the order of  10

 

–3

 

   or  10

 

–4

 

  when the elements of  B

 

j

 

(0)  
are single-digit integers.  The simplest way to tell that  eig ’s  results are dubious is to observe 

how ill-conditioned  Q  is;  typically  rcond(Q)   falls well below  10–9
 .

In general matrices are called  “Defective”  when,  like  Bj(0) ,  they have too few eigenvectors 

to permit diagonalization by any similarity transformation.  In the  n2
 - dimensional space of all  

n-by-n  matrices,  the defective matrices are dense in the  (n2
 – 1) - dimensional algebraic variety  

( a  hypersurface )  of degree  n(n – 1)  that contains all matrices with repeated eigenvalues;  this 
explains  ( Demmel [1988] )  why defective matrices are almost never encountered at random,  
but near–defective matrices occur too often to ignore.  To distinguish reliably among different 
kinds of defective and near-defective matrices costs too much more than users of eigensystem-
computing software like  eig   are inclined to pay at first,  so  eig   makes no distinction and 
delivers inaccurate results impartially for all kinds.  More discriminating software must work 
harder and longer starting from a  Schur  decomposition,  which lies beyond the purview of this 
opus;  see instead  Demmel and Kågström [1993]  and  Edelman,  Elmroth and Kågström 
[1997]  and references cited therein.
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§2:  Refineig   to the  Rescue
Refineig   starts from a nonsingular matrix  Q  of approximate eigenvectors and a diagonal 
matrix  V  of approximate eigenvalues of a square matrix  B ;  say  [Q, V] = eig(B)   in  
MATLAB .  Then  [Q, V] = refineig(Q, V, B)   performs a step of iterative refinement that 
replaces the old  [Q, V]  by a new.  This step may be repeated.  At most a few repetitions suffice 
because  refineig   converges very quickly  ( cubically )  if it converges at all.

Refineig   is designed to enhance the accuracy of a computed eigensystem when the given data 
are nearly defective or,  failing that,  to let the ever-worsening ill-condition of successively 
“improved”  eigenvector matrices  Q  signal intractable closeness to defective data.  Sometimes 
a nearly defective matrix looks that way only because it is badly scaled;  then multiplying and 
dividing its rows and columns by suitably chosen scale factors may reduce its eigenproblem’s ill-
condition by orders of magnitude.  This is what  MATLAB ’s  balance   was intended to achieve,  
but it is fallible,  so  MATLAB   offers a way to inhibit it:  invoke   eig(..., ’nobalance’)  .  
Both  eig   and  Refineig   may get better results after  nobalance  .  Refineig   also succeeds 
quite often when the data consist of small integers or other numbers stored exactly,  or when the 
data include many zeros in locations that  eig   cannot exploit,  or when data include repetitions 
and correlations that  eig   cannot protect from roundoff.

Hermitian and real symmetric matrices constitute another family of special cases.  Though never 
defective,  they can be so badly scaled  ( and ineligible for  balance  )  that  eig   computes the 
smaller eigenvalues and their eigenvectors with poor relative accuracy.  In these cases too,   
refineig   usually recovers the accuracy the data deserve,  but at the cost of invoking a peculiar 
algorithm required to preserve orthogonality among eigenvectors.

Refineig   is not infallible.  Worse,  there is no easy way to tell whether it worked nor how 
well.  Sometimes the improvement in an approximate eigensystem  [Q, V]  is apparent from a 
smaller residual  ∆R := B·Q – Q·V .  More often the first few successively refined pairs  [Q, V]  
converge convincingly.  Since  refineig   can diverge or divagate,  prudence requires a check 
that it has not much exacerbated the residual.

Refineig   works better on some computers than on others.  It works best on  Intel-based  IBM 
PCs  and their clones,  including those with  Cyrix  or  AMD  processors,  and on  Motorola 
680x0-based  Apple Macintoshes  ( not  Power–Macs ).  It works less well on  Apple Power–
Macs  and on the rarer and more expensive  IBM Power–PCs  and  RS/6000s,  Sun SPARCs,  
Silicon Graphics  MIPS,  Hewlett-Packard  PA RISCs  and  DEC Alphas.  Refineig   could be 
reprogrammed to run more accurately  ( and slower )  on  Power–Macs  and  Power–PCs,  but 
not in  MATLAB .  Why the difference?  It all comes down to the accuracy of residuals.

§3:  Residuals
The effectiveness of iterative refinement is generally limited by the accuracy to which residuals 
like   ∆R :=  B·Q – Q·V   can be computed.  If  Q  and  V  were perfectly correct  ∆R  should 
vanish,  so it must incur massive cancellation.  Cancellation is not what limits accuracy;  that is 
limited by the precision to which scalar products are accumulated during matrix multiplications.
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When  B·Q  and  Q·V  are computed using arithmetic no more precise than the  53 sig. bit  8-
byte  wide formats  in which  B ,   Q  and  V  are stored in memory,   ∆R =  B·Q – Q·V   rarely 
rises much above the roundoff that accumulated during its computation.  Only in those rare 
cases can  refineig   improve  Q  and  V  substantially.  Those rare cases do occur often enough 
to justify  refineig ’s  existence,  as we shall see.  Still,  refineig   pays off more often and 
better when  ∆R  is accumulated extra-precisely,  thereby standing well above the roundoff noise 
generated during its computation.  This is feasible on the computers most widely in use to-day:

Intel’s  Itanium,  x86/87  and  Pentiums,  Cyrix  and  AMD  clones,  and  Motorola  68040  or 
earlier  680x0 +  68881/2  processors can perform their floating-point arithmetic in registers  10  
bytes wide with  64  instead of  53  sig. bits.  These wider formats accommodate the narrower 
operands loaded from memory.  Although  MATLAB   stores every subexpression in  8-byte  
memory cells,  it can accumulate scalar products in those computers’  10-byte  registers during 
matrix multiplication,  sometimes doing so faster than if every partial sum were rounded to  8  
bytes.  To test for extra-precise accumulation evaluate  MATLAB   expressions like

[ (2 - 2^33) ,   2^33 ,   -1 ]*[ (1 + 2^32) ;   2^32 ;   1 ]  ,

which yields   +1   correctly when this scalar product is accumulated from left to right with  64  
sig. bits but yields the wrong sign when accumulated with only  53  sig. bits.  However,  see  
“M ATLAB ’s Loss is Nobody’s Gain”,  <www.cs.berkeley.edu/~wkahan/MxMulEps.pdf>  .

To exploit extra-precise registers on machines that have them,  refineig   computes each of its 
residuals by performing one  MATLAB   matrix multiplication;  for example  ∆R :=  B·Q – Q·V   

is obtained from   dR = [B, Q]*[Q; -V]  .  Another residual   ∆2R  :=  Q·G – ∆R   is obtained 

from  d2R = [Q, dR]*[G; -I]   for an aptly dimensioned identity matrix  I .  This  ∆2R  figures 

in the computation of  ∆C = Q–1∆R which starts with a first approximation  G ≈ Q–1∆R  and 

then refines it iteratively into a better approximation   ∆C :=  G – Q–1∆2R   in order to attenuate 

the damage caused by a poor approximation to  Q–1  when  Q  is extremely ill-conditioned.  The 
cost of computing a residual in one  MATLAB   matrix multiplication is a near doubling of 
temporary memory residency and the time for arithmetic;  neither cost need be incurred when  
refineig   is programmed in  Fortran  or  C  with compiler support for register–wide floating–
point variables.

MATLAB   matrix products like  [B, Q]*[Q; -V]   produce the same residuals as  B*Q - Q*V   on 
machines that lack extra-precise registers.  Extra-precise accumulation on such machines is 
awkward to program in  MATLAB   and runs slowly no matter how it is programmed.  It is not 
too slow to be worth programming on  Power-Macs/PCs  and  Itaniums;  these machines have a  
“fused”  multiply-accumulate instruction which needs to be invoked only twice to deliver the 
exact  16-byte  product of two  8-byte  floating-point numbers.  Other machines require over a 
dozen instructions to do that.  In any event,  16-byte  accumulated matrix multiplication is easier 
to program not in  MATLAB ’s  language but in a language like  Fortran  provided its compiler 
supports  REAL*16 ;  in that event the eigensystem might be better computed using  REAL*16  
throughout without recourse to  refineig .  This brings us to the brink of a recurring question:

“ When is high-precision arithmetic more economical than clever mathematics? ”

The short answer is  “Surprisingly often.”  The long answer lies beyond the purview of this opus.
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§4:  How  Refineig   Works for Non-Hermitian  B
Assumed given are a diagonalizable non-Hermitian square matrix  B  and an approximation  
[Q, V]  to its eigensystem good enough that the residual  ∆R := B·Q – Q·V  is small and  Q  is 
not too ill-conditioned.  Of course  V  is diagonal.  We wish to compute small corrections  ∆Q  
and  ∆V ,  the latter diagonal,  for which ideally  B·(Q+∆Q) = (Q+∆Q)·(V+∆V)  exactly.  But  
∆Q  is not determined uniquely by this equation because it allows  Q+∆Q  to be postmultiplied 
by any diagonal matrix.  Our first task is to remedy this non-uniqueness.

Let  ∆Z := Q–1∆Q  so  Q+∆Q = Q·(I+∆Z) .  Postmultiplying this by   Diag((I+∆Z))–1  defines a 
new  ∆Z  with zeros on its diagonal,  which makes sense if every column of  Q  is already so 
nearly an eigenvector that it can be corrected by adding a tiny linear combination of other 
columns.  Thus we fix   ∆Q = Q·∆Z   uniquely by imposing the condition  diag(∆Z) = o  upon 
what shall be computed.  ( Notation:  diag(...)  is a vector,  Diag(...)  is a diagonal matrix.)

Next define  ∆C := Q–1∆R = Q–1B·Q – V ,  to be computed as accurately as possible with the aid 

of iterative refinement:  new  ∆C := ∆C – Q–1(Q·∆C – ∆R) .  Whether the last residual term is 
accumulated extra-precisely or not,  refinement is necessary to provide  ∆C  with a degree of 
protection against inaccuracy in cases when eigenvalues or eigenvectors’ elements span a very 
wide range of magnitudes.  Now that  ∆C  is as accurate we can make it,  what good is it?

The equation  B·(Q+∆Q) = (Q+∆Q)·(V+∆V)  that we wish to solve for  ∆Q  and diagonal  ∆V  is 

transformed by the substitutions   B = Q·(V+∆C)·Q–1   and   ∆Q = Q·∆Z   into a new equation  
(V+∆C)·(I+∆Z) = (I+∆Z)·(V+∆V) ,  which simplifies by cancellation into a form

∆Z·(V  +  ∆V)   –   V·∆Z    =    ∆C·(I  +  ∆Z)   –   ∆V                                        (0)
that can be solved iteratively for  ∆V  and  ∆Z .  The left-hand side’s diagonal vanishes because  
V  and  ∆V  are diagonal and  diag(∆Z) = o ;  therefore,  from any estimate of  ∆Z ,

∆V  :=   diag( ∆C  +  ∆C·∆Z )   =   diag(∆C)  +  O(∆...)2                                (1)
can be calculated.  With an estimate of  ∆V  in hand we proceed to re–estimate  ∆Z  as follows.

First let  u  be the column vector whose elements are all  1 ’s,  and condense diagonal matrices  
V  and  ∆V  into column vectors  v = diag(V)  and  ∆v = diag(∆V),  and then compute

E  :=   (u·vT –  v·uT)  +  (u·∆vT –  ∆V)  +  ∞I  .                                            (2)
Its elements will all be nonzero if the eigenvalues of  B  are sufficiently different;  otherwise,  if 
division by zero occurs in the next step,  the consequences will have to be cleaned up later.  The 
next step entails  elementwise  division by  E  to produce

∆Z  :=   ( (∆C  +  ∆C·∆Z)  –  ∆V )/E   =   ( ∆C  –  ∆V )/E  +  O(∆...)2  .                    (3)
Note that  diag(∆Z) = o  automatically because of the way  ∆V  was computed.  If overflow or 
division by zero creates an  ∞  or  NaN  in  ∆Z ,  replace it by  0  to confine the damage to those 
eigenvectors of  B  belonging to almost coincident eigenvalues.

Formulas  (1),  (2)  and  (3)  may be used iteratively to refine guesses  { ∆Z, ∆V } .  Starting 
with  ∆Z := O  in their right-hand sides,  one pass through these formulas produces a new  ∆Z  in 

error by terms of order  O(∆...)2 ;  a second pass produces  ∆Z  in error by  O(∆...)3 .  After  ∆Z  
is refined enough,   ∆Q := Q·∆Z  can be computed,  and then  Q+∆Q  and  V+∆V .
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All that would be fine if it actually worked;  but it fails to converge in situations much like those 
that cause  eig(B)  to deliver inaccurate results,  which is when refinement is most needed.  The 
likeliest failure mode arises from pairs of nearly coincident eigenvalues.  To combat that failure 
mode,  refineig   computes its starting  ∆Z  from a formula that would be perfect if  ∆C  were a 
permuted diagonal sum of  1-by-1  and  2-by-2  matrices,  and is otherwise still correct in first 
order terms  O(∆...) ,  unless eigenvalues collide.  Here are some details:

Recall that,  given  ∆C  and diagonal  V ,  we wish to solve  (V+∆C)·(I+∆Z) = (I+∆Z)·(V+∆V)  
for  ∆Z  and diagonal  ∆V  subject to the constraint  diag(∆Z) = o .  Further to simplify notation,  
let us temporarily rewrite  ∆V = W  and drop the  ∆  from  ∆C  and  ∆Z .  Then square  C  and 
diagonal  V  are given and we seek diagonal  W  and square  Z  with  diag(Z) = o  to satisfy
    (V + C)·(I + Z) = (I + Z)·(V + W)    or,  equivalently,    Z·(V + W) – V·Z = C·(I + Z) – W .
Apparently the columns of  I+Z  are the eigenvectors of  V+C  whose eigenvalues are on the 
diagonal of  V+W .  This eigenproblem can be solved easily in closed form when  V+C  is a  2-
by-2  matrix;  our next task is to express that solution in a form that works also when  V+C  is a 
permuted diagonal sum of  1-by-1  and  2-by-2  matrices.

Consider first the two eigenvalues   x =  v1 + w1   and   x =  v2 + w2  of

 .

They are the two zeros  x  of a quadratic

x2  –  (v1 + c1 + v2 + c2)·x  +  (v1 + c1)·(v2 + c2) – c12·c21

whose discriminant   y2 =  ·( v1 – v2 + c1 – c2)
2  +  c12·c21   must not vanish unless  c12  and  

c21  vanish too lest  V+C   be non-diagonalizable.   Let

s :=  ·( ( v1 – v2)  +  (c1 – c2) )

and choose the sign of  ( presumably nonzero )

y :=  ±√( s2 + c12·c21 )
so as to maximize the  ( consequently nonzero )  magnitude of

h  :=  s + y .
Then the matrix of eigenvectors  I+Z  turn out to have

 ,

except that if   h = 0  let  Z := O ;  and the eigenvalues  diag(V+W)  of  V+C   turn out to have
w1 =  c1 + c12·z21 ,     w2 =  c2 + c21·z12 .

Note that  det(I+Z) = 2y/h  is nonzero whenever  y  is nonzero,  and then  Z   is determined as 

accurately as cancellation in  y2  permits,  which means no more than half the sig. bits carried 
will be lost.  Also    |z12·z21| ≤ 1 ,  so  Z  never gets very big unless it is very badly scaled.

With the foregoing considerations in mind,  consider next what to do in the slightly more 
general case when  ∆C  is a permuted diagonal sum of  1-by-1  and  2-by-2  matrices:

V C+
v1 c1+ c12

c21 v2 c2+
=

1
4
---

1
2
---

Z
0 z12

z12 0

0 c– 12 h⁄

c12 h⁄ 0
= =
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Column vector  u  whose elements are all  1 ’s  will be used again along with  ∆v := diag(∆C)  
and  v := diag(V) .  First construct  ∆Ç := ∆C – Diag(∆v)  with zeros on its diagonal,  then the  
( complex )  skew matrix   S :=  ( (u·vT – v·uT)  +  (u·∆vT – ∆v·uT) )/2  and then the symmetric  
T :=  √(S•S + ∆ÇT•∆Ç) elementwise,  also with zeros on their diagonals.  A skew  Y  must be 
formed from  T  by reversing signs of some of its elements in order to maximize the magnitude 
of every element of  S+Y .  To this end compute skew  K := Re{ S•conj(T) } elementwise  and 
reverse the sign of every element of  T  for which the corresponding element of  K  is either 
negative or subdiagonal and zero.  ( Here  conj(T)  is the complex conjugate of  T .)  Having 
thus formed  Y ,  compute skew  H := S+Y  and then  ∆Z := ∆Ç/(H + ∞I) elementwise.  The 
addition of  ∞I  prevents divisions by zero on the diagonal but they may occur elsewhere;  if so,  
replace any resulting  ∞  or  NaN  in  ∆Z  by  0 .

The foregoing prescription can be followed also when  ∆C  is an arbitrary square matrix,  not a 
permuted diagonal sum of  1-by-1  and  2-by-2  matrices;  then the prescription provides 
approximations  ∆V = Diag(∆v)  and  ∆Z  that satisfy the original equation  (0)  to within errors 

of order  O(∆…)2 .  For this reason,  refineig   follows that prescription to get initial guesses 

for  ∆Z  and  ∆V  whose errors may be reduced to  O(∆…)3   by one pass through  (1),  (2)  and  
(3)  as described previously.

That prescription is what most distinguishes  refineig   from previous attempts at iterative 
refinement like that of  Dongarra,  Moler  and  Wilkinson [1983].  Unlike theirs,  refineig ’s  
algorithm continues to work well when clustered eigenvalues consist of pairs of close but not 
coincident eigenvalues provided every such pair is separated well enough from all other 
eigenvalues;  this is the most common failure mode for all previous attempts at refinement.

Of course,  the foregoing computations must fail when  Q  is too nearly singular or  V + ∆V  has 
too many too nearly equal diagonal elements.  For that reason prudence requires the new 
residual  B·Q – Q·V  to be checked lest the  “refinement”  V := V+∆V  and  Q := Q+∆Q  
actually make matters worse.  If smaller but not small enough,  the new residual may be 
attenuated further by iterating refinement;   say   [Q, V]  =  refineig( Q, V, B )    in  
MATLAB .    If refinement converges it converges cubically  ( very fast )  until roundoff gets in 
the way.  To maintain compatibility with  eig   and protect repeated refinement from runaway 
scaling,  refineig   divides each column of the refined  Q  by its length,  so the word  
“converges”  can be taken literally.

If  refineig   will be invoked often enough,  or for matrices  B  of dimensions large enough,  to 
keep a computer busy for more than a few seconds,  then it is worth reprogramming to exploit 
matrix operations faster than are built into  MATLAB  3.5.  For instance,  multiplication by or 

subtraction of diagonal matrices should exploit their sparseness;  and when two expressions  Q–

1…  are computed the second should re-use the first’s triangular  LU-factorization;  these 
economies are realizable in  MATLAB  4.2 .  Memory occupancy could be reduced and time 
could be saved during the computation of residuals if  MATLAB   did not oblige us to construct 
and multiply double-sized matrices  […, …]*[…; …]   in order to accumulate scalar products 
extra-precisely on hardware with this capability.
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§5:  How  Refineig   Works for Hermitian  A
When  A'  = A  is  Hermitian we expect  eig(A)   to produce an orthogonal or unitary matrix  Q  
of eigenvectors;  it must satisfy  Q'·Q = I .  Actually roundoff and other artifacts in  eig    corrupt 
this equation.  Neither need this equation be satisfied after  Q  is refined to a new  Q := Q+∆Q  

using the formulas of  §4 ,  including the final normalization  Q —>  Q·√(Diag(Q'  Q))–1 .  Even 
if those formulas pull every column of  Q  closer to an eigenvector,  they can actually push  Q  
farther from unitary whenever some eigenvalues of  A  nearly coincide.  For this reason alone,  
refineig   must treat  Hermitian  matrix eigenproblems specially.  Besides,  Hermitian  matrices 
cannot be defective,  so they afford  refineig   no excuse for failure.

How does  refineig   refine an approximate eigensystem  [Q, V]  of a matrix  A  found to be  
Hermitian?

In the account that follows,  symmetric letters  A, H, I, M, O, T, U, V, W, X  and  Y  are used to 
represent  Hermitian  matrices so as to distinguish them from others.  That is why the input 
formerly called  B  has been renamed  A .  Letters  O, S  and  Z  will represent skew–Hermitian  
matrices;  evidently  O  must be a zero matrix.  The zero vector is  o .

Suppose now that an eigenvector matrix  Q  and a real diagonal eigenvalue matrix  V  have been 
found approximately for a given  Hermitian  matrix  A = A'  ,  perhaps from  [Q, V] = eig(A)  .

If  H  is real symmetric  MATLAB   ensures that  Q  is nearly orthogonal but,  since  refineig   
knows nothing about the provenance of  Q ,  it must be replaced by the nearest unitary matrix   

P := Q·(Q'·Q)–1/2 ,  which is generally best computed from a singular value decomposition of  
Q .  There is a faster way,  if residual  ∆Y :=  Q'·Q – I  ( obtained as  dY = [Q’, I]*[[Q; -I]    
in  MATLAB  )   is small enough,  because then  P :=  Q – Q·∆Y/2  to working accuracy;  and  

∆Y  is surely small enough when  1 – ||∆Y||2  rounds to  1  because then   P'·P – I  =  ∆Y2·(∆Y –
 3·I)/4  is negligible.  One way or another,  refineig   obtains an accurately unitary   P = Q –
 ∆Q .

The next task is to refine  P  towards the eigenvectors of  A .  The refinement must preseve 

orthogonality of the columns of  P ,  so it has been put into the form  P —>  P – 2·P·(I+∆Z)–1∆Z  
where  ∆Z = –∆Z'   is a  skew–Hermitian  matrix whose  Cayley Transform

I – 2·(I+∆Z)–1∆Z  =  (I+∆Z)–1(I–∆Z)
is therefore unitary.  It is a slightly special  proper  unitary matrix because it cannot have  –1  as 
an eigenvalue.  Because further postmultiplication by any unitary diagonal is allowed,  the 
eigenvectors of  A  do not yet determine  ∆Z  uniquely;  to determine  ∆Z  sharply we insist that

diag(∆Z) = o .
Is this constraint always satisfiable?  Yes.  This is obviously so when  A  and therefore  ∆Z  are 
real,  unobviously so when they are complex;  for a proof see my note  “Is there a Skew Cayley 
Transform with  Zero Diagonal?” [1999].

The residual  ∆H :=  P'·(A·P – P·V)  =  P'·A·P – V ,  computed from  P’*([A, P]*[P; -V])   
in  MATLAB ,  would be  Hermitian  but for roundoff,  whose effect is mitigated by replacing  
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∆H  by  (∆H+∆H')/2 .  Then  (I+∆Z)–1(I–∆Z)  turns out to have to be a matrix of eigenvectors 

for  V+∆H ,  whence follows   (V+∆H)·((I+∆Z)–1(I–∆Z))  =  ((I+∆Z)–1(I–∆Z))·(V+∆V)   
wherein the eigenvalue correction  ∆V  is diagonal like  V .  Expanded and simplified,  the last 
equation becomes

∆V – ∆Z·∆V·∆Z – ∆Z·(2·V+∆V) + (2·V+∆V)·∆Z  =  ∆H + ∆Z·∆H – ∆H·∆Z – ∆Z·∆H·∆Z .    (4)

It has to be solved iteratively for a real diagonal  ∆V  and a  skew–Hermitian  ∆Z .  To that end 
it will be broken into its diagonal and off-diagonal parts.

First the diagonal:  Recall that   diag(∆Z) = o  and define  |∆Z|2 := –∆Z'•∆Z elementwise   to 
deduce how,  from any such  skew-Hermitian  estimate of  ∆Z ,  to compute an estimate of

∆v :=  (I + |∆Z|2)–1 diag( ∆H  +  ∆Z·∆H  –  ∆H·∆Z  –  ∆Z·∆H·∆Z )                   (5)

      =  diag(∆H)  +  O(∆…)2 .                             ( ∆v  must be exactly real.)
Then  ∆V := Diag(∆v) .

For the off-diagonal parts the column vector  u = [1, 1, ..., 1]T  and the vectors  v := diag(V)  
and  ∆v  will be needed again.  They figure in the construction of a skew matrix

S :=  (2·v+∆v)·uT  –  u·(2·v+∆v)T  = –ST                                               (6)
whose off-diagonal entries are nonzero provided the eigenvalues of  A  are different enough that  
all entries of  2v+∆v  are distinct;  otherwise,  if division by zero occurs in the next step,  the 
consequences will have to be cleaned up later.  The next step entails  elementwise  division by  
S  to produce a new estimate of the skew–Hermitian

∆Z :=  ( ∆H – ∆V  +  ∆Z·∆H  –  ∆H·∆Z  –  ∆Z·(∆H – ∆V)·∆Z )/(S + ı∞I)           (7)

      =  ( ∆H – ∆V )/(S + ı∞I)  +  O(∆...)2                               (  ı = √(–1)  )
which automatically sets  diag(∆Z) = o .  The addition of  ı∞I  to  S  prevents divisions by zero 
on the diagonal,  but they may occur elsewhere;  if so,  replace any resulting  ∞  or  NaN  in  ∆Z  
by  0  to confine the damage to those eigenvectors of  A  belonging to eigenvalues that almost 
coincide.  ( Elements of  ∆Z  too much bigger than  1  in magnitude do more harm than good.)

As before,  formulas  (5),  (6)  and  (7)  may be used iteratively to refine guesses  { ∆Z, ∆V } .  
Starting with  ∆Z := O  in their right-hand sides,  one pass through these formulas normally 

produces a new  ∆Z  in error by terms of order  O(∆...)2 ;  a second pass reduces  ∆Z ’s  error to  

O(∆...)3 .  After  ∆Z  is refined enough,   ∆P := –2·P·(I+∆Z)–1∆Z  can be computed,  and then  
P+∆P  and  V+∆V .  As before,  the iteration can converge slowly or not at all if eigenvalues are 
too nearly coincident.  To attack this defect,  a first guess  ∆Z  better than  O  shall be derived 
the same way as was a formula attributed by  Bodewig [1959]  to  Jacobi (1838),  Jahn (1948)   
and Magnier (1948),  though their formula would be valid only for real  ∆H .  Their formula has 
served successfully as a quadratically convergent iteration to compute eigenvalues of real 
symmetric matrices  ( no larger than  4-by-4 )  in a programmable shirt-pocket calculator,  the  
HP-15C [1982].  The derivation begins,  as before,  by considering  2-by-2 Hermitian  matrices  
∆H ,  and extends these considerations to permuted diagonal sums  ∆H  of  1-by-1  and  2-by-2  
matrices in such a way as provides for them exactly the skew solution  ∆Z  of  (4)  in a formula 
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that approximates  ∆Z   in general within an error  O(∆...)2 .  Here is the result of that derivation:

First   signum(µ) := µ/|µ|   has to be defined at zero;   signum(0) := 0 .   Alas,   signum(∞)   is 
problematic because so few complex infinities are representable as floating-point numbers,  and 
those that are representable,  like real  ±∞ ,  often have accidental signs.  The algorithm that 
follows will treat division by zero as an extremely rare special case.

Next,  for all finite  µ  define

ß(µ)  :=  signum(µ)·tan( arctan(|µ|)/2 )  =  µ/( 1  +  √( 1 + |µ|2 ) )   and
ƒ(µ)  :=  signum(µ)·tan( arctan(|µ|)/4 )  =  ß( ß(µ) )  .

On some computers  ƒ(µ)  can be computed faster from  tan  and  arctan  than from two square 
roots and divisions.  In any event,  |ß(µ)| < 1  and  |ƒ(µ)| < √2 – 1 = 1/(1 + √2)  for all  finite  µ .

From vectors   u := [ 1, 1, ..., 1 ]T  and  y := (diag(V) + diag(∆H))/2   compute  skew–Hermitian
∆S  :=  ∆H/( y·uT  –  u·yT  +  ı∞I ) elementwise,   and
∆Z  :=  ƒ(∆S) elementwise 

except that,  wherever an element  ∆zij   of  ∆Z  is found to be  ∞  or  NaN  because of division 
by zero or overflow,  it must be replaced by   ∆zij  := signum((j–i)·∆hij)/(1 + √2)   using the 
corresponding element   ∆hij   of  ∆H .  Thus,  every element  ∆zij   of  ∆Z  satisfies  ∆zij  = –∆zij  ,  
signum(∆zij ) = ±signum(∆hij) ,  and   |∆zij |  ≤  1/(1 + √2)  =  0.41421356… .

The foregoing formula for  ∆Z  is perfect if  ∆H  is a permutation of a diagonal sum of  1-by-1  
and  2-by-2  matrices,  and correct to first order in  ∆H  otherwise,  so it provides a first guess  
∆Z  better than  O  to start the iteration  (5),  (6)  and  (7).  It also exposes one of  refineig ’s  
potential failure modes in equation  (5) :

If  A  has a cluster of too many too nearly equal eigenvalues,  ∆Z  may have too many elements 

that are not very tiny,  and then  (I + |∆Z|2)  in  (5)  may be singular or nearly so.  Then iterative 

refinement of   (I + |∆Z|2)–1…   diminishes the risk of malfunction but does not eliminate it.  The 

same palliative applied to   (I + ∆Z)–1∆Z  could attenuate another hazard arising from the same 
cause when  ∆Z  computed in  (7)  has gargantuan elements,  but a reasonable alternative is first 
to clip the magnitudes of excessively big elements of  ∆Z .

§6:  Tests
Refineig   was implemented as a  MATLAB   .m-file function.  While it was being debugged,  its 
behavior was compared with the following expectations:

•  Given a correct matrix  Q  of eigenvectors,  [Q, V] = refineig(Q, W, B)   replaces any  W
    by the correct eigenvalue matrix  V  immediately.

•  Given a non–defective diagonal sum  B  of  1-by-1  and  2-by-2  matrices,  some with repeated
    diagonal entries,   [Q, V] = refineig(I, O, B)   produces a correct eigensystem  [Q, V] .
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•  Starting from a slightly perturbed eigensystem  [Q, V]  of a matrix  B  with well-separated
    eigenvalues,  the iteration  [Q, V] = refineig(Q, V, B)   converges cubically.

•  Starting from a slightly perturbed eigensystem  [Q, V]  of a non–defective matrix  B  with
    well-separated pairs of coincident eigenvalues,  the iteration  [Q, V] = refineig(Q, V, B)

    converges quadratically.

These expectations were tested upon a number of  Hermitian  and  non–Hermitian  matrices,  
both real and complex,  diverse enough to exercize every branch in the program both ways.  
After these tests had run to satisfactory conclusions,  the  MATLAB   .m-file  refineig.m   was 
deemed a correct implementation of the intended algorithm.  Subsequent tests were designed to 
shed light upon questions like the following:

•  How much does  refineig   improve  eig ’s  results in typical non-pathological cases?

•  What kinds of pathologies can  refineig   handle that  eig   cannot?

•  How much difference does extra-precise accumulation make to  refineig   ?

What is a pathology?  It is something to be blamed when results are substantially less accurate 
than might reasonably have been expected;  but appearances can deceive.  Roundoff during the 
generation of a test matrix  B  can alter its eigensystem enough to swamp the error that  eig   
may commit,  in which case  eig   might be blamed for getting very nearly the right answer to 
the wrong question.  To prevent this kind of confusion,  test data should ideally be free from 
roundoff before  eig   receives it,  although that kind of data consists mainly of small integers 
quite unlike typical data.  On the other hand,  eig   deserves blame if its eigenvalues,  but not  
refineig ’s,  change substantially when its datum  B  is altered in ways that should not change 
eigenvalues nor their sensitivities to perturbation;  two such alterations are reversal of rows and 
columns,  and transposition.  All  non-Hermitian  test data  B  were subjected to both reversal 
and transposition,  Hermitian  data only to reversal,  to see whether substantial consequences 
ensued.
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§F:  Appendix on  Werner Frank’s  Matrices
A family of  n-by-n  matrices discovered serendipitously by  Werner L. Frank [1958]  have 
come to be used widely  ( cf. Wilkinson [1960, 1965]  and  Golub [1976] )  to test eigensystem–
computing software because some of their eigenvalues become extremely ill-conditioned as  n  
increases.  Properties of these matrices are summarized here.  Most properties mentioned have 
been established mathematically by  Eberlein [1971]  and by  Varah [1986],  among others;  but 
a few of these properties,  marked by  (†) ,  are inferred only from numerical experiments.  The 
following  MATLAB   program to compute  Frank  matrices was adapted from  N.J. Higham’s:

  function  F = Frank(n, k)
  %     F = Frank(n, k)  is the  Frank  matrix of order  n .  The default
  %     is  k = 0 ;  otherwise the elements of  F  get reflected about the
  %     anti-diagonal  (1,n)--(n,1) .  Anyway,  Frank  is upper-Hessenberg.

     if nargin == 1, k = 0; end
     if  n < 2,   %  ...  necessitated by  MATLAB’s  faulty  diag([], -1) .
           F = eye(n) ;   % ...  with error message if  n < 0 .
      else
           p = [n:-1:1] ;
           F = triu( p( ones(n,1), : ) - diag( ones(n-1,1), -1 ), -1 ) ;
           if k ~= 0 ,  F = F(p,p)’;  end, end

The following  5-by-5  examples exhibit   F = Frank(5)  ,   FT ,   P = Frank(5, 1)’    and   PT :

F =  ,    F'  =  ,    P =    and    P'  =  .

P  is obtained by reversing the rows and columns of  F .  For each dimension  n ,  all four of  F , 
FT ,  P  and  PT  have the same eigenvalues with the same condition numbers,  but eigensystem 
software will compute their smaller eigenvalues with very different accuracies,  the more so as  
n  increases.  All four matrices have determinant  1  but,  for reasons  Frank [1958]  explained,  
computed values of  det(FT)  are usually very different from  1  when  n  is large.

The eigenvalues turn out all positive and they occur in reciprocal pairs;  if  ƒ  is an eigenvalue 
then  1/ƒ  is another except that,  when  n  is odd,  ƒ = 1  is an eigenvalue for which  FT  has the 
row–eigenvector  [ …,  0,  –1/3840,  0,  1/384,  0,  –1/48,  0,  1/8,  0,  –1/2,  0,  1 ] .  ( Denominators are 
products of consecutive even integers.)  By reducing the eigenproblem for  P  to an easier 
eigenproblem for a tridiagonal matrix,  we can show every  (√ƒ – 1/√ƒ)  to be a zero of the  
Hermite Polynomial

Hen(x)  :=   (–1)n·exp(x2/2)·dn(exp(–x2/2))/dxn   =   x·Hen–1(x)  –  (n–1)·Hen–2(x) .
(Cf. Abramowitz & Stegun [1964].)  Reduction to symmetric tridiagonal form goes as follows:

Let  L := diag(ones(n-1,1), -1)  in  MATLAB ’s notation;  this  n-by-n  lower triangle  L  has  
1 ’s  on the first sub–diagonal and zeros everywhere else.  Let  W := Diag([0, 1, 2, ..., n–1])  and  
U := L'·W  and  V :=  I + L·U = I+W = Diag([1, 2, 3, ..., n]) .  Then we find that

5 4 3 2 1

4 4 3 2 1

0 3 3 2 1

0 0 2 2 1

0 0 0 1 1

5 4 0 0 0

4 4 3 0 0

3 3 3 2 0

2 2 2 2 1

1 1 1 1 1

1 1 0 0 0

1 2 2 0 0

1 2 3 3 0

1 2 3 4 4

1 2 3 4 5

1 1 1 1 1

1 2 2 2 2

0 2 3 3 3

0 0 3 4 4

0 0 0 4 5
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P  =  U + V  + L·V + L2·V + ... + Ln-1·V  =  U + (I–L)-1V  =  (I–L)-1(I+U) .
Now every eigenvalue  ƒ  of  P  can be seen to satisfy

0  =  det(P - ƒ·I)  =  det(I+U – ƒ·(I–L))  =  det( √ƒ·√W·L  + (1–ƒ)·I +  √ƒ·L'·√W )
in which the last matrix is obtained from its predecessor via a suitable diagonal similarity.  
Dividing the last matrix by  √ƒ  exhibits  µ := √ƒ - 1/√ƒ  as an eigenvalue of the symmetric 
tridiagonal  √W·L + LT·√W  whose characteristic polynomial turns out to be

det(µ·I  -  √W·L - LT·√W)  =  Hen(µ) .
The nonzero zeros of  Hen  come in pairs  ±µ  to each of which corresponds a pair of 

eigenvalues  ƒ±1  =  1 + µ2/2  ±  µ·√(1 + µ2/4)  of  P .

Because all diagonal elements vanish in the symmetric tridiagonal matrix,  its eigenvalues  µ  
are determined as accurately as are its off-diagonal elements,  which are the elements of  √W .  

Consequently the eigenvalues  ƒ  of  P = (I-L)-1(I + LT·W)  are determined as accurately as are 
the elements of  W  that repeat in the columns of  P .  However,  numerical algorithms that 
inflict different uncorrelated rounding errors on elements in the same column of  P  destroy their 
correlations and,  apparently,  destroy also the accuracies of the smaller eigenvalues  ƒ  of  P .  
This reasoning explains why  ƒ  might not be well-conditioned,  but not why it must be so ill–
conditioned when computed by conventional software.

The first intimation of ill–condition comes from the disparities between norms of  P  and its 
biggest eigenvalues.  The  Max.-Row-Sum-Norm  of  P  is  n·(n+1)/2 ;  its  Max.–Column–Sum–
Norm  is  (n·(n+4) - parity(n))/4 .  ( Here  parity(n)  is  0  or  1  according as  n  is even or odd.)  
The biggest singular value of  P  falls short of  (n·(n+4) - 1)/4  by  (†)  less than  5%  for all  n ,  
less than  0.5%  for  n > 6 .  These are all rather bigger than the biggest eigenvalue  ƒ  of  P ,  
which is smaller than  4·n  as we shall see next.

For all  n > 1  the biggest zero  µ  of  Hen  lies  (†)  within  0.5%  of
g :=  2.71983·(√n – √3) –  0.71983·( √n + 5.3032 – √8.3032 )  + √3  

and certainly cannot exceed  √n–1 + √n–2 .  ( µ = 0  at  n = 1  but  g = 0.008 .)  Consequently the 

extreme eigenvalues  ƒ±1  lie  (†)  within  1%  of  (1 + g2/2  + g·√(1 + g2/4))±1  and certainly fall 

between  (4n)±1 .

Despite that bigger eigenvalues  ƒ  become rather smaller than any customary norm of  P  as  n  
increases,  they lose at most a few bits of accuracy to end–figure perturbations of  P .  But the 
smallest few eigenvalues  ƒ  become extremely ill–conditioned.  Numerical experiments with  
8 ≤ n ≤ 19  indicate  (†)  that perturbing  P  to  P + ∆P  can lose roughly as many as

    4.3 n  –  16  sig. bits,     if    norm(∆P)  ≤  eps·norm(P) ,
    4.1 n  –  17  sig. bits,     if    abs(∆P)  ≤  eps·abs(P) elementwise,

of accuracy in the smallest few eigenvalues;  here  eps  is the roundoff threshold,  the difference 
between  1.0  and the next larger floating-point number  1.000…0001  in the working precision;  

and  norm(…)  is the biggest singular value.  MATLAB   carries  53 sig. bits,  so its  eps  = 2–52  
and,  if it has a little bad luck with roundoff,  eig    may deliver utterly inaccurate estimates for 
those smallest eigenvalues  ƒ  when  n > 17 .
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The following results,  obtained off my  68040-based  Macintosh  Quadra 950 ,  differ negligibly 
from results off my  Pentium-based  PC.  The results for other computers,  such as the  MIPS,  
SPARC,  H-P PA,  PowerPC/Mac  and  DEC Alpha,  were simulated by setting the  Mac’s  and  
PC’s  Precision Control  to emulate the other computers’ arithmetics.  The emulation is imperfect,  
but close enough.  These results are from  MATLAB  3.5;  MATLAB  4.2  does almost the same.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Legend: - - - - - eig              on  680x0-Mac  or  Intel-PC
______ Refineig   on  680x0-Mac  or  Intel-PC
. . . . . . eig              on  others
· - · - · - · Refineig   on  others.
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Legend: - - - - - eig              on  680x0-Mac  or  Intel-PC
______ Refineig   on  680x0-Mac  or  Intel-PC
. . . . . . eig              on  others
· - · - · - · Refineig   on  others.
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Legend: - - - - - eig              on  680x0-Mac  or  Intel-PC
______ Refineig   on  680x0-Mac  or  Intel-PC
. . . . . . eig              on  others
· - · - · - · Refineig   on  others.
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Legend: - - - - - eig              on  680x0-Mac  or  Intel-PC
______ Refineig   on  680x0-Mac  or  Intel-PC
. . . . . . eig              on  others
· - · - · - · Refineig   on  others
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§W: Work still to be done:

• How much better than  eig ’s  results are  refineig ’s ?  How do we know when to quit 
iterating  refineig  ?
• Explain why balancing  Frank  matrices is problematical,  and to what extent these matrices 
deserve their notoriety for ill-condition.
• Discuss criteria for adequate tests.
• Can anything be done when the eigenvalues of  V+∆H  are disordered,  so that part of the 
correction of the eigenvector-matrix  Q  involves column swapping?  Permutation matrices are 
all far from  I .
• Pursue the examples  Bj(x) .
• Can anything useful be done for  ( very nearly )  defective matrices?
• Does presubstitution for overflow and division–by–zero really help the computation of  ∆Z ?
• MATLAB   computes  3/∞ = 0  correctly but bungles   ı /∞ ,  getting  NaN + ıNaN   because it 
converts the latter quotient to  (0 + ı)*(∞ – ı0)/∞ .  The same phenomenon causes  ı*∞  to turn 
into  (0 + ı)*(∞ + ı0) --> NaN + ı∞ .  For lack of access to exception-signalling flags,  arrays 
have to be tested element-by-element for  ∞  and  NaN  even though these almost never occur.
• Test cases requiring attention:
  Complex Hermitian  (Old versions of  MATLAB   didn’t ensure orthogonal eigenvectors)
             Norm( Q'·Q – I )   smaller than about  √eps ,      dQ := (Q'·Q – I)/2 ;
                                    or smaller than about  √√eps ,    dQ := dQ + (2.5·dQ·dQ – 1.5·dQ)·dQ ;
                                    or not so small ,  use  SVD  to get new  Q  and  dQ .
                                           ( Test them with  B = V = I .)
              Computing  ƒ(∆S)  with  NaNs  and  ∞’s  in  ∆S .

              (I + |dZ|2)–1  ≈  I – |dZ|2  when   |dZ|2 is tiny enough;
                                  use iterative refinement otherwise.
  Non-Hermitian
               First  dZ  has  NaNs  or  ∞’s .
               Second  dZ  has  NaNs  or  ∞’s .
               Normalization of  Q  by  addition,  or  by division.
               Creation of well-conditioned similarities using  (I – UV')–1 = I + U(I – V'U)–1V'  .

Other considerations:
• Modernized  Jacobi’s  iteration may work better on  Hermitian  matrices than  refineig   can.
• Should  refineig   choose automatically between  refinv   and  refinr   according to whether 
extra-precise accumulation is available to compute residuals?
• Is there a graceful way to cope with exactly multiple eigenvalues?
• Similar but different algorithms refine  Schur  factorization,  SVD,  ... .
Clean up notation for  Transpose  vs.  Complex-Conjugate Transpose:  B'   vs.  B’  ?  BT  vs.  BH ?
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§E:  An interesting example:

Let  G :=  ;  its  Jordan Normal Form  is   .

G  has four maximal irreducible invariant subspaces for two triple eigenvalues,  0  and  2 ,  each 
associated with one  1-dimensional and one  2-dimensional  irreducible invariant subspace.

When  MATLAB ’s  eig(G)   is invoked it produces a diagonal matrix of the correct eigenvalues 
but produces two repetitions of one of at least one of the eigenvalues’ eigenvectors;  which one 
depends upon the computer’s arithmetic.  Since  eig   is not designed to handle matrices with 
non-diagonal  Jordan Normal Forms  (even after roundoff incurred by reduction to  Hessenberg  
and then  Schur  forms),  we should not be surprised that  eig   has overlooked one or two 
eigenvectors.  Because the alleged eigenvector matrix is exactly singular —  it has an obvious  
1-  or  2-dimensional  nullspace,  refineig   malfunctions too.

But when  G  is perturbed by subtracting  MATLAB ’s  eps   from  G ’s  lower left corner  (any 
random perturbation of magnitude  eps   would probably work almost as well),  four eigenvalues 
are perturbed by about  √eps  ,  leaving one each of  0  and  2  unperturbed.  Then two 
applications of  refineig   on an  Apple Mac Quadra 950  reveal four obviously independent 
eigenvectors,  two for each cluster of eigenvalues.  Here they are:  

Z =    satisfies  G·Z – Z·  = O .

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 1– 2– 1 1– 1–

0 1 0 0 1 0

0 0 1 0 0 1

0 1 0  0 0 0

0 0 0  0 0 0

0 0 0  0 0 0

       

0 0 0  2 1 0

0 0 0  0 2 0

0 0 0  0 0 2

1 0 1 0

0 1 0 3

0 0 0 2–

1– 0 1 0

0 1– 0 3

0 0 0 2–

0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 2


