

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 1/21

Refineig

: a Program to Refine Eigensystems

§0: Abstract

Software to compute eigenvalues and eigenvectors of matrices can hardly be deemed infallible. Results are often
rather less accurate than deserved by the data, sometimes far less accurate than different software could have
provided at the same cost.

Refineig

 attempts to tidy up those results at less cost than if the whole computation
were repeated carrying higher precision throughout.

Refineig

 uses a novel iterative refinement algorithm
designed to cope well with the most common cause of inaccuracy, namely isolated pairs of

nearly

 coincident
eigenvalues. (

No way can exist to cope economically with all possible pathologies.) Examples abound for which

refineig

 improves accuracy spectacularly, but usually the improvement is modest. Curiously,

refineig

works far better with the more popular floating-point arithmetics than with the more expensive ones (though all
purport to conform to the same IEEE Standard 754 for floating-point arithmetic), and works far better with
earlier than latest versions of M

ATLAB

.

Contents

§1: Introduction to Trouble page 1 §2: Refineig to the Rescue page 3
§3: Residuals 3 §4: Refineig … for Non-Hermitian B 5
§5: Refineig … for Hermitian A 8 §6: Tests 10
§A: Acknowledgments 11 §R: References 12
§F: On Werner Frank’s Matrices 13 §W: Work Still to be Done 20
§E: An Interesting Example 21

§1: Introduction to Troubles

Function

eig

 in M

ATLAB

 [1993] is typical of good software for computing eigensystems.
The M

ATLAB

 assignment

[Q, V] = eig(B)

 is intended to deliver a nonsingular matrix Q
whose columns are the eigenvectors of the given square matrix B

, and a diagonal matrix V of

its eigenvalues. Ideally we should find B = Q·V·Q

–1

 exactly. Instead, rounded arithmetic can

at best produce the eigensystem of some nearby matrix B –

∆

B := Q·V·Q

–1

 perturbed by a

∆

B comparable with roundoff in B

. Perturbations

∆

B rather worse than several rounding
errors can occur; the probability of encountering them increases with dimension.

Even when

∆

B is minuscule, Q and V can be grossly inaccurate for systematic reasons that
are artifacts of the algorithms

eig

 uses. For example, although B and its transpose B

'

 have
the same eigenvalues with the same sensitivities to perturbation, examples will be exhibited for
which

eig(B)

 is systematically and substantially less accurate than

eig(B.’)

. (Here

B.’

is M

ATLAB

’s notation for B

T

.) Such examples are symptoms of

eig

’s susceptibility to
mathematically trivial but numerically damaging accidents in the presentation of data.

All eigensystem-computing programs, not just

eig

 , suffer from comparable susceptibilities,
if recent work by Ming Gu [1995] can be taken at face value. He showed why reasonable
attempts to attenuate the susceptibility of computed eigensystems to roundoff must overcome
combinatorial obstacles which, in worst cases, grow exponentially more complex as dimension
increases. Those obstacles frustrate attempts by software to decide reliably whether a computed
invariant subspace of B should be left unreduced or reduced further to a sum of ultimately

I

rreducible

I

nvariant

S

ubspaces

. Here are some examples to illustrate the difficulty:

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 2/21

Consider B

j

(

x

) = C·X

j

(

x

)·C

–1

 where C is any well-conditioned 6-by-6 matrix and X

j

(

x

) is
one of

, ,

, or .

If

x

≠

 0 all have the same six distinct eigenvalues of magnitude |

x

| since each B

j

(

x

)

6

 =

x

6

I

,
but the noise from roundoff makes their numerically Irreducible Invariant Subspaces difficult

to discern both unambiguously and robustly, especially as decreasing |

x

| carries first

x

6

, then

x

5

, ..., then

x

2

 below the noise level. The number of discernable invariant subspaces for each
B

j

(

x

) should drop as

x

 decreases through various thresholds, different for each j

, until |

x

|
becomes so tiny that the numerically

I

rreducible

I

nvariant

S

ubspaces become indistinguishable
from those of B

j

(0)

. The respective numbers #IIS

j

 of those final subspaces are ...
#IIS

1

 = #IIS

2

 = 3 , #IIS

4

 = #IIS

5

 = 2 , #IIS

3

 = #IIS

6

 = 1 .
Since B

j

(0) has at most three eigenvectors, one per irreducible invariant subspace,

eig

 should
fail to diagonalize it; but

[Q,V] = eig(B

j

(0))

 still delivers six alleged eigenvectors in Q
and their eigenvalues in V

, usually inconsistent with

eig(B

j

(0).’)

. Instead of zeros, the

computed eigenvalues are typically of the order of 10

–3

 or 10

–4

 when the elements of B

j

(0)
are single-digit integers. The simplest way to tell that eig ’s results are dubious is to observe

how ill-conditioned Q is; typically rcond(Q) falls well below 10–9
 .

In general matrices are called “Defective” when, like Bj(0) , they have too few eigenvectors

to permit diagonalization by any similarity transformation. In the n2
 - dimensional space of all

n-by-n matrices, the defective matrices are dense in the (n2
 – 1) - dimensional algebraic variety

(a hypersurface) of degree n(n – 1) that contains all matrices with repeated eigenvalues; this
explains (Demmel [1988]) why defective matrices are almost never encountered at random,
but near–defective matrices occur too often to ignore. To distinguish reliably among different
kinds of defective and near-defective matrices costs too much more than users of eigensystem-
computing software like eig are inclined to pay at first, so eig makes no distinction and
delivers inaccurate results impartially for all kinds. More discriminating software must work
harder and longer starting from a Schur decomposition, which lies beyond the purview of this
opus; see instead Demmel and Kågström [1993] and Edelman, Elmroth and Kågström
[1997] and references cited therein.

X1 x()

0 1 0 0 0 0

x
2

0 x 0 0 0

0 0 0 1 0 0

0 0 0 0 x 0

0 x
2

– 0 0 0 1

x
4

0 0 0 x
2

– 0

= X2 x()

0 1 0 0 0 0

x
3

0 x 0 0 0

0 0 0 1 0 0

0 0 0 0 x 0

0 x
4

– 0 0 0 1

x
4

0 0 0 x
3

– 0

= X3 x()

0 1 0 0 0 0

0 0 1 0 0 0

x
3

0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 x
3

– 0 0

=

X4 x()

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 x
2

0 0

0 0 0 0 1 0

0 0 0 0 0 1

x
4

0 0 0 0 0

= X5 x()

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 x 0 0

0 0 0 0 1 0

0 0 0 0 0 1

x
5

0 0 0 0 0

= X6 x()

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

x
6

0 0 0 0 0

=

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 3/21

§2: Refineig to the Rescue
Refineig starts from a nonsingular matrix Q of approximate eigenvectors and a diagonal
matrix V of approximate eigenvalues of a square matrix B ; say [Q, V] = eig(B) in
MATLAB . Then [Q, V] = refineig(Q, V, B) performs a step of iterative refinement that
replaces the old [Q, V] by a new. This step may be repeated. At most a few repetitions suffice
because refineig converges very quickly (cubically) if it converges at all.

Refineig is designed to enhance the accuracy of a computed eigensystem when the given data
are nearly defective or, failing that, to let the ever-worsening ill-condition of successively
“improved” eigenvector matrices Q signal intractable closeness to defective data. Sometimes
a nearly defective matrix looks that way only because it is badly scaled; then multiplying and
dividing its rows and columns by suitably chosen scale factors may reduce its eigenproblem’s ill-
condition by orders of magnitude. This is what MATLAB ’s balance was intended to achieve,
but it is fallible, so MATLAB offers a way to inhibit it: invoke eig(..., ’nobalance’) .
Both eig and Refineig may get better results after nobalance . Refineig also succeeds
quite often when the data consist of small integers or other numbers stored exactly, or when the
data include many zeros in locations that eig cannot exploit, or when data include repetitions
and correlations that eig cannot protect from roundoff.

Hermitian and real symmetric matrices constitute another family of special cases. Though never
defective, they can be so badly scaled (and ineligible for balance) that eig computes the
smaller eigenvalues and their eigenvectors with poor relative accuracy. In these cases too,
refineig usually recovers the accuracy the data deserve, but at the cost of invoking a peculiar
algorithm required to preserve orthogonality among eigenvectors.

Refineig is not infallible. Worse, there is no easy way to tell whether it worked nor how
well. Sometimes the improvement in an approximate eigensystem [Q, V] is apparent from a
smaller residual ∆R := B·Q – Q·V . More often the first few successively refined pairs [Q, V]
converge convincingly. Since refineig can diverge or divagate, prudence requires a check
that it has not much exacerbated the residual.

Refineig works better on some computers than on others. It works best on Intel-based IBM
PCs and their clones, including those with Cyrix or AMD processors, and on Motorola
680x0-based Apple Macintoshes (not Power–Macs). It works less well on Apple Power–
Macs and on the rarer and more expensive IBM Power–PCs and RS/6000s, Sun SPARCs,
Silicon Graphics MIPS, Hewlett-Packard PA RISCs and DEC Alphas. Refineig could be
reprogrammed to run more accurately (and slower) on Power–Macs and Power–PCs, but
not in MATLAB . Why the difference? It all comes down to the accuracy of residuals.

§3: Residuals
The effectiveness of iterative refinement is generally limited by the accuracy to which residuals
like ∆R := B·Q – Q·V can be computed. If Q and V were perfectly correct ∆R should
vanish, so it must incur massive cancellation. Cancellation is not what limits accuracy; that is
limited by the precision to which scalar products are accumulated during matrix multiplications.

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 4/21

When B·Q and Q·V are computed using arithmetic no more precise than the 53 sig. bit 8-
byte wide formats in which B , Q and V are stored in memory, ∆R = B·Q – Q·V rarely
rises much above the roundoff that accumulated during its computation. Only in those rare
cases can refineig improve Q and V substantially. Those rare cases do occur often enough
to justify refineig ’s existence, as we shall see. Still, refineig pays off more often and
better when ∆R is accumulated extra-precisely, thereby standing well above the roundoff noise
generated during its computation. This is feasible on the computers most widely in use to-day:

Intel’s Itanium, x86/87 and Pentiums, Cyrix and AMD clones, and Motorola 68040 or
earlier 680x0 + 68881/2 processors can perform their floating-point arithmetic in registers 10
bytes wide with 64 instead of 53 sig. bits. These wider formats accommodate the narrower
operands loaded from memory. Although MATLAB stores every subexpression in 8-byte
memory cells, it can accumulate scalar products in those computers’ 10-byte registers during
matrix multiplication, sometimes doing so faster than if every partial sum were rounded to 8
bytes. To test for extra-precise accumulation evaluate MATLAB expressions like

[(2 - 2^33) , 2^33 , -1]*[(1 + 2^32) ; 2^32 ; 1] ,

which yields +1 correctly when this scalar product is accumulated from left to right with 64
sig. bits but yields the wrong sign when accumulated with only 53 sig. bits. However, see
“M ATLAB ’s Loss is Nobody’s Gain”, <www.cs.berkeley.edu/~wkahan/MxMulEps.pdf> .

To exploit extra-precise registers on machines that have them, refineig computes each of its
residuals by performing one MATLAB matrix multiplication; for example ∆R := B·Q – Q·V

is obtained from dR = [B, Q]*[Q; -V] . Another residual ∆2R := Q·G – ∆R is obtained

from d2R = [Q, dR]*[G; -I] for an aptly dimensioned identity matrix I . This ∆2R figures

in the computation of ∆C = Q–1∆R which starts with a first approximation G ≈ Q–1∆R and

then refines it iteratively into a better approximation ∆C := G – Q–1∆2R in order to attenuate

the damage caused by a poor approximation to Q–1 when Q is extremely ill-conditioned. The
cost of computing a residual in one MATLAB matrix multiplication is a near doubling of
temporary memory residency and the time for arithmetic; neither cost need be incurred when
refineig is programmed in Fortran or C with compiler support for register–wide floating–
point variables.

MATLAB matrix products like [B, Q]*[Q; -V] produce the same residuals as B*Q - Q*V on
machines that lack extra-precise registers. Extra-precise accumulation on such machines is
awkward to program in MATLAB and runs slowly no matter how it is programmed. It is not
too slow to be worth programming on Power-Macs/PCs and Itaniums; these machines have a
“fused” multiply-accumulate instruction which needs to be invoked only twice to deliver the
exact 16-byte product of two 8-byte floating-point numbers. Other machines require over a
dozen instructions to do that. In any event, 16-byte accumulated matrix multiplication is easier
to program not in MATLAB ’s language but in a language like Fortran provided its compiler
supports REAL*16 ; in that event the eigensystem might be better computed using REAL*16
throughout without recourse to refineig . This brings us to the brink of a recurring question:

“ When is high-precision arithmetic more economical than clever mathematics? ”

The short answer is “Surprisingly often.” The long answer lies beyond the purview of this opus.

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 5/21

§4: How Refineig Works for Non-Hermitian B
Assumed given are a diagonalizable non-Hermitian square matrix B and an approximation
[Q, V] to its eigensystem good enough that the residual ∆R := B·Q – Q·V is small and Q is
not too ill-conditioned. Of course V is diagonal. We wish to compute small corrections ∆Q
and ∆V , the latter diagonal, for which ideally B·(Q+∆Q) = (Q+∆Q)·(V+∆V) exactly. But
∆Q is not determined uniquely by this equation because it allows Q+∆Q to be postmultiplied
by any diagonal matrix. Our first task is to remedy this non-uniqueness.

Let ∆Z := Q–1∆Q so Q+∆Q = Q·(I+∆Z) . Postmultiplying this by Diag((I+∆Z))–1 defines a
new ∆Z with zeros on its diagonal, which makes sense if every column of Q is already so
nearly an eigenvector that it can be corrected by adding a tiny linear combination of other
columns. Thus we fix ∆Q = Q·∆Z uniquely by imposing the condition diag(∆Z) = o upon
what shall be computed. (Notation: diag(...) is a vector, Diag(...) is a diagonal matrix.)

Next define ∆C := Q–1∆R = Q–1B·Q – V , to be computed as accurately as possible with the aid

of iterative refinement: new ∆C := ∆C – Q–1(Q·∆C – ∆R) . Whether the last residual term is
accumulated extra-precisely or not, refinement is necessary to provide ∆C with a degree of
protection against inaccuracy in cases when eigenvalues or eigenvectors’ elements span a very
wide range of magnitudes. Now that ∆C is as accurate we can make it, what good is it?

The equation B·(Q+∆Q) = (Q+∆Q)·(V+∆V) that we wish to solve for ∆Q and diagonal ∆V is

transformed by the substitutions B = Q·(V+∆C)·Q–1 and ∆Q = Q·∆Z into a new equation
(V+∆C)·(I+∆Z) = (I+∆Z)·(V+∆V) , which simplifies by cancellation into a form

∆Z·(V + ∆V) – V·∆Z = ∆C·(I + ∆Z) – ∆V (0)
that can be solved iteratively for ∆V and ∆Z . The left-hand side’s diagonal vanishes because
V and ∆V are diagonal and diag(∆Z) = o ; therefore, from any estimate of ∆Z ,

∆V := diag(∆C + ∆C·∆Z) = diag(∆C) + O(∆...)2 (1)
can be calculated. With an estimate of ∆V in hand we proceed to re–estimate ∆Z as follows.

First let u be the column vector whose elements are all 1 ’s, and condense diagonal matrices
V and ∆V into column vectors v = diag(V) and ∆v = diag(∆V), and then compute

E := (u·vT – v·uT) + (u·∆vT – ∆V) + ∞I . (2)
Its elements will all be nonzero if the eigenvalues of B are sufficiently different; otherwise, if
division by zero occurs in the next step, the consequences will have to be cleaned up later. The
next step entails elementwise division by E to produce

∆Z := ((∆C + ∆C·∆Z) – ∆V)/E = (∆C – ∆V)/E + O(∆...)2 . (3)
Note that diag(∆Z) = o automatically because of the way ∆V was computed. If overflow or
division by zero creates an ∞ or NaN in ∆Z , replace it by 0 to confine the damage to those
eigenvectors of B belonging to almost coincident eigenvalues.

Formulas (1), (2) and (3) may be used iteratively to refine guesses { ∆Z, ∆V } . Starting
with ∆Z := O in their right-hand sides, one pass through these formulas produces a new ∆Z in

error by terms of order O(∆...)2 ; a second pass produces ∆Z in error by O(∆...)3 . After ∆Z
is refined enough, ∆Q := Q·∆Z can be computed, and then Q+∆Q and V+∆V .

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 6/21

All that would be fine if it actually worked; but it fails to converge in situations much like those
that cause eig(B) to deliver inaccurate results, which is when refinement is most needed. The
likeliest failure mode arises from pairs of nearly coincident eigenvalues. To combat that failure
mode, refineig computes its starting ∆Z from a formula that would be perfect if ∆C were a
permuted diagonal sum of 1-by-1 and 2-by-2 matrices, and is otherwise still correct in first
order terms O(∆...) , unless eigenvalues collide. Here are some details:

Recall that, given ∆C and diagonal V , we wish to solve (V+∆C)·(I+∆Z) = (I+∆Z)·(V+∆V)
for ∆Z and diagonal ∆V subject to the constraint diag(∆Z) = o . Further to simplify notation,
let us temporarily rewrite ∆V = W and drop the ∆ from ∆C and ∆Z . Then square C and
diagonal V are given and we seek diagonal W and square Z with diag(Z) = o to satisfy
 (V + C)·(I + Z) = (I + Z)·(V + W) or, equivalently, Z·(V + W) – V·Z = C·(I + Z) – W .
Apparently the columns of I+Z are the eigenvectors of V+C whose eigenvalues are on the
diagonal of V+W . This eigenproblem can be solved easily in closed form when V+C is a 2-
by-2 matrix; our next task is to express that solution in a form that works also when V+C is a
permuted diagonal sum of 1-by-1 and 2-by-2 matrices.

Consider first the two eigenvalues x = v1 + w1 and x = v2 + w2 of

 .

They are the two zeros x of a quadratic

x2 – (v1 + c1 + v2 + c2)·x + (v1 + c1)·(v2 + c2) – c12·c21

whose discriminant y2 = ·(v1 – v2 + c1 – c2)
2 + c12·c21 must not vanish unless c12 and

c21 vanish too lest V+C be non-diagonalizable. Let

s := ·((v1 – v2) + (c1 – c2))

and choose the sign of (presumably nonzero)

y := ±√(s2 + c12·c21)
so as to maximize the (consequently nonzero) magnitude of

h := s + y .
Then the matrix of eigenvectors I+Z turn out to have

 ,

except that if h = 0 let Z := O ; and the eigenvalues diag(V+W) of V+C turn out to have
w1 = c1 + c12·z21 , w2 = c2 + c21·z12 .

Note that det(I+Z) = 2y/h is nonzero whenever y is nonzero, and then Z is determined as

accurately as cancellation in y2 permits, which means no more than half the sig. bits carried
will be lost. Also |z12·z21| ≤ 1 , so Z never gets very big unless it is very badly scaled.

With the foregoing considerations in mind, consider next what to do in the slightly more
general case when ∆C is a permuted diagonal sum of 1-by-1 and 2-by-2 matrices:

V C+
v1 c1+ c12

c21 v2 c2+
=

1
4

1
2

Z
0 z12

z12 0

0 c– 12 h⁄

c12 h⁄ 0
= =

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 7/21

Column vector u whose elements are all 1 ’s will be used again along with ∆v := diag(∆C)
and v := diag(V) . First construct ∆Ç := ∆C – Diag(∆v) with zeros on its diagonal, then the
(complex) skew matrix S := ((u·vT – v·uT) + (u·∆vT – ∆v·uT))/2 and then the symmetric
T := √(S•S + ∆ÇT•∆Ç) elementwise, also with zeros on their diagonals. A skew Y must be
formed from T by reversing signs of some of its elements in order to maximize the magnitude
of every element of S+Y . To this end compute skew K := Re{ S•conj(T) } elementwise and
reverse the sign of every element of T for which the corresponding element of K is either
negative or subdiagonal and zero. (Here conj(T) is the complex conjugate of T .) Having
thus formed Y , compute skew H := S+Y and then ∆Z := ∆Ç/(H + ∞I) elementwise. The
addition of ∞I prevents divisions by zero on the diagonal but they may occur elsewhere; if so,
replace any resulting ∞ or NaN in ∆Z by 0 .

The foregoing prescription can be followed also when ∆C is an arbitrary square matrix, not a
permuted diagonal sum of 1-by-1 and 2-by-2 matrices; then the prescription provides
approximations ∆V = Diag(∆v) and ∆Z that satisfy the original equation (0) to within errors

of order O(∆…)2 . For this reason, refineig follows that prescription to get initial guesses

for ∆Z and ∆V whose errors may be reduced to O(∆…)3 by one pass through (1), (2) and
(3) as described previously.

That prescription is what most distinguishes refineig from previous attempts at iterative
refinement like that of Dongarra, Moler and Wilkinson [1983]. Unlike theirs, refineig ’s
algorithm continues to work well when clustered eigenvalues consist of pairs of close but not
coincident eigenvalues provided every such pair is separated well enough from all other
eigenvalues; this is the most common failure mode for all previous attempts at refinement.

Of course, the foregoing computations must fail when Q is too nearly singular or V + ∆V has
too many too nearly equal diagonal elements. For that reason prudence requires the new
residual B·Q – Q·V to be checked lest the “refinement” V := V+∆V and Q := Q+∆Q
actually make matters worse. If smaller but not small enough, the new residual may be
attenuated further by iterating refinement; say [Q, V] = refineig(Q, V, B) in
MATLAB . If refinement converges it converges cubically (very fast) until roundoff gets in
the way. To maintain compatibility with eig and protect repeated refinement from runaway
scaling, refineig divides each column of the refined Q by its length, so the word
“converges” can be taken literally.

If refineig will be invoked often enough, or for matrices B of dimensions large enough, to
keep a computer busy for more than a few seconds, then it is worth reprogramming to exploit
matrix operations faster than are built into MATLAB 3.5. For instance, multiplication by or

subtraction of diagonal matrices should exploit their sparseness; and when two expressions Q–

1… are computed the second should re-use the first’s triangular LU-factorization; these
economies are realizable in MATLAB 4.2 . Memory occupancy could be reduced and time
could be saved during the computation of residuals if MATLAB did not oblige us to construct
and multiply double-sized matrices […, …]*[…; …] in order to accumulate scalar products
extra-precisely on hardware with this capability.

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 8/21

§5: How Refineig Works for Hermitian A
When A' = A is Hermitian we expect eig(A) to produce an orthogonal or unitary matrix Q
of eigenvectors; it must satisfy Q'·Q = I . Actually roundoff and other artifacts in eig corrupt
this equation. Neither need this equation be satisfied after Q is refined to a new Q := Q+∆Q

using the formulas of §4 , including the final normalization Q —> Q·√(Diag(Q' Q))–1 . Even
if those formulas pull every column of Q closer to an eigenvector, they can actually push Q
farther from unitary whenever some eigenvalues of A nearly coincide. For this reason alone,
refineig must treat Hermitian matrix eigenproblems specially. Besides, Hermitian matrices
cannot be defective, so they afford refineig no excuse for failure.

How does refineig refine an approximate eigensystem [Q, V] of a matrix A found to be
Hermitian?

In the account that follows, symmetric letters A, H, I, M, O, T, U, V, W, X and Y are used to
represent Hermitian matrices so as to distinguish them from others. That is why the input
formerly called B has been renamed A . Letters O, S and Z will represent skew–Hermitian
matrices; evidently O must be a zero matrix. The zero vector is o .

Suppose now that an eigenvector matrix Q and a real diagonal eigenvalue matrix V have been
found approximately for a given Hermitian matrix A = A' , perhaps from [Q, V] = eig(A) .

If H is real symmetric MATLAB ensures that Q is nearly orthogonal but, since refineig
knows nothing about the provenance of Q , it must be replaced by the nearest unitary matrix

P := Q·(Q'·Q)–1/2 , which is generally best computed from a singular value decomposition of
Q . There is a faster way, if residual ∆Y := Q'·Q – I (obtained as dY = [Q’, I]*[[Q; -I]
in MATLAB) is small enough, because then P := Q – Q·∆Y/2 to working accuracy; and

∆Y is surely small enough when 1 – ||∆Y||2 rounds to 1 because then P'·P – I = ∆Y2·(∆Y –
 3·I)/4 is negligible. One way or another, refineig obtains an accurately unitary P = Q –
 ∆Q .

The next task is to refine P towards the eigenvectors of A . The refinement must preseve

orthogonality of the columns of P , so it has been put into the form P —> P – 2·P·(I+∆Z)–1∆Z
where ∆Z = –∆Z' is a skew–Hermitian matrix whose Cayley Transform

I – 2·(I+∆Z)–1∆Z = (I+∆Z)–1(I–∆Z)
is therefore unitary. It is a slightly special proper unitary matrix because it cannot have –1 as
an eigenvalue. Because further postmultiplication by any unitary diagonal is allowed, the
eigenvectors of A do not yet determine ∆Z uniquely; to determine ∆Z sharply we insist that

diag(∆Z) = o .
Is this constraint always satisfiable? Yes. This is obviously so when A and therefore ∆Z are
real, unobviously so when they are complex; for a proof see my note “Is there a Skew Cayley
Transform with Zero Diagonal?” [1999].

The residual ∆H := P'·(A·P – P·V) = P'·A·P – V , computed from P’*([A, P]*[P; -V])
in MATLAB , would be Hermitian but for roundoff, whose effect is mitigated by replacing

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 9/21

∆H by (∆H+∆H')/2 . Then (I+∆Z)–1(I–∆Z) turns out to have to be a matrix of eigenvectors

for V+∆H , whence follows (V+∆H)·((I+∆Z)–1(I–∆Z)) = ((I+∆Z)–1(I–∆Z))·(V+∆V)
wherein the eigenvalue correction ∆V is diagonal like V . Expanded and simplified, the last
equation becomes

∆V – ∆Z·∆V·∆Z – ∆Z·(2·V+∆V) + (2·V+∆V)·∆Z = ∆H + ∆Z·∆H – ∆H·∆Z – ∆Z·∆H·∆Z . (4)

It has to be solved iteratively for a real diagonal ∆V and a skew–Hermitian ∆Z . To that end
it will be broken into its diagonal and off-diagonal parts.

First the diagonal: Recall that diag(∆Z) = o and define |∆Z|2 := –∆Z'•∆Z elementwise to
deduce how, from any such skew-Hermitian estimate of ∆Z , to compute an estimate of

∆v := (I + |∆Z|2)–1 diag(∆H + ∆Z·∆H – ∆H·∆Z – ∆Z·∆H·∆Z) (5)

 = diag(∆H) + O(∆…)2 . (∆v must be exactly real.)
Then ∆V := Diag(∆v) .

For the off-diagonal parts the column vector u = [1, 1, ..., 1]T and the vectors v := diag(V)
and ∆v will be needed again. They figure in the construction of a skew matrix

S := (2·v+∆v)·uT – u·(2·v+∆v)T = –ST (6)
whose off-diagonal entries are nonzero provided the eigenvalues of A are different enough that
all entries of 2v+∆v are distinct; otherwise, if division by zero occurs in the next step, the
consequences will have to be cleaned up later. The next step entails elementwise division by
S to produce a new estimate of the skew–Hermitian

∆Z := (∆H – ∆V + ∆Z·∆H – ∆H·∆Z – ∆Z·(∆H – ∆V)·∆Z)/(S + ı∞I) (7)

 = (∆H – ∆V)/(S + ı∞I) + O(∆...)2 (ı = √(–1))
which automatically sets diag(∆Z) = o . The addition of ı∞I to S prevents divisions by zero
on the diagonal, but they may occur elsewhere; if so, replace any resulting ∞ or NaN in ∆Z
by 0 to confine the damage to those eigenvectors of A belonging to eigenvalues that almost
coincide. (Elements of ∆Z too much bigger than 1 in magnitude do more harm than good.)

As before, formulas (5), (6) and (7) may be used iteratively to refine guesses { ∆Z, ∆V } .
Starting with ∆Z := O in their right-hand sides, one pass through these formulas normally

produces a new ∆Z in error by terms of order O(∆...)2 ; a second pass reduces ∆Z ’s error to

O(∆...)3 . After ∆Z is refined enough, ∆P := –2·P·(I+∆Z)–1∆Z can be computed, and then
P+∆P and V+∆V . As before, the iteration can converge slowly or not at all if eigenvalues are
too nearly coincident. To attack this defect, a first guess ∆Z better than O shall be derived
the same way as was a formula attributed by Bodewig [1959] to Jacobi (1838), Jahn (1948)
and Magnier (1948), though their formula would be valid only for real ∆H . Their formula has
served successfully as a quadratically convergent iteration to compute eigenvalues of real
symmetric matrices (no larger than 4-by-4) in a programmable shirt-pocket calculator, the
HP-15C [1982]. The derivation begins, as before, by considering 2-by-2 Hermitian matrices
∆H , and extends these considerations to permuted diagonal sums ∆H of 1-by-1 and 2-by-2
matrices in such a way as provides for them exactly the skew solution ∆Z of (4) in a formula

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 10/21

that approximates ∆Z in general within an error O(∆...)2 . Here is the result of that derivation:

First signum(µ) := µ/|µ| has to be defined at zero; signum(0) := 0 . Alas, signum(∞) is
problematic because so few complex infinities are representable as floating-point numbers, and
those that are representable, like real ±∞ , often have accidental signs. The algorithm that
follows will treat division by zero as an extremely rare special case.

Next, for all finite µ define

ß(µ) := signum(µ)·tan(arctan(|µ|)/2) = µ/(1 + √(1 + |µ|2)) and
ƒ(µ) := signum(µ)·tan(arctan(|µ|)/4) = ß(ß(µ)) .

On some computers ƒ(µ) can be computed faster from tan and arctan than from two square
roots and divisions. In any event, |ß(µ)| < 1 and |ƒ(µ)| < √2 – 1 = 1/(1 + √2) for all finite µ .

From vectors u := [1, 1, ..., 1]T and y := (diag(V) + diag(∆H))/2 compute skew–Hermitian
∆S := ∆H/(y·uT – u·yT + ı∞I) elementwise, and
∆Z := ƒ(∆S) elementwise

except that, wherever an element ∆zij of ∆Z is found to be ∞ or NaN because of division
by zero or overflow, it must be replaced by ∆zij := signum((j–i)·∆hij)/(1 + √2) using the
corresponding element ∆hij of ∆H . Thus, every element ∆zij of ∆Z satisfies ∆zij = –∆zij ,
signum(∆zij) = ±signum(∆hij) , and |∆zij | ≤ 1/(1 + √2) = 0.41421356… .

The foregoing formula for ∆Z is perfect if ∆H is a permutation of a diagonal sum of 1-by-1
and 2-by-2 matrices, and correct to first order in ∆H otherwise, so it provides a first guess
∆Z better than O to start the iteration (5), (6) and (7). It also exposes one of refineig ’s
potential failure modes in equation (5) :

If A has a cluster of too many too nearly equal eigenvalues, ∆Z may have too many elements

that are not very tiny, and then (I + |∆Z|2) in (5) may be singular or nearly so. Then iterative

refinement of (I + |∆Z|2)–1… diminishes the risk of malfunction but does not eliminate it. The

same palliative applied to (I + ∆Z)–1∆Z could attenuate another hazard arising from the same
cause when ∆Z computed in (7) has gargantuan elements, but a reasonable alternative is first
to clip the magnitudes of excessively big elements of ∆Z .

§6: Tests
Refineig was implemented as a MATLAB .m-file function. While it was being debugged, its
behavior was compared with the following expectations:

• Given a correct matrix Q of eigenvectors, [Q, V] = refineig(Q, W, B) replaces any W
 by the correct eigenvalue matrix V immediately.

• Given a non–defective diagonal sum B of 1-by-1 and 2-by-2 matrices, some with repeated
 diagonal entries, [Q, V] = refineig(I, O, B) produces a correct eigensystem [Q, V] .

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 11/21

• Starting from a slightly perturbed eigensystem [Q, V] of a matrix B with well-separated
 eigenvalues, the iteration [Q, V] = refineig(Q, V, B) converges cubically.

• Starting from a slightly perturbed eigensystem [Q, V] of a non–defective matrix B with
 well-separated pairs of coincident eigenvalues, the iteration [Q, V] = refineig(Q, V, B)

 converges quadratically.

These expectations were tested upon a number of Hermitian and non–Hermitian matrices,
both real and complex, diverse enough to exercize every branch in the program both ways.
After these tests had run to satisfactory conclusions, the MATLAB .m-file refineig.m was
deemed a correct implementation of the intended algorithm. Subsequent tests were designed to
shed light upon questions like the following:

• How much does refineig improve eig ’s results in typical non-pathological cases?

• What kinds of pathologies can refineig handle that eig cannot?

• How much difference does extra-precise accumulation make to refineig ?

What is a pathology? It is something to be blamed when results are substantially less accurate
than might reasonably have been expected; but appearances can deceive. Roundoff during the
generation of a test matrix B can alter its eigensystem enough to swamp the error that eig
may commit, in which case eig might be blamed for getting very nearly the right answer to
the wrong question. To prevent this kind of confusion, test data should ideally be free from
roundoff before eig receives it, although that kind of data consists mainly of small integers
quite unlike typical data. On the other hand, eig deserves blame if its eigenvalues, but not
refineig ’s, change substantially when its datum B is altered in ways that should not change
eigenvalues nor their sensitivities to perturbation; two such alterations are reversal of rows and
columns, and transposition. All non-Hermitian test data B were subjected to both reversal
and transposition, Hermitian data only to reversal, to see whether substantial consequences
ensued.

===

§A: Acknowledgments
I am grateful to Dr. Cleve Moler for MATLAB , and to Dr. Ali Sazegari of Apple and to Jon
Marshall of Intel for computers upon which advantages of extra-precise accumulation of scalar
products could be demonstrated. This research was funded in part by U.S. Department of
Energy contract DE–FG03–94ER25219, NSF contract ASC-9313958, and NSF Infrastructure
Grants Nos. CDA–8722788 and CDA–9401156. Information presented here does not
necessarily reflect the position nor the policy of the U.S. Government; no official endorsement
should be inferred.

===

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 12/21

§R: References

E. Bodewig [1959] Matrix Calculus 2d. ed., North Holland Publ., Amsterdam; pp. 329-336.

J.W. Demmel [1988] “The Probability that a Numerical Analysis Problem is Difficult” Math. of

Comp. 50 pp. 449-480. (Set N = n2 and M = n(n–1) in equation (4.12) on p. 458.)

J.W. Demmel & B. Kågström [1993] “The Generalized Schur Decomposition ... Parts I and II”
ACM Trans. Math. Software 19, pp. 160-201.

J.J. Dongarra, C.B. Moler & J.H. Wilkinson [1983] “Improving the Accuracy of Computed
Eigenvalues and Eigenvectors” Soc. Indust. Appl. Math. Jl. Numer. Anal. 20, pp. 23-45.

P.J. Eberlein [1971] “A note on the matrices denoted by Bn” Soc. Indust. Appl. Math. Jl. Appl.
Math. 20, pp. 87-92.

A. Edelman, E. Elmroth & B. Kågström [1997] “A Geometric Approach to Perturbation
Theory of Matrices and Matrix Pencils. Parts I and II.” Soc. Indust. Appl. Math. Jl. Matrix
Anal. Appl. 18, pp. 653-692, and to appear.

W.L. Frank [1958] “Computing eigenvalues of complex matrices by determinant evaluation and
by methods of Danilewski and Wielandt” Jl. Soc. Indust. Appl. Math. 6, pp. 378-392, esp. 385,
388.

G.H. Golub & J.H. Wilkinson [1976] “Ill-conditioned eigensystems and the computation of the
Jordan canonical form” Soc. Indust. Appl. Math. Review 18, pp. 578-619 (§ 13).

Ming Gu [1995] “Finding Well-Conditioned Similarities to Block-Diagonalize Nonsymmetric
Matrices is NP-Hard” Journal of Complexity 11, pp. 377-391.

HP-15C [1982] Advanced Functions Handbook, Hewlett-Packard part no. 00015-90011, pp.
148-154.

W. Kahan [1999] “Is there a Skew Cayley Transform with Zero Diagonal?” posted on http://

www.cs.berkeley.edu/~wkahan/skcayley.pdf .

MATLAB [1993] Version 4.2 of this software was issued by the MathWorks Inc., Natick MA
01760. An earlier version 3.5 was issued in 1991. Versions of refineig exist for both
versions of MATLAB . The results presented in this opus were obtained from both versions of
MATLAB on an Apple Quadra 950 in which a Motorola 68040 does the arithmetic. The later
MATLAB version 5.3 released early in 1990 gets the same results on the Quadra but no
longer accumulates matrix products extra-precisely on Intel-based PCs and their clones, alas.

J.M. Varah [1986] “A generalization of the Frank matrix” Soc. Indust. Appl. Math. Jl. Sci. Stat.
Comput. 7, pp. 835-839.

M. Abramowitz & I.A. Stegun [1964] eds. Handbook of Math. Functions ... Nat’l Bureau of
St’ds Appl. Math. Series 55; ch. 22 “Orthog. Polynomials” by U.W. Hochstrasser, §22.7.

J.H. Wilkinson [1960] “Error analysis of floating-point computation” Numer. Math. 2, pp. 319-
340 (§ 8).

J.H. Wilkinson [1965] The Algebraic Eigenvalue Problem, Oxford U. Press, pp. 92-93.

===

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 13/21

§F: Appendix on Werner Frank’s Matrices
A family of n-by-n matrices discovered serendipitously by Werner L. Frank [1958] have
come to be used widely (cf. Wilkinson [1960, 1965] and Golub [1976]) to test eigensystem–
computing software because some of their eigenvalues become extremely ill-conditioned as n
increases. Properties of these matrices are summarized here. Most properties mentioned have
been established mathematically by Eberlein [1971] and by Varah [1986], among others; but
a few of these properties, marked by (†) , are inferred only from numerical experiments. The
following MATLAB program to compute Frank matrices was adapted from N.J. Higham’s:

 function F = Frank(n, k)
 % F = Frank(n, k) is the Frank matrix of order n . The default
 % is k = 0 ; otherwise the elements of F get reflected about the
 % anti-diagonal (1,n)--(n,1) . Anyway, Frank is upper-Hessenberg.

 if nargin == 1, k = 0; end
 if n < 2, % ... necessitated by MATLAB’s faulty diag([], -1) .
 F = eye(n) ; % ... with error message if n < 0 .
 else
 p = [n:-1:1] ;
 F = triu(p(ones(n,1), :) - diag(ones(n-1,1), -1), -1) ;
 if k ~= 0 , F = F(p,p)’; end, end

The following 5-by-5 examples exhibit F = Frank(5) , FT , P = Frank(5, 1)’ and PT :

F = , F' = , P = and P' = .

P is obtained by reversing the rows and columns of F . For each dimension n , all four of F ,
FT , P and PT have the same eigenvalues with the same condition numbers, but eigensystem
software will compute their smaller eigenvalues with very different accuracies, the more so as
n increases. All four matrices have determinant 1 but, for reasons Frank [1958] explained,
computed values of det(FT) are usually very different from 1 when n is large.

The eigenvalues turn out all positive and they occur in reciprocal pairs; if ƒ is an eigenvalue
then 1/ƒ is another except that, when n is odd, ƒ = 1 is an eigenvalue for which FT has the
row–eigenvector […, 0, –1/3840, 0, 1/384, 0, –1/48, 0, 1/8, 0, –1/2, 0, 1] . (Denominators are
products of consecutive even integers.) By reducing the eigenproblem for P to an easier
eigenproblem for a tridiagonal matrix, we can show every (√ƒ – 1/√ƒ) to be a zero of the
Hermite Polynomial

Hen(x) := (–1)n·exp(x2/2)·dn(exp(–x2/2))/dxn = x·Hen–1(x) – (n–1)·Hen–2(x) .
(Cf. Abramowitz & Stegun [1964].) Reduction to symmetric tridiagonal form goes as follows:

Let L := diag(ones(n-1,1), -1) in MATLAB ’s notation; this n-by-n lower triangle L has
1 ’s on the first sub–diagonal and zeros everywhere else. Let W := Diag([0, 1, 2, ..., n–1]) and
U := L'·W and V := I + L·U = I+W = Diag([1, 2, 3, ..., n]) . Then we find that

5 4 3 2 1

4 4 3 2 1

0 3 3 2 1

0 0 2 2 1

0 0 0 1 1

5 4 0 0 0

4 4 3 0 0

3 3 3 2 0

2 2 2 2 1

1 1 1 1 1

1 1 0 0 0

1 2 2 0 0

1 2 3 3 0

1 2 3 4 4

1 2 3 4 5

1 1 1 1 1

1 2 2 2 2

0 2 3 3 3

0 0 3 4 4

0 0 0 4 5

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 14/21

P = U + V + L·V + L2·V + ... + Ln-1·V = U + (I–L)-1V = (I–L)-1(I+U) .
Now every eigenvalue ƒ of P can be seen to satisfy

0 = det(P - ƒ·I) = det(I+U – ƒ·(I–L)) = det(√ƒ·√W·L + (1–ƒ)·I + √ƒ·L'·√W)
in which the last matrix is obtained from its predecessor via a suitable diagonal similarity.
Dividing the last matrix by √ƒ exhibits µ := √ƒ - 1/√ƒ as an eigenvalue of the symmetric
tridiagonal √W·L + LT·√W whose characteristic polynomial turns out to be

det(µ·I - √W·L - LT·√W) = Hen(µ) .
The nonzero zeros of Hen come in pairs ±µ to each of which corresponds a pair of

eigenvalues ƒ±1 = 1 + µ2/2 ± µ·√(1 + µ2/4) of P .

Because all diagonal elements vanish in the symmetric tridiagonal matrix, its eigenvalues µ
are determined as accurately as are its off-diagonal elements, which are the elements of √W .

Consequently the eigenvalues ƒ of P = (I-L)-1(I + LT·W) are determined as accurately as are
the elements of W that repeat in the columns of P . However, numerical algorithms that
inflict different uncorrelated rounding errors on elements in the same column of P destroy their
correlations and, apparently, destroy also the accuracies of the smaller eigenvalues ƒ of P .
This reasoning explains why ƒ might not be well-conditioned, but not why it must be so ill–
conditioned when computed by conventional software.

The first intimation of ill–condition comes from the disparities between norms of P and its
biggest eigenvalues. The Max.-Row-Sum-Norm of P is n·(n+1)/2 ; its Max.–Column–Sum–
Norm is (n·(n+4) - parity(n))/4 . (Here parity(n) is 0 or 1 according as n is even or odd.)
The biggest singular value of P falls short of (n·(n+4) - 1)/4 by (†) less than 5% for all n ,
less than 0.5% for n > 6 . These are all rather bigger than the biggest eigenvalue ƒ of P ,
which is smaller than 4·n as we shall see next.

For all n > 1 the biggest zero µ of Hen lies (†) within 0.5% of
g := 2.71983·(√n – √3) – 0.71983·(√n + 5.3032 – √8.3032) + √3

and certainly cannot exceed √n–1 + √n–2 . (µ = 0 at n = 1 but g = 0.008 .) Consequently the

extreme eigenvalues ƒ±1 lie (†) within 1% of (1 + g2/2 + g·√(1 + g2/4))±1 and certainly fall

between (4n)±1 .

Despite that bigger eigenvalues ƒ become rather smaller than any customary norm of P as n
increases, they lose at most a few bits of accuracy to end–figure perturbations of P . But the
smallest few eigenvalues ƒ become extremely ill–conditioned. Numerical experiments with
8 ≤ n ≤ 19 indicate (†) that perturbing P to P + ∆P can lose roughly as many as

 4.3 n – 16 sig. bits, if norm(∆P) ≤ eps·norm(P) ,
 4.1 n – 17 sig. bits, if abs(∆P) ≤ eps·abs(P) elementwise,

of accuracy in the smallest few eigenvalues; here eps is the roundoff threshold, the difference
between 1.0 and the next larger floating-point number 1.000…0001 in the working precision;

and norm(…) is the biggest singular value. MATLAB carries 53 sig. bits, so its eps = 2–52
and, if it has a little bad luck with roundoff, eig may deliver utterly inaccurate estimates for
those smallest eigenvalues ƒ when n > 17 .

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 15/21

The following results, obtained off my 68040-based Macintosh Quadra 950 , differ negligibly
from results off my Pentium-based PC. The results for other computers, such as the MIPS,
SPARC, H-P PA, PowerPC/Mac and DEC Alpha, were simulated by setting the Mac’s and
PC’s Precision Control to emulate the other computers’ arithmetics. The emulation is imperfect,
but close enough. These results are from MATLAB 3.5; MATLAB 4.2 does almost the same.
. .

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 16/21

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ Refineig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · Refineig on others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F , nobalance

Dimension N

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 17/21

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ Refineig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · Refineig on others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P'

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P' , nobalance

Dimension N

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 18/21

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ Refineig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · Refineig on others.

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix P , nobalance

Dimension N

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 19/21

Legend: - - - - - eig on 680x0-Mac or Intel-PC
______ Refineig on 680x0-Mac or Intel-PC
. eig on others
· - · - · - · Refineig on others

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F'

Dimension N

8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

50

Correct sig. bits obtained from Frank's matrix F' , nobalance

Dimension N

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 20/21

§W: Work still to be done:

• How much better than eig ’s results are refineig ’s ? How do we know when to quit
iterating refineig ?
• Explain why balancing Frank matrices is problematical, and to what extent these matrices
deserve their notoriety for ill-condition.
• Discuss criteria for adequate tests.
• Can anything be done when the eigenvalues of V+∆H are disordered, so that part of the
correction of the eigenvector-matrix Q involves column swapping? Permutation matrices are
all far from I .
• Pursue the examples Bj(x) .
• Can anything useful be done for (very nearly) defective matrices?
• Does presubstitution for overflow and division–by–zero really help the computation of ∆Z ?
• MATLAB computes 3/∞ = 0 correctly but bungles ı /∞ , getting NaN + ıNaN because it
converts the latter quotient to (0 + ı)*(∞ – ı0)/∞ . The same phenomenon causes ı*∞ to turn
into (0 + ı)*(∞ + ı0) --> NaN + ı∞ . For lack of access to exception-signalling flags, arrays
have to be tested element-by-element for ∞ and NaN even though these almost never occur.
• Test cases requiring attention:
 Complex Hermitian (Old versions of MATLAB didn’t ensure orthogonal eigenvectors)
 Norm(Q'·Q – I) smaller than about √eps , dQ := (Q'·Q – I)/2 ;
 or smaller than about √√eps , dQ := dQ + (2.5·dQ·dQ – 1.5·dQ)·dQ ;
 or not so small , use SVD to get new Q and dQ .
 (Test them with B = V = I .)
 Computing ƒ(∆S) with NaNs and ∞’s in ∆S .

 (I + |dZ|2)–1 ≈ I – |dZ|2 when |dZ|2 is tiny enough;
 use iterative refinement otherwise.
 Non-Hermitian
 First dZ has NaNs or ∞’s .
 Second dZ has NaNs or ∞’s .
 Normalization of Q by addition, or by division.
 Creation of well-conditioned similarities using (I – UV')–1 = I + U(I – V'U)–1V' .

Other considerations:
• Modernized Jacobi’s iteration may work better on Hermitian matrices than refineig can.
• Should refineig choose automatically between refinv and refinr according to whether
extra-precise accumulation is available to compute residuals?
• Is there a graceful way to cope with exactly multiple eigenvalues?
• Similar but different algorithms refine Schur factorization, SVD,
Clean up notation for Transpose vs. Complex-Conjugate Transpose: B' vs. B’ ? BT vs. BH ?

RefinEig Version Dated November 5, 2007 6:56 am

Prof. W. Kahan WORK in PROGRESS since 1994 — FAR FROM FINISHED Page 21/21

§E: An interesting example:

Let G := ; its Jordan Normal Form is .

G has four maximal irreducible invariant subspaces for two triple eigenvalues, 0 and 2 , each
associated with one 1-dimensional and one 2-dimensional irreducible invariant subspace.

When MATLAB ’s eig(G) is invoked it produces a diagonal matrix of the correct eigenvalues
but produces two repetitions of one of at least one of the eigenvalues’ eigenvectors; which one
depends upon the computer’s arithmetic. Since eig is not designed to handle matrices with
non-diagonal Jordan Normal Forms (even after roundoff incurred by reduction to Hessenberg
and then Schur forms), we should not be surprised that eig has overlooked one or two
eigenvectors. Because the alleged eigenvector matrix is exactly singular — it has an obvious
1- or 2-dimensional nullspace, refineig malfunctions too.

But when G is perturbed by subtracting MATLAB ’s eps from G ’s lower left corner (any
random perturbation of magnitude eps would probably work almost as well), four eigenvalues
are perturbed by about √eps , leaving one each of 0 and 2 unperturbed. Then two
applications of refineig on an Apple Mac Quadra 950 reveal four obviously independent
eigenvectors, two for each cluster of eigenvalues. Here they are:

Z = satisfies G·Z – Z· = O .

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1 1– 2– 1 1– 1–

0 1 0 0 1 0

0 0 1 0 0 1

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 1 0

0 0 0 0 2 0

0 0 0 0 0 2

1 0 1 0

0 1 0 3

0 0 0 2–

1– 0 1 0

0 1– 0 3

0 0 0 2–

0 0 0 0

0 0 0 0

0 0 2 0

0 0 0 2

