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University of California at Berkeley

 

Abstract

 

 
These course notes concern the solution of one real equation  f(z) = 0  for one real root  z ,  also 
called a real  

 

zero

 

   z  of function  f(x) .  They  

 

supplement

 

,  not  

 

supplant

 

,  textbooks and deal 
mathematically with troublesome practical details not discussed in my reprint  [1979"]  about a 
calculator’s  

 

[SOLVE]

 

  key,  which should be read first;  it offers easy–to–read advice about real 
root-finding in general to anyone who wishes merely to use a root–finder to solve an equation in 
hand.  These course notes are harder to read;  intended for the would–be designer of a root–finder,  
they exercise what undergraduates may learn about  Real Analysis  from texts like  Bartle [1976].  
Collected here are proofs,  mostly short,  for mathematical phenomena,  some little known,  worth 
knowing during the design of robust and rapid root-finders.

Almost all  Numerical Analysis  texts cover the solution of one real equation  f(z) = 0  for one real 
root  z  by a variety of iterative algorithms,  like  x 

 

→

 

 U(x)  for some function  U  that has  
z = U(z)  as a fixed-point.  The best known iteration is  Newton's:  x 

 

→

 

 x - f(x)/f

 

'

 

(x) .  Another is  
Secant  iteration:  pair  {x, y} 

 

→

 

 {w, x}  where  w :=  x - f(x)·(x-y)/( f(x) - f(y) ) .  But no text I 
know mentions some of the most interesting questions:

• Is some simple  Combinatorial  (Homeomorphically invariant)  condition both  Necessary  and
Sufficient  for convergence of  x 

 

→

 

 U(x) ?  (Yes;  §5)

• Is that condition relevant to the design of root-finding software?  (Yes;  §6)

• Do other iterations  x 

 

→

 

 U(x)  besides  Newton's  exist?  (Not really;  §3)

• Must there be a neighborhood of  z  within which  Newton's  iteration converges if  f

 

'

 

(x)  and
x - f(x)/f

 

'

 

(x)  are both continuous?  (Maybe Not;  §7)

• Do useful conditions less restrictive than  Convexity  suffice  Globally  for the convergence of
Newton's  and  Secant  iteration?  (Yes;  §8)

• Why are these less restrictive conditions not  Projective Invariants,  as are  Convexity  and the
convergence of  Newton's  and  Secant  iterations?  (I don’t know;  §A3)

• Is slow convergence to a multiple root worth accelerating?  (Probably not;  §7)

• Can slow convergence from afar be accelerated with no risk of overshooting and thus losing the
desired root?  (In certain common cases, Yes;  §10)

• When should iteration be stopped?   ( 

 

Not

 

   for the reasons usually cited;  §6)

• Which of  Newton's and Secant  iterations converges faster?  (Depends;  §7)

• Which of  Newton's and Secant  iterations converges from a wider range of initial guesses at  z ?
( Secant,  unless  z  has even multiplicity;  §9)

 

Therefore,  Why Use  Tangents  When  Secants  Will Do?

 

• Have  

 

all

 

  the foregoing answers been  

 

proved

 

  ?  Yes.  Most were proved in the  1960s  and 
1970s  [1979'],  and influenced the design of the  [SOLVE]  key on  Hewlett-Packard Calculators.
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§1.  Overview

 

 
Before a real root  z  of an equation  “

 

 

 

f(z) = 0

 

 

 

”  can be found,  six questions demand attention:

«1»  Which equation?
Infinitely many equations,  some far easier to solve than others,  have the same root  z .

«2»  What method?
Usually an iterative method must be chosen;  there are infinitely many of them too.

«3»  Where should the search for a root begin?
A global theory of the iteration’s convergence helps compensate for a vague guess at  z .

«4»  How fast can the iteration be expected to converge?
A local theory helps here.  Convergence much slower than expected is ominous.

«5»  When should iteration be stopped?
Error-analysis helps here.  And the possibility that no  z  exists may have to be faced.

«6»  How will the root’s accuracy be assessed?
Error-analysis is indispensable here,  and it can be done in more than one way.

The questions are not entirely independent,  nor can they always be answered in order.  If question  
«2»  is answered by some available software that contains its own root–finder,  the method it uses 
should influence the answer to question  «1».  Question «5»  may depend upon question «6»,  
which may be easier to answer after  z  has been found.  Anyway,  these questions do not have tidy 
answers.  Instead,  the following notes answer questions that resemble the foregoing six,  and the 
reader must decide whether available answers pertain well enough to his own questions.

Different contexts may call for different answers.  Two contexts are worth distinguishing during 
the design of root–finding software:  General–purpose root–finders have to be designed without  
knowing the equations they will be asked to solve;  special–purpose root–finders are designed to 
solve one equation  “

 

 

 

F(z, p) = 0

 

 

 

”  for a root  z = z(p)  regarded as a function of the parameter(s)  p  
over some preassigned range.  General–purpose root–finders must be robust above all;  they cope 
with very diverse equations and with poor first guesses at roots that need not be unique or,  in 
other cases,  need not exist;  speed matters only because a root–finder that runs too slowly will be 
abandoned by impatient users before it finds a root.  Speed is the reason for a special–purpose 
root–finder’s existence,  and to that end it exploits every advantage that mathematical analysis can 
wrest from the given expression  F(x, p)

 

 

 

.  Applicability to many such special cases justifies the 
inclusion of much of the theory presented in these notes.

Root–finders are almost always iterative;  they generate a sequence of approximations intended to 
converge to a desired root.  For reasons outlined in  §2,  §3  gives the infinite variety of iterative 
methods short shrift.  Whereas textbooks concentrate mostly upon questions of local convergence 
answerable often by appeals to  Taylor  series,  these notes concentrate mostly upon questions of 
global convergence.  Does  “

 

 

 

global

 

 

 

”  convergence theory differ from  “

 

 

 

local

 

 

 

” ?  It’s a distinction 
with a small difference:  Local theories touched in  §3  and  §4  describe what happens,  and how 
fast,  in every sufficiently small neighborhood of a root;  this kind of theory applies to practically 
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all cases.  A global convergence theory provides ways to tell whether a root exists,  whether an 
iteration will converge to it from afar,  and whether slow convergence from afar can be sped up 
without jeopardizing convergence to the desired root;  these questions have usable answers only in 
special cases.  The special cases discussed in these notes arise often enough to make their study 
generally worthwhile.

Most iterations discussed in these notes have the form  x

 

n+1

 

 := U(x

 

n

 

)

 

 

 

,  which may seem very 
general but isn’t really;  there is a sense  (

 

 

 

see  Thesis 3.1  below

 

 

 

)  in which every such scalar  (

 

 

 

not 
vector

 

 

 

)  iteration is really  Newton’s  iteration in disguise.  Textbooks and our  §4  treat iterations 
whose  U  is a  

 

Contraction

 

:  (

 

 

 

|U

 

'

 

| < 1

 

 

 

)  throughout some domain supposed to contain the desired 
root and all but finitely many initial iterates.  Finding that domain can be as hard as finding the 
root,  and futile too because  Contraction  in a  

 

wide

 

   domain surrounding the root is a condition 
merely sufficient,  not necessary,  for convergence.  There is a conceptually simpler combinatorial 
condition necessary and sufficient for convergence from every starting point in a wide domain;  
see  Sharkovsky’s No–Swap Theorem 5.1  below.  This theorem provides an invaluable  
“

 

 

 

One–Sided

 

 

 

” criterion by which to decide when a program must intervene to force an iteration to 
converge.  That decision may be necessitated by the intrusion of rounding errors whose worst 
effects can be avoided only by using appropriate criteria to stop the iteration.  Such criteria and 
other software issues are discussed at length in  §6.

Newton’s  iteration  x

 

n+1

 

 := x

 

n

 

 - f(x

 

n

 

)/f

 

'

 

(x

 

n

 

)  and  Secant  iteration  x

 

n+1

 

 := x

 

n

 

 - f(x

 

n

 

)/f

 

†

 

(x

 

n

 

, x

 

n-1

 

)  

are treated next;  here  f

 

†

 

  is a  

 

First Divided Difference

 

  whose analogy with the first derivative  f

 

'

 

  
is explained below in  Appendix A1  on Divided Differences.  Both iterations have such similar 
local convergence properties that they are treated together in  Theorems 7.4, 7.5  and 7.6.  The 
weakest known global conditions sufficient for convergence are named in  Theorem 8.2  and  
Corollary 8.3;  roughly speaking,  they require that  |f

 

'

 

|  not vary too much.  ( A connection with 
the classical theory of  Functions of Bounded Variation  is covered in  Appendix A2.)  Both 
iterations have similar global convergence properties because those properties are invariants of 
certain plane  Projective Maps  that are the subject of yet another  Appendix A3.  Unfortunately,  
the aforementioned weakest known global conditions sufficient for convergence are not invariant 
under projective maps;  to find usable weaker invariant conditions remains an open problem.

The projective invariance of  Newton’s  and  Secant  iteration is the source of an astonishing  
Theorem 9.2  which says,  roughly,  that if  f  reverses sign wherever it vanishes in some interval,  
and if  Newton’s  iteration converges within that interval from every starting point therein,  then  
Secant  iteration converges too from every two starting points in that interval.  Of course,  they 
converge then to the unique zero of  f  in the interval.  This theorem has no converse;  Secant 
iteration can converge but not  Newton’s.  The discovery of this theorem over thirty years ago had 
a profound effect upon the design of root–finders built into  Hewlett–Packard  calculators.

Slow convergence of  Newton’s  and  Secant  iteration to a multiple root is a problem that has 
received more attention in the literature than it deserves in the light of  Theorem 7.6,  which is too 
little known.  This theorem provides good reasons to expect computed values of  f(x)  to drop 
below the noise due to roundoff,  or else below the underflow threshold,  rapidly no matter how 
slowly iterates  x  converge,  so iteration cannot be arbitrarily prolonged.  Convergence slowly 
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from afar to a simple root that appears,  from afar,  to belong to a tight cluster of roots is a problem 
deserving more attention.  The problem is not how to accelerate the iteration,  but how not to 
accelerate it too far beyond the desired root.  In cases covered by  Theorem 10.1  the problem has 
a simple solution that roughly halves the number of  Newton  iterations when they converge 
slowly.  A similar solution works for  Secant  iteration but the details of its proof are incomplete.

I have tried to prove every unobvious unattributed assertion in these notes.  The proofs are as brief 
as I could make them,  and not merely by leaving steps out.  Still,  the proofs should be skipped on 
first reading;  to make doing so easier,  each proof is terminated by  

 

END OF PROOF.

 

   To ease the 
location of this document’s sections,  theorems,  lemmas,  corollaries,  examples, ...,  they will be 
numbered consecutively when the notes are complete.

Yet to be transcribed are sections about finding all real zeros of a polynomial,  all zeros of a real 
cubic,  error bounds for computed zeros,  and running error bounds for computed values of a 
polynomial.  Meanwhile the author will welcome corrections and suggestions,  especially for 
shorter and more perspicuous proofs.
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§2.  Three Phases of a Search

 

Root-finding software invoked to solve  “

 

 

 

f(z) = 0

 

 

 

”  seeks a root  z  by employing a procedure 
generally more complicated than the mere iteration of some formula  x := ...  until it converges.  
Watching such software at work,  when it works,  we can usually discern three phases:

Phase 1 :   

 

Flailing

 

Initial iterates  x  approximate the desired root  z  poorly.  They may move towards
it,  or wander,  or jump about as if at random,  but they do not converge rapidly.

Phase 2 :   

 

Converging

 

Differences between successive iterates  x  dwindle,—  rapidly,  we hope.

Phase 3 :   

 

Dithering

 

Indistinguishable from  Flailing  except that different iterates  x  differ much less
from a root and may  (very nearly)  repeat.  Dithering  is due entirely to roundoff.

Dithering is a symptom of an attempt to solve  “

 

 

 

f(z) = 0

 

 

 

”  more accurately than roundoff allows.  
Ultimately accuracy is limited by what roundoff contributes unavoidably to the computed values 
of  f(x) .  Accuracy much worse than that should be blamed upon an inept implementation of the 
iteration formula  x := ...  or upon some other defect in the software,  or else upon intentional 
premature termination of the iteration because its accuracy was judged adequate.   Judgments like 
this posit the existence of a trustworthy error estimate,  which is a nontrivial requirement.  It looks 
easy at first;  the possession of a  

 

Straddle

 

 *,—  two iterates  x

 

«

 

  and  x

 

»

 

  where    f(x

 

«

 

)

 

 

 

f(x

 

»

 

) < 0 ,—  
suffices  (

 

 

 

if  f  is continuous

 

 

 

)  to locate a root  z  between them with an error less than  |x

 

«

 

 - x

 

»

 

|

 

 

 

.  
However the purchase of a sufficiently close straddle may cost almost twice as much computation 
as a simple iteration  x := ...  that converges from one side,  unless error analysis can be brought to 
bear.  Error analysis will be discussed at length later;  without it,  dithering could waste a lot of 
time.

Converging is what we hope the chosen iteration does quickly,  and usually it does;  and when it 
does,  the search for a zero can spend relatively little time in  Phase 2.  Why then is so much of the 
literature about numerical methods concerned with this phase?   Perhaps because it is the easiest 
phase to analyze.  Ultimately superlinear  (

 

 

 

fast

 

 

 

)  convergence is rarely difficult to accomplish,  as 
we shall see;  Newton’s  iteration usually converges quadratically.  Convergence faster than that is 
an interesting topic omitted from these notes because it reduces only the time spent in  Phase 2;  
higher order convergence is worth its higher cost only if extremely high accuracy is sought.

We shall devote more consideration than usual to  Phase 1  because it is the least understood and 
potentially most costly.  A long time spent flailing is a symptom of a mismatch between the given 
equation  “

 

 

 

f(z) = 0

 

 

 

”  and the root–finder chosen to solve it.

 

________________________________________
*Footnote:  A  

 

Straddle

 

   is to the  Navy  what a  

 

Bracket

 

   is to the  Army;—  a pair of shots fired one beyond and the other short of 
a target to intimidate it or to gauge its range.  But  “Straddle”  and  “Bracket”  have distinct meanings in these course notes.
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§3.  Models and Methods

 

Every iterative method for solving  “

 

 

 

f(z) = 0

 

 

 

”  is motivated by a  model ;  this is a family of easily 
solved equations from which is drawn a sequence of ever better approximations to the given 
equation over a sequence of ever narrowing intervals around the desired root  z .  For example,  
the given equation may be rewritten as an equivalent equation  g(z) = h(z)  with the same root  z  
but with  h(x)  slowly varying  ( approximately constant )  when  x  is near  z ,  and with  g(x)  
easily inverted.  The last equation is turned into an iteration by solving  g(xn+1) = h(xn)  for each 
new approximation  xn+1  to replace the previous approximation  xn  to  z .  When  h'(x)/g'(x)  is 
continuous and  |h'(z)/g'(z)| < 1 ,  the iteration can easily be proved to converge to  z  from any 

initial  x0  close enough to  z .  ( Look at  (xn+1-z)/(xn-z) = h†(xn,z)/g†(xn+1,z)  as  xn → z ;  here  

h†  is a divided difference analogous to the derivative  h'   and explained in  Appendix A1.)

For instance take the equation  3ez = e3z .  It can be  “solved”  for  z = 3 + ln(z/3)  to construct an 

iteration  xn+1 := 3 + ln(xn/3) ,  or for  z = 3ez-3  to construct an iteration  xn+1 := 3 exp(xn - 3) .  
Each iteration is attracted to a different root  z .  ( Find them!  Why are there no more roots?)

More generally,  a given equation  “ f(z) = 0 ”  may be rewritten  “ gn(z) = hn(z) ”  in a way that can  
change with every iteration that solves  gn(xn+1) = hn(xn)  for  xn+1 ,  and can depend also upon 
previous iterates  xn-1 , xn-2 ,  ... .  These dependencies are motivated by a model all the same,  but 
now reinterpreted as a family of convenient curves from which is drawn a sequence of ever better 
approximations to the graph of the given function  f  over a sequence of ever narrowing intervals 
around the desired root  z .  The wider the interval over which  f  resembles a member of that 
family,  and the closer the resemblance,  the faster the iteration derived from the model converges.

A substantial body of theory connects the qualities of a model to the ultimate speed of the derived 
iteration’s convergence;  see  Traub [1964]  or  Ostrowski [1973].  Like most of today’s texts on  
Numerical Analysis,  these notes draw little more from that theory than two items of terminology:  
Rate  and  Order  are measures of the ultimate speed with which a sequence  x1, x2, x3, …, xn, …  
may converge to its limit  z  as  n → ∞ .   Its   Rate := lim inf -ln(|xn - z|)/n ,   and its  

Order := lim inf (-ln(|xn - z|))1/n
 .  Linear  convergence has  Order = 1  and a positive finite  Rate,  

which means the number of digits to which  xn  and  z  agree grows ultimately linearly with  n ;  
slower than linear convergence is almost intolerable.  For most practical purposes we expect  
Superlinear  convergence with  Rate = +∞  and  Order > 1 ,  which means that ultimately each 
iteration multiplies the number of agreeing digits by  Order  on average.

Here are examples:  Newton’s  iteration  xn+1 := xn - f(xn)/f'(xn)  approximates the graph of  f  by 
its tangent  Tn  at a point  (xn, f(xn))  that the iteration tries to move closer to  (z, 0)  by moving the 
point of tangency to the point  (xn+1, f(xn+1)) on the graph above  Tn’s  intersection with the  
x–axis.  Convergence is typically  Quadratic  ( Order = 2 ).  Similarly,  the  Secant  iteration   

xn+1 := xn - f(xn)/f
†(xn,

 xn-1) = xn - f(xn)(xn - xn-1)/(f(xn)
 - f(xn-1))  approximates the graph of  f  by 

its secant through two points  (xn, f(xn))  and  (xn-1, f(xn-1)) ,  and replaces the latter by the point  
(xn+1, f(xn+1))  above where the secant cuts the  x–axis.  The iteration’s  Order ≈ 1.618  typically.
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    Newton’s: xn+1 := N(xn)   where N(v) :=  v - f(v)/f'(v) .

    Secant: xn+1 := S(xn, xn-1)   where S(u, w) :=  u - f(u)(u - w)/( f(u) - f(w) ) .

x
N(v)

f(x)

tangent

v

x

S(u, w)

f(x)

secant

u w
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David Muller’s  method fits a parabola through three points on the graph of  f ,  and replaces one 
of them by a point on the graph above the nearer intersection of the parabola with the horizontal 
axis.  An hyperbola with vertical and horizontal asymptotes can also be fitted through three points 
on the graph of  f ,  and provides an iteration simpler than  Muller’s  and better suited to finding a 
simple zero  z  close to a pole of  f .  ( A  pole  of  f  is an argument  ô  at which  f(ô) = ∞ .)  The 
hyperbola is the graph of  µ(x - xn+1)/(x - õ)  for constants  µ, õ, xn+1  chosen by making that 
expression interpolate  ( match )  f(x)  at three consecutive iterates  xn, xn-1, xn-2 .  Both these 
iterations converge typically at  Order ≈ 1.839 .

Given two iterates  x«  and  x»  that straddle a sign-change of  f  because  f(x«) f(x») < 0 ,  we may 
well wish to continue the iteration in such a way that straddling persists even if preserving it slows 
convergence.  The simplest way is  Binary Chop;  this method models  f  by a step-function that 
disregards everything about  f  but its sign,  and in each iteration replaces either  x«  or  x»  by  
xv := (x«+x»)/2  according to  sign(f(xv))  so that straddling persists.  Regula Falsi  differs from  
Binary Chop  only by determining  xv  as the place where a secant through  (x«, f(x«))  and  
(x», f(x»))  cuts the horizontal axis.  Both methods usually converge linearly,  too slowly.  Regula 
Falsi  can converge arbitrarily slower than  Binary Chop  when the graph of  f  is more nearly  
L-shaped  than straight,  so  D. Wheeler’s  method   ( see program  F2  in  Wilkes et al. [1951] )  
speeds up  Regula Falsi  by halving whichever of  f(x«)  or  f(x»)  has not been supplanted after 
two iterations.  C.J.F. Ridder’s  method,  promoted by  W.H. Press  et al. [1994],  chooses  µ,  ß  

and  x∆  to make the expression   L(x) := µ(x - x∆)eßx  interpolate  f(x)  at  x«,  xv := (x«+x»)/2  and  
x» ,  and then retains whichever pair of  x«,  xv,  x∆,  x»  most closely straddles the sign-change of  
f .  ( One of the pair is always  x∆ .)  This method is plausible when the graph of  f  may be very 
nearly  L-shaped  but not necessarily monotonic.  Ridder’s  and  Wheeler’s  methods usually 
converge superlinearly;  for the latter see  Dahlquist  et al. [1974].

Vastly many more models and iterative methods have been published.  Do we need all of them?  
Perhaps not;  most of them converge superlinearly,  so they spend similar small numbers of 
iterations in  Phase 2.  Reducing these small numbers by increasing the  Order  of convergence is 
relatively straightforward if enough derivatives of  f  are available.  For instance,  convergence  
( typically )  at  Order = 3  is obtained by fitting osculatory hyperbolas instead of tangents to the 
graph of  f  to derive  Halley’s  iteration    xn+1 :=  xn - 2f(xn)/(2f'(xn) - f" (xn) f(xn)/f'(xn)) .

Widening the range of initial guesses from which convergence will follow is harder but worth a 
try when dawdling in  Phase 1  indicates a mismatch between the model and the equation to be 
solved.  Acquaintance with many models improves our prospects of finding one that matches the 
given equation well.  Alternatively,  when possession of a software package implies the use of its 
root–finder,  awareness of the model(s) that motivated its root–finder may suggest how to recast 
equations so as to match its model(s) better.  Because all models include the straight line graph of 
a linear equation as a special or limiting case,  equations  f(z) = 0  incur fewer iterations in  Phases 
1 and 2  according as  f  is more nearly linear over a wider range around  z .  This observation 
motivates attempts to recast a given equation into an equivalent but more nearly linear form.  A 
successful attempt will be described below after  Theorem 8.2.
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The two motivations,  one to fit a model as closely to the equation as is practical,  the other to 
linearize the equation as nearly and widely as possible,  may become indistinguishable in the final 
analysis of a real  ( or complex )  root–finder’s performance.  Here is a reason for thinking so:

Thesis 3.1:  Newton’s Iteration is Ubiquitous
Suppose that  U  is differentiable throughout some neighborhood  Ω  of a root  z  of 
the given equation  “ f(z) = 0 ”  .  If the iteration  xn+1 := U(xn)  converges in  Ω  to  
z  from every starting point  x0  in  Ω ,  then this iteration is  Newton’s  iteration 
applied to some equation  “ g(z) = 0 ”  equivalent  on  Ω  to the given equation;  in 
other words,  U(x) = x - g(x)/g'(x) ,  and  g(x) → 0  in  Ω  only as  x → z .

Defense:   g(x) = ±exp( ∫ dx/(x - U(x)) )  with a  “constant”  of integration that may jump when  x  
passes from one side of  z  to the other,  reflecting the fact that  U  is unchanged when  g(x)  is 
replaced by,  say,  -3g(x)  for all  x  on one side of  z .  ( There is no need for  g'(z)  to exist since it 
need not be computed when  g(z) = 0 ;  however the jump in the  “constant”  of integration can 
often be so chosen that  g'(x)  is continuous as  x  passes through  z .)  The iteration’s convergence 
in  Ω  to  z  alone implies first that  x - U(x)  vanishes only at  x = z  in  Ω ,  and then that  x - U(x)  
has the same sign as  x - z .  ( The opposite sign would compel the iteration to flee from  z .)  
Therefore the integral decreases monotonically as  x  approaches  z  from either side.  To complete 
the defense we shall infer from the differentiability of  U  that the integral descends to  -∞ ,  
implying that  g(x) → 0  as  x → z  as claimed.

For the sake of simpler arithmetic,  shift the origin to make  z = 0  and write  Ω'   for what remains 
of  Ω  when  0  is removed from it.  This makes  U(x)/x < 1  at all  x  in  Ω'  .  Since  U'(0)  exists,  
there also must exist some constant  1 - 1/C < U(x)/x < 1  for all  x  in  Ω'  ,  whence it follows that 
the integral  ∫dx/(x - U(x)) < (another constant) + C∫dx/x → -∞  as  x → 0  in  Ω'   from one side or 
the other.  END OF DEFENSE.

( What if  U  were merely continuous instead of differentiable?  Then  g  could be discontinuous at  

z  like  g(x) := ( if x ≥ 0 then (1 + √x)2 else x2 ) .  In general then,  must   g(z+)·g(z-) = 0 ? )

Don’t read too much significance into  Thesis 3.1 .  It does suggests that an iteration,  derived 
from a family of curves that osculate  ( match tangent and curvature of )  the graph of  f  more 
closely than tangents do,  could equivalently have been derived as  Newton’s  iteration applied to a 
function  g  whose graph is more nearly linear than the graph of  f  around the zero  z  that  g  and  
f  have in common.  For instance,  Halley’s  third order iteration above is  Newton’s  applied to   
g(x) := f(x)/√(|f'(x)|) .  But  Thesis 3.1  does not say which derivation will be the more convenient.

Thesis 3.1  implies that most of these notes will never generalize to the iterative solution of 

systems of equations nor to multi–point iterations.  “ U(x) = x - g'(x)-1g(x) ”  generally cannot be 
solved for a vector–valued function  g  of a vector  x .  Iterations  xn+1 := U(xn, xn-1, …, xn-k)  
generally do not behave like  Newton’s  if  k ≥ 1 ,  so  Theorem 9.2  will come as a surprise.
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§4.  “Global” Convergence Theory  from  Textbooks
The behavior of iterations  xn+1 := U(xn) ,  also called  Discrete Dynamical Systems,  has become 
much better understood over the past few decades.  Iterations  xn+1 := U(xn, xn-1, xn-2, ..., xn-k)  
fall under the same rubric when rewritten as vector iterations  xn+1 := U(xn)  in which the vector  
xn = [xn, xn-1, xn-2, ..., xn-k] .  Although large values of  k  promise ultimately faster convergence,  
they offer little advantage because  “ ultimately ”  need not arrive much sooner than adequate 
accuracy would be achieved by simpler means.  Anyway,  so much less is known about the global 
behavior of iterations with  k ≥ 1  that we shall keep  k = 0  except when discussing the  Secant  
iteration,  whose  k = 1 .  And almost all variables will be kept real.

Presumably the roots  z  of the given equation  “ f(z) = 0 ”  are roots of the equation  “ z = U(z) ”  
too,  so the desired roots lie among the  fixed–points  of  U  if any exist.  The existence of fixed– 
points,  some of which may be spurious because they are not roots,  is a nontrivial issue.  For 
example,  the fixed–points of  Newton’s  iteration,  for which  U(x) := x - f(x)/f'(x) ,  include the 
poles of  f'   as well as those zeros  z  of  f  at which  f'(z) ≠ 0 ,  plus those zeros of both  f  and  f'   
at which a justifiable redefinition of  U  sets  U(z) := z .  ( Justification will be tendered later.)  
Fortunately poles are  repulsive  and zeros are usually  attractive  fixed–points of  Newton’s  
iteration;  in general ...

•  A fixed–point  z = U(z)  is called  “Attractive”  if it belongs to some non–degenerate interval  Ω  
from whose every other point  x0  the iteration  xn+1 := U(xn)  converges to  z ,  though 
some early iterates may stray outside  Ω  before later iterates converge.

•  A fixed–point  z = U(z)  is called  “Repulsive”  if it belongs to some non–degenerate interval  Ω  
throughout which   |U(U(x)) - z| > |x-z|  when  x ≠ z ;  then,  if  Ω  contains only every 
other iterate  xn+1 := U(xn) ,  consecutive iterates in  Ω  still move away from  z .

A fixed–point can be both attractive  ( from one side )  and repulsive  ( from the other ),  as are all 

the nonzero fixed–points of  U(x) = x sin2(1/x) .  Its fixed–point  z = 0  is neither attractive nor 
repulsive.  So is the zero of  √|x|  to  Newton’s  iteration;  the zero of  1/ln(|x|)  is repulsive.

Global convergence theory is concerned with the existence of attractive fixed–points.   In general,  
the best known conditions sufficient for at least one fixed–point to exist figure in the following ...

Lemma 4.1:  If  U  maps a closed interval  Ω  continuously into itself,  then  Ω  
contains at least one fixed–point  z = U(z) .

Proof:  If neither endpoint of  Ω  is a fixed–point of  U  then it maps each endpoint elsewhere into  
Ω ,  in which case they constitute a  Straddle  for the equation  “ U(z) - z = 0 ”  .  END OF PROOF.

( Ω  must include its two endpoints lest the fixed point lie not in  Ω  but on its boundary.  If  Ω  is 
infinite it must include its endpoint(s)  at  +∞  and/or  -∞ ,  and the continuity of  U  there must be 
understood in an appropriate sense:  U  is deemed continuous at  +∞  if either of  U(1/w)  and  
1/U(1/w)  approaches a finite limit as  w → 0+ .  Similarly for  -∞ .  And  Ω  must have distinct 
endpoints;  the lemma may be rendered inapplicable if  +∞  and  -∞  are declared equal,  thereby 
turning  Ω  topologically into a circle  O  that can be mapped continuously to itself by a rotation 
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without a fixed–point.  Lemma 4.1  is a special case of the  Brouwer/Schauder  theorem valid for 
compact convex regions  Ω  in spaces of arbitrarily high,  even infinite,  dimension.)

Do not misconstrue the interval  Ω  as something introduced merely for the sake of additional 
inessential generality.  Such a misapprehension could arise from the observation that  U  may be 
extended continuously to the whole real axis,  and without introducing any new finite fixed–point,  
by declaring  U'  := 1  or else  U'  := 0  in each interval outside  Ω .  However,  generality is not the 
motive for not thus dispatching  Ω .  It  is essential to the following theory because  U  will be 
assumed to satisfy convergence conditions that need not be satisfied everywhere in general,  yet 
they must be satisfied in an interval  Ω  wide enough to support useful inferences.

The foregoing lemma is easier to prove than apply because,  given  U  and  Ω ,  the confirmation 
that  U(Ω)  is contained in  Ω  is tantamount to an assertion about the extrema of  U  in  Ω .  Why 
should such an assertion cost much less computation than the location of a fixed point?  Besides,  
the mere existence of fixed points cannot ensure that the iteration  xn+1 := U(xn)  will converge to 
any of them.  For example,  in  -1 ≤ x ≤ 1 ,   U(x) := sin(πx)  has three fixed–points  z = 0  and  
z = ±0.736484448... ,  all repulsive;  U(U(x))  has seven therein,  all repulsive;  iteration cannot 
converge to any of them except by an unlikely accident.  In general,  if we desired no more than to 
find a fixed–point whose existence is guaranteed by  lemma 4.1’s  hypotheses,  we should proceed 
from those hypotheses to the construction of a fixed–point by  Binary Chop  guided in accordance 
with the following now obvious  ...

Corollary 4.2:  If  U  maps a closed interval  Ω  continuously into itself,  and if  x  
in  Ω  is not a fixed–point of  U ,  then there is at least one fixed–point  z = U(z)  in  
Ω  on the same side of  x  as  U(x) .

It makes  Binary Chop  foolproof.  But such is not our purpose now.  Our purpose is to investigate 
whether and how the iteration  xn+1 := U(xn)  converges.  ( Faster than  Binary Chop,  we hope.)

The best known conditions sufficient for this iteration to converge require  U  to be a ...

Contraction:      |U(x) - U(y)| < |x - y|    for all distinct  x  and  y  in some interval  Ω .

Contraction  U  must be continuous,  if not differentiable with  |U' | < 1  almost everywhere in  Ω ;  
and its interval  Ω  can contain at most one fixed–point  z = U(z) .  ( Can you see why? )

Lemma 4.3:  If  U  contracts  Ω  into itself then the iteration  xn+1 := U(xn)  must 
converge in  Ω  to the fixed–point  z = U(z)  from every initial guess  x0  in  Ω ,  and 
both errors  |xn - z|  and steps  |xn+1 - xn|  shrink monotonically as  n  increases.

Proof outline:  Contraction  U  shrinks  |xn - z|  monotonically,  so iterates have one or two points 
of accumulation  v  and  w .  If different they would have to be swapped by  U ,  thereby satisfying  
0 < |v - w| = |U(w) - U(v)| < |w - v|  paradoxically;  instead,  v = w = z .  END OF PROOF.

But a contraction might contract no interval into itself;  ln(x)  for  x ≥ 1  is an example.  Under 
what conditions can we ascertain that an interval  Ω  is contracted into itself?  Conditions typical 
of the kind that appear in textbooks appear in the following lemmas:
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Lemma 4.4:  Suppose  -1 < U'  ≤ 0  throughout an interval  Ω  that includes both  
x0  and  x1 := U(x0) ;  then the iteration  xn+1 := U(xn)  converges in  Ω  to the one 
fixed–point  z = U(z)  therein.  Convergence is alternating with diminishing steps  
|xn+1 - xn| .  ( Proof is left to the reader.)

Lemma 4.5:  Suppose  0 ≤ U'  ≤ µ < 1  for a positive constant  µ  throughout an 
interval  Ω  that includes both  x0  and  (U(x0) - µx0)/(1 - µ) ;  then the iteration  
xn+1 := U(xn)  converges monotonically to the unique fixed–point  z = U(z)  in  
Ω  with diminishing steps  |xn+1 - xn| .  ( Proof is left to the reader.)

Lemma 4.6:  Suppose  -1 < U'  ≤ µ < 1  for a positive constant  µ  throughout an 
interval  Ω  that includes both  x0  and  X(x0) := (U(x0) - µx0)/(1 - µ) ;   then the 
iteration  xn+1 := U(xn)  converges with decreasing error  |xn - z|  and diminishing 
steps  |xn+1 - xn|  to the unique fixed– point  z = U(z)  in  Ω .

Proof:  Since  U  is a contraction on  Ω ,  the fixed–point  z = U(z)  is unique if it exists in  Ω .  
That  z  does exist in  Ω  between  x0  and  X := (x1 - µx0)/(1 - µ)  follows from the observation 
that  (x1 - U(X))/(x0 - X) = (U(x0) - U(X))/(x0 - X) ≤ µ  provided  x1 ≠ x0 ≠ z ;  that implies that   

(X - U(X))/(x0 - U(x0)) ≤ 0   and therefore  x - U(x)  changes sign at some  x = z  between  X  and  
x0 .  In fact  z  lies between  X  and  (x0 + x1)/2  since  (x1 - z)/(x0 - z) = (U(x0) - U(z))/(x0 - z) > -1 ;  

consequently  (z - (x0 + x1)/2)/(z - x0) > 0 ,  which implies that  z - (x0 + x1)/2  has the same sign 
as  z - x0 ,  which has the same sign as  X - x0 .   To complete the proof we shall show that  U  
contracts a subinterval of  Ω  including  x0  into itself,  and then invoke  Lemma 4.3.

To simplify the argument suppose that  x0 < x1 ;  otherwise reverse the signs of  x  and  U .  Now 
we have  x0 < (x0 + x1)/2 < z ≤ X = (x1 - µx0)/(1 - µ) .  Set  w := z + (1 - µ)(X - z)/(1 + µ)  and  
v := z - (1 - µ)(X - z)/(1 + µ) = x0 + (2z - x0 - x1)/(1 + µ) ;  evidently  x0 < v < z < w < X .  Now we 
shall confirm that  U(x)  contracts the subinterval  x0 ≤ x ≤ w  into itself.  First we obtain upper 
bounds for  U(x) :

When  x0 ≤ x ≤ v ,  U(x) ≤ U(x0) + µ(x - x0) ≤ x1 + µ(v - x0) = w  ;
when   v ≤ x ≤ z ,   U(x) ≤ U(z) - (x - z) = 2z - x ≤ 2z - v = w  ;
when   z < x ≤ w ,  U(x) ≤ U(z) + µ(x - z) < z + (x - z) ≤ w  .

Next we obtain lower bounds for  U(x) :
When  x0 ≤ x < z ,  U(x) > x ≥ x0  ;
when   z < x ≤ w ,  U(x) > U(z) - (x - z) = 2z - x ≥ 2z - w = v > x0  .

Evidently  x0 < U(x) ≤ w  too when  x0 ≤ x ≤ w ,  as claimed.  END OF PROOF.

Lemma 4.6  is nearly the most general of its kind,  and yet often too difficult to apply.  Difficulty 
arises from the possibility that  µ  and the minimum width  |x1 - x0|/(1 - µ)  of  Ω  may chase after 
each other.  For example,  given  x0  and  x1 := U(x0)  and  U'(x0) < 1 ,  we have to make a guess at  
Ω  at least as wide as  |x1 - x0|/(1 - U'(x0)) ;  then somehow we must estimate the range of  U'(Ω)  
hoping it will be narrow enough to satisfy a lemma’s requirements.  But if that estimated range is 
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too wide,  say if  µ ≥ U'(Ω)  is so big that  (x1 - µx0)/(1 - µ)  lies beyond  Ω ,  we must widen  Ω  to 
include this point,  thereby perhaps increasing  µ  and forcing  Ω  to be widened again,  and so on.  

This can go on forever for examples like  U(x) := √(1 + x2) - 1/(z + √(1 + z2))  when  0 < x0 < z - 1  
although its iteration always converges.  The chase need never end because the lemmas’ 
requirements that  -1 < U'  ≤ µ < 1  in  Ω  merely suffice for convergence;  they are not necessary.  
For example,  iterates converge from every  x0  to  z = 0  for  U(x) := -arctan(x)  with  U'(z) = -1 ,  

and for  U(x) := x - tanh3(x)  with  U'(z) = 1 ,  though both examples converge  sublinearly  ( i.e., 
extremely slowly ):  |xn - z| = O(1/√n) .

The foregoing three lemmas are really local convergence theorems posing as global.  They are 
applicable only in a sufficiently small neighborhood  Ω  of a fixed–point  z = U(z)  at which  
|U'(z)| < 1 ,  in which case  |xn - z|  ultimately decreases with every iteration,  converging to zero 

linearly like  |U'(z)|n  or superlinearly if  U'(z) = 0 .  However,  finding a neighborhood to which a 
lemma above is applicable can be almost as hard as finding  z .  Besides,  convergence can occur 

without ultimate monotonic decline in  |xn-  z| ,  as when  U(x) := e-x - 1 ;  for this example the 
iteration converges to  z = 0  alternatingly,  sublinearly and invariably,  as we’ll see in  Ex. 5.3 .

Apparently the  “global”  theory of iterations’ convergence presented in most textbooks answers 
questions that the designers of root–finding software are unlikely to ask,  much less answer.
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§5.  Global Convergence Theory
What pattern of behavior distinguishes convergent iterations from the others ?

This question matters to software designers because,  by mimicking this pattern in our 
root–finding software,  we hope to enhance its prospects for success.  The pattern is slightly more 
complicated than a monotonic decline in  |xn - z|  as  n  increases.  To suppress superfluous 
complexity we shall try to describe only the pattern’s essentials.  What is essential?  It is whatever 
persists after inessential changes of variables,  i.e.  after  homeomorphisms.

Consider any change from  x  to a new variable  X = X(x)  which is continuous and invertible,  and 
therefore monotonic,  on the domain  Ω  of  x ;  we shall let  x = x(X)  denote the inverse change 
of variable,  also continuous and monotonic on its domain  X(Ω) .  Usually both changes of 
variable shall be differentiable too,  in which case  X' (x)  and  x'(X) = 1/X' (x(X))  must keep the 
same constant nonzero sign inside their domains.  U(x)  changes into  H(X) := X(U(x(X))) .  If the 
iteration  xn+1 := U(xn)  converges from  x0  to  z = U(z) ,  we expect  Xn+1 := H(Xn)  to converge 
too from  X0 := X(x0)  to  Z := X(z) = H(Z) ,  though divergence either  to  +∞  or to  -∞  may have 
to be redefined as  “ convergence to infinity ”  in case  z  is an infinite endpoint of  Ω ,  or  Z  an 
infinite endpoint of  X(Ω) .

Besides fixed–points and convergence,  what qualities must each of  U  and  H  inherit from the 
other independently of  X ?

•  Continuity
•  Separation: x  lies between  U(x)  and  U(U(x))  if and only if

X := X(x)  lies between  H(X)  and  H(H(X)) .
•  Differentiability: H'(X) =  X' (U(x(X))) U'(x(X)) x'(X)   if all derivatives are finite.

When they exist,  both derivatives  H'(X)  and  U'(x(X))  have the same sign but they usually have 
different values except at  Stationary Points  ( where both derivatives vanish )  and at fixed–points:  
Whenever  z = U(z)  and consequently  Z := X(z) = H(Z)  then also  H'(Z) = U'(z) .  Then,  if both 
fixed–points  z  and  Z  are finite and if the respective iterations  xn+1 := U(xn)  and  Xn+1 := H(Xn)  

converge to them,  both converge at the same  Rate := lim infn → ∞ ln(|xn - z|-1/n) = -ln|U'(z)| ≥ 0 .  
Sublinear convergence has  Rate  zero;  linear convergence has a positive  Rate.  And when this  
Rate  is infinite then both iterations may be shown to converge with the same superlinear  

Order := lim infn → ∞ (-ln|xn - z|)1/n ≥ 1 ;  higher  Order  implies ultimately faster convergence.

Like the foregoing qualities,  conditions for convergence should ideally be inheritable by each of  
U  and  H  from the other.  By this criterion typical textbook conditions,  like the uninheritable 
bounds upon  U'   in lemmas  4.4 to 4.6  above,  are not ideal.  Ideal conditions follow.

Theorem 5.1:  Sharkovsky’s No-Swap Theorem
Suppose  U  maps a closed interval  Ω  continuously into itself;  then the iteration  
xn+1 := U(xn)  converges to some fixed–point  z = U(z)  from every  x0  in  Ω  if 
and only if these four conditions,  each of which implies all the others,  hold 
throughout  Ω :

No-Swap Condition:  U  exchanges no two distinct points of  Ω ;  in other words,  
if  U(U(x)) = x  in  Ω  then  U(x) = x  too.
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No Separation Condition:  No  x  in  Ω  can lie strictly between  U(x)  and  
U(U(x)) ;  in other words,  if  (x - U(x))(x - U(U(x))) ≤ 0  then  U(x) = x .

No Crossover Condition:  If  U(x) ≤ y ≤ x ≤ U(y)  in  Ω  then  
U(x) = y = x = U(y) .

One-Sided Condition:  If  x1 := U(x0) ≠ x0  in  Ω  then all subsequent iterates  
xn+1 := U(xn)  also differ from  x0  and lie on the same side of it as does  x1 .  
( Compare  Corollary 4.2  above.)

These conditions have been rediscovered several times since they were first established by  A.N. 
Sharkovsky [1964, 1965].  The proof that each implies all others is too long to reproduce fully 
here but elementary enough to leave to the diligent reader helped by the following suggestions:

Think of  ΩxΩ  as a square whose lower–left–to–upper–right diagonal is touched or crossed at 
every fixed–point by the graph of  U ,  which enters the square through its left side and exits 
through its right.  That graph and its reflection in the diagonal touch or cross nowhere else when 
the  No–Swap  condition holds.  When the  No Separation  condition is violated,  all attempts to 
draw both graphs must violate the  No–Swap  condition too.  Similarly for the  No Crossover  
condition;  therefore these three are equivalent conditions.  The  One–Sided  condition obviously 
implies  No Separation;  and a violation of  One–Sidedness  can be shown soon to violate  No 
Crossover  too.  Thus all four named conditions are equivalent to each other though not yet proved 
equivalent to convergence from every starting point in  Ω ;  that proof follows the next lemma.

Besides pertaining to an iterating function  U ,  the  One–Sided  condition is satisfied by any 
sequence  { x0, x1, x2, x3, ... } ,  regardless of its provenance,  whose every member  xn  lies on the 
same side of all subsequent members  xn+m  with  m > 0 .  In other words,  that sequence is  
One–Sided  just when,  first,  if any two members are equal so are all members between and after 
them,  and secondly,  for every integer  n ≥ 0 ,  no members of the sequence of differences  
{  xn+1 - xn,  xn+2 - xn,  xn+3 - xn,  ... }  have opposite  ( non-zero )  signs.  Note that every 
subsequence of a  One–Sided  sequence is  One–Sided  too.  Some  One–Sided  sequences are  
Ultimately Monotonic  in the sense that all but finitely many differences  xn+1 - xn  have the same 
sign;  such sequences obviously converge,  perhaps to infinity.  Other  One–Sided  sequences are 
the subject of the next lemma:

Lemma 5.2:  The  No-Man’s-Land  Lemma
If the  One–Sided  sequence  { x0, x1, x2, x3, ... }  is  not  ultimately monotonic 
then it can be partitioned into two disjoint infinite subsequences,  one of which 
ascends strictly monotonically to a limit no larger than the limit to which the other 
descends strictly monotonically;  if these limits differ,  the gap between them is a  
no–man’s–land  containing no member of this sequence.

Proof outlined:  The ascending subsequence consists of those  xn < xn+1 ,  and the descending 
subsequence consists of those  xn > xn+1 .  For instance,  if  xm  is a local maximum and  xj  the 
subsequent local minimum in the sequence,  whereupon
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...  xm-1 < xm > xm+1 > ... > xj-1 > xj < xj+1  ...       ( m < j ) ,
then  xm-1  and  xj  are consecutive members of the ascending subsequence  ( note that  
One–Sidedness  implies  xm-1 < xj )  while  xm, xm+1, ..., xj-1  are consecutive members of the 
descending subsequence.  It soon follows that each subsequence is strictly monotonic and 
bounded by the other.  END OF PROOF.

Return to the proof of  Sharkovsky’s  No-Swap  theorem;  suppose  U  satisfies the four named 
conditions of his theorem on  Ω .  Then the iteration  xn+1 := U(xn)  generates a  One–Sided  
sequence.  If it did not converge then,  according to the no–man’s–land lemma,  it would have two 
points of accumulation with no iterate between them;  and then because  U  is continuous it would 
swap them,  contrary to the  No–Swap  condition.  Therefore the iteration does converge.

I am indebted to the late  Prof. Rufus Bowen  for pointing out  Sharkovsky’s  work.  It answers 
easily many convergence questions that would be awkward without it.  Here are two examples:

Example 5.3:  Suppose  U(x) := e-x - 1  and  Ω  is the whole real axis;  the iteration  xn+1 := U(xn)  
converges to  z = 0  from every starting point because  U'  < 0  ( so  U  has just one fixed–point )  
and  U  cannot swap two points in  Ω .  No–Swap  follows from the fact that the graphs of  U  and 

its inverse intersect just once,  which follows from the fact that  e-x - 1 + ln(1+x)  cannot vanish if  

-1 < x ≠ 0 ,  which follows after differentiation from  ex > 1+x .  Convergence is alternating 

because  U'(0) = -1 < 0 ,  and  xn = O(√6/n)  because  U(U(x)) = x - x3/6 + ... .    END EX. 5.3.

Example 5.4:  Suppose  f  is a rational function with simple real interlacing zeros and poles,  one 
of them a pole at  ∞ .  An instance is  f(x) := p(x)/p'(x)  where  p(x)  is a polynomial all of whose 
zeros are real.  Another instance is  f(x) := det(xI - A)/det(xI - Â) = ∏i (x - zi)/∏j (x - ôj)  in which  
A  is an hermitian matrix,  Â  is obtained from it by striking off its last row and column,  and the  
I ’s  are identity matrices;  the zeros  zi  lie among the eigenvalues of  A ,  and the poles  ôj  are the 
distinct eigenvalues of  Â  that are not also eigenvalues of  A .  That they interlace,  i.e.,

z0 < ô1 < z1 < ô2 < z2 < ... < ôK < zK  , 
is a well–known theorem attributed to  Cauchy.  We do not know the zeros  zi  but,  like  Y. Saad 
[1974],  propose to compute them by running  Newton’s  iteration  xn+1 := xn - f(xn)/f'(xn) .  Does 
it converge?  If so,  to what?  These are thorny questions,  considering how spiky is the graph of  
f ,  and yet  Newton’s  iteration can be proved to converge to some zero  zi  from every real starting 
value except a countable nowhere–dense set of starting values from which the iteration must 
converge accidentally  ( after finitely many steps )  to a pole  ôj .  The proof outlined below is 
extracted from one first presented in my report  [1979'].

For the proof’s sake express  f  in the forms   f(x) =  x - ß - ∑j wj/(x-ôj)  =  1/∑i vi/(x-zi)   in which 
the coefficients  ß ,  wj  and  vi  are determined as sums,  products and quotients of differences 
among the zeros  zi  and poles  ôj  by matching the behavior of  f(x)  as  x  approaches each pole or 
zero.  By counting negative differences we find every  wj > 0  and every  vi > 0 ,  and by matching 
behavior at  ∞  we find  ∑i vi = 1 .  Newton’s  iterating function now takes the forms
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N(x) :=  x - f(x)/f'(x)    except at poles  ôj  of  f ,

 =  ( ß + ∑j (2x-ôj)wj/(x-ôj)
2 )/( 1 + ∑j wj/(x-ôj)

2 )    if no  ôj = x ,

 =  ( ∑i zivi/(x-zi)
2 )/∑i vi/(x-zi)

2      if no  zi = x  .
From these we infer easily that  N  maps the whole real axis continuously into an interval whose 
endpoints are the outermost zeros  z0  and  zK ;  and every zero  zi  is a strongly attractive 
fixed–point of  N  because  N'(zi) = 0 ,  and every pole  ôj  is a strongly repulsive fixed–point 
because  N'(ôj) = 2 ;  and  N  has no more fixed–points.  To conclude that the iteration always 
converges  ( almost always to a zero  zi )  we have to confirm that  N  cannot swap two points.  If  
N  did swap  x  and  y ≠ x ,  the equations  y = N(x)  and  x = N(y)  could be turned into  

∑i vi(y-zi)/(x-zi)
2 = 0   and  ∑i vi(x-zi)/(y-zi)

2 = 0  which,  when subtracted and divided by  y-x ,  

would simplify to  0 =  ∑i vi( (x-zi)
-2 + (x-zi)

-1(y-zi)
-1 + (y-zi)

-2 )  > 0 ,  which is impossible.  END 

EX. 5.4.

The foregoing example is an instance of a general algebraic decision procedure based upon  
Sharkovsky’s No–Swap  theorem:

Suppose an interval  Ω  and a  rational  function  U  are given.  Then the question
  “Does the iteration  xn+1 := U(xn)  converge in  Ω  from every initial  x0  in  Ω ?”
can be decided by performing finitely many rational operations without solving 
any nonlinear polynomial equation.

U  satisfies the  No–Swap  condition if and only if the simplified form of the rational function
1 + ( U(U(x)) - U(x) )/( U(x) - x )

has no zeros in  Ω  which are not also zeros of  U(x) - x .  This can be tested by removing common 
divisors from certain polynomials and then counting their sign–changes in  Ω  by computing  
Sturm  sequences.  Whether  U  maps  Ω  continuously into itself can also be determined from 
certain polynomials’ sign–changes in  Ω  counted by computing  Sturm  sequences.  The details 
were worked out by  R.J. Fateman [1977]  in a program written to run on the computerized 
algebra system  MACSYMA.  The procedure is practical only on a fairly big computer because 
some of the polynomials in question can have large degrees,  as large as the square of the degree 
of the numerator or denominator of  U .

Sharkovsky’s No–Swap  theorem  is the simplest of a family of relationships he discovered for the 

properties of the fixed-points  zk = U[k](zk)   of a continuous iterating function  U  and of its 
compounds

U[k](x) := U(U(U(…U(x)…)))   k  times.

For instance,  if  U[3]  has a fixed-point that is not a fixed-point of  U ,  then for every integer  k > 1  

there are fixed points of  U[k]   that are not fixed-points of  U[m]  for any divisor  m  of  k .  For an 
elementary treatment of  Sharkovsky’s  relationships see  Huang [1992].    For a brief discussion 
of these and related results and other proofs,  see  Misiurewicz [1997].
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§6.  A One-Sided Contribution to Software Strategy
Suppose an iterating function  U  has been chosen because its fixed–point(s)  z = U(z)  coincide(s) 
with the root(s) of a given equation to be solved,  and because the iteration  xn+1 := U(xn)  is 
expected to converge to a root quickly.  When should this iteration be stopped or amended?

•  When it appears to have converged well enough,  or about as well as it ever will.
•  When it will converge too slowly.
•  When it will not converge.

How can non-convergence be predicted?  A portent,  at least when  U  is continuous,  is a violation 
of the  One–Sided  condition in  Sharkovsky’s No–Swap  theorem.  That condition is the only one 
of the theorem’s conditions that software can check:  Until  One–Sidedness  fails,  or until so 
many iterations have been executed as must arouse suspicions that convergence will be too slow,  
the software has no better option than to persist in the chosen iteration  xn+1 := U(xn) .  How can 
software detect slow convergence or a failure of  One–Sidedness?  The answer to this question,  at 
least for continuous iterating functions  U ,  is  Brackets.

A  Bracket  is an ordered pair  {x«, x»}  of arguments,  normally both iterates,  between which all 
subsequent iterates must lie if they are to constitute a  One–Sided  sequence.  A bracket is usually 
a straddle but this is not obligatory;  U(x) - x  need not take opposite signs at the ends of a bracket.  
Initially,  x«  and  x»  are set to the endpoints,  possibly infinite,  of the interval  Ω  in which a 
fixed–point of  U  is being sought.  Subsequently,  as suggested by the  no–man’s–land  lemma,  x«  
is the most recent of any iterates  xn  that satisfied  xn < U(xn) ,  and  x»  is the most recent  xn  that 
satisfied  U(xn) < xn ,  if any.  Consequently,  once a bracket becomes a straddle it stays a straddle.  
Normally every iteration narrows the bracket by moving one end closer to the other.  Normally at 
least one end of the bracket converges monotonically to the sought fixed–point of  U .

Software must cope with whatever abnormal behavior a bracket exposes.  For instance,  bracket 
{x «, x»}  need not be a straddle;  U(x«) - x«  and  U(x») - x»  may have the same sign at first 
because  U  does not map  Ω  into itself,  and later perhaps because  Ω  contains no fixed–point of  
U  or more than one.  A new iterate  U(xn)  may stray outside the current bracket  perhaps because  
xn  is too close to a strongly repulsive fixed–point,  or perhaps because  U  violates the  No–Swap  
condition,  or because  U  does not map  Ω  into itself.  Normal behavior,  consistent with the  
no–man’s–land lemma,  may require software intervention too if the width of the bracket does not 
shrink fast enough,  as may happen because convergence is alternating but very slow,  or because 
both ends of the brachet are converging to different limits swapped by  U ,  or because one end 
stopped moving after the iteration’s convergence became monotonic.

Tactics can be chosen to cope with aberrations only after they have been diagnosed.  For instance,  
splitting the difference  ( as in  Binary Chop )  copes well with alternating slow (non)convergence;  
a better expedient is  Steffenson’s,  which is tantamount to one step of  Secant Iteration  to solve  
U(z) - z = 0 .  Occasional difference extension  ( extrapolation )  helps to accelerate monotonic but 

slow behavior;  a way to do it is  Aitken’s ∆2 Process,  which takes  U(x) ≈ z + (x - z)µ  to be an 
approximate model for unknown constants  z  and  µ  determined from three consecutive iterates:  

z ≈ zn := xn+1 - (xn+1 - xn)
2/(xn+1 - 2xn + xn-1) .  Such expedients afford software the possibility 
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of extracting tolerable rates of convergence from iterations that would otherwise converge too 
slowly or not at all.  The programmer’s options and the occasions that call for them would 
bewilder but for diagnostic information furnished by brackets and by  Sharkovsky’s  theorem,  at 
least when  U  is continuous.

Diagnosis is complicated when  U  may be discontinuous.  Then a straddle may enclose a jump or 
pole instead of a root or fixed–point. Reasons to doubt whether a pole can always be distinguished 
from a root by solely numerical means will be presented later  (Ex. 6.3).

Diagnosis is interesting also when  U(x)  may be undefined for some arguments  x .  What should 
software do if an attempt to compute  U(xn)  produces instead an error–indication like  “INVALID 
OPERATION” ?  In the past that has served as an excuse to abandon computation,  but nowadays 
the temptation to quit should be resisted.  Unless it is trapped,  an  “Invalid”  operation like  0/0  or  
√-3  on most computers to-day will produce a  NaN ,  and subsequent arithmetic operations upon 
it will almost all propagate it.  It can be detected because the predicate  “ NaN = NaN ”  is  False;  
this ostensible paradox merely confirms that  NaN  is  Not a Number.  Consequently,  when  U(xn)  
turns out to be  NaN  instead of a number the appropriate inference is that  xn  has fallen outside  
U ’s  domain.  The appropriate response is to supplant  xn  by something else closer to  xn-1  and 
therefore,  presumably,  inside  U ’s  domain.  Then computation can be resumed.

A policy of continued computation past an invalid operation may seem reckless,  and sometimes it 
is.  However the opposite policy,  that abandons computation after any  “Invalid”  operation,  is 
tantamount to abandoning the search for an equation’s root merely because the computer signaled

“Look elsewhere for what you seek.”
That policy of abandonment frustrates software users who wish to solve an equation without first 
ascertaining the boundary of its domain.  Why should its domain be much more obvious than the 
equation’s root?  Except for examples contrived for classroom purposes,  an equation’s domain is 
generally found by an exploration that resembles the search for a root.  Combining both searches 
by forgiving  “Invalid”  operations makes more sense than abandonment does.

Searching continued past  “Invalid”  operations is now the policy built into the  [SOLVE]   keys on  
Hewlett-Packard  calculators starting with the  hp-18C Business Consultant  and the  hp-28C ;  see  
McClellan [1987].  Consequently they can be used with far less fuss than other unforgiving 
software requires to solve difficult equations.  Here is my favorite example:

Example 6.1:  We wish to decide whether the equation  ( tan(z) - arcsin(z) )/z4 = 0  has a  positive  
root  z  or not.  Unforgiving software will fail to find it despite repeated attempts each of which 
starts,  say,  Newton’s  iteration  xn+1 := N(xn) ,  whose iterating function is

N(x) :=  x + 1/( 4/x - ( 1 + tan2(x) - 1/√((1-x)(1+x)) )/( tan(x) - arcsin(x) ) )  ,
from small positive initial guesses like  x0 = 0.1 .  For the sake of realism we must pretend not to 
know that the equation’s domain is the interval  0 < x ≤ 1 .  Whatever its domain,  the iteration 
behaves as if doomed to move through it from left to right and escape.  (  N(x) > 1 whenever  
0.46137 < x < 0.99964 .)  A few such escapes followed by  “Invalid”  operations suggest fairly 
persuasively that no positive root  z  exists,  but in fact  z = 0.9999060... .  From random initial 
guesses  x0  scattered uniformly between  0  and  1 ,  Newton’s  iteration is more than  1000  times 
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more likely to encounter an  “Invalid”  operation than to converge to this  z .  Despite these odds,  
the  hp-28C  solves this equation quickly  ( by means of a modified  Secant  iteration )  from any 
initial guess(es) between  0  and  1 ,  thereby vindicating a policy of continued computation past 
forgiven  “Invalid”  operations.  (Some recent  Casio  calculators appear to do likewise.)

Sharkovsky’s  No–Swap  theorem contributes more than a convergence criterion to the strategy 
and theory of iteration.  It changes our attitudes.  Rather than focus exclusively upon conditions 
sufficient for convergence,  we also make use of criteria that tell us when an iteration may not 
converge unless we do something more than merely iterate.  As we pursue this line of thought,  we 
come to understand why successful root-finding software need not always find a root,  especially 
if none exists.  Satisfactory software should almost always find a root if any are to be found,  and 
usually find it fast,  and come to a conclusion soon if a root is not going to be found.  Deemed 
unsatisfactory are indecisive iterations that meander interminably.  Our foray into iteration theory 
is a search for conditions under which an iteration won’t meander.  We’ll find some later in  §8.

What if the object sought is nowhere to be found?  Root–finding software can cope with this 
possibility by finding something other than a root,  provided the substitution is made manifest to 
the user of the software.  An obvious candidate to supplant a zero of  f  that cannot be found is a 
local minimum of  |f| .  However this substitution poses two challenges,  one for the designer of 
the software and one for its user.  The designer must devise an algorithm whose efficiency is not 
too much degraded by the necessity to switch,  sometimes repeatedly,  between two tasks:

seeking a nonzero minimum,  and
seeking a zero.

After the software has found one,  the user may be unable to decide which of the two has been 
found in some cases.

Example 6.2:

   f(x) := ( x - (7 - (x - (7 - x))) )2   and   f'(x) = 6( x - (7 - (x - (7 - x))) )   ( DON’T REMOVE PARENTHESES ! ) 

will be calculated exactly  ( unblemished by roundoff )  on every computer or calculator built in 
the  Western  world for all   x  close enough to  14/3 = 4.666… ,  and therefore neither calculated 
value can vanish when computed in floating–point arithmetic since  14/3  is not a floating–point 
number on any of those machines.  Consequently,  if  æ := 1.000…001 - 1  is a small positive 
number like roundoff in numbers near  1 ,  no way exists to distinguish  f  and its derivative from  

f + æ4  and its derivative using only their values computed in floating–point arithmetic.  In other 
words,  software that finds a positive local minimum of  |f|  instead of a double zero deserves no 
opprobrium if it cannot tell which it has found from numerical values alone.

Discriminating between a pole and a zero across which a function changes sign can be difficult 
too in certain very rare cases like …

Example 6.3:  The computed values of  f(x) := 1/( x - (7 - (x - (7 - x))) )  and of  

F(x) := 1/( ( x - (7 - (x - (7 - x))) ) + æ4/( x - (7 - (x - (7 - x))) ) )  are the same everywhere although  
f  has a pole and  F  a zero at  x = 14/3 .
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Despite a few ambiguous cases,  root–finding software can describe its find to its user sufficiently 
well to make the attempt worthwhile.  The software can deliver its latest bracket  {x« ,  x»}  and,  
to help the user interpret it,  an indicator that points to one of the following cases:

•A zero  z = x« = x»  has been found because the computed  f(z) = 0 .

•A sign–reversal has been found;  x«  and  x»  differ only in their last significant digits and  
f(x«)f(x») < 0 .  Three sub–cases have to be distinguished:
   •Probably a zero since  |f(x)|  grows as  (x-x«)(x-x»)  increases from  0 .
   •Probably a pole since  |f(x)|  drops as  (x-x«)(x-x»)  increases from  0 .
   •Otherwise probably a jump discontinuity.

•A local minimum of  |f(x)|  has been found.  Three sub–cases have to be distinguished:
•Probably a double zero since  |f(x)|  grows rapidly as  (x-x«)(x-x»)  increases from  0 .
•Apparently  f(x)  is a nonzero constant when  x  is near or between  x«  and  x» .
•Otherwise probably a nonzero local minimum of  |f(x)|  at some  x  near  x« and x» .

Good root–finding software,  able to present all those possibilities to its users without violating  
Albert Einstein’s  maxim,  that

“ Everything should be made as simple as possible,  but not simpler ”,
has to be more complicated to use than any single user might like,  and harder to design than most 
programmers will like.  Well–designed software is parsimonious,  uncluttered by extraneous 
inputs and outputs.  The necessary outputs,  as we have seen,  are now obvious:

•  The latest bracket  {x« ,  x»}  found in lieu of a zero and,  to help interpret it,
•  An integer indicator for use in an indexed branch or  Case  statement.

The inputs needed by good root–finding software are unobvious because equations to be solved 
are so diverse.  Equations are like  canapés;  after one comes another.  Often the equation to be 
solved has the form  f(z, p) = 0  with a parameter  p  that will take several values for each of which 
a root  z(p)  has to be computed.  For some equations the derivative  ∂f(x, p)/∂x  is easy to 
compute,  for others difficult.  Often the equation has more than one root;  some users seek all the 
roots;  other users wish to avoid all but one root.  Sometimes high accuracy is desired;  often not.  
Only a cluttered menu can cater to all tastes.  To promote parsimony I offer here my suggested list 
of inputs to good root–finding software:

• The name of the program that computes either  f(x, p)  or else   f(x, p) / ∂f(x, p)/∂x .
• One or two initial guesses  x0 ,  x1  to start the search for a root  z  of  f(z, p) = 0 .
• An initial bracket  {x« ,  x»}  to constrain that search.  ( It can be  {-∞, +∞} .)
• A place for  ( optional )  parameter(s)  p  to be passed to the named program  f(…) .

Initial guesses are essential inputs even if brackets are supplied because,  for example,  when a 
root  z(p)  is plotted as a function of a slowly changing parameter  p  the old value of  z(p)  is often 
a good first guess at the new  z(p) .  The program that provides initial guesses should be able to 
find a record  ( in  SAVEd  or  static   variables )  of the old  p  and  z(p)  for use when the new  p  
is not too different;  ∂z/∂p = -(∂f/∂p)/(∂f/∂x)|x = z  usually helps too.
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In programming languages that allow argument lists of variable lengths,  the parameter(s)  p  can 
be the root–finder’s last argument(s) and then can be passed verbatim  to the named program  
f(…)  as its last argument(s),  thereby avoiding unnecessary prejudice against parameters of mixed 
types  ( arrays,  lists,  pointers,  procedures,  strings,  integers,  floating–point numbers,  … ).  The 
conveyance of optional parameter(s)  p  has to be fast,  not encumbered by excessive overheads to 
de–reference  p ,  because the root–finder invokes  f(…)  many times for each computation of  
z(p) .  This kind of computation,  either the inversion of a given function  f(z) = p  or the 
conversion of an implicit definition  f(z, p) = 0  to an ostensibly explicit invocation of the solution  
z(p) ,  is the root–finder’s most frequent application,  and deserves software engineers’ attention.

Conspicuous omissions from my list deserve explanation.  The list includes no upper limit upon 
the number of iterations.  There are three reasons to omit it.  First,  such a limit is difficult to 
choose;  might the search have succeeded had it been allowed two more iterations?  Second,  
abandoning a search prematurely may be justified after the expiry of some preassigned quantum 
of time worth more than the root being sought;  but  f(…)  can take longer to compute for some 
arguments than for others,  so a stopping criterion should count clock–ticks,  not iterations.  Third,  
by using brackets,  good software need never get stuck in an interminable sequence of iterations;  
besides,  as we shall see in the course of developing the theory below,  well–designed software 
can practically always ensure that  f(…)  becomes negligible after a moderate number of iterations 
no matter how slowly they converge.  By stopping after  f(…)  becomes negligible,  or else after 
the clock runs out,  we can can omit iteration counts from our stopping criteria.

Also conspicuously absent from my list of inputs are two tolerances to serve in stopping criteria,  
one for the negligibility of  f(…)  and a second for the negligibility of the difference between 
consecutive iterates.  Such tolerances will be chosen cavalierly if they must be constants chosen in 
advance.  Chosen properly,  they generally depend upon the same arguments as  f(…)  depends 
upon;  therefore these tolerances should be computed inside the program that computes  f(…) .

Example 6.4:  Consider
      f(x) := ((((((((((((x-12)x+66)x-220)x+495)x-792)x+924)x-792)x+495)x-220)x+66)x-12)x+1

and pretend not to notice that this is an unfortunate way to compute  (x-1)12 .  Error analysis reveals that the 
difference,  due to roundoff,  between  f(x)  and its computed value must be smaller than roughly   

∆f(x) := 12 |x|(|x| + 1)11 æ   but not often enormously smaller.  Here  æ := 1.000…001 - 1  is the roundoff threshold 

for the computer’s floating–point arithmetic;  typically  æ = 1/252 = 2.22/1016  for  8-byte  floating–point.  For 

arguments  x  near the zero  z = 1  of  f ,  its error bound  ∆f ≈ 5.5/1012  is not enormously bigger than observed errors 

almost as big as  2/1013  in computed values of  f .  How can someone be expected to guess either constant  5.5/1012  

or  2/1013  in advance?

Computing  ( or guessing )  a tolerance  ∆f(…)   for the negligibility of  f(…)  within the program 
that computes  f(…)  lets  ∆f(…)  serve in a simple way to stop the search for a zero as soon as  
f(…)  becomes negligible:

Whenever the computed  f  would be no bigger than  ∆f ,  return  0  in place of  f .
This immediately stops the root–finder at what it thinks is a zero.  Techniques for computing  ∆f  
include  Running Error–Analysis  and  Interval Arithmetic,  both described in a text by  Higham 
[2002]  with ample references to the literature.  These techniques can add considerably to the time 
needed to compute  f  alone,  so they should not be employed indiscriminately.  The subprogram 
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can record  ( in  SAVEd  or  static   variables )  the last few arguments at which  f  was computed,  
and compute  ∆f  only at new arguments close enough to an old one that stopping is a plausible 
possibility.  In any event,  iterations prolonged much beyond the time when  |f| ≤ ∆f  will waste 
time dithering,  so computing  ∆f  too often may waste less time than not computing  ∆f  at all.

My list of inputs also omits a tolerance  ∆x  for the difference between consecutive iterates,  or the 
width  |x»-x«|  of a bracket or straddle,  because the use of  ∆x  to stop iteration lends itself too 
easily to misinterpretation.  The clear intention is to stop when the iteration has come within  ±∆x  
of the desired zero  z ,  and that is what happens when convergence is so fast  ( as it usually is )  
that  |xn+1 - xn|  is rather bigger than  |xn+1 - z| ;  but then little is gained by stopping the iteration 
before  |f| ≤ ∆f .  Only when convergence is slow can  ∆x  be used to stop iteration in time to save 
much time,  but then this stopping criterion becomes treacherous.  If convergence is slow because  
z  is a multiple zero  ( see  §10  on  Accelerated Convergence to Clustered Zeros  below )  then  
|xn+1 - xn|  can stay arbitrarily smaller than  |xn+1 - z|  even though  |f(xn+1)|  usually plunges below 
any practical threshold  ∆f  fairly soon  ( see  Theorem 7.6 );  then not much is gained by stopping 
sooner,  say when  |xn+1 - xn| ≤ ∆x ,  beyond the illusion that  |xn+1 - z| ≤ ∆x  too.  If roundoff 
interferes severely with convergence,  not even a straddle  {x», x«}  can be trusted to contain  z ,  
not even approximately.

Recall Example 6.4,  f(x) := (…)x + 1 = (x-1)12  above.  The uncertainty  ±∆f  in  f  propagates into an uncertainty  

±(∆f)1/12  in the computed zero  z ≈ 1 ;  for  8-byte  floating–point arithmetic carrying the equivalent of about  15 sig. 
dec.,  the computed  z  is uncertain in its second decimal after the point.  In fact,  root–finders frequently stop with a 
straddle  {x», x«}  whose ends differ only in their  13th  decimal or beyond but which both differ from  1  by more 
than  0.07 .  How could a tolerance  ∆x  be chosen meaningfully in a case like this?

Generally,  an appraisal of uncertainty in a computed zero  z  of  f  begins with an estimate of 
uncertainty  ∆f  in the computed value of  f .  After that,  uncertainty in  z  is either trivial or very 
difficult to ascertain;  see  Higham [2002].  Including a tolerance  ∆x  among the root–finder’s 
inputs to stop iteration sooner deceives users too often while contributing little to speed and less to 
error–analysis,  in my experience,  so I have omitted it from my root–finding software.  Other 
programmers think otherwise.  Rather than argue longer here about where  ( outside the root– 
finder )  error–analysis should play its rôle,  I prefer to develop root–finding iterations that find 
roots fast enough to render early termination  ( before  |f| ≤ ∆f )  of the iteration uninteresting.

Still,  if an iteration’s convergence is normally superlinear and never worse than linear,  here is a 
strategy that may save an iteration or two if monotonic convergence shrinks brackets too slowly:

Suppose  Difference Quotients  (xk+1 – xk)/(xk – xk–1) → 0  as  k → ∞ .  Provided  (while roundoff is insignificant)  

these quotients will constitute a decreasing sequence as  xk → z ,  after  L := (xk+1 – xk)/(xk – xk–1) < 1  we can soon 
deduce that the error  |z – xk+1| ≤ |xk+1 – xk|·L/(1–L) .  Therefore iteration can be stopped after at least two or three 
consecutive difference quotients,  all less than  1 ,  have  strictly  decreased to a latest difference quotient  L  small 
enough that  |xk+1 – xk|·L/(1–L) < ∆x .  If this ever happens,  xk+1  can be delivered with a reasonable expectation that  
|xk+1 – z| < ∆x ,  and without having to compute  f(xk+1)  though checking that it is negligible would be prudent.  
Don’t omit the divisor  (1–L)  lest iteration be stopped far too soon when convergence is slowly slowing.
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In the foregoing discussions of strategies for root-finding software,  the avoidance of dithering and 
other unpleasant consequences of roundoff has been a  desideratum  achieved by stopping an 
iteration before it can be deflected intolerably by roundoff.  Such a stopping criterion entails an 
error-analysis,  either rigorous or approximate.  “Perform an error-analysis!”  is  Counsel of 
Perfection  (cf. Matthew 19:21  and other early ecclesiastical writings)  impractical for most users 
of numerical software.  Instead they are likely to run a root-finder until it stops with a result of 
unknowable accuracy as good as unknown roundoff has allowed.  Therefore,  besides the short list 
of inputs recommended above for a good root-finder,  it must manage brackets and straddles well 
enough to cope not much slower than  Binary Chop  with the raggedness of roundoff.  Here is a 
simple example that arose in one of my own computations;  it was not contrived.

Example 6.5:  Let cubic polynomial   f(x) := ((x - b)·x + g)·x + h   for coefficients  b := 23722988 ,   

g := 16770435·223
 ,  h := 9968105·234

 ,  all represented exactly in the  24-sig.bit  floating-point 
arithmetic that will be used for all this example’s computations.  The computed value of  f(z)  
vanishes at  z := 11862103 ;  and the computed value of  f(11862945)·f(11862946) < 0 .  The 
jagged graph below exhibits values of  f(x)  computed at  16385  consecutive  24-sig.bit floating- 
point integers  x  centered around  z .  The smooth nearly parabolic graph exhibits  f(x)  exactly.

As secant iterations converge to one of the real  “roots”  that  f(x)  should not have,  two closely 
spaced iterates may send a third far to the right unless inhibited by a bracket or straddle.  How 
should such an inhibition be implemented?  An unlikely straddle,  if available,  can be  Binary 
Chopped;  this is what  Wilkins & Gu [2003]  recommend after any five iterations fail to halve the 
straddle’s width or a new iterate fails to halve the previous sample of  |f(x)| .  More likely is a 
bracket that does not straddle;  it will require a treatment more complicated than  Binary Chop.
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Usually roundoff degrades  Newton’s  iteration less than secant iteration.  The jagged graph below 
exhibits  Nf(x) := x – f(x)/f’(x)  computed in  24-sig.bit floating-point at the same  16385  values  
x  as before.  The smooth nearly hyperbolic graph exhibits  Nf(x)  uncontaminated by roundoff.

When iteration starts from the far right,  accelerated by the procedure mentioned after  Corollary 
10.4,  brackets soon turn into straddles that are  Binary Chopped  to inhibit iterates that converge 
almost always to  the  24-sig.bit adjacent pair  [11862945, 11862946] .  Actually the cubic  f(x)  
has only one real zero  z ≈ -1217.051909940…  found quickly if iteration starts from the left. 
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§7.  Local Behavior of  Newton’s  and  Secant  Iterations
The two best–known iterations for solving a given equation  f(z) = 0  come from approximations 
to the graph of  f  by linear graphs,  one a tangent and the other a secant.  They have the following 
iterating functions:

N(x) := x - f(x)/f'(x)   for  Newton’s  iteration  xn+1 := N(xn) ,  and

S(x, y) := x - f(x)/f†(x, y) = S(y, x)   for  Secant  iteration  xn+1 := S(xn, xn-1) .
See the  Appendix  on  Divided Differences  for an explanation of the  first Divided Difference 

f†(x, y)  := ( f(x) - f(y) )/(x - y) if  y ≠ x ,
  :=   f'(x) if  y = x .

Programmers can handle  0/0  in these formulas by stopping both iterations as soon as  f(xn) = 0 ,  
and otherwise by perturbing  xn  slightly whenever  xn = xn-1  during  Secant  iteration.  For a 
mathematician the limiting value  S(x, x) = N(x)  is the obvious expedient.  Not so obvious is how 
to redefine  N(z)  when  f'(z) = f(z) = 0  because then  N(x)  might oscillate too wildly to approach 

a limit as  x  approaches  z ,  as happens for the example  f(x) := ∫ox t sin2(1/t) dt .  None the less,  
redefining  N(z) := z  whenever  f(z) = 0  can be justified by the next lemma:

Lemma 7.1:  Suppose  f'   is finite throughout some neighborhood of a zero  z  of  
f ,  and  N(x)  approaches a limit as  x → z .  Then  N(x) → z ;  therefore defining  
N(z) := z  conserves the continuity of  N(x)  near  z  whenever possible.

Proof:  If necessary,  shrink the neighborhood around  z  to exclude any other point at which  N  is 
undefined or infinite;  then this neighborhood excludes every zero of  f'   except perhaps  z ,  and 
by  Rolle’s  theorem excludes also every zero of  f  other than  z .  Consequently the derivative  
(ln|f(x)|)'  = f'(x)/f(x) = 1/(x-N(x))  must be finite throughout this neighborhood except at  x = z .  
Therefore  ln|f|  is eligible for an application of the  Mean Value Theorem  of the  Differential 
Calculus  to its first divided difference:  for any distinct  v  and  w  on the same side of  z  in this 
neighborhood,  some  x  between  v  and  w  must satisfy

ln(f(v)/f(w))/(v-w)  =  (ln|f(v)| - ln|f(w)|)/(v - w)  =  f'(x)/f(x)  =  1/(x - N(x))  .
Now suppose for the sake of argument that  N(x) → L ≠ z  as  x → z ;  we shall infer a 
contradiction:  For all distinct  v  and  w  close enough to  z  ( and much closer to  z  than  L  is ),  
but not separated by  z ,  we would find   ln(f(v)/f(w))/(v-w)  =  1/(x - N(x))  ≈  1/(z-L)   at some  x  
between  v  and  w .   The last approximation could be kept as close as we please by keeping  v  
and  w  close enough to  z .  But then,  by fixing one of  v  and  w  and letting the other tend to  z ,  
we would infer that  ln|f(z)|  is finite,  so  z  could not be a zero of  f .  But it is;  therefore  L = z .  
END OF PROOF.

Now that  N(x)  and  S(x, y)  are defined properly,  and practically always continuous around the 
zero  z ,  we turn to their local convergence properties.  Their convergence to a simple zero  z  is 

typified by their behavior when  f(x) = (x-z)/(x-ô) ≠ 1 ;   for this example  N(x) = z + (x-z)2/(ô-z)  
and  S(x,y) = z + (x-z)(y-z)/(ô-z) .  Simple computations confirm first that  Newton’s  iteration  

(xn+1-z)/(ô-z) = ((xn-z)/(ô-z))2  converges quadratically to  z  from every  x0  closer to  z  than the 
pole  ô  is,  and second that  Secant  iteration   (xn+1-z)/(ô-z)  =  ((xn-z)/(ô-z)) ((xn-1-z)/(ô-z))  
converges at order  (1+√5)/2  to  z  from a wider range of starting iterates  x0  and  x1  satisfying  
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|x0-z|3-√5·|x1-z|√5-1 < (ô-z)2 .  Orders of convergence different from these are uncommon for the 
functions  f  typically encountered in practice,  as we shall see.

Typical or not,  these iterations’ local convergence to a zero  z  depends upon how  f  behaves in 
the neighborhood of  z .  What kind of behavior guarantees convergence?  The graph of  f  has to 
resemble its tangents or secants closely enough in the sense that fluctuations in the derivative  f'   
have to stay sufficiently small compared with  f'  .  How small is  “ sufficiently small ” ?  It’s not 
obvious yet.  The first hypotheses that come to mind do not suffice:

Non–Theorem 7.2:  Suppose  f'(x)  and  N(x) := x - f(x)/f'(x)  are continuous at 
every  x  in some open neighborhood  Ω  of a zero  z  of  f .  Then it seems at least 
plausible that  Newton’s  iteration   xn+1 := N(xn)  should converge to  z  from 
every initial  x0  in  Ω  close enough to  z ;  but it ain’t necessarily so if  f'(z) = 0 .

Counter–Example 7.2:  A function  f(x)  will be contrived with these properties:   f'(x)  and  N(x)  
are continuous everywhere,   f'(x) > 0  for all  x ≠ 0 ,   and   z = f(z) = f'(z) = N(z) = 0 .  However,  
around  z  every open neighborhood  Ω ,  no matter how small,  contains infinitely many closed 
subintervals all of positive width from each of which  Newton’s  iteration tends to  two-cycle,  
jumping back and forth across  z  forever instead of converging to  z .

The construction of this perverse  f  begins with an integer-valued step–function
k(x) :=  IntegerNearest( -ln(|x|)/ln(2) )  =  IntegerNearest( -log2(|x|) ) ,

and a quartic polynomial

q(x) :=  1+x + (13 + 9√2)(x-1)3 + (1 + 3/√8)(x-1)4 
monotone increasing over    1/√2 ≤ x ≤ √2 .  This  q  meets the following specifications:
    q(1) = 2 ,  q'(1) = 1 ,  q" (1) = 0 ,  q(√2) = 15/√8 - 1 = 4q(1/√2) ,  q'(√2) = 12 + √8 = 2q'(1/√2) .

Note that   1/√2 ≤  2k(x)|x|  ≤ √2 ;  note too that  k(x)  is ambiguous when  log2|x|  is a half–integer,  
but then either choice  k = -log2|x| ± 1/2  is acceptable.  Finally define  f(0) := f'(0) := 0  and

f(x) :=  sign(x) q( 2k(x)|x| )/4k(x)    for   x ≠ 0 .

The continuity of  f(x)  and of   f'(x) = q'( 2k(x)|x| )/2k(x)   are easily confirmed along with the 

identities   f(x) = -f(-x) = f( 2k(x)|x| )/4k(x)   and   f'(x) = f'(-x) = f'( 2k(x)|x| )/2k(x) > 0   for  x ≠ 0 .  

The ranges of values taken by  |f(x)|/x2  and by  f'(x)/|x|  over all  x ≠ 0  are the same respectively 

as the ranges of  q(x)/x2  and  q'(x)/x  over  1/√2 ≤ x ≤ √2 ,   so as  x → 0   we find   |f(x)| ≤ 3x2  

and  f'(x) ≤ 12|x| ,  confirming continuity at  x = 0 .  And   N(x) = x - f(x)/f'(x) = N( 2k(x)|x| )/2k(x)   
is continuous there too because  |N(x)| ≤ 2|x|  similarly.

The design of  f(x)  ensures that  N(x) = -x  and  N'(x) = 0  whenever  x = ±2k  for every integer  

k ;  moreover  2k·0.9935 < |N(x)| < 2k·1.0064  whenever  2k·0.9935 < |x| < 2k·1.0064 ,  so from 

any  x0  in those intervals  Newton’s  iteration tends rapidly to a  two-cycle   +2k ↔ -2k ,  as 
claimed.  Numerical experiments suggest that such a  two–cycle,  though with a large negative  k ,  
is the likeliest outcome of iteration from a randomly chosen  x0 .  END OF COUNTER–EXAMPLE.
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In general,  the convergence of  Newton’s  and  Secant  iterations cannot be taken for granted.  
Their  local convergence depends upon whether,  as  x → z  and  y → z ,  the limiting values of 
certain first divided differences like

N†(x,z) :=  (N(x) - N(z))/(x-z)  =  (N(x) - z)/(x-z) →  N'(z)    and

S†({x,z},y) :=  (S(x,y) - S(z,y))/(x-z)  =  (S(x,y) - z)/(x-z) →  ∂S(x, y)/∂x | x=y=z 
exist and are small enough.  In particular,  convergence is superlinear if these derivatives vanish,  
because then  |xn+1 - z|/|xn - z| → 0  as the iterations converge;  also the  Order  of convergence 
depends then upon whether limiting values exist for certain second divided differences

N††(x,z,z) :=  (N†(x,z) - N'(z))/(x-z)  =  (N(x) - z)/(x-z)2    and

S††({x,z},{y,z}) :=  (S †({x,z},y) - S†({x,z},z))/(y-z)  =  (S(x,y) - z)/((x-z)(y-z))

from which bounds for quotients  |xn+1 - z|/|xn - z|2  and  |xn+1 - z|/|(xn - z)(xn-1 - z)|  respectively 
can be obtained.  Such bounds will be obtained from first and second derivatives and divided 
differences of  f  by invoking recondite identities like …

Identities 7.3:    f(S(u, w)) = (S(u, w) - u) (S(u, w) - w) f††(S(u, w), u, w) .   This 

includes the limiting case    f(N(v)) = (N(v) - v)2 f††(N(v), v, v) .  Taking  f(z) = 0  

into account yields the identity   (S(x,y) - z)/((x-z)(y-z)) = f††(x,y,z)/f†(x,y)   and 

its limiting case   (N(x) - z)/(x-z)2 = f††(x,x,z)/f'(x) .

The identities’ proofs are entirely mechanical and left to readers who have reviewed the notation 
and formulas in the first two pages of the  Appendix on Divided Differences.

Conditions sufficient locally for convergence have been found in two ancient theorems of which at 
least one applies in almost all practical situations.  The first theorem is as old as  Taylor  series:

Theorem 7.4:  Suppose  f'   is continuous throughout some neighborhood  Ω  of a 
zero  z  of  f  at which  f'(z) ≠ 0 .  Then  N'(z) = 0 ;  therefore  Newton’s  iteration 
converges superlinearly to  z  from every initial  x0  close enough to  z .  Similarly  
Secant  iteration converges superlinearly to  z  from every initial  x0  and  x1  close 
enough to  z .  If  f"   exists and is bounded throughout  Ω  then  N" (z) = f" (z)/f'(z)  
and the convergence of  Newton’s  iteration is at least quadratic  (Order = 2 ),  and 
the convergence of  Secant  iteration has  Order  at least  (1 + √5)/2 = 1.618… .

Proof:  As  u → z  and  w → z  independently the continuity of  f'   carries  f†(u, w) → f'(z) .  

Consequently  (N(x) - z)/(x-z) = (f'(x) - f†(x, z))/f'(x) → 0/f'(z) = 0   as  x → z  and so  N'(z) = 0  
as claimed,  whence  Newton’s  iteration converges superlinearly.  Similar reasoning shows that   

(S(x,y) - z)/(x-z) = (f†(x,y) - f†(x,z))/f†(x,y) → 0  as  x → z  and  y → z ,  so  Secant  iteration 
converges superlinearly too.

When  f"   exists and is bounded,  some constant   C > | f" (x)/f'(z)|  throughout  Ω .  Therefore  

(N(x) - z)/(x-z)2 = f††(x,x,z)/f'(x)  lies between  ±C  for all  x  close enough to  z  and therefore  

1
2
---
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|(xn+1 - z)/(xn - z)2| < C   if  x0  is close enough to  z ;  convergence is at least quadratic as claimed.  

And  (S(x,y) - z)/((x-z)(y-z)) = f††(x,y,z)/f†(x,y)  also lies between  ±C  for all  x  and  y  close 
enough to  z ,   so   |(xn+1 - z)/((xn - z)(xn-1 - z))| < C  if  x0  and  x1  are close enough to  z ,  
thereby vindicating the claimed  Order  of convergence;  here is an outline of how that works  ( cf.  
Ostrowski [1966],  or  Dahlquist et al. [1974],  or  Vianello & Zanello [1992]. ):

For that constant   C > | f" (x)/f'(z)|  throughout  Ω   let   Dn := -ln|C (xn - z)| ;  then the  Secant  

iteration’s  |(xn+1 - z)/((xn - z)(xn-1 - z))| < C  means that   Dn+1 > Dn + Dn-1 > 0   if  x0  and  x1  are 
close enough to  z .  Next,  Dn+1 > FnD1 + Fn-1D0   by induction where the  Fibonacci  numbers  

Fn = Fn-1 + Fn-2 = (Çn+1 - (-Ç)-n-1)/(Ç + 1/Ç)  for another constant  Ç := (1 + √5)/2 = 1 + 1/Ç  .  

Thus  Dn  approaches  +∞  at least as fast as some multiple of  Çn .  END OF PROOF.

( Continuity of  f'   in  Theorem 7.4  cannot be replaced by mere existence of  f'   and its consequent  

Darboux Continuity  lest  N  oscillate violently for examples like  f(x) := ∫ox sin2(1/t)dt  whose  
f(0) = 0  and  f'(0) = 1/2 .  In general a function,  perhaps too wildly oscillatory to be continuous,  
is called  “Darboux Continuous”  if,  among the values it takes on every closed subinterval of its 
domain,  lie all values between those taken at that subinterval’s ends.  Every derivative has that 
property.  For more about  Darboux Continuity  see  Bruckner and Ceder [1965].)

The ultimate speeds of convergence of  Newton’s  and  Secant  iteration should not be compared 
by considering only their orders of convergence.  As many a textbook points out nowadays,  the 
two iterations yield correct decimal digits ultimately at about the same rate if the computation of 
the derivative  f'   too adds about  44%  to the time taken to compute  f  alone.  If  f'   costs much 
more than that,  Secant  iteration goes faster in the likeliest cases.  But  Theorem 7.4  says nothing 
about the iterations’ speeds when  f'(z) = 0 ,  in which case a different approach is needed.

Theorem 7.5:  Suppose  |f'(x)|  increases  as  x  moves away from  z  through some 
neighborhood  Ω  on one side of a zero  z  of  f .  Then  0 < (N(x) - z)/(x-z) < 1  and 
so  Newton’s  iteration converges monotonically to  z  from every initial  x0  in  Ω .  
Similarly  0 < (S(x,y) - z)/(x-z) < 1  for all  x  and  y  in  Ω  and so  Secant  iteration 
converges monotonically to  z  from every initial  x0  and  x1  in  Ω .

In other words,  this theorem’s hypothesis is that the graph of  f(x)  is convex towards the  x–axis  
as is the case,  for example,  when  f" f > 0  inside  Ω .  Theorems like this appear in many texts,  
for instance  Ostrowski [1960 et seq.] ch. 9 and 10,  and  Dahlquist et al. [1974] p. 225.  Texts 
written in  France  attribute theorems like this to  Dandelin  and/or  Fourier,  as if it had not been 
geometrically obvious before them.  Let the reader compare the limpidity of his own proof–by– 
pictures with the turgidity that follows.

Proof:  Regardless of whether  f'(z) = 0 ,  the growth of  |f'(x)|  as  x  moves away from  z  implies 
that  f'(x)  can’t reverse sign,  and therefore  0 < (f'(x) - f'(y))/f'(x) < 1  at that  y  strictly between  

z  and  x  where  f'(y) = f†(x,z) .  Therefore  0 <  (N(x) - z)/(x-z)  =  (f'(x)-f†(x, z))/f'(x)  < 1   for 
every  x ≠ z  in   Ω .  This implies that the iteration  xn+1 := N(xn)  converges monotonically to a 

1
2
---
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limit between  z  and  x0  inclusive from every initial  x0  in  Ω .  Where is that limit?  Since  
f(xn)/f'(xn) = xn - xn+1 → 0  and  |f'(xn)| ≤ |f'(x0)| ,  so does  f(xn) → 0 ,  whence  xn → z  as 

claimed.  Similarly   (S(x,y) - z)/((x-z)(y-z)) = f††(x,y,z)/f†(x,y)   for all  x  and  y  in  Ω  from one 
of  Identities 7.3;  what we do with this depends upon which of  x  and  y  lies closer to  z .  If  x  

lies strictly between  y  and  z  then   (S(x,y) - z)/(x-z) = (f†(y,x) - f†(x,z))/f†(y,x) ;  if  y  lies 

strictly between  x  and  z  then   (S(x,y) - z)/(x-z) = ((y-z)/(x-z)) (f†(x,y) - f†(y,z))/f†(x,y) .  Either 
way the quotient in question lies strictly between  0  and  1 ,  so the  Secant  iteration’s  
xn+1 := S(xn, xn-1)  converges monotonically to some limit between  z  and the closer of any two 

starting iterates  x0  and  x1  in  Ω .  Where is that limit?  Since  f(xn)/f
†(xn, xn-1) = xn - xn+1 → 0  

and  |f†(xn, xn-1)| ≤ |f'(x0)| ,  so does  f(xn) → 0 ,  whence  xn → z  as claimed.  END OF PROOF.

For practical purposes  Theorems 7.4  and  7.5  tell us to expect  Newton’s  and  Secant   iteration 
to converge ultimately  superlinearly or monotonically or both if started close enough to  z .  Alas,  
the speed of convergence is not mentioned in  Theorem 7.5,  and for good reason;  its convexity 

hypothesis is compatible with arbitrarily slow convergence.  For example,  when  f(x) = |x|m  for 

any constant  m > 1 ,  Newton’s  iteration yields  xn = (1 - 1/m)n x0  convergent arbitrarily slowly 

for  m  big enough;  however  f(xn)/f(x0) = (1 - 1/m)mn < e-n  tends to  0  quickly.  When  m  is a 
negative constant tiny enough,  f(xn)/f(x0)  tends to  0  arbitrarily slowly although  xn  diverges to  
z = ∞  quickly.  Both  xn  and  f(xn)  converge arbitrarily slowly if  m  exceeds  1/2  by little 
enough,  but then the convexity hypothesis is violated.  What light do these examples shed upon 
the general case ?   The case  m > 1  turns out to be typical of what happens when the graph of  
f(x)  is convex towards the  x-axis  and  xn  converges to a finite zero  z  of both  f  and  f'  :

Theorem 7.6:  Under the convexity hypothesis of  Theorem 7.5,  the iterates  xn  
may converge to  z  arbitrarily slowly,  though monotonically;  but  f(xn)  tends 

monotonically to  0  at least so fast that   ∑n (2
n f(xn))

2  ≤  f(x0)
2 (x0 -z)/(x0 - x1) .

( The  “ 2 ”  in  “  2n f(xn) ”  cannot be replaced by a bigger constant since  f(xn-1)/f(xn) → 2  when  

Secant  iteration is applied to the example  f(x) := x exp(-1/x)  with  x0 > x1 > 0 .  An example  
f(x)  that justifies  “ 2 ”  for  Newton’s  iteration is too complicated to be worth reproducing here 
though  “ e ”  can be used instead of  “ 2 ”  for all infinitely differentiable examples  f .)

Proof:  For definiteness restrict attention to nonnegative functions  f(x)  and  f'(x)  increasing over 
an interval  z ≤ x ≤ x0 > z ,  and for  Secant  iteration suppose too that  x1  lies inside that interval.  
Theorem  7.5  implies  z < xn+1 < xn ,  0 = f(z) < f(xn+1) < f(xn)  and  0 ≤ f'(z) < f'(xn+1) < f'(xn)  
without constraining the rapidity with which  xn → z .  Given any such sequence  xn  convergent 
monotonically downwards to  z ,  no matter how slowly convergent,  do convex functions  f(x)  
exist from which  Newton’s  or  Secant  iteration would have generated that sequence of iterates?  
To answer this question,  a sequence of values  fn  and  f'n  will be derived from  xn ,  and then a 
continuously once differentiable convex function  f(x)  satisfying  f(xn) = fn  and  f'(xn) = f'n  will 
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be constructed out of parabolic arcs;  this is a function from which  Newton’s  or  Secant  iteration 
generates the given sequence of iterates  xn .

Consider  Secant  iteration first because it is easier.  The values  fn  will have to satisfy  
xn+1 = xn - (xn - xn-1)fn/(fn - fn-1) ,  which fixes  fn := fn-1 (xn - xn+1)/(xn-1 - xn+1)  recursively for  
n = 1, 2, 3, ...  starting from any arbitrarily chosen  f0 > 0 .  Since  x0 > x1 > x2 > … > xn > xn+1 ,  
also  f0 > f1 > f2 > … > fn > fn+1 > 0 ,  and less obviously
  0 < (fn - fn+1)/(xn - xn+1) =  ((xn - xn+1)/(xn - xn+2))((fn-1 - fn)/(xn-1 - xn))  < (fn-1 - fn)/(xn-1 - xn) .
Therefore leeway exists to choose a positive descending sequence of values  f'n  satisfying  
(fn - fn+1)/(xn - xn+1) < f'n < (fn-1 - fn)/(xn-1 - xn) < f'n-1  for  n = 1, 2, 3, ... .  After choices for all 
values  fn  and  f'n  have been assigned,  f(x)  is defined in each subinterval  xn ≤ x ≤ xn-1  as the 
function whose graph is a convex parabolic arc subject to the constraints  f(xn) = fn < f(xn-1) = fn-1  
and  f'(xn) = f'n  <  f'(xn-1) = f'n-1 .  The existence of this parabola  ( its axis need not be vertical )  
is the gist of  Lemma A4.1  in  Appendix A4: Parabolas.  The triangle  QRS  in that lemma has  Q  
at  (xn, fn) ,  R  at  (xn-1, fn-1) ,  and sides  QS  and  RS  with slopes  f'n  and  f'n-1  respectively.  
The arc lies inside the triangle and joins  Q  to  R .  Taken together,  all such arcs make up the 
graph of a function  f(x)  over the interval  z < x ≤ x0 .  This  f(x)  is convex and continuously once  
( but not likely twice )  differentiable.  What remains to be proved is that this  f(x) → 0  as  x → z ;  
it will be proved later.

A different  f(x)  is needed for  Newton’s  iteration,  whose descending iterates  xn  determine all 
quotients  fn/f'n = xn - xn+1 > 0  but leave the values  fn  and  f'n  partially arbitrary.  Let us choose 
any positive  f0  and any positive  fn < fn-1(xn - xn+1)/(xn-1 - xn+1)  recursively for  n = 1, 2, 3, ... ,  
thereby determining also  f'n := fn/(xn - xn+1) .  Obviously  0 < fn < fn-1 ;  less obviously

0 < (fn - fn+1)/(xn - xn+1)   =  (1 - fn+1/fn) f'n 
      < f'n    =  fn/(xn - xn+1) 

     <  (fn-1 - fn)/(xn-1 - xn)   .
Next define  f(x)  in each subinterval  xn ≤ x ≤ xn-1  to be the function whose graph is a convex 
parabolic arc subject to the constraints  f(xn) = fn < f(xn-1) = fn-1  and   f'(xn) = f'n < f'(xn-1) = f'n-1  
as before.  Once again,  all such arcs make up the graph of a convex and continuously once  ( but 
not likely twice )  differentiable function  f(x)  over the interval  z < x ≤ x0 .  What remains to be 
proved is that this  f(x) → 0  as  x → z .

What remains to be proved,  not just for the functions  f  constructed above but for every  f  that 
satisfies the theorem’s convexity hypothesis,  is that the values  f(xn)  tend to  f(z) = 0  faster than 
the terms of a geometric progression with common ratio  1/2 .  Attention is still restricted to 
nonnegative functions  f(x)  and  f'(x)  increasing over the finite interval  z ≤ x ≤ x0 > z ;  and for  
Secant  iteration  x1  lies inside that interval.  Now the abbreviations  fn = f(xn)  and  f'n = f'(xn)  
stand for values computed during the iteration and,  because  z < xn < xn-1 ,  they satisfy both  
0 < fn < fn-1  and  0 < f'n < (fn-1 - fn)/(xn-1 - xn) < f'n-1 ,  the latter because  f'   is increasing.
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Consider  Secant  iteration  xn+1 = xn - (xn - xn-1)fn/(fn - fn-1)  first because it is easier.  It has 

2fn /fn-1 = 2/(1 +(xn-1 - xn)/(xn - xn+1)) ≤ √((xn - xn+1)/(xn-1 - xn)) .  Next,  Newton’s  iteration  
xn+1 = xn - fn/f'n  has   fn/(xn - xn+1) = f'n < (fn-1 - fn)/(xn-1 - xn) ,  from which follows again 

2fn /fn-1 < 2/(1 +(xn-1 - xn)/(xn - xn+1)) ≤ √((xn - xn+1)/(xn-1 - xn)) .  For both iterations,  repeated 

multiplication implies  (2n fn/f0)
2 ≤ (xn - xn+1)/(x0 - x1) ;  now sum over  n .  END OF PROOF.

Theorems  7.4, 7.5  and 7.6  are best regarded as contributions to local convergence theory since 
they say too little about convergence from afar.  Monotonic convergence is what disqualifies the 
global pretensions of the latter two although their convexity hypothesis might hold in a wide 
neighborhood  Ω .  More often the first few  ( if not all )  iterates of a convergent iteration approach  
z  non–monotonically,  in which cases the convexity hypothesis can hold in at most a bounded 
domain.   Therefore theorems 7.5  and 7.6,  unable to discriminate between non–monotonic 
convergence and interminable meandering,  are too often applicable only locally.

For example,  if  f  is a cubic polynomial monotonic over a non–finite  ( including  +∞  or  -∞ ,  or 
both )  interval  Ω  but not convex thereon,  the iterations cannot meander in  Ω  but will either 
escape from it or converge to a zero of  f  therein;  this follows from  Theorem 8.2  below,  not 
from theorems  7.5  and  7.6  above.   On the other hand,  if  f  is a quintic polynomial monotonic 
over a non–finite interval  Ω  but not convex thereon,  Newton’s  iteration can meander in  Ω  

forever;   f(x) := 5x5 - 18x3 + 45x  is an instance with all the real axis for  Ω  and with  f'  ≥ 15.84 ,  
but alternate iterates  xn  approach  +1  and  -1  if ever  1 ≤ |xn| < 1.076570927 .

What distinguishes monotonic cubics from other monotonic polynomials?  The distinction will 
become clear later when we deduce  Theorem 8.2  from hypotheses that are the weakest and thus 
most widely applicable conditions now known to suffice for convergence.
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§8.  Sum–Topped Functions
A function  Sum–Topped  on an interval  Ω  is by definition a function  q(x)  that lies between  0  
and  q(u) + q(w)  inclusive throughout  every  closed subinterval  u ≤ x ≤ w  of  Ω .  The label  
“Sum–Topped”  has been born out of desperation for lack of a better label.  Also lacking is a neat 
characterization of sum–topped functions.  Some of their properties are obvious;  for instance,  
functions sum–topped on an interval  Ω  are also sum–topped on every subinterval of  Ω ,  but not  
vice versa.  If  q  is sum–topped on  Ω  so is  µq  for every real constant  µ ,  positive or negative.  
Monotonic functions that do not reverse sign are sum–topped;  and non–monotonic sum–topped 
functions exist too.  Here are some examples  ( plot them! ) to illustrate their diversity:

Any quadratic  q  on an interval none of which falls between two simple zeros of  q ;

3 + cos(ex)   on the whole real  x-axis  ;
|x - sin(x)|    on the whole real  x-axis  ;

1/(1 + x2)    on the interval  --1/w ≤ x ≤ w  for any  w > 0  ;     and
2cos(x) + x - µ   on the positive real  x-axis for any constant  µ ≤ 2 + 2π/3 - 2√3 = 0.63… .

Some properties of sum–topped functions are almost obvious:

Lemma 8.1:  A function  q  sum–topped on  Ω  cannot reverse sign  ( by taking 
both positive and negative values )  therein;  and if  q(z) = 0  at some  z  in  Ω  then  
|q(x)|  is a non–decreasing function of  |x-z|  while  x  is in  Ω .

Proof:  If  q(u) q(w) ≤ 0  for some  u  and  w  in  Ω  then,  since  (q(u) + q(w) - q(x))·q(x) ≥ 0  for 
all  x  between  u  and  w  inclusive,  setting  x = w  implies that  q(u) q(w) = 0 .  And if  q(z) = 0  
at some  z  in  Ω  then,  because  q(y)  must lie between  0  and  q(z) + q(x) = q(x)  for all  y  
between  z  and  x ,  we infer that  0 ≤ q(y)/q(x) ≤ 1  if  q(x) ≠ 0 .  Therefore  q(x)  may vanish 
throughout some closed subinterval of  Ω  but must then become nonzero and monotonic as  x  
departs from that subinterval.  END OF PROOF.

In the light of this lemma,  the unobviously sum–topped functions  q  on  Ω  are the 
non–monotonic ones that retain the same nonzero sign throughout;  suppose  q > 0  to simplify the 
following exposition.  Whether a continuous non–monotonic  q  is sum–topped is determined 
solely by the values it achieves at its local extrema  ( maxima and minima )  in  Ω .  Suppose all its 
local minima are  qj := q(vj) > 0  and all its local maxima strictly inside  Ω  are  Qi := q(mi)  for  
v0 < m1 < v1 < m2 < … < mK < vK  all in  Ω .  Then  q  is sum–topped if and only if every  
Qi ≤  minj<i qj + minj ≥ i qj .  This decision procedure can be inconvenient,  as it is for large  K ,  
and gets worse when  q  has infinitely many extrema or is discontinuous.  Among sum–topped 
functions the easiest to recognize are those of  Restrained Variation,  which are explained below 
in appendix  A2.  Before digressing to that explanation,  let us see how sum–topped functions 
figure in  Newton’s  and  Secant iteration:

Theorem 8.2:  A Sum-Topped Derivative
Suppose  f'   is continuous and sum–topped throughout a closed interval  Ω .  Then  
Newton’s  iteration  xn+1 := xn - f(xn)/f'(xn) ,  started from any  x0  in  Ω ,  either 
converges in  Ω  to the zero  z  of  f  or leaves  Ω ;  the iteration cannot meander in  
Ω  endlessly.
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Proof:  At the cost perhaps of replacing  f  by  -f ,  we may assume that  f'  ≥ 0  throughout  Ω  since  
Lemma 8.1  prevents  f'   from reversing sign.  Newton’s  iterating function  N(x) := x - f(x)/f'(x)  
is therefore continuous except possibly where  f'(x)  vanishes.  This possibility must be dispatched 
first;  later we shall deal with cases in which  f'   never vanishes in  Ω .

The theorem’s hypotheses allow  f  and/or  f'   to vanish at most once in  Ω .  To see why,  observe 
first that  f'   must vanish between any two distinct zeros of  f .  Next suppose  f'(u) = 0 .  Then  
Lemma 8.1  implies that there must be some closed subinterval  ù ≤ x ≤ ú  of  Ω  throughout
which f'(x) = 0    and   f(ù) = f(x) = f(ú)  while  ù ≤ x ≤ ú ;   but

f'(x)  is positive and decreasing,  and   f(x) < f(ù) ,   while  x < ù  in  Ω ;   and
f'(x)  is positive and increasing,  and   f(x) > f(ú) ,  while  x > ú  in  Ω .

Only in the subinterval  ( it may be a single point  u )  need  N  be redefined:
•˚   Wherever  f'(z) = 0 = f(z)  define  N(z) := z .
•'    Wherever  f'(u) = 0 ≠ f(u)  define  N(u) := -sign(f(u)) ∞   as if  f'(u) = +0 .

At most one of these two cases can arise.  In the first case  (•˚),  Theorem 7.5  guarantees the 
convergence of  Newton’s  iteration to an endpoint of the subinterval of  Ω  wherein  f(z) = 0 .  
The same theorem dispatches the second case  (•')  too because,  so long as  f(xn)  has the same 
nonzero sign as  f(u) ,  iteration must move monotonically in the direction that decreases  |f|  until 
one of the following three eventualities occurs:

i)    An iterate escapes from  Ω ,  perhaps by jumping to  ±∞ ,  or else
ii)   Iterates stay in  Ω  and  “converge”  monotonically to  +∞  or  -∞  in  Ω ,  or else
iii)  An  f(xn)  reverses sign and subsequent iterates reverse course and converge to  z .

Only eventuality  (iii)  delivers a finite root  z  of  f(z) = 0  in  Ω ,  and  f'(z) ≠ 0  there.  Whether 
eventuality  (ii)  delivers a root depends upon whether the limit to which  |f(x)|  declines,  as  x  
approaches that infinite endpoint of  Ω  at which  f'   vanishes,  is zero.

Eventuality  (i)  must arise also when neither  f  nor  f'   vanishes in  Ω  since then too the iteration 
must move monotonically in a direction that decreases  |f| .

Now only one case is left to consider:   Suppose henceforth that  f'  > 0  throughout  Ω  and  
f(z) = 0 < f'(z)  at some  z  in  Ω .  Now  N  must be continuous in  Ω  and its sole fixed–point 
therein is  z = N(z) .  If finitely many iterates lie on one side of  z  and infinitely many on the other 
side in  Ω ,  then the iteration must converge ultimately monotonically because,  except for finitely 
many initial iterates,  every subsequent iteration with  xn ≠ z  maintains  0 ≤ (xn+1 - z)/(xn - z) < 1  
and  0 ≤ f(xn+1)/f(xn) < 1 ,  as is easily confirmed;  of course the iteration converges to  z .  But if 
the iteration neither escaped from  Ω  nor converged to  z ,  as we shall assume henceforth for the 
sake of argument by contradiction,  infinitely many iterates would have to fall on both sides of  z ,  
which would have to lie strictly inside  Ω .  We shall complete the proof of theorem  8.2  by 
demonstrating that its hypotheses are not consistent with the last assumption.

By virtue of  Theorem 7.4,  the iterates could not come arbitrarily close to  z ;  they would all have 
to stay at least some positive distance away from  z .  Let  u  and  w  be the iteration’s points of 
accumulation nearest  z  on both sides;  say  u < z < w .  Then every open neighborhood of  u  
would contain infinitely many iterates,  as would every open neighborhood of  w ,  but any closed 
interval strictly between  u  and  w  could contain at most finitely many iterates.  Since  N(u)  
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would be another point of accumulation and  N(u) > u ,  we would find  N(u) ≥ w  too.  Similarly 
for  N(w) ≤ u .  Let’s scrutinize the last two inequalities;  they would imply respectively that

0 < (w-u)f'(u) ≤ -f(u)   and   0 < (w-u)f'(w) ≤ f(w)  .
Adding them would produce

(w-u)( f'(u) + f'(w) )  ≤  f(w) - f(u)  =  ∫uw f'(x)dx
which simplifies to

0 ≥  ∫uw ( f'(u) + f'(w) - f'(x) )dx  .
But the theorem’s hypotheses force the integrand to be nonnegative and continuous,  so it would 
have to vanish at every  x  between  u  and  w  inclusive,  which would force  f'(u) = f'(w) = 0  
contrary to the supposition  f'  > 0  made when this case began to be considered.  END OF PROOF.

In showing that  N  cannot swap distinct points  u  and  w  of  Ω ,  the foregoing proof resembles 
an application of  Sharkovsky’s No-Swap Theorem,  but the resemblance is superficial for two 
reasons.  First,  the theorem’s hypotheses merely suffice for its conclusion;  they are not necessary.  
Second,   N  was not required to map  Ω  to itself;  determining whether such a requirement has 
been fulfilled can be harder than solving the given equation  f(z) = 0 .  An easier expedient is to 
incorporate whatever may be known about  f  and  Ω  into a bracketing procedure that decides 
whether an excursion out of  Ω  should stop the iteration or be returned to  Ω .  After that the only 
hazard to prevent is the possibility that,  left alone,  the iteration may meander in  Ω  forever.  This 
hazard is precluded if  f'   is sum–topped but,  as we have seen just before  Theorem 8.2,  deciding 
whether  f'   is sum–topped can be inconvenient.  Fortunately,  some oft–encountered sum–topped 
configurations are easy to recognize:

Corollary 8.3:  A Weak Convexity Condition
Suppose  f = g-h  is a differentiable difference between two convex functions,  one 
non–decreasing and the other non-increasing,  throughout a closed interval  Ω .  
Then  Newton’s  iteration  xn+1 := xn - f(xn)/f'(xn) ,  started from any  x0  in  Ω ,  
either converges in  Ω  to the zero  z  of  f  or leaves  Ω ;  the iteration cannot 
meander in  Ω  endlessly.

Proof:  See  Corollary A2.3  in  Appendix A2: Functions of Restricted Variation ;  apparently  f'   is 
one of those,  and therefore continuous and sum–topped over  Ω .  Therefore  Theorem 8.2  
applies.  END OF PROOF.

Since  f  determines neither  Ω  nor the splitting  g-h = f  uniquely,  arbitraryness can complicate 
the application of  Corollary 8.3.  Take the  ( admittedly contrived )  example  f(x) := arctan(x) ,  
for which  Newton’s  iteration converges to  z = 0  from any  x0  strictly between the points  
±1.3917452  swapped by  N ,  but diverges otherwise.  These points cannot serve as endpoints for  
Ω  in  Corollary 8.3;  indeed,  no  Ω  that includes both points  ±1  in its interior can sustain a 
splitting  g-h = f  satisfying the theorem’s requirements because  f'(0)  is too big for  f'   to satisfy 
the sum–topped condition

“  0 ≤  f'(v)/(f'(u) + f'(w))  ≤ 1  whenever  v  lies between  u  and  w  both in  Ω  ”
that every splittable  f  must satisfy.  On the other hand,  for every  L > 0  the interval  
Ω := [-L, 1/L]  sustains such a splitting thus:
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g(x) := arctan(x) - x/(1 + L2) for  -L ≤ x ≤ 0 ,

:= x/(1 + 1/L2) for  0 ≤ x ≤ 1/L ;   and
h(x) := g(x) - arctan(x)  .

But then  N  maps  Ω  to itself only when  0.86033359 ≤ L ≤  1.1623398 .  Otherwise the iteration 
may escape from  Ω ;  and after that it may come back and converge,  or else diverge,  according 
to whether it started between  ±1.3917452  or not.

In general,  the weak conditions in  Theorem 8.2  and Corollary  8.3  are not necessary for 
convergence but are at best sufficient.  Their virtue is their ease of application compared with 
attempts to apply  Sharkovsky’s No–Swap  theorem to  N .

Example 8.4:  Corollary 8.3  was discovered first,  before  Theorem 8.2,  in  1976  while I was 
helping  Dr. D.W. Harms  and  R.E. Martin  to design a financial calculator  ( see  Martin [1977]).  
The equation  f(z) = 0  to be solved for a positive root

z = 1 + (interest rate)    or    z = 1 - (discount rate)
was put into the theorem’s partitioned form  f = g-h  thus:

f(x) =  ( Cmxm + ... + C3x
3 + C2x

2 + C1x )  -  ( c0 + c1/x + c2/x
2 + c3/x

3 + ... + ck/x
k )

with nonnegative coefficients  C...  and  c...  representing cash flows,  perhaps investments and 
returns,  or borrowings and repayments.  Ω  was the positive real axis and was mapped to itself by  
Newton’s  iterating function  N  for this  f .  However,  because  m  and  k  could be huge  ( many 
thousands ),  a complicated initial guess  x0  had to be contrived to prevent instances of intolerably 
deferred convergence.  The complexity of  x0  cast a shadow over the design’s integrity.

R. Carone  and I got rid of that complexity when we worked on the  hp-12C  financial calculator 
introduced in  1982  ( and still selling over thirty years later ).  It solves a different but equivalent 
equation   f(z) = 0  for its real root

z = ln(1 + (interest rate))    or    z = ln(1 - (discount rate))  .
The partitioned form  f = g-h  required for  Theorem 8.2  is obtained thus:

  f(x) =  ln( Cmemx + ... + C3e
3x + C2e

2x + C1e
x )  -  ln( c0 + c1e

-x + c2e
-2x + c3e

-3x + ... + cke
-kx )

with the same coefficients as before.  The convexity of  g  and  h  is less obvious than before.  Ω  is 
all the real axis.  Because this  f(x)  is so nearly linear when  |x|  is big,  the iteration’s dependence 
upon the initial guess  x0  has become so mild that a crude guess provably suffices.  END EX. 8.4.

The hypotheses of  Theorem 8.2  and  Corollary 8.3  are the weakest global conditions known to 
be sufficient to prevent  Newton’s  iteration from meandering forever.  Their hypotheses suffice 
also to prevent  Secant  iteration from meandering,  as we shall see in  §9.
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§9.  The Projective Connection between  Newton’s  and  Secant  Iterations
Before proving that  Theorem 8.2  and  Corollary 8.3  above apply as well to  Secant  as to  
Newton’s  iteration,  we explore a connection that the reader may have anticipated:  roughly,  …

If  Newton’s  iteration converges to a simple zero of  f ,  so does  Secant  iteration.
This connection grows out of the straight lines,  the tangents and secants,  that figure in both 
iterations.  The straightness of both kinds of lines is preserved by a family of  Projective Maps  of 
the plane to itself;  consequently both iterations’ convergence is invariant under these maps,  as is 
the convexity hypothesis in  Theorems 7.5 and 7.6  above.  See  Appendix A3: Projective Images,  
and especially  Lemma A3.2,  for details of which very few will figure directly in what follows.

Lemma 9.1:  An Intermediate Value
If  S(u, w) := u - f(u)(u - w)/(f(u) - f(w))  does not lie between  u  and  w ,  i.e.  if  
f(u)f(w) > 0 ,  and if  f'(x)  is finite throughout  u ≤ x ≤ w ,  then at some  v  strictly 
between  u   and  w  either  N(v) := v - f(v)/f'(v) = S(u, w)  or  f(v) = f'(v) = 0 .

Proof:  There is a trivial case when  u = v = w  and  S(u, w) := N(v) .  A different special case can 
arise with  f(u) = f(w) ≠ 0 ;  in this case  S(u, w) = ∞ = N(v)  at some  v  strictly between  u  and  w 
where  Rolle’s  theorem implies  f'(v) = 0 .  The lemma generalizes this special case.  For finite  
s := S(u, w)  the proof is constructed from a projective map that preserves  u  and  w  but pushes  s  
off to  ∞ .  Then,  like scaffolding under a newly built bridge,  the projective map is removed to 
leave only a slender proof standing.

Let  Ø(x) := f(x)/(s-x) .  Since  s  does not lie between  u  and  w > u ,   Ø(x)  and  Ø'(x)  are finite 
throughout  u ≤ x ≤ w .  And  Ø(u) = Ø(w)  because of how  s  was defined,  so  Rolle’s  theorem 

implies  Ø'(v) = 0  at some  v  strictly between  u  and  w .    Ø'(v) = f'(v)/(s-v) + f(v)/(s-v)2 = 0  
implies that this  v   is where either  N(v) = s  or  f(v) = f'(v) = 0 .  END OF PROOF.

x
N(v) =
S(u, w)

f(x)

tangent
secant

u v w
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Digression:  Where between  u  and  w  may the lemma’s  v  fall?  In general  v  need not be 
unique.  However,  in the special case that  sign(f" (x))  stays constant throughout  u < x < w ,  the 
aforementioned projective map can be used to show that the equation  N(v) = S(u, w)  has just one 
root  v  between  u  and  w ;  and then the smaller the variation of  log|f" (x)| ,  the more closely can  
v  be located.  Its location is obtained from the first of  Identities 7.3:

   f(S(u,w)) = (S(u,w) - u) (S(u,w) - w) f††(S(u,w), u, w)  and   f(N(v)) = (N(v) - v)2 f††(N(v), v, v) .

When  f†† ≈ f" /2  is nearly constant,  so that  f  is nearly a quadratic polynomial,  combining these 
identities with the equation  N(v) = S(u, w)  of  Lemma 9.1  implies that its root  v  is

   v  =  S(u, w) + √( (u - S(u, w)) (w - S(u, w)) f††(S(u, w), u, w)/f††(N(v), v, v) ) sign(u - S(u, w))

       ≈  S(u, w) + √( (u - S(u, w)) (w - S(u, w)) ) sign(u - S(u, w)) .    END OF DIGRESSION.

Lemma 9.1  joins  Newton’s  iterating function  N  and the  Secant’s  S  by a bridge that breaks 
only over a zero of  f  across which  f  does not reverse sign;  otherwise the bridge bears a big load:

Theorem 9.2:  Suppose  f'   and  N  are continuous throughout a closed finite 
interval  Ω  strictly inside which  f  does not vanish without reversing sign there 
too.  If  Newton’s  iteration converges in  Ω  from every initial  x0  in  Ω ,  then it 
converges to the sole zero  z  of  f  in  Ω ,  and  Secant  iteration also converges in  
Ω  to  z  from every two starting points  x0  and  x1  in  Ω .

That  Newton’s  iteration always converges within  Ω  is an essential assumption independent of 
the others;  see  Non–Theorem  7.2  above.  Unless  z  is an endpoint of  Ω ,  the assumption that  f  
reverses sign across its zero  z  is essential;  otherwise two consecutive  Secant  iterates astride  z  
could send a third to  ∞ .  The assumption that  N  is continuous is essential too;  otherwise,  as  
Example A3.3  shows,  the theorem’s  “ converges ”  would have to be replaced by a complicated 
assertion about convergent subsequences of iterates like the one in my report  [1979' ].  This 
theorem was discovered in  1977  in time to affect decisions made during the design of the 
root–finder behind the  [SOLVE]   key on  Hewlett-Packard  hand-held calculators beginning with 
the  hp-34C  described in my reprint  [1979" ].  The proof is long but,  because it cannot now be 
found elsewhere,  it is presented here despite its length.

Proof of Theorem:  Because  N  maps  Ω  continuously into itself  ( otherwise  Newton’s  iteration 
could escape from  Ω )  it must contain at least one fixed–point  z = N(z) ,  which has to be a zero 
of  f .  This zero  z  cannot be a subinterval of  Ω  because  f  reverses sign at  z .  Another zero is 
ruled out by  Rolle’s  theorem,  which would imply a point between them where  f'   would vanish 
and  N  would jump out of  Ω  to  ∞ .  In fact,  f'   cannot vanish in  Ω  except perhaps at  z ;  
elsewhere  f  is strictly monotonic in  Ω .  At the possible cost of replacing  f  by  -f ,  we may 
assume that  f  is strictly increasing throughout  Ω .  Finally,  N  satisfies all four conditions that  U  
satisfies in  Sharkovsky’s No–Swap Theorem 5.1  above.  These conditions will figure at several 
places in the rest of the proof,  which is presented below as a sequence of shorter propositions.

•Proposition 9.3:  All  Secant iterates  xn+1 := S(xn, xn-1)  stay in  Ω .
This follows from  Intermediate Value Lemma 9.1  above and the assumption that  N  stays in  Ω .
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•Proposition 9.4:  For  n ≥ 1  we might as well assume that every  xn+1 ≠ xn ≠ z .
Otherwise nothing would be left to prove,  because  xn+1 := S(xn, xn-1) = xn  if and only if  
f(xn) = 0  and hence  xn+1 = xn = z .  The possibility that  x1 = x0  and  x2 = N(x1)  is harmless.

•Proposition 9.5:  If a subsequence of differences  xn+1 - xn → 0  then,  for every integer  k ≥ 0
      fixed in advance,  the corresponding subsequence  xn+k → z .

Since divided difference  f†  lies between the minimum and maximum values taken by derivative  

f'   on  Ω ,  the corresponding subsequence  f(xn) = (xn+1 - xn) f
†(xn, xn-1) → 0 ,  and therefore   

xn → z  since  f  is strictly increasing,  and then  xn+1 → z  too.  For each  n  in the subsequence,  
Intermediate Value Lemma 9.1  implies that some  yn  exists between  xn  and  xn+1  satisfying 
either  xn+2 = yn  or  xn+2 = N(yn) ;  either way,  the subsequence  xn+2 → z  too because  N  is 
continuous.  Repeat as often as necessary to infer that  xn+k → z .  ( Does the continuity of  N  then 
imply by itself that  all   xn+k → z  too no matter how  k  varies with  n ? )

Definitions: 

•A  Variance  is an iterate  vn := S(xn-1, xn-2)  for which  f(xn-1)/f(vn) < 0 ,  and then both  z  and
xn+1 := S(vn, xn-1)   must lie strictly between  vn  and  xn-1 .

•A  Permanence  is an iterate  pn := S(xn-1, xn-2)  for which  f(xn-1)/f(pn) > 1 ,  and then both  z 
and  xn+1 := S(pn, xn-1)  must lie strictly on the side of  pn  opposite from  xn-1 .

•The  Wraith  of  Permanence  pn  is its nearest solution  wn  of  N(wn) = xn+1  strictly between 
pn  and  xn-1 ;  the existence of  wn  is assured by  Intermediate Value Lemma 9.1.

•Proposition 9.6:  For  n ≥ 2  every iterate  xn := S(xn-1, xn-2)  is a  Permanence  or a  Variance.
The possibility that  0 < f(xn-1)/f(xn) < 1  is ruled out by the strictly increasing nature of  f  as 
follows:  For the sake of argument suppose  0 < f(xn-1) < f(xn) .  This supposition would imply  

z < xn-1 < xn ,  since  f  is increasing,  and then  f†(xn-1, xn-2) = f(xn-1)/(xn-1 - xn) < 0 ,  which is 
contradictory.  The other impossibility  0 > f(xn-1) > f(xn)  is dispatched similarly.  Therefore 
every iterate  xn  can be renamed either  pn  or  vn .

•Proposition 9.7:  If two consecutive iterates  vn := S(xn-1, xn-2)  and  vn+1 := S(vn, xn-1)  are both
   Variances,  then  vn+1  lies strictly between  vn  and  xn-1 ,  and then both  xn+2 
   and  z  lie strictly between  vn+1  and  vn ,  and also   (vn - xn-1)/(xn+2 - vn+1) > 4 .
    –––––––––– vn ———— xn+2 —— vn+1 --------------------- xn-1 ––––––––––
                            ‹— —  z  — — →

Only the last inequality requires unobvious confirmation.  The definition of  Variance  implies that  
f(xn-1)/f(vn) < 0  and  f(vn)/f(vn+1) < 0 ,  so  sign(f(vn+1)) = sign(f(xn-1))  and then,  since  f  is 
monotonic,  f(xn-1)/f(vn+1) > 1  because  vn+1  is closer to  z  than  xn-1  is.  Consequently

   (vn - xn-1)/(xn+2 - vn+1) =  ( -(vn+1 - vn)(f(vn) - f(xn-1))/f(vn) )/( -f(vn+1)/f
†(vn+1, vn) )

    =  (f(vn) - f(xn-1))(f(vn+1) - f(vn))/( f(vn)f(vn+1) )    …
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    =  1 -  f(vn)/f(vn+1) - f(xn-1)/f(vn)  +  f(xn-1)/f(vn+1)
    ≥  1 +  2√( f(xn-1)/f(vn+1) )  +  f(xn-1)/f(vn+1)   >   4   as claimed.

•Proposition 9.8:  If,  among the  Secant  iterates  xn ,  at most finitely many are  Variances,  or if
      at most finitely many are  Permanences,  then the iteration converges to  z .

If all but the first finitely many iterates are  Permanences  they must converge monotonically in  Ω  
to something,  and it must be  z  by  Proposition 9.5.  If all but the first finitely many iterates are  
Variances  then the subsequences  {x2n}  and  {x2n+1}  must ultimately converge monotonically in 

opposite directions with  |x2n - x2n±1| → 0  at least as fast as  1/4n ,  thanks to  Proposition 9.7,  so 
the iteration converges to  z  as claimed.

Henceforth only those sequences  {xn}  containing infinitely many  Permanences  and infinitely 
many  Variances  need be considered.  Think of  Permanences  as punctuation marks separating 
strings of consecutive  Variances.  What matters most about such a string is whether its length is 
even or odd.  Even lengths  ( including  0 )  will be treated first.

•Proposition 9.9:  If a  Permanence  pn  is followed by an even number  2k ≥ 0  of consecutive
  Variances  vn+1,  vn+2,  …,  vn+2k  before the next  Permanence  pn+2k+1 ,  then the
  numbers

      xn-1,  wn-1,  pn,  vn+2,  vn+4, …,  vn+2k,  wn+2k+1,  pn+2k+1,  z ,  vn+2k-1 , …,  vn+3,  vn+1
  are exhibited here in strictly monotonic order  ( perhaps reversed ).

If  2k = 0  then  xn-1,  wn,  pn,  wn+1  and  pn+1 lie on the same side of  z .  If  2k = 2  only  vn+1  lies 
on the side of  z  opposite the other four iterates and two  Wraiths.  For  2k ≥ 2  this proposition 
follows from  Proposition 9.7.

•Proposition 9.10:  If at most finitely many strings of  Variances  have odd lengths,  the iterates
      xn  converge to  z .

Discard as many of the earliest iterates as necessary,  and renumber the rest,  to obtain a sequence 
of iterates  xn+1 := S(xn, xn-1)  in which no string of  Variances  has odd length.  Proposition 9.9  
implies that the  Permanences  and their immediately antecedent iterates constitute a monotonic 
subsequence bounded by  z .  In other words,  if the successive  Permanences  are  pn1,  pn2,  pn3,  
…  then   xn1-1,  pn1,  xn2-1,  pn2,  xn3-1,  pn3,  …,  z   are exhibited here in monotonic order,  but 
perhaps not strictly so.  This subsequence of iterates must converge and,  by  Proposition 9.5,  it 
must converge to  z .  Recall now the  Permanences’  Wraiths;  for  j = 1, 2, 3, …  each  Wraith  
wnj  lies between  xnj-1  and  pnj  and satisfies  N(wnj) = xnj+1 .  Evidently the  Wraiths  converge to  
z  and,  since  N  is continuous,  so must the subsequence of iterates  xn1+1, xn2+1, xn3+1, … .  
Among these lie all the initial  Variances  in strings of consecutive  Variances,  each string having 
nonzero even length.  With the aid of  Proposition 9.9  again we conclude that the  Variances  
converge to  z  too.

( Were  N  not continuous,  the  Variances  might not all converge to  z ;  see  Example A3.3.)

Only the possibility that infinitely many strings of  Variances  have odd lengths remains to be 
addressed to complete the proof of  Theorem 9.2.  For this purpose we introduce three more …
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Definitions: 

•A  Scout  sn  is a  Permanence  followed by a string of  Variances  of odd length. 

•A  Guard  gn+1  is the first  Variance  following  ( in the sequence of iterates )  a  Scout  sn . 

•A  Convoy  is the set of  Wraiths  belonging to the  Permanences  that come after  ( in the
sequence of iterates )  a  Guard  but not after its subsequent  Scout.

For instance,  if  Scout  sn  is followed by  2k+1  Variances  gn+1, vn+2, …, vn+2k+1  followed by  
Permanence  pn+2k+2 ,  then the numbers

  xn-1,  wn,  sn,  vn+2,  …,  vn+2k,    z ,    pn+2k+2,  wn+2k+2,  vn+2k+1,  …,  vn+3,  gn+1
appear here in monotonic order,  according to the definitions of  Permanences,  Variances  and  
Wraiths.  ( If  2k+1 = 1  then  vn+2, …, vn+2k  do not appear here.)  Only the desired zero  z  and 
the  Wraiths  wn  and  wn+1  are not iterates.  That last  Permanence  pn+2k+2  might be a  Scout  
too,  or it might not.  We have to confirm next that every  Wraith  belongs to a  Convoy  escorted 
by a  Scout  ranging ahead of it and a  Guard  bringing up the rear,  and that alternate  Convoys  
approach  z  from opposite sides.

•Proposition 9.11:  In the sequence of iterates,  suppose  sn  and  sm  are consecutive  Scouts  with
      m > n .  Then  m ≥ n+2  and the numbers   xn-1,  wn,  gm+1,   z ,  sm,  wm,  gn+1 
      appear here in monotonic order;  and the  Convoy  of  Wraiths  wj  for
      n < j ≤ m  lie numerically between  Guard  gn+1  and the next  Scout  sm  on
      the other side of which lie first  z  and then  gm+1  and then  wn .

In the sequence of iterates,  Scout  sn  is followed by some odd number  2k+1  of  Variances  gn+1, 
vn+2, …, vn+2k+1  followed by  Permanence  pn+2k+2  followed perhaps by more strings of  
Variances  of even lengths separated by  Permanences  up to the  Permanence–and–Scout  sm  
followed by an odd number of  Variances  gm+1, … .  How are all these numbers ordered 
numerically?  It is easy to verify that

xn-1,  wn,  sn,  vn+2,  …,  vn+2k,     z ,   sm,  wm,  pn+2k+2,  wn+2k+2,  vn+2k+1 , …,  gn+1 
appear here in monotonic order except that if  m = n+2k+2  then  pn+2k+2   and  wn+2k+2  are 
redundant and should be dropped.  If  m > n+2k+2  then every string of  Variances  between  ( in 
the sequence of iterates )  pn+2k+2  and  sm  has even length,  so  Proposition 9.9  ensures that every  
Permanence  after  ( in the sequence of iterates )  gn+1  but not after  sm  has its  Wraith  strictly 
between the  Guard  gn+1  and the  Scout  sm  of this  Convoy  of  Wraiths  all on the side of  sm  
opposite  z .  Moreover  wm  is this  Convoy’s Wraith  nearest  z .  The  Guard  gm+1  following  
Scout  sm  falls somewhere on the other side of  z ;  where?  Here  Intermediate Value Lemma 9.1  
combines with  Sharkovsky’s  No–Swap Theorem 5.1  to explain why this new  Guard  gm+1  must 
come between  z  and the previous  Convoy’s Wraith  wn  nearest  z .  If that were not so,  if  gm+1  
fell on the side of  wn  opposite  z ,  then the numbers

gm+1 = N(wm),  wn,   z ,  wm,  gn+1 = N(wn)
would appear here in monotonic order and violate the  No Crossover Condition  that  N  must 
satisfy if  Newton’s  iteration is to converge to  z  from every  x0  in  Ω .
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Thus has every claim in  Proposition 9.11  been vindicated,  and without saying which of  gm+1  
and  sn  lies between the other and  z ;  it is impossible to say,  and does not matter.  What matters 
is that alternate  Convoys of Wraiths  proceed monotonically towards  z  from opposite sides;  on 
each side every  Convoy  is separated by its  Guard  from the preceding  Convoy  on the same side.

•Proposition 9.12:  If the sequence of  Secant  iterates contains infinitely many  Guards  then the
       Secant  iteration converges to the desired zero  z .

Let  g« ≤ z  be the least upper bound for those  Convoys  and their  Guards  less than  z ;  they 
constitute a subsequence of iterates and  Wraiths  converging monotonically upward to  g« .  
Similarly for greatest lower bound  g» ≥ z .  For every  guard  gn > g»  there is a  Wraith  wn < g«  
for which  gn = N(wn) ;  as the subsequence  wn → g«-  the corresponding subsequence  
gn = N(wn) → g»+  and so,  because  N  is continuous,   g» = N(g«) .  Similarly  N(g») = g« .  Now 
the  No Swap Condition  satisfied by  N  implies that  g» = g« = z .  Then all the  Wraiths  must 
converge to  z ,  pushing their  Permanences  ( including the  Scouts )  ahead of them to converge 
to  z  also.  Then  Permanences  and  Guards  squeeze the rest of the  Variances  to converge too.

Propositions 9.8, 9.10 and 9.12  leave no alternative but convergence for the  Secant  iteration and 
hence prove  Theorem 9.2.  END OF PROOF.

Note that  Theorem 9.2  just proved has no converse;  in many situations  Secant  iteration 

converges from all starting points but  Newton’s  does not.   f(x) := 5x5 - 18x3 + 45x   is a strongly 
monotonic  ( f'  > 15.84 )  example for which  Secant  iteration always converges but  Newton’s  
iteration gets trapped when  1 ≤ |xn| <  1.076570927 ,  as we have already seen after  Theorem 7.6.  
Proposition 9.7  prevents  Secant  iteration from meandering in this example.

Another example is  f(x) := arctan(x)  discussed after  Corollary 8.3,  where we saw that  
Newton’s  iteration converges if started between  ±1.3917452  but diverges otherwise.  Apparently  
Secant  iteration converges if started anywhere in a wider interval between about  ±2.25,  but can 
cycle on four points  x4n = 4.75048222,  x4n+1 = 1.12143673,  x4n+2 = -x4n  and  x4n+3 = -x4n+1 ,  
and certainly diverges from starting points both greater than about  2.5 .

Theorem 9.2  shows how slightly an ability to solve  f(z) = 0  depends upon the computability of 
the derivative  f'(x) .  This is not to say that  Secant  iteration obsoletes  Newton’s.  Instead the 
theorem simplifies the choice between them.  Secant  iteration is preferable to  Newton’s  when …

•Computing the derivative  f'   adds more than about  44%  to the cost of computing  f ,  and
•The desired zero  z  is one across which  f  reverses sign,  and
•The desired accuracy requires at least several iterations,  and
•The contribution of roundoff to  f  is not so bad that its effect has to be minimized.

The last consideration arises out of  Secant  iteration’s greater susceptibility than  Newton’s  to 
roundoff,  especially if its contribution has been seriously underestimated.  If roundoff has been 
assessed reasonably well,  and if iteration can be stopped as soon as the computed value of  |f|  
drops below or near its uncertainty due to roundoff,  that last consideration becomes unimportant.  
Anyway,  the global convergence properties of the two iterations rarely provide a strong reason to 
prefer one over the other.
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Finally,  Theorem 9.2  also contributes to  Theorem 8.2  another corollary that is easy to prove:

Corollary 9.13:  Suppose  f'   is continuous and sum–topped throughout a closed 
interval  Ω ;  or suppose  f = g - h  is a differentiable difference between two convex 
functions,  one non–decreasing and the other non-increasing,  throughout a closed 

interval  Ω .     Then  Secant  iteration  xn+1 := xn - f(xn)/f
†(xn, xn-1) ,  started from 

any  x0  and  x1  in  Ω ,  either converges in  Ω  to the zero  z  of  f  or leaves  Ω ;  the 
iteration cannot meander in  Ω  endlessly.
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§10.  Accelerated Convergence to a Zero in a Cluster 
Where do multiple zeros come from?  They would be extremely rare if the equations we solve 
were chosen at random;  multiple zeros  z  imply an unlikely coincidence  f'(z) = f(z) = 0 .  Since 
they are not so rare,  their sources must be systematic.  One such source is optimization.  Suppose 
we wish to minimize the largest root  z(p)  of an equation  “ F(p, z) = 0 ”  containing a parameter  
p .  Values  p  at which  dz/dp = 0  are candidates,  but they need not yield the desired minimum.  It 

may occur when the two largest roots coincide,  as is the case for  F(p, z) = z2 - (p + 1/p)z + 1 ;  its 
optimal  p = 1 .  For near–optimal values of  p  the two largest roots nearly coincide.

Where else may clustered zeros come from?  Consider an analytic function  f(x)  with several real 
and complex zeros  z1, z2, …, zm  inside a region  ç  in the complex plane,  and suppose that  ç  
lies deep inside a far larger region  Ç   that contains no other zeros nor singularities of  f .  Let the 
average of those  m  zeros be   µ := ∑j zj /m ;  then  f(x)  and its derivative must closely resemble 

another analytic function  f(x)(x - µ)m/∏j (x - zj)  and its derivative at all  x  in  Ç   far enough from  

ç .  For all such  x  their respective  Newton’s  iterating functions  N(x) := x - 1/(f'(x)/f(x))  and

x - 1/( f'(x)/f(x) - ∑j (µ - zj)
2/(x - µ)3  +  O(x - µ)-4 ) 

must resemble each other closely too.  In other words,  to  Newton’s  iterating function,  any 
collection of several zeros may appear,  from far enough away,  like clustered zeros practically 
indistinguishable at that distance from a multiple zero.  We have seen already,  before and during  
Theorem 7.6,  that convergence to a multiple zero can be slow.  Consequently we should expect 
convergence to a cluster from afar to be retarded too.  Usually it is retarded,  but not always.

Take  f(x) := 3ex - e3 x  for example.  All its zeros are simple.  Two of them,  z = 0.17856…  and  
Z = 3 ,  are real;  but infinitely many are complex falling not far from  2 + ln(2kπ) ± (2k + 1/2)πı  
for positive integers  k .  From any  x0 < 1 ,  Newton’s iteration  xn+1 := xn - f(xn)/f'(xn)  converges 
to  z  almost immediately because  z - 0.003 < x2 < z  no matter how huge  ( and negative )  x0  is.  
From any big  x0 > 2·Z ,  Newton’s  iteration converges to  Z  slowly at first,  taking about  x0  
iterations to get between  Z  and  Z + 0.001  because  xn+1 ≈ xn - 1  for a while.  Thus,  from far 
away on the positive  ( but not the negative )  real axis,   z  and  Z  look to  Newton’s  iteration like 
roots of infinite multiplicity towards which it must move very slowly.  A simple way to cure this 
lethargy is to replace  f(x)  by  x - 3 - ln(x/3) ,  which has the same real zeros but none complex.

In general lethargic convergence has no simple cure.  And,  when found,  a cure rarely saves much 

time.  No matter how slowly  Newton’s or  Secant  iterates  xn  converge,  usually  2n f(xn) → 0  
because of  Theorem 7.6.  Then  f(xn) → 0  so fast that it must soon fall below the threshold of 
rounding error noise in  f ,  or else below the computer’s  Underflow  threshold.  Since the amount 
of time that can be saved is usually limited,  no cure for lethargic convergence is worthwhile if it 
adds much to the cost of  Newton’s  or  Secant  iteration;  nor is a cure satisfactory if it spawns 
disagreeable consequences like convergence to an undesired zero.

When the multiplicity  m > 1  of a desired zero  z  of  f  is known,  superlinear convergence can be 

achieved by applying  Newton’s or Secant  iteration to  |f|1/m sign(f)  instead of  f ;  then  Newton’s  

iteration takes the form  xn+1 := xn - m
 f(xn)/f'(xn) .  However  z  is usually computable more 
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accurately as a simple zero of the derivative  f[m-1]
 ,  if this can be computed.  ( Could  m  be 

known but not  f[m-1] ?   Perhaps that’s why an  m > 1  is usually unknown.)  An unknown  m  
known to exceed  1  is probably  2  since larger multiplicities are extremely unlikely.

An unknown multiplicity can be estimated.  For instance,  if  z  is a zero of  f  with multiplicity  m  
then  1/(1/(ln|f(x)|)')'  → m  as  x → z .  This appears to require the computation of  f"   but that can 
be circumvented by introducing a multiplicity estimate  mn  into an accelerated version of  
Newton’s  iteration thus:

mn   :=   Max{ 1,   Integer Nearest  (xn - xn-1)/( f(xn)/f'(xn) - f(xn-1)/f'(xn-1) ) } ; 
xn+1  :=  xn - mn f(xn)/f'(xn)  .

When  xn  converges to a zero  z  of an analytic function  f(x)  it converges at least quadratically 
and  mn  converges to the zero’s multiplicity,  which must be an integer.  This convergence is faster 
than if  Secant  iteration had been applied to  f(x)/f'(x)  of which  z  is a simple zero.  From far 
enough away,  however,  a cluster of zeros  ( complex as well as real )  of  f  can appear so much 
like a multiple zero to  Newton’s  iteration that  mn  may actually approximate the number of zeros 
in the cluster.  Only if and when iterates approach  z  can its own lower multiplicity  m  become 
manifest.  Alas,  the first few accelerated iteration steps can overshoot the zero nearest the starting 
point too easily,  after which subsequent iterates may diverge or converge to a zero other than the 
one desired,  especially if an extremal real zero was desired.

Take  f(x) := 3ex - e3 x  for example again.  Starting from  x0 > 5 ,  the foregoing acceleration 
scheme practically always skips over the larger zero  Z = 3  and converges to the smaller zero   
z ≈ 0.17856 .  In general no way is known to moderate the growth of  mn  so as to prevent this kind 
of undesired overshoot in all cases.

There is a special but common case that can be accelerated modestly without overshoot.  Define
N(x)  :=   x - f(x)/f'(x)        ( Newton’s  iteration function )   and
W(x)  :=  x - 2 f(x)/f '(x)    ( Doubled-Newton’s  iteration function ) .

This  W(x)  can be iterated with little harm from overshoot in the following circumstances:

• x

f(x)

N(x)

y zW(x)

N(W(x))
•• •• •
•

•

•

Illustrating Theorem 10.1

f'(y) = 0 > f(y)

y < W(x) < z < N(W(x)) < N(x) < x
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Theorem 10.1:  Suppose that  f'(y) = 0 ≥ f(y)  at the left-hand end of a closed finite 
interval  y ≤ x ≤ x0  inside which  f" (x)  is a positive nondecreasing function;  also 
assume  f(x0) > 0 .  Then,  in that interval,  ...
1)  Equation  “ f(z) = 0 ”  has just one root  z ≥ y ;  and  W(x) < N(x)  when  x > z .
2)  N(x) > z  if  y < x ≠ z ,  and then  W(x) > y  unless  W(x) = y = z .
3)  If  x > z  then    z < N(W(x)) ≤ N(x) ,  with equality only when  f"'  ≡ 0 .

Starting from  x0 > z  this theorem motivates the following procedure:

    Iterate  xn := W(xn-1) ,  thereby descending faster than  Newton’s  iteration would,  until  xJ ≤ z 
    ( detected when  xJ+1 ≥ xJ );  then if  xJ+1 > xJ  replace  xJ+1  by  N(xJ)  and continue  Newton’s.  

The theorem’s clause  (3)  guarantees that the last retained  W-iterate  xJ := W(xJ-1) ,  after which 
iteration reverts to  xn+1 := N(xn) ,  cannot jump beyond  z  so close to  y  that the next  Newton  
iterate  xJ+1  would jump way back behind  xJ-1 .  On the contrary,  xJ+1  comes closer to  z  than  
N(xJ-1)  would have come.  An example will illustrate the procedure after the theorem’s proof.

Proof of  Theorem 10.1:
1)  As  x - y  increases through positive values,  so does  f'(x)  because  f"  > 0 .  Therefore at most 
one  root  z ≥ y   can exist in the given interval;   f(x)  increases through  0  to a positive value  
f(x0)  as  x  increases from  y  to  x0 ,  so  z ≥ y  does exist in the interval.  And then obviously  
N(x) - W(x) = f(x)/f'(x) > 0  for all  x > z  therein.

2)  N'(x) = f(x)f" (x)/f'(x)2  has the same sign as  x - z  if  x > y ;  therefore  N(x)  descends to its 
minimum value  N(z) = z  as  x → z  from either side.  A nondecreasing derivative is a continuous 
and therefore integrable derivative,  and  f" (x)  is nondecreasing as  x  increases beyond  y ,  so

0 ≤  ∫yx ∫yτ ( f" (τ) - f" (σ) )dσ dτ  =  (x - y)f'(x) - 2f(x) + 2f(y)  .
This implies   W(x) ≥ y - 2f(y)/f'(x) ≥ y   too with strict inequality unless  y = z ,  in which special 
case  Theorem 7.5  above implies  N(x) → z+  and  W(x) → z+  as  x → z+ .  In the further special 
case of a quadratic  f  ( constant  f"  > 0 )  with a double zero  y = z  we find  W(x) = z .

3)  When  z ≤ W(x) < x ,  inequality   N(W(x)) ≤ N(x)   is now obvious;  but a proof is harder when  
y < W(x) < z < x .  The proof might be easier if  N(x) - N(W(x)) =  f(x)/f'(x) + f(W(x))/f'(W(x))   

increased monotonically,  but it needn’t;  for example,  try  f(x) = x2 + (x/2)24 - 1 - 1/224
 .  Worse,  

N(x) - N(W(x))  vanishes like   O(x -z )3 ,  so three differentiations  ( or integrations )  would be 
needed to infer the desired inequality directly from the hypothesis  f'"  ≥ 0 .  We shall simplify the 
work a little by proving that  ( N(x) - N(W(x)) )·f'(W(x))  =  f'(W(x))·f(x)/f'(x) + f(W(x))  ≥ 0 .

To exploit the symmetry of  W(x)  and  x  about  N(x) ,  let’s use abbreviations  q := f(x)/f'(x) ,  
n := N(x) = x - q ,  and  w := W(x) = n - q ;  then  f" (n + σ) - f" (n - σ) ≥ 0  when  0 ≤ σ ≤ q  because  
f"   is nondecreasing.  Integrate twice to get  

0 ≤  ∫0q ∫τq(f" (n + σ) - f" (n - σ))dσ dτ  =  (f'(x) + f'(w))·q - f(x) + f(w) ,
which simplifies to the last inequality of the previous paragraph.  This inequality becomes 
equality just when  f  is quadratic  ( with constant  f"  > 0 ).  END of PROOF.
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I first proved theorem 10.1  in the early  1960’s,  but rather differently,  for the special case of a 
polynomial  P(x)  whose  ( at least two )  zeros are all real,  the largest being  z ;  one of  f = P  or  
f = -P  can easily be shown to satisfy the hypotheses of this theorem.  A proof for this polynomial 
case can be found in  Stoer & Bulirsch [1980];  for this case,  parts  1)  and  2)  of the theorem had 
been quoted by  Jim Wilkinson [1965],  who had learned them from  Hans Maehly  as well as me.   
Soon afterwards  Werner Greub  liberated the whole theorem from polynomials by suggesting that 
the crucial hypothesis was merely   f"' (x) ≥ 0 ,  from which the foregoing proof evolved.

The procedure described before the proof locates the largest real zero of a polynomial whose 
other zeros,  real and complex,  all have lesser real parts.  It locates the largest real zero  ( Z = 3 )  

of examples like  f(x) = 3ex - e3 x  discussed above,  usually faster than would  Newton’s  iteration 
all the way.  Theorem 10.1  provides a guarantee that the doubled iteration  xn+1 = W(xn)  cannot 
overshoot the desired zero  z  so far as would lose more than one iteration–step after reversion to  
Newton’s.  Except for that one step that overshoots  z ,  the iterates of  W  starting from  x0 > z  
approach  z  faster than correspondingly numbered iterates of  N  would because  N'(x) > 0  for all  
x > z  ( see the proof of  (2)  above ).

How much faster do iterates of  W  descend than iterates of  N  would?  Since  W(x) ≤ N(N(x))  at  
x  close enough to  z ≠ y  and usually at all  x > z  in the interval,  W  usually descends at least 

twice as fast as  N  until  z  is overshot.  It happens for  f(x) := ex  whose  W(x) ≅  N(N(x)) ≅  x - 2  
and  -∞ = y = z < x < x0 < +∞ .  But not always;   f(x) := x/(1-x)  in the interval  z = 0 < x < x0 < 1  
behaves differently because its  W(x) > N(N(x))  when  1 > x > 2/(1 + √5) ≈ 0.618 .  More nearly 

typical is example  f(x) := 3ex - e3 x  for which iterates descend to  Z = 3  from  x0 = 8  thus:

The doubled iteration  xn+1 := W(xn)  can still converge arbitrarily slowly to a highly multiple 
zero;  but its values  f(xn)  tend to zero usually more than twice as fast as  Newton’s  would,  and 
always at least twice as fast as  Theorem 7.6  described:

Table 1:   For    f(x) := 3ex - e3 x  

Iterates of  N Iterates of  W

x0 8 8

x1 7.015757 6.031524

x2 6.052129 4.195981

x3 5.132988 2.912537

x4 4.302929 3.006191

x5 3.631900 3.000029

x6 3.198687 3

x7 3.025447

x8 3.000476

x9 3.000000
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Corollary 10.2:  Assume the hypotheses of  Theorem 10.1  again,  and suppose 
also that the procedure described just after it is followed.  Then either the iteration 
ultimately reverts to  Newton’s  and converges quadratically,  or else the doubled 
iteration  xn := W(xn-1)  converges monotonically,  though slowly,  and  f(xn)  tends 

monotonically to  0  at least so fast that   ∑n 4
n |f(xn)|  ≤  |f(x0)|

 (x0 - z)/(x0 - x1) .

Proof:  Either  y < z  or  y = z .  If  y < z  then  f'(z) ≠ 0  and ultimately  xn := W(xn-1)  falls upon  z   
and stops or falls between  z  and  y .  In the latter event the iteration reverts to  Newton’s  iteration 
which,  after stepping backward once to  N(xn)  between  z  and  N(xn-1) ,  converges 
monotonically according to  Theorem 7.5,  and quadratically according to  Theorem 7.4.

If  y = z  then  f'(z) = f(z) = 0  and the doubled iteration  xn+1 := W(xn)  converges monotonically 
towards  z .  This iteration is the same as  Newton’s  applied to solve the equation  √f(z) = 0 .  Is  √f  
convex?  To find out consider the  Riemann–Stieltjes  integral  ∫ f df"  ,  which exists since  f"   is 

nondecreasing.  If  x > z  then   0 ≤ 2∫zx f(τ) df" (τ) = 2f" (x)·f(x) - (f'(x))2 = 4(√f(x))3·(√f(x))"  .  
Therefore  √f  satisfies the convexity hypothesis  f  satisfied in  Theorem 7.6,  whence follows its 
conclusion for  √f ,  which is this  Corollary’s  inequality.  END OF PROOF.

What if  f'   never vanishes,  or whether  f'   ever vanishes is unknown?  So long as  W. Greub’s  
hypothesis  f"'  ≥ 0  holds,  the doubled  Newton  iteration  xn+1 := W(xn)  deserves to be tried:

Corollary 10.3:  Redefine  y  in  Theorem 10.1  to satisfy  f" (y) = 0  and  f(y) < 0 , 
leaving all else unchanged.  Then all its three inferences  1),  2)  and  3)  persist 
except if  W(x) < y ,  in which case  W(x) > y – (x–y)  is all that can be inferred.

Proof:  Almost the same as for  Theorem 10.1.  END OF PROOF. 

• •

•

•• • •

•

x

f(x)

N(x)
z

N(W(x))

W(x)y

Illustrating Corollary 10.3

f" (y) = 0 ≥ f(y)

y < W(x) < z < N(W(x)) < N(x) < x
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For example take  f(x) := (x + 1)3 + p·x – 1  with a parameter  p > 0  and initial  x0 := 100 .

Corollary 10.4:  Suppose  f'  > 0  and  f"   is nondecreasing throughout an interval  
Ω  wide enough to contain  z ,  where  f(z) = 0 ,  as well as  x,  N(x)  and  W(x)  for 
every  x  in  Ω .  Then  N(x)  must lie between  x  and  N(W(x)) ,  though  z  may lie 
anywhere on the same side of  x  as  N(x) ,  including perhaps between them.

Proof:  This corollary’s hypotheses apply to  -f(-x)  as well as to  f(x) ,  so the assumptions that  
x > z  and  f(x) > 0  simplify the proof without loss of generality.  Then the double integral at the 
end of  Theorem 10.1’s  proof proves that  N(x) ≥ N(W(x)) ,  as claimed.  END OF PROOF.

The corollaries above motivate the following procedure whenever  ±f  satisfies their assumptions:

Whenever  f(xn)/f(xn-1)  is not small,  say whenever  f(xn)/f(xn-1) > 0.1 ,  compute
xn+1 := W(xn)  instead of  N(xn)  unless doing so would escape from a straddle
known to enclose only one zero of  f .

Table 2:   For    f(x) := (x + 1)3 + p·x – 1 ,     f" (-1) = f(0) = z = 0 . 

p = 6 p = 300

Iterates of  N Iterates of  W Iterates of  N Iterates of  W

x0 100 100 100 100

x1 66.3204 32.6407 65.6894 31.3788

x2 43.8610 10.1386 42.5040 6.20835

x3 28.8788 2.51426 26.5975 -3.60146

x4 18.8773 -0.156432 15.3795 -0.170196

x5 12.1906 0.00808341 7.22709 0.00025504

x6 7.70709 0.00002178 1.81222 0.000000001

x7 4.68552 0.00000000 0.067204 0

x8 2.63747 0 0.00004666

x9 1.25975 0.000000000

x10 0.410861 0

x11 0.0538886

x12 0.00096709

x13 0.000000312

x14 0.000000000

•

•

•••

•

• x

f(x)

N(x)z
W(x) N(W(x))

Illustrating  Corollary 10.4
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The doubled  Newton  iteration  xn+1 := W(xn)  works so well in the circumstances for which it 
was intended that it encourages us to consider a doubled  Secant  iteration too.  There are two 
ways to double the  Secant  iterating function

S(x, X) :=  x - f(x)/f†(x, X)  =  x - f(x)·(X-x)/(f(X) - f(x)) .
One is the obvious way:

$(x, X) :=  x - 2·f(x)/f†(x, X) .
The unobvious way applies  Secant  iteration to the equation  √f = 0  to get an iterating function

R(x, X) :=  x - (X-x)/( √(f(X)/f(x) ) - 1 ) .
Both doubled iterations work.  The latter is faster because,  if  z < x < X  and so  0 < f(x) < f(X) ,  
then  R(x, X) < $(x, X) < S(x, X) ,  as is easy to verify.  Therefore we concentrate upon  R(…) .

Suppose the hypotheses of  Theorem 10.1  are in force:
      f'(y) = 0 ≥ f(y)  at the left-hand end of a finite interval  y ≤ x ≤ x0  throughout 
      which  f"   is a positive nondecreasing function;  also assume  f(x0) > 0 ,  so the 
      equation  “ f(z) = 0 ”  has just one root  z ≥ y  in that interval.

The procedure that follows that theorem is now supplanted by this:
      Starting from  x0 > x1 > z ,  …,  iterate  xn := R(xn-1, xn-2) ,  thereby descending 
      faster than  Secant  iteration would,  until  xn < z   ( detected when  f(xn-1)/f(xn) < 0 ), 
      and then revert to   xn+1 := S(xn, xn-1) .

Once again,  as in  Theorem 10.1 part 3), we seek reassurance that the last doubled–iterate  xn  
cannot overshoot  z  so far as might set subsequent  Secant  iterates back behind  S(xn-1 , xn-2) .

Conjecture 10.5:  Assume the hypotheses of  Theorem 10.1  again, and also the 
definitions of  S  and  R ;  then  S(S(R(u, w), u), R(u, w)) ≤ S(u, w)  if  z < u < w .

Discussion:  Intermediate Value Lemma 9.1  lets us define  v(u, w)  to lie strictly between  u  and  
w  and satisfy  N(v(u, w)) = S(u, w) > z  whenever either  y ≤ w < u < z  or  z < u < w .  This  
v(…)  is defined uniquely because  N(x)  is monotone decreasing when  y ≤ x ≤ z ,  increasing 
when  z ≤ x .

      THERE ARE NUMEROUS DETAILS STILL TO BE SUPPLIED HERE.
?????????????????????????????????????????????????????????????????????????

Corollaries:

Convergence of  f(xn)  to  0  is faster than  1/3n  for  $   or  1/4n  for  R .
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Example:

???????????????????????????????????????????????????????????????????

Work still to be rewritten out:

What to do when the search for a zero of  f  encounters a value of  x  outsude the domain of  f ?  
See pp. 23-5 of  <www.eecs.berkeley.edu/~wkahan/Math128/LecRlRtF.pdf> .

§11.  All Real Zeros of a Real Polynomial.  Finding only real zeros of a real polynomial of high 
degree is applicable to  Tarsky  resolution of rational (in)equalities,  geometrical computation,  
construction of numerical  ODE  formulas.  Sturm Sequences  ( Turnbull [1952])  are costly to 
compute or vulnerable to roundoff or both.  A better way using  Rolle’s Theorem  and running 
error–bounds is attractive when the real zeros are far fewer than the polynomial’s degree,  as is 
usually the case.

§12.  Zeros of a Real Cubic.  How to find the zeros of a real cubic quickly and accurately using  
Newton’s  iteration from an artfully chosen starting guess.

§13.  Error  Bounds for Computed Roots  using  §A5:  Running Error Bounds

Table 3:   For    f(x) := 3ex - e3 x  

Iterates of  S Iterates of  R

x0 9 9

x1 8 8

x2 7.427732 6.479176

x3 6.706504 5.205631

x4 6.057988 4.250802

x5 5.407616 3.166181

x6 4.800048 2.812781

x7 4.243171 2.976582

x8 3.766543 3.003603

x9 3.396594 2.999936

x10 3.154697 3.000000

x11 3.037465 3

x12 3.004024

x13 3.000111

x14 3.000000



File: RealRoots           Lecture Notes on Real Root-Finding          version of  March 1, 2016 12:58 pm

Notes for  Math. 128A & B               Work in Progress:  NOT READY FOR DISTRIBUTION                 Page  53/67

§ççç.  Conclusion:
These notes were written at the behest of two mathematicians who inhabit my body.  The pure 
mathematician savors surprises.  The applied mathematician tries to avoid them by predicting how 
computational procedures will behave.  Both mathematicians rejoice when they prove a  
procedure to be surprisingly predictable.  But the latter’s joy must be short-lived for two reasons.  
First,  compared with the procedures they explain,  our proofs are too long;  they augur ill for our 
understanding of more complicated procedures.  Second,  more complicated procedures will arise 
inevitably from attempts to circumvent limitations in the simple procedures we have come to 
understand at last.  Thus,  these notes contain the seeds of their own obsolescence.

We say  “mature”  when we wish to avoid the pejorative  “obsolescent”.  The material in these 
notes will soon be mature if it isn’t already.  The corresponding material in most textbooks is too 
mature.  Bringing textbooks up to date is a formidable challenge compounded by limitations upon 
space and time,  both the author’s and the readers’.  Until a brave author rises to this challenge,  
the burden of these notes will continue to be added to my students’ load.  They and I pray that 
their load will be lightened soon.

Surely  Sharkovsky’s Theorem 5.1  deserves to appear in texts.  So does Corollary 8.3  and an 
example of its application,  if not also  Theorem 8.2,  because they suggest how to reformulate 
equations to make them easier to solve by  Newton’s  and  Secant  iteration.  Theorem 9.2  
deserves at least a footnote,  more if someone finds a shorter proof,  because it justifies the use of  
Secant  iteration instead of  Newton’s.  Error analysis,  dull but necessary,  deserves more space in 
texts too;  without it,  who can tell when to quit iterating or how much the result is worth?
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§A1.  Appendix:  Divided Differences Briefly
This topic is discussed at length in  Numerical Analysis  texts like  Conte & de Boor [1980],  but 
usually in the context of  Interpolation  and always in a different notation.  For an ancient subject 
the persistence of diverse notations suggests that none are satisfactory and licenses us to introduce 
another notation more nearly analogous to a widely used notation for derivatives.  Inspired by 
formulas attributed to  Hermite,  we define for any sufficiently smoothly differentiable function  
f(x)  its  First Divided Difference 

f†(u, w) :=  ∫01 f'( u + (w-u)t ) dt 
and its  Second Divided Difference 

f††(u, v, w) :=  ∫01 ∫0t  f" ( u + (v-u)t + (w-v)s ) ds dt .

For positive integers  k  generally,  the  kth  divided difference is the uniformly weighted average 

of the  kth  derivative over a simplex,  the convex hull of  k+1  arguments,  then divided by  k! .  
However  k > 2  will not be needed in these notes.  In general the argument  x  of  f(x)  could be a 
vector but in these notes it will almost always be a real scalar.  Then that simplex,  the convex hull 

of the  k+1   real arguments,  degenerates into an interval of the real  x–axis  over which the  kth  
divided difference becomes a positively  ( not necessarily uniformly )  weighted average of the  

kth  derivative divided by  k! .  For instance,  if  u < v < w  then it follows that

f††(u, v, w)  =  ( ∫uv (t -u)f" (t ) dt /(v-u)  +  ∫vw (w-t )f" (t ) dt /(w-v) )/(w-u)  .

Because it is an average,  the  kth  divided difference lies between the largest and least values taken 

in that interval by the  kth  derivative divided by  k! .  This  Mean Value  property figures in nearly 
all applications of divided differences in these lecture notes.  Divided differences turn up 
elsewhere as coefficients in  Newton's Interpolating Polynomials,  which see below,  or during 
root–finding or optimization,  or when differential equations are solved using finite differences.

Because the argument  x  of  f(x)  is a scalar,  the foregoing integrals can always be  “ simplified ”  
into expressions with no integral signs.  For instance,

f†(u, w)  = ( f(u) - f(w) )/(u - w) if  w ≠ u ,
  =   f'(u) if  w = u ,

  =   f†(w, u)        ( arguments’ order doesn’t matter )
  =   f'(v)   at some  v  strictly between  u  and  w  if they are unequal.

The first two equations above constitute an alternative definition of  f†  in so far as they describe it 
independently of whether  f'   exists strictly between  u  and  w ;  and then the last equation turns 
out to be valid so long as  f'(x)  does exist at every  x  strictly between  u  and  w ,   and  f(x)  is 
continuous at  u  and  w ,  even if  f'   is not integrable.  Similarly the next two lines describe or 

alternatively define  f††  independently of whether  f"   exists:

     f††(u,v,w) =   ( f†(u,v) - f†(v,w) )/(u-w) if   w ≠ u ,

=   ∂f†(u,v)/∂u  =  ( f'(u) - f†(u,v) )/(u-v) if   w = u ≠ v
=   f(u)/((u-v)(u-w)) + f(v)/((v-w)(v-u)) + f(w)/((w-u)(w-v))     if  u ≠ v ≠ w ≠ u

=   f††(v,w,u)  =  f††(u,w,v)  =  …            ( arguments’ order doesn’t matter )

=  f" (y)   at some  y  between  min{u,v,w}  and  max{u,v,w}  if  f"   exists ... .

( Don’t confuse  f††(u, v, w)  with  f'†(u, w) = (f'(u) - f'(w))/(u-w) = f††(u, u, w) + f††(u, w, w) .)

1
2
---
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Strictly speaking,  we should write  f†({u, w})  instead of  f†(u, w)  because it is best construed as 
a function of an unordered pair  {u, w}  that replaces the single argument  x  of  f(x) .  Similarly 

we should write  f††({u, v, w})  instead of  f††(u, v, w) .  The extra braces  {…}  are superfluous in 
divided differences of functions of one argument,  but a necessary nuisance in partial divided 
differences of functions of more than one argument.  For instance,  given any function  g(x, y)  of 

two scalar arguments,  we must distinguish   g†({u,w}, y) :=  ( g(u,y) - g(w,y) )/(u-w)   from   

g†(x, {u,w}) :=  ( g(x,u) - g(x,w) )/(u-w)   by our placement of the braces to show which argument 

was split into a pair;   ∂g(x,y)/∂x = g†({x,x}, y)  and  ∂g(x,y)/∂y = g†(x, {y,y})  are distinguished 
by the same imperative.  Similarly the mixed partial divided difference

g††({t,u}, {v,w}) :=  ( g(t,v) - g(u,v) - g(t,w) + g(u,w) )/((t-u)(v-w))
has to be distinguished from

g††(t, {u,v,w}) :=  g(t,u)/((u-v)(u-w)) + g(t,v)/((v-w)(v-u)) + g(t,w)/((w-u)(w-v))

much as we distinguish   ∂2g/∂x∂y = g††({x,x}, {y,y})   from   ∂2g/∂y2 = 2g††(x, {y,y,y}) .  ( The 

factor  2  will be vindicated in a moment;  and if discontinuity invalidates  ∂2g/∂x∂y = ∂2g/∂y∂x  it 

may render  g††({x,x}, {y,y})  ambiguously dependent upon the order of limiting processes.)

Return to functions  f(x)  of one argument.  A composed function  f(x) = h(p(x))  has a derivative  

f'(x) = h'(p(x)) p'(x)  derived from a  Chain Rule  that works analogously for divided difference  

f†({u,w}) = h†({p(u), p(w)}) p†({u,w}) .  And,  just as derivatives compound to form higher order 
derivatives like  f" (x) = (f'(x))'  ,  divided difference operations compound to form higher order 

divided differences.  For instance,  the alternative definition of  f††  above amounts to

     f††({u, v, w})  =  f††({{u,v}, w})  =  f ††({u, {v,w}})  =  f ††({v, {u,w}})  ;
in other words,  every second divided difference is a first divided difference of a first divided 
difference in as many as three ways.  Since derivatives are limiting values of divided differences,

∂f†({u,w})/ ∂u = f††({{u,u},w}) = f ††({u,u,w})   and   ∂f†({u,w})/ ∂w = f††({u,w,w})
provided the derivatives in question exist.  Setting  u = v = w  vindicates the factor  2  in

f" (v) = df†({v,v})/dv =  f ††({{v,v},v}) + f ††({v,{v,v}})  = 2f ††({v,v,v})  .

Like differentiation,  divided differencing maps certain families of functions into themselves.  
Divided differences of polynomials are polynomials,  albeit with more arguments.  Divided 
differences of rational functions of scalar arguments are rational.  Likewise algebraic.  Irrational 
algebraic functions are handled by implicit divided differencing just like implicit differentiation,  
and derived in the same way from the  Chain Rule.  With the aid of that rule,  any algorithm that 
computes an algebraic function  f(x)  can be expanded mechanically into a similar algorithm that 

computes divided difference  f†(u, w) = (f(u) - f(w))/(u-w)  at almost the same cost as computing  

f(u)  and  f(w)  but without ever dividing by  u-w .  A simple example is  √†(u, w) = 1/(√u + √w) .  
Ideally such expansions should be performed on request by computerized algebra software like  
Derive,  Macsyma,  Maple  and  Mathematica,  which ought to manipulate divided differences as 
well as derivatives,  but they don’t.  Consequently the computing public remains largely unable to 
exploit a valuable but little known application of divided differences,  namely the suppression of 
numerical instability attributable to systematic cancellation.
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Many a numerical computation turns out to be the computation of a divided difference in disguise.  

Attempts to compute  f†(u, w)  naively from the obvious formula  (f(u) - f(w))/(u-w)  can be 
thwarted by roundoff and then cancellation when  u  is too near  w .  If nonzero,  the divisor  u - w  
is no problem because its cancellation occurs without error.  But the computed value of  f(u)  is 

generally rounded to,  say,  f(u) + ∆f(u) ,  and therefore the value computed naively for  f†(u, w)  

when  f(u) - f(w)  would mostly cancel turns out to be   f†(u, w) + (∆f(u) - ∆f(w))/(u - w)  instead,  
overwhelmed by the last quotient if  u - w  barely exceeds roundoff.  For example consider the 

solution of a quadratic equation  Az2 - 2Bz + C = 0 .  Its solutions  z  are  ( B ± √(B2 - AC) )/A .  

The solution of smaller magnitude,  z := C sign(B) √†(B2, B2 - AC) ,  is vulnerable to roundoff 

and cancellation when  |AC| << B2  unless the divided difference  √†  is  “ expanded ”  as was 

mentioned above to yield  z = C/(B + sign(B) √(B2 - AC)) ,  which stays accurate if  |AC| << B2
 .

Sometimes the accuracy of transcendental expressions can be insulated from cancellation with the 
aid of ancient formulas motivated by divided differences.  For example,  (tan(u) - tan(w))/(u - w)  

is best computed from the formula  tan†(u, w) = (1 + tan(u) tan(w)) tan†(u - w, 0)  when  u  nearly 
equals  w .  Sometimes an inverse divided difference can render cancellation harmless.  For 

instance,  because  ln†(v, 1) = ln(v)/(v - 1)  does not suffer from cancellation when  v  nearly 

equals  1 ,  the computation of  exp†(u, 0) = (exp(u) - 1)/u  can be protected from cancellation in 

the numerator by the use of the formula  exp†(u, 0) = 1/ln†(exp(u), 1)  instead.  These 
transcendental examples work because they exploit the few occasions when transcendental 
functions take simple rational values at rational arguments.

In general,  transcendental functions afflict divided differences but not derivatives in two ways.  
First,  many transcendental functions have simple  ( perhaps algebraic ) derivatives but no simple  

“  expanded ”  divided differences undefiled by cancellation.  For example,  d2 ln(v)/dv2 = -1/v2 ;  

but no known simple finite formula for  ln††(u, v, w)  stays accurate no matter how  u,  v  and  w  
approach each other.  Secondly,  the divided difference of a non–polynomial rational function of a  
vector  argument generally involves logarithms and/or arctangents.  For example,  let column 

vectors  x :=   and  u :=  ,  and let  f(x) := y/z ;  then its derivative  f'(x) = [1/z,  -y/z 2]  is a 

rational row vector but  Hermite’s  formula for its first divided difference yields a transcendental

      f†(x, u) = [ ln†(z,w),       (y-v)(ln††(z,z,w) - ln††(z,w,w)) - (y + v)/(zw) ] .

 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Newton’s Interpolating Polynomials  approximate functions of scalar or vector arguments:

   f(x) :=  f(u) + f†(u,x)(x-u)  ,

 =  f(u) + ( f†(u,v) + f††(u,v,x)(x-v) )(x-u)  ,

 =  f(u) + ( f†(u,v) + ( f††(u,v,w) + f†††(u,v,w,x)(x-w) )(x-v) )(x-u)  ,   …  etc.

The polynomial in  x  obtained by substituting  0  for  f†††  interpolates  ( matches )  f(x)  at  x = u ,  
x = v  and  x = w ;  elsewhere it differs from  f(x)  by a  remainder  term  f"' (y)(x-w)(x-v)(x-u)/6  
in which  y  falls somewhere inside the convex hull of { u, v, w, x } .  Interpolation is  osculatory  
if two of  u, v, w  coincide. This polynomial’s degree is minimal only for a scalar argument  x .

y

z

v

w
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§A2.  Appendix:  Functions  of Restrained Variation
This digression concerns a way to sum an undulating function’s fluctuations.  The  Total Variation  
of a real function  Q(x)  over a closed finite interval  u ≤ x ≤ w  is defined to be

 Vu
w Q  :=  ∫uw |dQ(x)|  =  ∫uw |Q'(x)|dx

though the last equation is valid only if  |Q'(x)|  exists and is integrable.  In general,  a function 
whose  Total Variation  over some interval is finite is called  “ a function of  Bounded Variation ”  
thereon.  Such functions figure in  Measure Theory,  Stieltjes  integrals,  and  Fourier  series.  They 
can have none but jump discontinuities,  and at most countably many of these  ( Bartle [1976] ).  
In particular,  a derivative of bounded variation must be a continuous derivative.

Obviously  Vu
w Q ≥ |Q(w) - Q(u)| ,  with equality just when  Q  is monotonic.  Where  Q(x)  is 

continuous,  so is  Vu
x Q .  Wherever  Q(x)  jumps,  so do   Vu

x Q   and   Vx
w Q ,  and by the same 

amount,  but the former always increases and the latter always decreases as  x  increases.  Hence  

Total Variation  is  Additive  over abutting sub–intervals:  if  u ≤ x ≤ w  then  Vu
x + Vx

w = Vu
w

 .  It 

is a  Semi–Norm  because it satisfies the  Triangle Inequality  0 ≤ Vu
w (P±Q) ≤  Vu

w P + Vu
w Q .

If  Vu
w Q < ∞  and  u ≤ x ≤ w  then  Q(x)  admits infinitely many  Splittings   into a difference  

Q = P - M  between two non–decreasing functions   P(x) :=  ( R(x) + Q(x) + Vu
x Q - Vu

w Q )  

and   M(x) :=  ( R(x) - Q(x) - Vx
w Q + Vu

w Q )   in which  R  can be  any  non–decreasing 

function.  Conversely,  any non–decreasing  P  and  M  determine both  Q := P - M  of bounded 

variation and the function  R(x) :=  ( P(x) + M(x) - Vu
x (P - M) ) + ( P(x) + M(x) + Vx

w (P - M) )  

that appears in  Q ’s  splitting;  this  R  is non–decreasing because  P + M  varies faster than  P - M .

If  Q  and  R  are continuous,  so are  P  and  M ,  and  vice-versa.  If  Q  and  R  have integrable 
derivatives,  so do  P  and  M ,  and  vice-versa.  But when  Q'   is so violently oscillatory that  

Vu
w Q = +∞  then  Q  is unsplittable,  as are examples like  Q(x) = x2 cos(1/x2)  around  0 .

Among functions  Q  of bounded variation,  the ones that will interest us have a splitting  
Q = P - M  that is special because all three of  Q,  P  and  -M  have the same sign and keep it 
throughout the interval  u ≤ x ≤ w .  We shall call such a function  Q  “ a function of Restrained 
Variation.”

Lemma A2.1:  A Function of Restrained Variation
Q  can be split into a difference  Q = P - M  between two non–decreasing functions  
P  and  M ,  one non–negative and the other non–positive,  throughout the closed 

finite interval  u ≤ x ≤ w  if and only if  Vu
w Q ≤ |Q(u) + Q(w)| .

Proof:  If necessary,  replace  Q  by  -Q  to get  Q ≥ 0 .  If  r := Q(u) + Q(w) - Vu
w Q ≥ 0  then 

choose any non–decreasing  R ≥ 0  and  P(u) ≥ 0  and  M(w) ≤ 0  subject only to the constraint   
2P(u) - 2M(w) + R(w) - R(u) = r ,  and construct functions

1
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P(x)  :=  P(u)  +  ( Vu
x Q  + Q(x) - Q(u) +  R(x) - R(u) )  ≥ 0 ,    and

M(x) :=  M(w) - ( Vx
w Q + Q(x) - Q(w) + R(w) - R(x) )  ≤ 0 ;

evidently they are non–decreasing and satisfy  P(x) - M(x) = Q(x)  too as desired.  If  r = 0  this 
splitting is determined uniquely with  P(u) = M(w) = R(x) - R(u) = R(w) - R(x) = 0 .  On the other 
hand,  if  a splitting  Q = P - M  already exists with non–decreasing  P  and  M  and  P ≥ 0 ≥ M ,  

then this splitting also determines the non–decreasing  R(x) := P(x) + M(x) - Vu
x Q + Vx

w Q  

as explained before the lemma;  therefore  0 ≤ R(w) - R(u) = P(w) + M(w) - P(u) - M(u) - Vu
w Q  

whence   Vu
w Q ≤  Q(w) +2M(w) - 2P(u) + Q(u)  ≤ Q(u) + Q(w)   as claimed.  END OF PROOF.

What are here called  “ functions of restrained variation ”  are also called  “ tame ”  by  Aharoni et 
al. [1992],  who characterized them by means of a discretized version of the foregoing lemma,  
which now shortens the proof of their characterization:

Lemma A2.2:  Tame Functions  ( Aharoni et al. [1992] )
Q(x)  is a nonnegative function of restrained variation over the interval  u ≤ x ≤ w  
if and only if   Q(x0) - Q(x1) + Q(x2) - … - Q(x2k-1) + Q(x2k) ≥ 0   for every 
integer  k ≥ 0  whenever  u ≤ x0 ≤ x1 ≤ x2 ≤ ... ≤ x2k-1 ≤ x2k ≤ w .

Proof:  If  Q = P - M  for some non–decreasing  P ≥ 0  and  M ≤ 0 ,  then every alternating sum

Q(x0) + ∑j=1
2k (-1)jQ(xj) =  P(x0) + ∑j=1

k (P(x2j) - P(x2j-1)) + ∑j=0
k-1 (M(x2j+1) - M(x2j)) - M(x2k)

is nonnegative term–by–term,  which confirms the lemma’s  “ only if ”  part.  Except for setting  
k = 0  to prove  Q ≥ 0 ,  the  “if”  part is harder to prove.  Its proof is easier when  Q(x)  takes its 
locally extreme values at only finitely many points in the interval  u ≤ x ≤ w ,  including its 
endpoints among them.  Then we assign  x0 := u ,  x2k := w ,  and for  0 < j ≤ k  we set all other  
x2j  to be all consecutive points where  Q2j := Q(x2j)  is locally minimal,  and  x2j-1  to be all 
consecutive points where  Q2j-1 := Q(x2j-1)  is locally maximal;  these points interlace,  including 
possibly  x1 = u  if  Q0 = Q(u)  is locally maximal  and/or  x2k-1 = w  if  Q2k = Q(w)  is locally 
maximal.  Because the lemma’s alternating sums are all nonnegative,  we soon find that

  Q(u) + Q(w) ≥  (Q1 - Q0) + (Q1 - Q2) + (Q3 - Q2) + … + (Q2k-1 - Q2k-2) + (Q2k-1 - Q2k)  =  Vu
w Q .

Applying  Lemma A2.1  completes the proof for the case when  Q  has just finitely many extrema. 
When  Q  has infinitely many extrema the last equation is invalid but salvaged by taking its 
left–hand side’s supremum over all partitions  u = x0 ≤ x1 ≤ x2 ≤ ... ≤ x2k-1 ≤ x2k = w .  END OF 

PROOF.

Restrained variation has only one consequence significant for  Newton’s  or  Secant  iterations;  it 
is the following corollary,  whose now nearly obvious proof is left to the reader:

Corollary A2.3:   A function  Q  of restrained variation over an interval  Ω  is also 
of restrained variation over every subinterval of  Ω ,  and is sum–topped thereon.

( “  Sum–topped ”   is case  k = 1  of  Lemma A2.2.)
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This corollary’s converse is false:  A function can be of restrained variation over two abutting 
intervals and yet not over their union.  A function can be sum–topped but not of restrained 
variation;  Q(x) := 3 + cos(x)  is an example over any interval wider than  2π .  But a sum–topped 
unimodal function is of restrained variation.  ( A function  unimodal  over an interval  Ω  has at 
most one extremum,  maximum or minimum,  strictly inside  Ω .)

Our interest in functions of restrained variation is now mainly historical.  In the late  1970s  they 
were the first non–monotonic functions to be recognized as sum–topped;  and in practice they are 
still easier to recognize as such from their splittings than are most other sum–topped functions.  
Their relevance to  Newton’s  and  Secant  iteration is apparent in  Corollary 8.3.
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§A3.  Appendix:  Projective Images
The redefinition  S(x, x) := N(x)  connects  Newton’s  iteration  xn+1 := N(xn) := xn - f(xn)/f'(xn)  

to  Secant  iteration  xn+1 := S(xn, xn-1) := xn - f(xn)/f
†(xn, xn-1) ,  but not so tightly as they are 

connected by a shared family of invariants under certain  Projective  transformations.  In general,  
plane projective transformations are those that map straight lines to straight lines.  Thus they map 
tangents to tangents and secants to secants,  which is why some of them are pertinent to  Newton’s  
and  Secant  iteration.  The pertinent ones constitute a four–parameter family of projective maps 
each of which takes a pair  {x, f(x)}  to a pair  {X, F(X)}  in such a way that both  Projective 
Images  f(x)  and  F(X)  are linear functions of their respective arguments,  or else neither are.  
Each of these maps is determined by the values of four constants   ß,  µ,  b  and  m  chosen almost 
arbitrarily subject to two inequality constraints:

Constraint I: ç :=  ßm + bµ  ≠ 0 ,      and
Constraint II: b/m  does not lie strictly inside the interval  Ω

in which we seek a zero  z  of  f .
After these constants have been chosen,  the projective map  {x, f(x)} =› {X, F(X)}  and its 
inverse  {x, f(x)} ‹= {X, F(X)}  are defined thus:

X = X(x) := (µx + ß)/(b - mx) , F(X) := f(x(X))/(b - mx(X)) = f(x(X))(µ + mX)/ç ,
x = x(X) := (bX - ß)/(µ + mX) , f(x) = F(X(x))(b - mx) = F(X(x))ç/(µ + mX(x)) .

In the last two lines the last equation is derived from the first,  which is a  Möbius  
( Bilinear–Rational )  transformation,  with the aid of a valuable identity

      (b - mx)(µ + mX)  =  ç  ≠  0 .
It and  Constraint II  prevent  b - mx  from reversing sign while  x  runs through  Ω ,  and prevent  
µ + mX  from reversing sign while  X  runs through the interval  X(Ω) .  Whether this  Möbius  
map preserves or reverses order in those intervals depends upon the sign of   ç  in  Constraint I  
because the same sign turns up in

dX/dx = X' (x) = ç/(b - mx)2    and     dx/dX = x'(X) = ç/(µ + mX)2  .

What do projective images  F  and  f  have in common?   F  has as many zeros strictly inside  X(Ω)  
as  f  has strictly inside  Ω .  ( A zero at an end of an interval can evaporate if that end is mapped to  
∞ ;  for example consider  f(x) := x  and  X(x) := -1/x  for  x ≥ 0 ,  whence  F(X) = -1  for  X ≤ 0 .)  
Similarly,  F  and  f  have the same number of poles strictly inside their intervals.  Therein  F  also 
has as many  Inflexion–points  ( where  F"  = 0 )  and  Notches  ( where  F"  = ∞ )  as  f  has since   

F" (X) = f" (x(X))ç/(µ + mX)3 .  Other properties  F  and  f  share are less obvious.

Under composition,  the projective transformations form a  non–Abelian  ( non–commutative )  
Group  isomorphic to the multiplicative group of nonsingular  2-by-2  matrices.  In other words,  
suppose  X j(x) := (µjx + ßj)/(bj - mjx)  for  j = 1, 2, 3  are the  Möbius  parts of three projective 
transformations of which the third is composed from the first and second:   X3(x) = X2(X1(x)) ;  

then      and   ç3 = det( ) = ç2 ç1 ≠ 0 .  In this isomorphism 

the projective map associated with the constants  {ß, µ, b, m, ç = bµ + ßm}  has an inverse that 
must be associated with constants respectively  {-ß/ç, b/ç, µ/ç, -m/ç, 1/ç} .  Every projective map 

b3 m– 3

β3 µ3

b2 m– 2

β2 µ2

b1 m– 1

β1 µ1

⋅=
b3 m– 3

β3 µ3
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can be decomposed into a sequence of at most five maps each selected from a subgroup listed in 
the following table:

(*  The  Reciprocal  subgroup has two elements including an  Identity  that changes nothing.)

Often the easiest way to prove an assertion true for all projective maps is to prove it for each 
subgroup separately and then infer it for their compositions.  Often the assertion is unobvious only 
for the  Reciprocal  subgroup.  Such is the case for the next two assertions:

Lemma A3.1:  Æf :=  ((f3 f" )')2 /(f5 (f" )3)  =  (3 f'  f"  + f f"' )2 /(f (f" )3)   is 
invariant for projective maps  {x, f(x)} ‹=› {X, F(X)}  of nonlinear functions;  in 
other words,  nonlinear projective images   f(x)  and  F(X)  satisfy  Æf(x) = ÆF(X)  
after substitution of the projective map’s  Möbius  part,  say  X = X(x) .

Lemma A3.2:  Newton’s  iterating function  Nf(x) := x - f(x)/f'(x)    and  Secant  
iterating function  Sf(x, y) := x - f(x)(x-y)/(f(x) - f(y))  are constructed from  f  by 
operators  N  and  S  that commute with projective maps  {x, f(x)} ‹=› {X, F(X)} ;  
in other words,  NF(X(x)) = X(Nf(x))  and  SF(X(x), X(y)) = X(Sf(x, y))  wherein  
X = X(x)  is the projective map’s  Möbius  part.

The tedious but easy proof of both lemmas is left to the reader.  For example,  a  
Negative–Reciprocal  projective map  {x, f(x)} ‹=› {X, F(X)}  defined by  X := -1/x  and  
F(X) := Xf(-1/X)  has  NF(X) = X - F(X)/F'(X) = X - Xf(-1/X)/( f(-1/X) + f'(-1/X)/X ) = -1/Nf(x)  
as claimed in  Lemma A3.2.  It implies that whether the iterations converge or meander is another 
invariant of projective maps and motivates us to learn more about them.

The  Möbius  part of a projective map is determined by what it does to any three distinct values  u, 
v, w  of  x .  It must map them to some three distinct values  U, V, W  respectively of  X ,  and  vice 
versa.  It can be constructed from these triples by solving a bilinear  Cross Ratio  equation like

(x - u)(v - w)(X - W)(V - U)  =  (X - U)(V - W)(x - w)(v - u)
for either  X = X(x)  or  x = x(X) ,  thereby determining the constants  ß, µ, b  and  m  except for a 
common factor.  ( One member of the triple  {u, v, w}  can be  ∞  if the cross–ratio equation is 
replaced by an appropriate limit;  similarly for  {U, V, W} .)  The sign of  ç =  ßm + bµ ,  which 
determines whether the  Möbius  transformation preserves or reverses order,   is the same as the 
sign of

        (u-v)(v-w)(w-u)/((U-V)(V-W)(W-U))  =  ((b - mu)(b - mv)(b - mw))2/ç3 

Table 4:  Subgroups of  Projective Maps  {x, f} ‹=› {X, F} 

Subgroup Name X(x) x(X) F(X) ß µ b m ç

Scaling x X f(X)/b 0 b b ≠ 0 0 b2

Dilation µ x X/µ f(X/µ) 0 µ ≠ 0 1 0 µ

Translation x + ß X - ß f(X-ß) ß 1 1 0 1

Reciprocal* 1/x 1/X X f(1/X) 1 0 0 -1 -1
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if both triples  {u, v, w}  and  {U, V, W}  are entirely finite.  Moreover  Constraint II, “ b/m  does 
not lie strictly inside the interval  Ω ”,  which ensures that  X(Ω)  be an interval too,  requires both 
triples  {u, v, w}  and  {U, V, W}  to have either the same or the opposite linear order whenever  u,  
v  and  w  lie in  Ω  or,  equivalently,  whenever  U,  V  and  W  lie in  X(Ω) .

Many a theoretical problem is simplified by a projective map that transforms a finite interval  Ω  
into a semi–infinite  X(Ω) .  One example is the proof of the  Intermediate Value Lemma 9.1.  
Here is another example designed to show why the continuity of  Newton’s  iterating function  N  
is an hypothesis necessary for the conclusion of  Theorem 9.2.

•Example A3.3:  Twice differentiable function  f  will strictly increase throughout a finite interval  
Ω .  From any starting point in  Ω  Newton’s  iteration  xn+1 := N(xn)  will always converge in  Ω  
to a zero  z  of  f .  On the other hand,  Secant  iteration won’t converge from some starting points 
in  Ω .  This ostensible violation of  Theorem 9.2  merely violates one of its hypotheses;  this 
example’s  N  is discontinuous at  z .  This example  f(x)  is the projective image of a simpler  F(X)  
constructed over the semi–infinite interval  -∞ ≤ X ≤ X0 := 1/ln(2) = 1.442695  thus:

For  n = 0, 1, 2, 3, …  in turn let   X3n := 1/ln(n+2) ,  X3n+1 := (X3n + X3n+3)/2 ,  X3n+2 := -∞ .  
Evidently    X0 ≥ X3n > X3n+1 > X3n+3 > 0   and    X3n - 2X3n+3 + X3n+6 > 0 .  Next  define

 F(X) :=  X exp(1/X)    if  X < 0 ,
:=  0    if  X = 0 ,
:=  (X3n - X3n+3)/2    if  X3n+1 ≤ X ≤ X3n ,   and
:=  pn + qn T((2X - X3n+1 - X3n+3)/(X3n+1 - X3n+3))    if  X3n+3 ≤ X ≤ X3n+1 ,

where
   pn :=  ( F(X3n+1) + F(X3n+3) )/2  =  (X3n - X3n+6)/4  > 0 ,
   qn :=  ( F(X3n+1) - F(X3n+3) )/2  =  (X3n - 2X3n+3 + X3n+6)/4  > 0 ,   and
  T(t) :=  tanh(tan(πt/2)) if   -1 < t < 1 ,

:=  sign(t) otherwise.
T  is infinitely differentiable with  T'(t) > 0  for  -1 < t < 1  and  T'  = 0  otherwise;  T(±1) = ±1 .  
Consequently the graph of  F(X)  over  0 < X ≤ X0  looks like a rising staircase with rounded 
corners and risers and treads that shrink to zero as  X → 0+ .  Between subintervals over which  F 
is constant are subintervals  X3n+3 < X < X3n+1  over which  F'(X) > 0  and  F(X)  increases 
monotonically from  F(X3n+3) =  (X3n+3 - X3n+6)/2  to  F(X3n+1) = F(X3n) = (X3n - X3n+3)/2   as  
X  increases.  In the middle of each such subinterval the derivative  F'   rises to its local maximum  
(π/2)(X3n - 2X3n+3 + X3n+6)/(X3n - X3n+3) ,  which approaches  0  roughly like  1/n  as  n → +∞ .  
Consequently  F(X) → 0+  and  F'(X) → 0+  roughly like  exp(-1/X)  or faster as  X → 0+ .  It 
soon follows that  F(X)  is twice differentiable wherever it is defined,  namely  -∞ ≤ X ≤ X0 .

The completed definition of  Newton’s  iterating function  NF(X) := X - F(X)/F'(X) ,  including  
NF(0) := 0 ,  NF(-∞) := -1 ,  and  NF(X) := -∞  when  X3n+1 ≤ X ≤ X3n ,  remains discontinuous at  
0+  because  NF(X)  runs from  -∞  up to a small positive value and back to  -∞  as  X  runs 
through each subinterval  X3n+3 ≤ X ≤ X3n .  None the less,  Newton’s  iteration converges to  
Z = 0  ultimately monotonically and usually slowly from every starting iterate in the domain of  
F .  But  Secant  iteration need not converge.
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The completed definition of the  Secant  iterating function  SF(X, Y) := X - F(X)/F†(X, Y)  has to 
include the limiting values  SF(X, X) := NF(X) ,  SF(X, -∞) := X - F(X) ,  and  SF(X,Y) := -∞  
when  F(X)-F(Y) = 0 ≠ X-Y .  Then  Xn+1 = S(Xn, Xn-1)  for  n = 1, 2, 3, …  by design.   Starting 
from  X0  and  X1 ,  every third  Secant  iterate  X3n+2 = -∞ ;  thus  Secant  iteration does not 
converge although the subsequence of finite  Secant  iterates converges slowly to  Z = 0 .

To transform the semi–infinite interval  -∞ ≤ X ≤ X0  into a finite interval  -1 ≤ x ≤ 2.5887   set  
x = x(X) := X/(2-X) ,  or  X = X(x) = 2x/(1+x) ,  and  f(x) := (1+x)F(X(x)) .  This projective map 
turns  F  into a twice differentiable strictly increasing function  f  while preserving the iterations’ 
(non)convergence;  Newton’s  iteration converges to  z = 0  from every starting iterate between  -1  
and  x0 := x(X0)  but,  starting from  x0  and  x1 := x(X1) ,  every third  Secant  iterate  
x3n+2 = x(X3n+2) = -1 .  Thus  Secant  iteration need not converge,  though I have proved  [1979']  
that a subsequence of its iterates always imitates  Newton’s  by converging to  z .   END EX. A3.3.

• • •
Inverse to the problem of constructing a projective map is the problem of detecting one.  Given  
f(x)  and  F(X) ,  what test reveals whether they are projective images of each other?  An easy test 
works if they have at least three  ( but not too many )  of the following special points:

zeros,   poles,   inflexion–points,   notches.
For instance,  suppose the triple  {u, v, w}  includes one zero and two inflexion–points of  f ,  and  
{U, V, W}  does likewise respectively for  F ;  then solving the cross–ratio equation above 
determines a prospective  Möbius  transformation  X = X(x)  that passes the test if  f(x)/F(X(x))  is 
a linear function,  namely  (b - mx) .  If this  X(x)  fails the test,  all other matching triples of 
consecutive special points have to be tried and fail too before  f  and  F  can be deemed not to be 
projective images;  this is why we hope  f  and  F  have not too many special points.

Another test can be fashioned out of  Lemma A3.1’s  projective differential invariant

Æf :=  ( 3 f"  f'  + f"'  f )2 /( (f" )3 f )   .
After the substitution  X = X(x)  of their  Möbius  transformation,  nonlinear projective images  
f(x)  and  F(X)  must satisfy  Æf(x) = ÆF(X) .  Conversely,  if the equation  Æf(x) = ÆF(X)  is 

satisfiable by a  Möbius  transformation  X = X(x)  for which  f(x)3 f" (x)/( F(X(x))3 F" (X(x)) )  

simplifies to a positive constant  ( ç2 )  and  f(x)/F(X(x))  simplifies to a linear function  ( b - mx ) ,  
then  f(x)  and  F(X)  are projective images.  For example  Æf(x) = 12 - 4 ln(x) - 9/ln(x)  and  
ÆF(X) = 12 + 4 ln(X) + 9/ln(X)  when  f(x) = ln(x)  and  F(X) = X ln(X) ,  so the equation  
Æf(x) = ÆF(X)  has two solutions  X = X(x)  of which only one is a  Möbius  transformation  

X(x) = 1/x ;  next  ç2 = f(x)3 f" (x)/( F(X(x))3 F" (X(x)) ) = 1  and  (b - mx) = f(x)/F(X(x)) = -x ,  
whence  µ = b = 0  and  ß = -m = ç = -1  in the projective map  {x, f(x)} ‹=› {X, F(X)} .  For 
another example,  the projective map  {x, (x - 1)/x)} ‹=› {X, X/(1  - X)}  can have either of two  
Möbius  parts,  either  X(x) = (x - 1)/(-1)  and  ç = -1 ,  or  X(x) = 1/(1 - x)  and  ç = 1 .

This test is complicated slightly by the possibility that infinitely many  Möbius  transformations 
may be compatible with a given pair of of projective images.  For instance,  Æf = ÆF = 16  when  
f(x) = exp(x)  and  F(X) = X exp(-1/X) ,  and then the equation  Æf(x) = ÆF(X)  is satisfied by all  
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Möbius  transformations  X = X(x) ;  but  ç2 = f(x)3 f" (x)/( F(X)3 F" (X) ) = exp(4x + 4/X)  is a 
constant only if  x + 1/X = ô  is a constant,  so the only compatible  Möbius  transformations are  

X(x) = 1/(ô - x) ,  whereupon  (b - mx) = f(x)/F(X(x)) = eô (ô - x) ,  whence  ß = m = eô ,   µ = 0 ,  

b = ôeô  and  ç = e2ô  in projective maps  {x, f(x)} ‹=› {X, F(X)}  wherein  ô  is a parameter.  
Another one–parameter family of projective maps with  Möbius  part  X(x) = constant/x ≠ 0  has 

projective images  f(x) = xk  and  F(X) = X1-k  and  Æf = ÆF = 16/(1-1/(2k-1)2)  for any constant  
k .  I know no other one–parameter family,  nor other projective images with constant  Æf .

We have seen that  Æf ,  and the convergence of  Newton’s  and  Secant  iterations applied to solve  
f(z) = 0 ,  are invariants of projective maps.  Are they related?  Is there some condition that  Æf  
can satisfy in an interval  Ω  to prevent the iterations from meandering in  Ω  forever?  Because  

f3 f"  = ç2 F3 F"  ,  another invariant is the sign of  f f"   if it is constant;  it figures in  Theorem 7.5.  
Otherwise monotonicity is not a projective invariant,  so neither are  Theorem 8.2  nor  Corollary 
8.3;  do invariant versions of them exist?
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§A4.  Appendix:  Parabolas
This  Appendix  is provided for students who have taken a course on  Cartesian Geometry  in  
High School  but not yet in  College.

Lemma A4.1:  Let any nondegenerate triangle’s vertices be  {Q, R, S} ;  then one 
parabola  Ç  passes through  Q  and  R  and is tangent there to sides  QS  and  RS .

Proof:  In  Cartesian  (x, y)–coordinates let the triangle’s sides have equations   ax + by + c = 0   
for   QS ,    Ax + By + C = 0   for    RS ,   and   ex + fy + g = 0   for  QR .  Then for any  µ  define

   Hµ(x, y)  :=   (ax + by + c)·(Ax + By + C)  -  µ·(ex + fy + g)2 .
For every choice of the constant  µ ,  the equation  Hµ( x, y) = 0  is the equation of a  Conic 
Section   Çµ  ( an  ellipse,  parabola,  hyperbola,  or pair of straight lines )  that passes through  Q  
and  R .  The set of all such conics  Çµ  is called a  Pencil  of conics.  Every  Çµ  passes through  Q  
because  (ax + by + c) = (ex + fy + g) = 0  at  Q ;  similarly  Çµ  passes through  R .  Therefore no  
Çµ  degenerates into a single point nor the empty set.  The differential

dHµ(x, y) = (ax + by + c)·(Adx + Bdy) + (Ax + By + C)·(a dx + b dy) - 2µ·(ex + fy + g)·(e dx + f dy)

must vanish along  Çµ ;  this means that if  (x, y)  lies on  Çµ  because  Hµ( x, y) = 0 ,  then  
(dx, dy)  points along the tangent to  Çµ  at  (x, y)  when  dHµ(x, y) = 0  too.  At  Q ,

     dHµ(x, y) =  0 + (Ax + By + C)·(a dx + b dy) - 0  =  0   but   (Ax + By + C) ≠ 0 ,
so  a dx + b dy = 0 ,  which means that the tangent to  Çµ  at  Q  is parallel to  QS ;  therefore  QS  
is tangent to  Çµ  at  Q .  Similarly  RS  is tangent to  Çµ  at  R .

The next step is to select the lemma’s parabola  Ç = Çµ  from the pencil of conics by choosing the 
appropriate value for  µ .  For this purpose  Hµ(x, y)  must be expanded:

     Hµ(x, y) =  (aA - µe2)·x2 + (aB + bA - 2µef)·xy + (bB - µf2)·y2 + ( terms linear in  x  and  y ) .
Its  Discriminant

(aB + bA - 2µef)2  -  4(aA - µe2)·(bB - µf2)   =   (aB - bA)2  +  4µ·(be - af)·(Be - Af)
vanishes just when  µ  takes the finite nonzero value

µ :=  -(aB - bA)2 /(4(be - af)·(Be - Af)) .
It is finite and nonzero because no two sides of the triangle  QRS  are parallel,  so no factor of  µ  
can vanish.  With this choice for  µ  the vanished discriminant implies that

Hµ(x, y) =  ±( other terms linear in  x  and  y )2 + ( terms linear in  x  and  y ) ,
so  “ Hµ( x, y) = 0 ”  is the equation of either a pair of parallel straight lines or a parabola.  The pair 
is ruled out by the intersection of its tangents  QS  and  RS ,  so  Çµ  is a parabola.  END OF PROOF.

The parabola is a convex curve because it lies entirely on one side of its every tangent,  as can be 
verified easily.  The triangle is a convex figure too;  and its side  QR  lies inside the parabola.  
Therefore an arc of the lemma’s parabola  Ç  stays inside  QRS  as the arc runs from  Q  to  R .  
This parabola figures in the proof of  Theorem 7.6 .
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