

File: RealRoots

Lecture Notes on Real Root-Finding

 version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 1/67

W. Kahan, Prof.

Emeritus

 (Retired)

Math. Dept., and E.E. & Computer Science Dept.
University of California at Berkeley

Abstract

These course notes concern the solution of one real equation f(z) = 0 for one real root z , also
called a real

zero

 z of function f(x) . They

supplement

, not

supplant

, textbooks and deal
mathematically with troublesome practical details not discussed in my reprint [1979"] about a
calculator’s

[SOLVE]

 key, which should be read first; it offers easy–to–read advice about real
root-finding in general to anyone who wishes merely to use a root–finder to solve an equation in
hand. These course notes are harder to read; intended for the would–be designer of a root–finder,
they exercise what undergraduates may learn about Real Analysis from texts like Bartle [1976].
Collected here are proofs, mostly short, for mathematical phenomena, some little known, worth
knowing during the design of robust and rapid root-finders.

Almost all Numerical Analysis texts cover the solution of one real equation f(z) = 0 for one real
root z by a variety of iterative algorithms, like x

→

 U(x) for some function U that has
z = U(z) as a fixed-point. The best known iteration is Newton's: x

→

 x - f(x)/f

'

(x) . Another is
Secant iteration: pair {x, y}

→

 {w, x} where w := x - f(x)·(x-y)/(f(x) - f(y)) . But no text I
know mentions some of the most interesting questions:

• Is some simple Combinatorial (Homeomorphically invariant) condition both Necessary and
Sufficient for convergence of x

→

 U(x) ? (Yes; §5)

• Is that condition relevant to the design of root-finding software? (Yes; §6)

• Do other iterations x

→

 U(x) besides Newton's exist? (Not really; §3)

• Must there be a neighborhood of z within which Newton's iteration converges if f

'

(x) and
x - f(x)/f

'

(x) are both continuous? (Maybe Not; §7)

• Do useful conditions less restrictive than Convexity suffice Globally for the convergence of
Newton's and Secant iteration? (Yes; §8)

• Why are these less restrictive conditions not Projective Invariants, as are Convexity and the
convergence of Newton's and Secant iterations? (I don’t know; §A3)

• Is slow convergence to a multiple root worth accelerating? (Probably not; §7)

• Can slow convergence from afar be accelerated with no risk of overshooting and thus losing the
desired root? (In certain common cases, Yes; §10)

• When should iteration be stopped? (

Not

 for the reasons usually cited; §6)

• Which of Newton's and Secant iterations converges faster? (Depends; §7)

• Which of Newton's and Secant iterations converges from a wider range of initial guesses at z ?
(Secant, unless z has even multiplicity; §9)

Therefore, Why Use Tangents When Secants Will Do?

• Have

all

 the foregoing answers been

proved

 ? Yes. Most were proved in the 1960s and
1970s [1979'], and influenced the design of the [SOLVE] key on Hewlett-Packard Calculators.

File: RealRoots

Lecture Notes on Real Root-Finding

 version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 2/67

Contents

Abstract page 1
§1. Overview 3
§2. Three Phases of a Search 6
§3. Models and Methods 7
§4. “Global” Convergence Theory from Textbooks 11
§5. Global Convergence Theory 15
§6. A One-Sided Contribution to Software Strategy 19

§7. Local Behavior of Newton’s and Secant Iterations 27
§8. Sum–Topped Functions 34
§9. The Projective Connection between Newton’s and Secant Iterations 38
§10. Accelerated Convergence to a Zero in a Cluster (incomplete) 45
§11. All Real Zeros of a Real Polynomial (to appear)
§12. Zeros of a Real Cubic (to appear; until then see …/Cubic.pdf)

§13. Error Bounds for Computed Roots (to appear)
§ççç. Conclusion

§A1. Appendix: Divided Differences Briefly
§A2. Appendix: Functions of Restrained Variation
§A3. Appendix: Projective Images
§A4. Appendix: Parabolas
§A5. Appendix: Running Error Bounds for Polynomial Evaluation (to appear)

§C. Citations

Acrobat™ Reader PDF files:
http://www.cs.berkeley.edu/~wkahan/Math128/RealRoots.pdf

…/SOLVEkey.pdf
…/Cubic.pdf

File: RealRoots

Lecture Notes on Real Root-Finding

 version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 3/67

§1. Overview

Before a real root z of an equation “

f(z) = 0

” can be found, six questions demand attention:

«1» Which equation?
Infinitely many equations, some far easier to solve than others, have the same root z .

«2» What method?
Usually an iterative method must be chosen; there are infinitely many of them too.

«3» Where should the search for a root begin?
A global theory of the iteration’s convergence helps compensate for a vague guess at z .

«4» How fast can the iteration be expected to converge?
A local theory helps here. Convergence much slower than expected is ominous.

«5» When should iteration be stopped?
Error-analysis helps here. And the possibility that no z exists may have to be faced.

«6» How will the root’s accuracy be assessed?
Error-analysis is indispensable here, and it can be done in more than one way.

The questions are not entirely independent, nor can they always be answered in order. If question
«2» is answered by some available software that contains its own root–finder, the method it uses
should influence the answer to question «1». Question «5» may depend upon question «6»,
which may be easier to answer after z has been found. Anyway, these questions do not have tidy
answers. Instead, the following notes answer questions that resemble the foregoing six, and the
reader must decide whether available answers pertain well enough to his own questions.

Different contexts may call for different answers. Two contexts are worth distinguishing during
the design of root–finding software: General–purpose root–finders have to be designed without
knowing the equations they will be asked to solve; special–purpose root–finders are designed to
solve one equation “

F(z, p) = 0

” for a root z = z(p) regarded as a function of the parameter(s) p
over some preassigned range. General–purpose root–finders must be robust above all; they cope
with very diverse equations and with poor first guesses at roots that need not be unique or, in
other cases, need not exist; speed matters only because a root–finder that runs too slowly will be
abandoned by impatient users before it finds a root. Speed is the reason for a special–purpose
root–finder’s existence, and to that end it exploits every advantage that mathematical analysis can
wrest from the given expression F(x, p)

. Applicability to many such special cases justifies the
inclusion of much of the theory presented in these notes.

Root–finders are almost always iterative; they generate a sequence of approximations intended to
converge to a desired root. For reasons outlined in §2, §3 gives the infinite variety of iterative
methods short shrift. Whereas textbooks concentrate mostly upon questions of local convergence
answerable often by appeals to Taylor series, these notes concentrate mostly upon questions of
global convergence. Does “

global

” convergence theory differ from “

local

” ? It’s a distinction
with a small difference: Local theories touched in §3 and §4 describe what happens, and how
fast, in every sufficiently small neighborhood of a root; this kind of theory applies to practically

File: RealRoots

Lecture Notes on Real Root-Finding

 version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 4/67

all cases. A global convergence theory provides ways to tell whether a root exists, whether an
iteration will converge to it from afar, and whether slow convergence from afar can be sped up
without jeopardizing convergence to the desired root; these questions have usable answers only in
special cases. The special cases discussed in these notes arise often enough to make their study
generally worthwhile.

Most iterations discussed in these notes have the form x

n+1

 := U(x

n

)

, which may seem very
general but isn’t really; there is a sense (

see Thesis 3.1 below

) in which every such scalar (

not
vector

) iteration is really Newton’s iteration in disguise. Textbooks and our §4 treat iterations
whose U is a

Contraction

: (

|U

'

| < 1

) throughout some domain supposed to contain the desired
root and all but finitely many initial iterates. Finding that domain can be as hard as finding the
root, and futile too because Contraction in a

wide

 domain surrounding the root is a condition
merely sufficient, not necessary, for convergence. There is a conceptually simpler combinatorial
condition necessary and sufficient for convergence from every starting point in a wide domain;
see Sharkovsky’s No–Swap Theorem 5.1 below. This theorem provides an invaluable
“

One–Sided

” criterion by which to decide when a program must intervene to force an iteration to
converge. That decision may be necessitated by the intrusion of rounding errors whose worst
effects can be avoided only by using appropriate criteria to stop the iteration. Such criteria and
other software issues are discussed at length in §6.

Newton’s iteration x

n+1

 := x

n

 - f(x

n

)/f

'

(x

n

) and Secant iteration x

n+1

 := x

n

 - f(x

n

)/f

†

(x

n

, x

n-1

)

are treated next; here f

†

 is a

First Divided Difference

 whose analogy with the first derivative f

'

is explained below in Appendix A1 on Divided Differences. Both iterations have such similar
local convergence properties that they are treated together in Theorems 7.4, 7.5 and 7.6. The
weakest known global conditions sufficient for convergence are named in Theorem 8.2 and
Corollary 8.3; roughly speaking, they require that |f

'

| not vary too much. (A connection with
the classical theory of Functions of Bounded Variation is covered in Appendix A2.) Both
iterations have similar global convergence properties because those properties are invariants of
certain plane Projective Maps that are the subject of yet another Appendix A3. Unfortunately,
the aforementioned weakest known global conditions sufficient for convergence are not invariant
under projective maps; to find usable weaker invariant conditions remains an open problem.

The projective invariance of Newton’s and Secant iteration is the source of an astonishing
Theorem 9.2 which says, roughly, that if f reverses sign wherever it vanishes in some interval,
and if Newton’s iteration converges within that interval from every starting point therein, then
Secant iteration converges too from every two starting points in that interval. Of course, they
converge then to the unique zero of f in the interval. This theorem has no converse; Secant
iteration can converge but not Newton’s. The discovery of this theorem over thirty years ago had
a profound effect upon the design of root–finders built into Hewlett–Packard calculators.

Slow convergence of Newton’s and Secant iteration to a multiple root is a problem that has
received more attention in the literature than it deserves in the light of Theorem 7.6, which is too
little known. This theorem provides good reasons to expect computed values of f(x) to drop
below the noise due to roundoff, or else below the underflow threshold, rapidly no matter how
slowly iterates x converge, so iteration cannot be arbitrarily prolonged. Convergence slowly

File: RealRoots

Lecture Notes on Real Root-Finding

 version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 5/67

from afar to a simple root that appears, from afar, to belong to a tight cluster of roots is a problem
deserving more attention. The problem is not how to accelerate the iteration, but how not to
accelerate it too far beyond the desired root. In cases covered by Theorem 10.1 the problem has
a simple solution that roughly halves the number of Newton iterations when they converge
slowly. A similar solution works for Secant iteration but the details of its proof are incomplete.

I have tried to prove every unobvious unattributed assertion in these notes. The proofs are as brief
as I could make them, and not merely by leaving steps out. Still, the proofs should be skipped on
first reading; to make doing so easier, each proof is terminated by

END OF PROOF.

 To ease the
location of this document’s sections, theorems, lemmas, corollaries, examples, ..., they will be
numbered consecutively when the notes are complete.

Yet to be transcribed are sections about finding all real zeros of a polynomial, all zeros of a real
cubic, error bounds for computed zeros, and running error bounds for computed values of a
polynomial. Meanwhile the author will welcome corrections and suggestions, especially for
shorter and more perspicuous proofs.

File: RealRoots

Lecture Notes on Real Root-Finding

 version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 6/67

§2. Three Phases of a Search

Root-finding software invoked to solve “

f(z) = 0

” seeks a root z by employing a procedure
generally more complicated than the mere iteration of some formula x := ... until it converges.
Watching such software at work, when it works, we can usually discern three phases:

Phase 1 :

Flailing

Initial iterates x approximate the desired root z poorly. They may move towards
it, or wander, or jump about as if at random, but they do not converge rapidly.

Phase 2 :

Converging

Differences between successive iterates x dwindle,— rapidly, we hope.

Phase 3 :

Dithering

Indistinguishable from Flailing except that different iterates x differ much less
from a root and may (very nearly) repeat. Dithering is due entirely to roundoff.

Dithering is a symptom of an attempt to solve “

f(z) = 0

” more accurately than roundoff allows.
Ultimately accuracy is limited by what roundoff contributes unavoidably to the computed values
of f(x) . Accuracy much worse than that should be blamed upon an inept implementation of the
iteration formula x := ... or upon some other defect in the software, or else upon intentional
premature termination of the iteration because its accuracy was judged adequate. Judgments like
this posit the existence of a trustworthy error estimate, which is a nontrivial requirement. It looks
easy at first; the possession of a

Straddle

 *,— two iterates x

«

 and x

»

 where f(x

«

)

f(x

»

) < 0 ,—
suffices (

if f is continuous

) to locate a root z between them with an error less than |x

«

 - x

»

|

.
However the purchase of a sufficiently close straddle may cost almost twice as much computation
as a simple iteration x := ... that converges from one side, unless error analysis can be brought to
bear. Error analysis will be discussed at length later; without it, dithering could waste a lot of
time.

Converging is what we hope the chosen iteration does quickly, and usually it does; and when it
does, the search for a zero can spend relatively little time in Phase 2. Why then is so much of the
literature about numerical methods concerned with this phase? Perhaps because it is the easiest
phase to analyze. Ultimately superlinear (

fast

) convergence is rarely difficult to accomplish, as
we shall see; Newton’s iteration usually converges quadratically. Convergence faster than that is
an interesting topic omitted from these notes because it reduces only the time spent in Phase 2;
higher order convergence is worth its higher cost only if extremely high accuracy is sought.

We shall devote more consideration than usual to Phase 1 because it is the least understood and
potentially most costly. A long time spent flailing is a symptom of a mismatch between the given
equation “

f(z) = 0

” and the root–finder chosen to solve it.

__
*Footnote: A

Straddle

 is to the Navy what a

Bracket

 is to the Army;— a pair of shots fired one beyond and the other short of
a target to intimidate it or to gauge its range. But “Straddle” and “Bracket” have distinct meanings in these course notes.

File: RealRoots

Lecture Notes on Real Root-Finding

 version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 7/67

§3. Models and Methods

Every iterative method for solving “

f(z) = 0

” is motivated by a model ; this is a family of easily
solved equations from which is drawn a sequence of ever better approximations to the given
equation over a sequence of ever narrowing intervals around the desired root z . For example,
the given equation may be rewritten as an equivalent equation g(z) = h(z) with the same root z
but with h(x) slowly varying (approximately constant) when x is near z , and with g(x)
easily inverted. The last equation is turned into an iteration by solving g(xn+1) = h(xn) for each
new approximation xn+1 to replace the previous approximation xn to z . When h'(x)/g'(x) is
continuous and |h'(z)/g'(z)| < 1 , the iteration can easily be proved to converge to z from any

initial x0 close enough to z . (Look at (xn+1-z)/(xn-z) = h†(xn,z)/g†(xn+1,z) as xn → z ; here

h† is a divided difference analogous to the derivative h' and explained in Appendix A1.)

For instance take the equation 3ez = e3z . It can be “solved” for z = 3 + ln(z/3) to construct an

iteration xn+1 := 3 + ln(xn/3) , or for z = 3ez-3 to construct an iteration xn+1 := 3 exp(xn - 3) .
Each iteration is attracted to a different root z . (Find them! Why are there no more roots?)

More generally, a given equation “ f(z) = 0 ” may be rewritten “ gn(z) = hn(z) ” in a way that can
change with every iteration that solves gn(xn+1) = hn(xn) for xn+1 , and can depend also upon
previous iterates xn-1 , xn-2 , These dependencies are motivated by a model all the same, but
now reinterpreted as a family of convenient curves from which is drawn a sequence of ever better
approximations to the graph of the given function f over a sequence of ever narrowing intervals
around the desired root z . The wider the interval over which f resembles a member of that
family, and the closer the resemblance, the faster the iteration derived from the model converges.

A substantial body of theory connects the qualities of a model to the ultimate speed of the derived
iteration’s convergence; see Traub [1964] or Ostrowski [1973]. Like most of today’s texts on
Numerical Analysis, these notes draw little more from that theory than two items of terminology:
Rate and Order are measures of the ultimate speed with which a sequence x1, x2, x3, …, xn, …
may converge to its limit z as n → ∞ . Its Rate := lim inf -ln(|xn - z|)/n , and its

Order := lim inf (-ln(|xn - z|))1/n
 . Linear convergence has Order = 1 and a positive finite Rate,

which means the number of digits to which xn and z agree grows ultimately linearly with n ;
slower than linear convergence is almost intolerable. For most practical purposes we expect
Superlinear convergence with Rate = +∞ and Order > 1 , which means that ultimately each
iteration multiplies the number of agreeing digits by Order on average.

Here are examples: Newton’s iteration xn+1 := xn - f(xn)/f'(xn) approximates the graph of f by
its tangent Tn at a point (xn, f(xn)) that the iteration tries to move closer to (z, 0) by moving the
point of tangency to the point (xn+1, f(xn+1)) on the graph above Tn’s intersection with the
x–axis. Convergence is typically Quadratic (Order = 2). Similarly, the Secant iteration

xn+1 := xn - f(xn)/f
†(xn,

 xn-1) = xn - f(xn)(xn - xn-1)/(f(xn)
 - f(xn-1)) approximates the graph of f by

its secant through two points (xn, f(xn)) and (xn-1, f(xn-1)) , and replaces the latter by the point
(xn+1, f(xn+1)) above where the secant cuts the x–axis. The iteration’s Order ≈ 1.618 typically.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 8/67

 Newton’s: xn+1 := N(xn) where N(v) := v - f(v)/f'(v) .

 Secant: xn+1 := S(xn, xn-1) where S(u, w) := u - f(u)(u - w)/(f(u) - f(w)) .

x
N(v)

f(x)

tangent

v

x

S(u, w)

f(x)

secant

u w

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 9/67

David Muller’s method fits a parabola through three points on the graph of f , and replaces one
of them by a point on the graph above the nearer intersection of the parabola with the horizontal
axis. An hyperbola with vertical and horizontal asymptotes can also be fitted through three points
on the graph of f , and provides an iteration simpler than Muller’s and better suited to finding a
simple zero z close to a pole of f . (A pole of f is an argument ô at which f(ô) = ∞ .) The
hyperbola is the graph of µ(x - xn+1)/(x - õ) for constants µ, õ, xn+1 chosen by making that
expression interpolate (match) f(x) at three consecutive iterates xn, xn-1, xn-2 . Both these
iterations converge typically at Order ≈ 1.839 .

Given two iterates x« and x» that straddle a sign-change of f because f(x«) f(x») < 0 , we may
well wish to continue the iteration in such a way that straddling persists even if preserving it slows
convergence. The simplest way is Binary Chop; this method models f by a step-function that
disregards everything about f but its sign, and in each iteration replaces either x« or x» by
xv := (x«+x»)/2 according to sign(f(xv)) so that straddling persists. Regula Falsi differs from
Binary Chop only by determining xv as the place where a secant through (x«, f(x«)) and
(x», f(x»)) cuts the horizontal axis. Both methods usually converge linearly, too slowly. Regula
Falsi can converge arbitrarily slower than Binary Chop when the graph of f is more nearly
L-shaped than straight, so D. Wheeler’s method (see program F2 in Wilkes et al. [1951])
speeds up Regula Falsi by halving whichever of f(x«) or f(x») has not been supplanted after
two iterations. C.J.F. Ridder’s method, promoted by W.H. Press et al. [1994], chooses µ, ß

and x∆ to make the expression L(x) := µ(x - x∆)eßx interpolate f(x) at x«, xv := (x«+x»)/2 and
x» , and then retains whichever pair of x«, xv, x∆, x» most closely straddles the sign-change of
f . (One of the pair is always x∆ .) This method is plausible when the graph of f may be very
nearly L-shaped but not necessarily monotonic. Ridder’s and Wheeler’s methods usually
converge superlinearly; for the latter see Dahlquist et al. [1974].

Vastly many more models and iterative methods have been published. Do we need all of them?
Perhaps not; most of them converge superlinearly, so they spend similar small numbers of
iterations in Phase 2. Reducing these small numbers by increasing the Order of convergence is
relatively straightforward if enough derivatives of f are available. For instance, convergence
(typically) at Order = 3 is obtained by fitting osculatory hyperbolas instead of tangents to the
graph of f to derive Halley’s iteration xn+1 := xn - 2f(xn)/(2f'(xn) - f" (xn) f(xn)/f'(xn)) .

Widening the range of initial guesses from which convergence will follow is harder but worth a
try when dawdling in Phase 1 indicates a mismatch between the model and the equation to be
solved. Acquaintance with many models improves our prospects of finding one that matches the
given equation well. Alternatively, when possession of a software package implies the use of its
root–finder, awareness of the model(s) that motivated its root–finder may suggest how to recast
equations so as to match its model(s) better. Because all models include the straight line graph of
a linear equation as a special or limiting case, equations f(z) = 0 incur fewer iterations in Phases
1 and 2 according as f is more nearly linear over a wider range around z . This observation
motivates attempts to recast a given equation into an equivalent but more nearly linear form. A
successful attempt will be described below after Theorem 8.2.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 10/67

The two motivations, one to fit a model as closely to the equation as is practical, the other to
linearize the equation as nearly and widely as possible, may become indistinguishable in the final
analysis of a real (or complex) root–finder’s performance. Here is a reason for thinking so:

Thesis 3.1: Newton’s Iteration is Ubiquitous
Suppose that U is differentiable throughout some neighborhood Ω of a root z of
the given equation “ f(z) = 0 ” . If the iteration xn+1 := U(xn) converges in Ω to
z from every starting point x0 in Ω , then this iteration is Newton’s iteration
applied to some equation “ g(z) = 0 ” equivalent on Ω to the given equation; in
other words, U(x) = x - g(x)/g'(x) , and g(x) → 0 in Ω only as x → z .

Defense: g(x) = ±exp(∫ dx/(x - U(x))) with a “constant” of integration that may jump when x
passes from one side of z to the other, reflecting the fact that U is unchanged when g(x) is
replaced by, say, -3g(x) for all x on one side of z . (There is no need for g'(z) to exist since it
need not be computed when g(z) = 0 ; however the jump in the “constant” of integration can
often be so chosen that g'(x) is continuous as x passes through z .) The iteration’s convergence
in Ω to z alone implies first that x - U(x) vanishes only at x = z in Ω , and then that x - U(x)
has the same sign as x - z . (The opposite sign would compel the iteration to flee from z .)
Therefore the integral decreases monotonically as x approaches z from either side. To complete
the defense we shall infer from the differentiability of U that the integral descends to -∞ ,
implying that g(x) → 0 as x → z as claimed.

For the sake of simpler arithmetic, shift the origin to make z = 0 and write Ω' for what remains
of Ω when 0 is removed from it. This makes U(x)/x < 1 at all x in Ω' . Since U'(0) exists,
there also must exist some constant 1 - 1/C < U(x)/x < 1 for all x in Ω' , whence it follows that
the integral ∫dx/(x - U(x)) < (another constant) + C∫dx/x → -∞ as x → 0 in Ω' from one side or
the other. END OF DEFENSE.

(What if U were merely continuous instead of differentiable? Then g could be discontinuous at

z like g(x) := (if x ≥ 0 then (1 + √x)2 else x2) . In general then, must g(z+)·g(z-) = 0 ?)

Don’t read too much significance into Thesis 3.1 . It does suggests that an iteration, derived
from a family of curves that osculate (match tangent and curvature of) the graph of f more
closely than tangents do, could equivalently have been derived as Newton’s iteration applied to a
function g whose graph is more nearly linear than the graph of f around the zero z that g and
f have in common. For instance, Halley’s third order iteration above is Newton’s applied to
g(x) := f(x)/√(|f'(x)|) . But Thesis 3.1 does not say which derivation will be the more convenient.

Thesis 3.1 implies that most of these notes will never generalize to the iterative solution of

systems of equations nor to multi–point iterations. “ U(x) = x - g'(x)-1g(x) ” generally cannot be
solved for a vector–valued function g of a vector x . Iterations xn+1 := U(xn, xn-1, …, xn-k)
generally do not behave like Newton’s if k ≥ 1 , so Theorem 9.2 will come as a surprise.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 11/67

§4. “Global” Convergence Theory from Textbooks
The behavior of iterations xn+1 := U(xn) , also called Discrete Dynamical Systems, has become
much better understood over the past few decades. Iterations xn+1 := U(xn, xn-1, xn-2, ..., xn-k)
fall under the same rubric when rewritten as vector iterations xn+1 := U(xn) in which the vector
xn = [xn, xn-1, xn-2, ..., xn-k] . Although large values of k promise ultimately faster convergence,
they offer little advantage because “ ultimately ” need not arrive much sooner than adequate
accuracy would be achieved by simpler means. Anyway, so much less is known about the global
behavior of iterations with k ≥ 1 that we shall keep k = 0 except when discussing the Secant
iteration, whose k = 1 . And almost all variables will be kept real.

Presumably the roots z of the given equation “ f(z) = 0 ” are roots of the equation “ z = U(z) ”
too, so the desired roots lie among the fixed–points of U if any exist. The existence of fixed–
points, some of which may be spurious because they are not roots, is a nontrivial issue. For
example, the fixed–points of Newton’s iteration, for which U(x) := x - f(x)/f'(x) , include the
poles of f' as well as those zeros z of f at which f'(z) ≠ 0 , plus those zeros of both f and f'
at which a justifiable redefinition of U sets U(z) := z . (Justification will be tendered later.)
Fortunately poles are repulsive and zeros are usually attractive fixed–points of Newton’s
iteration; in general ...

• A fixed–point z = U(z) is called “Attractive” if it belongs to some non–degenerate interval Ω
from whose every other point x0 the iteration xn+1 := U(xn) converges to z , though
some early iterates may stray outside Ω before later iterates converge.

• A fixed–point z = U(z) is called “Repulsive” if it belongs to some non–degenerate interval Ω
throughout which |U(U(x)) - z| > |x-z| when x ≠ z ; then, if Ω contains only every
other iterate xn+1 := U(xn) , consecutive iterates in Ω still move away from z .

A fixed–point can be both attractive (from one side) and repulsive (from the other), as are all

the nonzero fixed–points of U(x) = x sin2(1/x) . Its fixed–point z = 0 is neither attractive nor
repulsive. So is the zero of √|x| to Newton’s iteration; the zero of 1/ln(|x|) is repulsive.

Global convergence theory is concerned with the existence of attractive fixed–points. In general,
the best known conditions sufficient for at least one fixed–point to exist figure in the following ...

Lemma 4.1: If U maps a closed interval Ω continuously into itself, then Ω
contains at least one fixed–point z = U(z) .

Proof: If neither endpoint of Ω is a fixed–point of U then it maps each endpoint elsewhere into
Ω , in which case they constitute a Straddle for the equation “ U(z) - z = 0 ” . END OF PROOF.

(Ω must include its two endpoints lest the fixed point lie not in Ω but on its boundary. If Ω is
infinite it must include its endpoint(s) at +∞ and/or -∞ , and the continuity of U there must be
understood in an appropriate sense: U is deemed continuous at +∞ if either of U(1/w) and
1/U(1/w) approaches a finite limit as w → 0+ . Similarly for -∞ . And Ω must have distinct
endpoints; the lemma may be rendered inapplicable if +∞ and -∞ are declared equal, thereby
turning Ω topologically into a circle O that can be mapped continuously to itself by a rotation

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 12/67

without a fixed–point. Lemma 4.1 is a special case of the Brouwer/Schauder theorem valid for
compact convex regions Ω in spaces of arbitrarily high, even infinite, dimension.)

Do not misconstrue the interval Ω as something introduced merely for the sake of additional
inessential generality. Such a misapprehension could arise from the observation that U may be
extended continuously to the whole real axis, and without introducing any new finite fixed–point,
by declaring U' := 1 or else U' := 0 in each interval outside Ω . However, generality is not the
motive for not thus dispatching Ω . It is essential to the following theory because U will be
assumed to satisfy convergence conditions that need not be satisfied everywhere in general, yet
they must be satisfied in an interval Ω wide enough to support useful inferences.

The foregoing lemma is easier to prove than apply because, given U and Ω , the confirmation
that U(Ω) is contained in Ω is tantamount to an assertion about the extrema of U in Ω . Why
should such an assertion cost much less computation than the location of a fixed point? Besides,
the mere existence of fixed points cannot ensure that the iteration xn+1 := U(xn) will converge to
any of them. For example, in -1 ≤ x ≤ 1 , U(x) := sin(πx) has three fixed–points z = 0 and
z = ±0.736484448... , all repulsive; U(U(x)) has seven therein, all repulsive; iteration cannot
converge to any of them except by an unlikely accident. In general, if we desired no more than to
find a fixed–point whose existence is guaranteed by lemma 4.1’s hypotheses, we should proceed
from those hypotheses to the construction of a fixed–point by Binary Chop guided in accordance
with the following now obvious ...

Corollary 4.2: If U maps a closed interval Ω continuously into itself, and if x
in Ω is not a fixed–point of U , then there is at least one fixed–point z = U(z) in
Ω on the same side of x as U(x) .

It makes Binary Chop foolproof. But such is not our purpose now. Our purpose is to investigate
whether and how the iteration xn+1 := U(xn) converges. (Faster than Binary Chop, we hope.)

The best known conditions sufficient for this iteration to converge require U to be a ...

Contraction: |U(x) - U(y)| < |x - y| for all distinct x and y in some interval Ω .

Contraction U must be continuous, if not differentiable with |U' | < 1 almost everywhere in Ω ;
and its interval Ω can contain at most one fixed–point z = U(z) . (Can you see why?)

Lemma 4.3: If U contracts Ω into itself then the iteration xn+1 := U(xn) must
converge in Ω to the fixed–point z = U(z) from every initial guess x0 in Ω , and
both errors |xn - z| and steps |xn+1 - xn| shrink monotonically as n increases.

Proof outline: Contraction U shrinks |xn - z| monotonically, so iterates have one or two points
of accumulation v and w . If different they would have to be swapped by U , thereby satisfying
0 < |v - w| = |U(w) - U(v)| < |w - v| paradoxically; instead, v = w = z . END OF PROOF.

But a contraction might contract no interval into itself; ln(x) for x ≥ 1 is an example. Under
what conditions can we ascertain that an interval Ω is contracted into itself? Conditions typical
of the kind that appear in textbooks appear in the following lemmas:

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 13/67

Lemma 4.4: Suppose -1 < U' ≤ 0 throughout an interval Ω that includes both
x0 and x1 := U(x0) ; then the iteration xn+1 := U(xn) converges in Ω to the one
fixed–point z = U(z) therein. Convergence is alternating with diminishing steps
|xn+1 - xn| . (Proof is left to the reader.)

Lemma 4.5: Suppose 0 ≤ U' ≤ µ < 1 for a positive constant µ throughout an
interval Ω that includes both x0 and (U(x0) - µx0)/(1 - µ) ; then the iteration
xn+1 := U(xn) converges monotonically to the unique fixed–point z = U(z) in
Ω with diminishing steps |xn+1 - xn| . (Proof is left to the reader.)

Lemma 4.6: Suppose -1 < U' ≤ µ < 1 for a positive constant µ throughout an
interval Ω that includes both x0 and X(x0) := (U(x0) - µx0)/(1 - µ) ; then the
iteration xn+1 := U(xn) converges with decreasing error |xn - z| and diminishing
steps |xn+1 - xn| to the unique fixed– point z = U(z) in Ω .

Proof: Since U is a contraction on Ω , the fixed–point z = U(z) is unique if it exists in Ω .
That z does exist in Ω between x0 and X := (x1 - µx0)/(1 - µ) follows from the observation
that (x1 - U(X))/(x0 - X) = (U(x0) - U(X))/(x0 - X) ≤ µ provided x1 ≠ x0 ≠ z ; that implies that

(X - U(X))/(x0 - U(x0)) ≤ 0 and therefore x - U(x) changes sign at some x = z between X and
x0 . In fact z lies between X and (x0 + x1)/2 since (x1 - z)/(x0 - z) = (U(x0) - U(z))/(x0 - z) > -1 ;

consequently (z - (x0 + x1)/2)/(z - x0) > 0 , which implies that z - (x0 + x1)/2 has the same sign
as z - x0 , which has the same sign as X - x0 . To complete the proof we shall show that U
contracts a subinterval of Ω including x0 into itself, and then invoke Lemma 4.3.

To simplify the argument suppose that x0 < x1 ; otherwise reverse the signs of x and U . Now
we have x0 < (x0 + x1)/2 < z ≤ X = (x1 - µx0)/(1 - µ) . Set w := z + (1 - µ)(X - z)/(1 + µ) and
v := z - (1 - µ)(X - z)/(1 + µ) = x0 + (2z - x0 - x1)/(1 + µ) ; evidently x0 < v < z < w < X . Now we
shall confirm that U(x) contracts the subinterval x0 ≤ x ≤ w into itself. First we obtain upper
bounds for U(x) :

When x0 ≤ x ≤ v , U(x) ≤ U(x0) + µ(x - x0) ≤ x1 + µ(v - x0) = w ;
when v ≤ x ≤ z , U(x) ≤ U(z) - (x - z) = 2z - x ≤ 2z - v = w ;
when z < x ≤ w , U(x) ≤ U(z) + µ(x - z) < z + (x - z) ≤ w .

Next we obtain lower bounds for U(x) :
When x0 ≤ x < z , U(x) > x ≥ x0 ;
when z < x ≤ w , U(x) > U(z) - (x - z) = 2z - x ≥ 2z - w = v > x0 .

Evidently x0 < U(x) ≤ w too when x0 ≤ x ≤ w , as claimed. END OF PROOF.

Lemma 4.6 is nearly the most general of its kind, and yet often too difficult to apply. Difficulty
arises from the possibility that µ and the minimum width |x1 - x0|/(1 - µ) of Ω may chase after
each other. For example, given x0 and x1 := U(x0) and U'(x0) < 1 , we have to make a guess at
Ω at least as wide as |x1 - x0|/(1 - U'(x0)) ; then somehow we must estimate the range of U'(Ω)
hoping it will be narrow enough to satisfy a lemma’s requirements. But if that estimated range is

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 14/67

too wide, say if µ ≥ U'(Ω) is so big that (x1 - µx0)/(1 - µ) lies beyond Ω , we must widen Ω to
include this point, thereby perhaps increasing µ and forcing Ω to be widened again, and so on.

This can go on forever for examples like U(x) := √(1 + x2) - 1/(z + √(1 + z2)) when 0 < x0 < z - 1
although its iteration always converges. The chase need never end because the lemmas’
requirements that -1 < U' ≤ µ < 1 in Ω merely suffice for convergence; they are not necessary.
For example, iterates converge from every x0 to z = 0 for U(x) := -arctan(x) with U'(z) = -1 ,

and for U(x) := x - tanh3(x) with U'(z) = 1 , though both examples converge sublinearly (i.e.,
extremely slowly): |xn - z| = O(1/√n) .

The foregoing three lemmas are really local convergence theorems posing as global. They are
applicable only in a sufficiently small neighborhood Ω of a fixed–point z = U(z) at which
|U'(z)| < 1 , in which case |xn - z| ultimately decreases with every iteration, converging to zero

linearly like |U'(z)|n or superlinearly if U'(z) = 0 . However, finding a neighborhood to which a
lemma above is applicable can be almost as hard as finding z . Besides, convergence can occur

without ultimate monotonic decline in |xn- z| , as when U(x) := e-x - 1 ; for this example the
iteration converges to z = 0 alternatingly, sublinearly and invariably, as we’ll see in Ex. 5.3 .

Apparently the “global” theory of iterations’ convergence presented in most textbooks answers
questions that the designers of root–finding software are unlikely to ask, much less answer.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 15/67

§5. Global Convergence Theory
What pattern of behavior distinguishes convergent iterations from the others ?

This question matters to software designers because, by mimicking this pattern in our
root–finding software, we hope to enhance its prospects for success. The pattern is slightly more
complicated than a monotonic decline in |xn - z| as n increases. To suppress superfluous
complexity we shall try to describe only the pattern’s essentials. What is essential? It is whatever
persists after inessential changes of variables, i.e. after homeomorphisms.

Consider any change from x to a new variable X = X(x) which is continuous and invertible, and
therefore monotonic, on the domain Ω of x ; we shall let x = x(X) denote the inverse change
of variable, also continuous and monotonic on its domain X(Ω) . Usually both changes of
variable shall be differentiable too, in which case X' (x) and x'(X) = 1/X' (x(X)) must keep the
same constant nonzero sign inside their domains. U(x) changes into H(X) := X(U(x(X))) . If the
iteration xn+1 := U(xn) converges from x0 to z = U(z) , we expect Xn+1 := H(Xn) to converge
too from X0 := X(x0) to Z := X(z) = H(Z) , though divergence either to +∞ or to -∞ may have
to be redefined as “ convergence to infinity ” in case z is an infinite endpoint of Ω , or Z an
infinite endpoint of X(Ω) .

Besides fixed–points and convergence, what qualities must each of U and H inherit from the
other independently of X ?

• Continuity
• Separation: x lies between U(x) and U(U(x)) if and only if

X := X(x) lies between H(X) and H(H(X)) .
• Differentiability: H'(X) = X' (U(x(X))) U'(x(X)) x'(X) if all derivatives are finite.

When they exist, both derivatives H'(X) and U'(x(X)) have the same sign but they usually have
different values except at Stationary Points (where both derivatives vanish) and at fixed–points:
Whenever z = U(z) and consequently Z := X(z) = H(Z) then also H'(Z) = U'(z) . Then, if both
fixed–points z and Z are finite and if the respective iterations xn+1 := U(xn) and Xn+1 := H(Xn)

converge to them, both converge at the same Rate := lim infn → ∞ ln(|xn - z|-1/n) = -ln|U'(z)| ≥ 0 .
Sublinear convergence has Rate zero; linear convergence has a positive Rate. And when this
Rate is infinite then both iterations may be shown to converge with the same superlinear

Order := lim infn → ∞ (-ln|xn - z|)1/n ≥ 1 ; higher Order implies ultimately faster convergence.

Like the foregoing qualities, conditions for convergence should ideally be inheritable by each of
U and H from the other. By this criterion typical textbook conditions, like the uninheritable
bounds upon U' in lemmas 4.4 to 4.6 above, are not ideal. Ideal conditions follow.

Theorem 5.1: Sharkovsky’s No-Swap Theorem
Suppose U maps a closed interval Ω continuously into itself; then the iteration
xn+1 := U(xn) converges to some fixed–point z = U(z) from every x0 in Ω if
and only if these four conditions, each of which implies all the others, hold
throughout Ω :

No-Swap Condition: U exchanges no two distinct points of Ω ; in other words,
if U(U(x)) = x in Ω then U(x) = x too.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 16/67

No Separation Condition: No x in Ω can lie strictly between U(x) and
U(U(x)) ; in other words, if (x - U(x))(x - U(U(x))) ≤ 0 then U(x) = x .

No Crossover Condition: If U(x) ≤ y ≤ x ≤ U(y) in Ω then
U(x) = y = x = U(y) .

One-Sided Condition: If x1 := U(x0) ≠ x0 in Ω then all subsequent iterates
xn+1 := U(xn) also differ from x0 and lie on the same side of it as does x1 .
(Compare Corollary 4.2 above.)

These conditions have been rediscovered several times since they were first established by A.N.
Sharkovsky [1964, 1965]. The proof that each implies all others is too long to reproduce fully
here but elementary enough to leave to the diligent reader helped by the following suggestions:

Think of ΩxΩ as a square whose lower–left–to–upper–right diagonal is touched or crossed at
every fixed–point by the graph of U , which enters the square through its left side and exits
through its right. That graph and its reflection in the diagonal touch or cross nowhere else when
the No–Swap condition holds. When the No Separation condition is violated, all attempts to
draw both graphs must violate the No–Swap condition too. Similarly for the No Crossover
condition; therefore these three are equivalent conditions. The One–Sided condition obviously
implies No Separation; and a violation of One–Sidedness can be shown soon to violate No
Crossover too. Thus all four named conditions are equivalent to each other though not yet proved
equivalent to convergence from every starting point in Ω ; that proof follows the next lemma.

Besides pertaining to an iterating function U , the One–Sided condition is satisfied by any
sequence { x0, x1, x2, x3, ... } , regardless of its provenance, whose every member xn lies on the
same side of all subsequent members xn+m with m > 0 . In other words, that sequence is
One–Sided just when, first, if any two members are equal so are all members between and after
them, and secondly, for every integer n ≥ 0 , no members of the sequence of differences
{ xn+1 - xn, xn+2 - xn, xn+3 - xn, ... } have opposite (non-zero) signs. Note that every
subsequence of a One–Sided sequence is One–Sided too. Some One–Sided sequences are
Ultimately Monotonic in the sense that all but finitely many differences xn+1 - xn have the same
sign; such sequences obviously converge, perhaps to infinity. Other One–Sided sequences are
the subject of the next lemma:

Lemma 5.2: The No-Man’s-Land Lemma
If the One–Sided sequence { x0, x1, x2, x3, ... } is not ultimately monotonic
then it can be partitioned into two disjoint infinite subsequences, one of which
ascends strictly monotonically to a limit no larger than the limit to which the other
descends strictly monotonically; if these limits differ, the gap between them is a
no–man’s–land containing no member of this sequence.

Proof outlined: The ascending subsequence consists of those xn < xn+1 , and the descending
subsequence consists of those xn > xn+1 . For instance, if xm is a local maximum and xj the
subsequent local minimum in the sequence, whereupon

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 17/67

... xm-1 < xm > xm+1 > ... > xj-1 > xj < xj+1 ... (m < j) ,
then xm-1 and xj are consecutive members of the ascending subsequence (note that
One–Sidedness implies xm-1 < xj) while xm, xm+1, ..., xj-1 are consecutive members of the
descending subsequence. It soon follows that each subsequence is strictly monotonic and
bounded by the other. END OF PROOF.

Return to the proof of Sharkovsky’s No-Swap theorem; suppose U satisfies the four named
conditions of his theorem on Ω . Then the iteration xn+1 := U(xn) generates a One–Sided
sequence. If it did not converge then, according to the no–man’s–land lemma, it would have two
points of accumulation with no iterate between them; and then because U is continuous it would
swap them, contrary to the No–Swap condition. Therefore the iteration does converge.

I am indebted to the late Prof. Rufus Bowen for pointing out Sharkovsky’s work. It answers
easily many convergence questions that would be awkward without it. Here are two examples:

Example 5.3: Suppose U(x) := e-x - 1 and Ω is the whole real axis; the iteration xn+1 := U(xn)
converges to z = 0 from every starting point because U' < 0 (so U has just one fixed–point)
and U cannot swap two points in Ω . No–Swap follows from the fact that the graphs of U and

its inverse intersect just once, which follows from the fact that e-x - 1 + ln(1+x) cannot vanish if

-1 < x ≠ 0 , which follows after differentiation from ex > 1+x . Convergence is alternating

because U'(0) = -1 < 0 , and xn = O(√6/n) because U(U(x)) = x - x3/6 + END EX. 5.3.

Example 5.4: Suppose f is a rational function with simple real interlacing zeros and poles, one
of them a pole at ∞ . An instance is f(x) := p(x)/p'(x) where p(x) is a polynomial all of whose
zeros are real. Another instance is f(x) := det(xI - A)/det(xI - Â) = ∏i (x - zi)/∏j (x - ôj) in which
A is an hermitian matrix, Â is obtained from it by striking off its last row and column, and the
I ’s are identity matrices; the zeros zi lie among the eigenvalues of A , and the poles ôj are the
distinct eigenvalues of Â that are not also eigenvalues of A . That they interlace, i.e.,

z0 < ô1 < z1 < ô2 < z2 < ... < ôK < zK ,
is a well–known theorem attributed to Cauchy. We do not know the zeros zi but, like Y. Saad
[1974], propose to compute them by running Newton’s iteration xn+1 := xn - f(xn)/f'(xn) . Does
it converge? If so, to what? These are thorny questions, considering how spiky is the graph of
f , and yet Newton’s iteration can be proved to converge to some zero zi from every real starting
value except a countable nowhere–dense set of starting values from which the iteration must
converge accidentally (after finitely many steps) to a pole ôj . The proof outlined below is
extracted from one first presented in my report [1979'].

For the proof’s sake express f in the forms f(x) = x - ß - ∑j wj/(x-ôj) = 1/∑i vi/(x-zi) in which
the coefficients ß , wj and vi are determined as sums, products and quotients of differences
among the zeros zi and poles ôj by matching the behavior of f(x) as x approaches each pole or
zero. By counting negative differences we find every wj > 0 and every vi > 0 , and by matching
behavior at ∞ we find ∑i vi = 1 . Newton’s iterating function now takes the forms

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 18/67

N(x) := x - f(x)/f'(x) except at poles ôj of f ,

 = (ß + ∑j (2x-ôj)wj/(x-ôj)
2)/(1 + ∑j wj/(x-ôj)

2) if no ôj = x ,

 = (∑i zivi/(x-zi)
2)/∑i vi/(x-zi)

2 if no zi = x .
From these we infer easily that N maps the whole real axis continuously into an interval whose
endpoints are the outermost zeros z0 and zK ; and every zero zi is a strongly attractive
fixed–point of N because N'(zi) = 0 , and every pole ôj is a strongly repulsive fixed–point
because N'(ôj) = 2 ; and N has no more fixed–points. To conclude that the iteration always
converges (almost always to a zero zi) we have to confirm that N cannot swap two points. If
N did swap x and y ≠ x , the equations y = N(x) and x = N(y) could be turned into

∑i vi(y-zi)/(x-zi)
2 = 0 and ∑i vi(x-zi)/(y-zi)

2 = 0 which, when subtracted and divided by y-x ,

would simplify to 0 = ∑i vi((x-zi)
-2 + (x-zi)

-1(y-zi)
-1 + (y-zi)

-2) > 0 , which is impossible. END

EX. 5.4.

The foregoing example is an instance of a general algebraic decision procedure based upon
Sharkovsky’s No–Swap theorem:

Suppose an interval Ω and a rational function U are given. Then the question
 “Does the iteration xn+1 := U(xn) converge in Ω from every initial x0 in Ω ?”
can be decided by performing finitely many rational operations without solving
any nonlinear polynomial equation.

U satisfies the No–Swap condition if and only if the simplified form of the rational function
1 + (U(U(x)) - U(x))/(U(x) - x)

has no zeros in Ω which are not also zeros of U(x) - x . This can be tested by removing common
divisors from certain polynomials and then counting their sign–changes in Ω by computing
Sturm sequences. Whether U maps Ω continuously into itself can also be determined from
certain polynomials’ sign–changes in Ω counted by computing Sturm sequences. The details
were worked out by R.J. Fateman [1977] in a program written to run on the computerized
algebra system MACSYMA. The procedure is practical only on a fairly big computer because
some of the polynomials in question can have large degrees, as large as the square of the degree
of the numerator or denominator of U .

Sharkovsky’s No–Swap theorem is the simplest of a family of relationships he discovered for the

properties of the fixed-points zk = U[k](zk) of a continuous iterating function U and of its
compounds

U[k](x) := U(U(U(…U(x)…))) k times.

For instance, if U[3] has a fixed-point that is not a fixed-point of U , then for every integer k > 1

there are fixed points of U[k] that are not fixed-points of U[m] for any divisor m of k . For an
elementary treatment of Sharkovsky’s relationships see Huang [1992]. For a brief discussion
of these and related results and other proofs, see Misiurewicz [1997].

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 19/67

§6. A One-Sided Contribution to Software Strategy
Suppose an iterating function U has been chosen because its fixed–point(s) z = U(z) coincide(s)
with the root(s) of a given equation to be solved, and because the iteration xn+1 := U(xn) is
expected to converge to a root quickly. When should this iteration be stopped or amended?

• When it appears to have converged well enough, or about as well as it ever will.
• When it will converge too slowly.
• When it will not converge.

How can non-convergence be predicted? A portent, at least when U is continuous, is a violation
of the One–Sided condition in Sharkovsky’s No–Swap theorem. That condition is the only one
of the theorem’s conditions that software can check: Until One–Sidedness fails, or until so
many iterations have been executed as must arouse suspicions that convergence will be too slow,
the software has no better option than to persist in the chosen iteration xn+1 := U(xn) . How can
software detect slow convergence or a failure of One–Sidedness? The answer to this question, at
least for continuous iterating functions U , is Brackets.

A Bracket is an ordered pair {x«, x»} of arguments, normally both iterates, between which all
subsequent iterates must lie if they are to constitute a One–Sided sequence. A bracket is usually
a straddle but this is not obligatory; U(x) - x need not take opposite signs at the ends of a bracket.
Initially, x« and x» are set to the endpoints, possibly infinite, of the interval Ω in which a
fixed–point of U is being sought. Subsequently, as suggested by the no–man’s–land lemma, x«
is the most recent of any iterates xn that satisfied xn < U(xn) , and x» is the most recent xn that
satisfied U(xn) < xn , if any. Consequently, once a bracket becomes a straddle it stays a straddle.
Normally every iteration narrows the bracket by moving one end closer to the other. Normally at
least one end of the bracket converges monotonically to the sought fixed–point of U .

Software must cope with whatever abnormal behavior a bracket exposes. For instance, bracket
{x «, x»} need not be a straddle; U(x«) - x« and U(x») - x» may have the same sign at first
because U does not map Ω into itself, and later perhaps because Ω contains no fixed–point of
U or more than one. A new iterate U(xn) may stray outside the current bracket perhaps because
xn is too close to a strongly repulsive fixed–point, or perhaps because U violates the No–Swap
condition, or because U does not map Ω into itself. Normal behavior, consistent with the
no–man’s–land lemma, may require software intervention too if the width of the bracket does not
shrink fast enough, as may happen because convergence is alternating but very slow, or because
both ends of the brachet are converging to different limits swapped by U , or because one end
stopped moving after the iteration’s convergence became monotonic.

Tactics can be chosen to cope with aberrations only after they have been diagnosed. For instance,
splitting the difference (as in Binary Chop) copes well with alternating slow (non)convergence;
a better expedient is Steffenson’s, which is tantamount to one step of Secant Iteration to solve
U(z) - z = 0 . Occasional difference extension (extrapolation) helps to accelerate monotonic but

slow behavior; a way to do it is Aitken’s ∆2 Process, which takes U(x) ≈ z + (x - z)µ to be an
approximate model for unknown constants z and µ determined from three consecutive iterates:

z ≈ zn := xn+1 - (xn+1 - xn)
2/(xn+1 - 2xn + xn-1) . Such expedients afford software the possibility

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 20/67

of extracting tolerable rates of convergence from iterations that would otherwise converge too
slowly or not at all. The programmer’s options and the occasions that call for them would
bewilder but for diagnostic information furnished by brackets and by Sharkovsky’s theorem, at
least when U is continuous.

Diagnosis is complicated when U may be discontinuous. Then a straddle may enclose a jump or
pole instead of a root or fixed–point. Reasons to doubt whether a pole can always be distinguished
from a root by solely numerical means will be presented later (Ex. 6.3).

Diagnosis is interesting also when U(x) may be undefined for some arguments x . What should
software do if an attempt to compute U(xn) produces instead an error–indication like “INVALID
OPERATION” ? In the past that has served as an excuse to abandon computation, but nowadays
the temptation to quit should be resisted. Unless it is trapped, an “Invalid” operation like 0/0 or
√-3 on most computers to-day will produce a NaN , and subsequent arithmetic operations upon
it will almost all propagate it. It can be detected because the predicate “ NaN = NaN ” is False;
this ostensible paradox merely confirms that NaN is Not a Number. Consequently, when U(xn)
turns out to be NaN instead of a number the appropriate inference is that xn has fallen outside
U ’s domain. The appropriate response is to supplant xn by something else closer to xn-1 and
therefore, presumably, inside U ’s domain. Then computation can be resumed.

A policy of continued computation past an invalid operation may seem reckless, and sometimes it
is. However the opposite policy, that abandons computation after any “Invalid” operation, is
tantamount to abandoning the search for an equation’s root merely because the computer signaled

“Look elsewhere for what you seek.”
That policy of abandonment frustrates software users who wish to solve an equation without first
ascertaining the boundary of its domain. Why should its domain be much more obvious than the
equation’s root? Except for examples contrived for classroom purposes, an equation’s domain is
generally found by an exploration that resembles the search for a root. Combining both searches
by forgiving “Invalid” operations makes more sense than abandonment does.

Searching continued past “Invalid” operations is now the policy built into the [SOLVE] keys on
Hewlett-Packard calculators starting with the hp-18C Business Consultant and the hp-28C ; see
McClellan [1987]. Consequently they can be used with far less fuss than other unforgiving
software requires to solve difficult equations. Here is my favorite example:

Example 6.1: We wish to decide whether the equation (tan(z) - arcsin(z))/z4 = 0 has a positive
root z or not. Unforgiving software will fail to find it despite repeated attempts each of which
starts, say, Newton’s iteration xn+1 := N(xn) , whose iterating function is

N(x) := x + 1/(4/x - (1 + tan2(x) - 1/√((1-x)(1+x)))/(tan(x) - arcsin(x))) ,
from small positive initial guesses like x0 = 0.1 . For the sake of realism we must pretend not to
know that the equation’s domain is the interval 0 < x ≤ 1 . Whatever its domain, the iteration
behaves as if doomed to move through it from left to right and escape. (N(x) > 1 whenever
0.46137 < x < 0.99964 .) A few such escapes followed by “Invalid” operations suggest fairly
persuasively that no positive root z exists, but in fact z = 0.9999060... . From random initial
guesses x0 scattered uniformly between 0 and 1 , Newton’s iteration is more than 1000 times

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 21/67

more likely to encounter an “Invalid” operation than to converge to this z . Despite these odds,
the hp-28C solves this equation quickly (by means of a modified Secant iteration) from any
initial guess(es) between 0 and 1 , thereby vindicating a policy of continued computation past
forgiven “Invalid” operations. (Some recent Casio calculators appear to do likewise.)

Sharkovsky’s No–Swap theorem contributes more than a convergence criterion to the strategy
and theory of iteration. It changes our attitudes. Rather than focus exclusively upon conditions
sufficient for convergence, we also make use of criteria that tell us when an iteration may not
converge unless we do something more than merely iterate. As we pursue this line of thought, we
come to understand why successful root-finding software need not always find a root, especially
if none exists. Satisfactory software should almost always find a root if any are to be found, and
usually find it fast, and come to a conclusion soon if a root is not going to be found. Deemed
unsatisfactory are indecisive iterations that meander interminably. Our foray into iteration theory
is a search for conditions under which an iteration won’t meander. We’ll find some later in §8.

What if the object sought is nowhere to be found? Root–finding software can cope with this
possibility by finding something other than a root, provided the substitution is made manifest to
the user of the software. An obvious candidate to supplant a zero of f that cannot be found is a
local minimum of |f| . However this substitution poses two challenges, one for the designer of
the software and one for its user. The designer must devise an algorithm whose efficiency is not
too much degraded by the necessity to switch, sometimes repeatedly, between two tasks:

seeking a nonzero minimum, and
seeking a zero.

After the software has found one, the user may be unable to decide which of the two has been
found in some cases.

Example 6.2:

 f(x) := (x - (7 - (x - (7 - x))))2 and f'(x) = 6(x - (7 - (x - (7 - x)))) (DON’T REMOVE PARENTHESES !)

will be calculated exactly (unblemished by roundoff) on every computer or calculator built in
the Western world for all x close enough to 14/3 = 4.666… , and therefore neither calculated
value can vanish when computed in floating–point arithmetic since 14/3 is not a floating–point
number on any of those machines. Consequently, if æ := 1.000…001 - 1 is a small positive
number like roundoff in numbers near 1 , no way exists to distinguish f and its derivative from

f + æ4 and its derivative using only their values computed in floating–point arithmetic. In other
words, software that finds a positive local minimum of |f| instead of a double zero deserves no
opprobrium if it cannot tell which it has found from numerical values alone.

Discriminating between a pole and a zero across which a function changes sign can be difficult
too in certain very rare cases like …

Example 6.3: The computed values of f(x) := 1/(x - (7 - (x - (7 - x)))) and of

F(x) := 1/((x - (7 - (x - (7 - x)))) + æ4/(x - (7 - (x - (7 - x))))) are the same everywhere although
f has a pole and F a zero at x = 14/3 .

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 22/67

Despite a few ambiguous cases, root–finding software can describe its find to its user sufficiently
well to make the attempt worthwhile. The software can deliver its latest bracket {x« , x»} and,
to help the user interpret it, an indicator that points to one of the following cases:

•A zero z = x« = x» has been found because the computed f(z) = 0 .

•A sign–reversal has been found; x« and x» differ only in their last significant digits and
f(x«)f(x») < 0 . Three sub–cases have to be distinguished:
 •Probably a zero since |f(x)| grows as (x-x«)(x-x») increases from 0 .
 •Probably a pole since |f(x)| drops as (x-x«)(x-x») increases from 0 .
 •Otherwise probably a jump discontinuity.

•A local minimum of |f(x)| has been found. Three sub–cases have to be distinguished:
•Probably a double zero since |f(x)| grows rapidly as (x-x«)(x-x») increases from 0 .
•Apparently f(x) is a nonzero constant when x is near or between x« and x» .
•Otherwise probably a nonzero local minimum of |f(x)| at some x near x« and x» .

Good root–finding software, able to present all those possibilities to its users without violating
Albert Einstein’s maxim, that

“ Everything should be made as simple as possible, but not simpler ”,
has to be more complicated to use than any single user might like, and harder to design than most
programmers will like. Well–designed software is parsimonious, uncluttered by extraneous
inputs and outputs. The necessary outputs, as we have seen, are now obvious:

• The latest bracket {x« , x»} found in lieu of a zero and, to help interpret it,
• An integer indicator for use in an indexed branch or Case statement.

The inputs needed by good root–finding software are unobvious because equations to be solved
are so diverse. Equations are like canapés; after one comes another. Often the equation to be
solved has the form f(z, p) = 0 with a parameter p that will take several values for each of which
a root z(p) has to be computed. For some equations the derivative ∂f(x, p)/∂x is easy to
compute, for others difficult. Often the equation has more than one root; some users seek all the
roots; other users wish to avoid all but one root. Sometimes high accuracy is desired; often not.
Only a cluttered menu can cater to all tastes. To promote parsimony I offer here my suggested list
of inputs to good root–finding software:

• The name of the program that computes either f(x, p) or else f(x, p) / ∂f(x, p)/∂x .
• One or two initial guesses x0 , x1 to start the search for a root z of f(z, p) = 0 .
• An initial bracket {x« , x»} to constrain that search. (It can be {-∞, +∞} .)
• A place for (optional) parameter(s) p to be passed to the named program f(…) .

Initial guesses are essential inputs even if brackets are supplied because, for example, when a
root z(p) is plotted as a function of a slowly changing parameter p the old value of z(p) is often
a good first guess at the new z(p) . The program that provides initial guesses should be able to
find a record (in SAVEd or static variables) of the old p and z(p) for use when the new p
is not too different; ∂z/∂p = -(∂f/∂p)/(∂f/∂x)|x = z usually helps too.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 23/67

In programming languages that allow argument lists of variable lengths, the parameter(s) p can
be the root–finder’s last argument(s) and then can be passed verbatim to the named program
f(…) as its last argument(s), thereby avoiding unnecessary prejudice against parameters of mixed
types (arrays, lists, pointers, procedures, strings, integers, floating–point numbers, …). The
conveyance of optional parameter(s) p has to be fast, not encumbered by excessive overheads to
de–reference p , because the root–finder invokes f(…) many times for each computation of
z(p) . This kind of computation, either the inversion of a given function f(z) = p or the
conversion of an implicit definition f(z, p) = 0 to an ostensibly explicit invocation of the solution
z(p) , is the root–finder’s most frequent application, and deserves software engineers’ attention.

Conspicuous omissions from my list deserve explanation. The list includes no upper limit upon
the number of iterations. There are three reasons to omit it. First, such a limit is difficult to
choose; might the search have succeeded had it been allowed two more iterations? Second,
abandoning a search prematurely may be justified after the expiry of some preassigned quantum
of time worth more than the root being sought; but f(…) can take longer to compute for some
arguments than for others, so a stopping criterion should count clock–ticks, not iterations. Third,
by using brackets, good software need never get stuck in an interminable sequence of iterations;
besides, as we shall see in the course of developing the theory below, well–designed software
can practically always ensure that f(…) becomes negligible after a moderate number of iterations
no matter how slowly they converge. By stopping after f(…) becomes negligible, or else after
the clock runs out, we can can omit iteration counts from our stopping criteria.

Also conspicuously absent from my list of inputs are two tolerances to serve in stopping criteria,
one for the negligibility of f(…) and a second for the negligibility of the difference between
consecutive iterates. Such tolerances will be chosen cavalierly if they must be constants chosen in
advance. Chosen properly, they generally depend upon the same arguments as f(…) depends
upon; therefore these tolerances should be computed inside the program that computes f(…) .

Example 6.4: Consider
 f(x) := ((((((((((((x-12)x+66)x-220)x+495)x-792)x+924)x-792)x+495)x-220)x+66)x-12)x+1

and pretend not to notice that this is an unfortunate way to compute (x-1)12 . Error analysis reveals that the
difference, due to roundoff, between f(x) and its computed value must be smaller than roughly

∆f(x) := 12 |x|(|x| + 1)11 æ but not often enormously smaller. Here æ := 1.000…001 - 1 is the roundoff threshold

for the computer’s floating–point arithmetic; typically æ = 1/252 = 2.22/1016 for 8-byte floating–point. For

arguments x near the zero z = 1 of f , its error bound ∆f ≈ 5.5/1012 is not enormously bigger than observed errors

almost as big as 2/1013 in computed values of f . How can someone be expected to guess either constant 5.5/1012

or 2/1013 in advance?

Computing (or guessing) a tolerance ∆f(…) for the negligibility of f(…) within the program
that computes f(…) lets ∆f(…) serve in a simple way to stop the search for a zero as soon as
f(…) becomes negligible:

Whenever the computed f would be no bigger than ∆f , return 0 in place of f .
This immediately stops the root–finder at what it thinks is a zero. Techniques for computing ∆f
include Running Error–Analysis and Interval Arithmetic, both described in a text by Higham
[2002] with ample references to the literature. These techniques can add considerably to the time
needed to compute f alone, so they should not be employed indiscriminately. The subprogram

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 24/67

can record (in SAVEd or static variables) the last few arguments at which f was computed,
and compute ∆f only at new arguments close enough to an old one that stopping is a plausible
possibility. In any event, iterations prolonged much beyond the time when |f| ≤ ∆f will waste
time dithering, so computing ∆f too often may waste less time than not computing ∆f at all.

My list of inputs also omits a tolerance ∆x for the difference between consecutive iterates, or the
width |x»-x«| of a bracket or straddle, because the use of ∆x to stop iteration lends itself too
easily to misinterpretation. The clear intention is to stop when the iteration has come within ±∆x
of the desired zero z , and that is what happens when convergence is so fast (as it usually is)
that |xn+1 - xn| is rather bigger than |xn+1 - z| ; but then little is gained by stopping the iteration
before |f| ≤ ∆f . Only when convergence is slow can ∆x be used to stop iteration in time to save
much time, but then this stopping criterion becomes treacherous. If convergence is slow because
z is a multiple zero (see §10 on Accelerated Convergence to Clustered Zeros below) then
|xn+1 - xn| can stay arbitrarily smaller than |xn+1 - z| even though |f(xn+1)| usually plunges below
any practical threshold ∆f fairly soon (see Theorem 7.6); then not much is gained by stopping
sooner, say when |xn+1 - xn| ≤ ∆x , beyond the illusion that |xn+1 - z| ≤ ∆x too. If roundoff
interferes severely with convergence, not even a straddle {x», x«} can be trusted to contain z ,
not even approximately.

Recall Example 6.4, f(x) := (…)x + 1 = (x-1)12 above. The uncertainty ±∆f in f propagates into an uncertainty

±(∆f)1/12 in the computed zero z ≈ 1 ; for 8-byte floating–point arithmetic carrying the equivalent of about 15 sig.
dec., the computed z is uncertain in its second decimal after the point. In fact, root–finders frequently stop with a
straddle {x», x«} whose ends differ only in their 13th decimal or beyond but which both differ from 1 by more
than 0.07 . How could a tolerance ∆x be chosen meaningfully in a case like this?

Generally, an appraisal of uncertainty in a computed zero z of f begins with an estimate of
uncertainty ∆f in the computed value of f . After that, uncertainty in z is either trivial or very
difficult to ascertain; see Higham [2002]. Including a tolerance ∆x among the root–finder’s
inputs to stop iteration sooner deceives users too often while contributing little to speed and less to
error–analysis, in my experience, so I have omitted it from my root–finding software. Other
programmers think otherwise. Rather than argue longer here about where (outside the root–
finder) error–analysis should play its rôle, I prefer to develop root–finding iterations that find
roots fast enough to render early termination (before |f| ≤ ∆f) of the iteration uninteresting.

Still, if an iteration’s convergence is normally superlinear and never worse than linear, here is a
strategy that may save an iteration or two if monotonic convergence shrinks brackets too slowly:

Suppose Difference Quotients (xk+1 – xk)/(xk – xk–1) → 0 as k → ∞ . Provided (while roundoff is insignificant)

these quotients will constitute a decreasing sequence as xk → z , after L := (xk+1 – xk)/(xk – xk–1) < 1 we can soon
deduce that the error |z – xk+1| ≤ |xk+1 – xk|·L/(1–L) . Therefore iteration can be stopped after at least two or three
consecutive difference quotients, all less than 1 , have strictly decreased to a latest difference quotient L small
enough that |xk+1 – xk|·L/(1–L) < ∆x . If this ever happens, xk+1 can be delivered with a reasonable expectation that
|xk+1 – z| < ∆x , and without having to compute f(xk+1) though checking that it is negligible would be prudent.
Don’t omit the divisor (1–L) lest iteration be stopped far too soon when convergence is slowly slowing.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 25/67

In the foregoing discussions of strategies for root-finding software, the avoidance of dithering and
other unpleasant consequences of roundoff has been a desideratum achieved by stopping an
iteration before it can be deflected intolerably by roundoff. Such a stopping criterion entails an
error-analysis, either rigorous or approximate. “Perform an error-analysis!” is Counsel of
Perfection (cf. Matthew 19:21 and other early ecclesiastical writings) impractical for most users
of numerical software. Instead they are likely to run a root-finder until it stops with a result of
unknowable accuracy as good as unknown roundoff has allowed. Therefore, besides the short list
of inputs recommended above for a good root-finder, it must manage brackets and straddles well
enough to cope not much slower than Binary Chop with the raggedness of roundoff. Here is a
simple example that arose in one of my own computations; it was not contrived.

Example 6.5: Let cubic polynomial f(x) := ((x - b)·x + g)·x + h for coefficients b := 23722988 ,

g := 16770435·223
 , h := 9968105·234

 , all represented exactly in the 24-sig.bit floating-point
arithmetic that will be used for all this example’s computations. The computed value of f(z)
vanishes at z := 11862103 ; and the computed value of f(11862945)·f(11862946) < 0 . The
jagged graph below exhibits values of f(x) computed at 16385 consecutive 24-sig.bit floating-
point integers x centered around z . The smooth nearly parabolic graph exhibits f(x) exactly.

As secant iterations converge to one of the real “roots” that f(x) should not have, two closely
spaced iterates may send a third far to the right unless inhibited by a bracket or straddle. How
should such an inhibition be implemented? An unlikely straddle, if available, can be Binary
Chopped; this is what Wilkins & Gu [2003] recommend after any five iterations fail to halve the
straddle’s width or a new iterate fails to halve the previous sample of |f(x)| . More likely is a
bracket that does not straddle; it will require a treatment more complicated than Binary Chop.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
4

-1

0

1

2

3

4

5

6

7

8

9
x 10

14

 X - 11862103

 f(
 X

)

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 26/67

Usually roundoff degrades Newton’s iteration less than secant iteration. The jagged graph below
exhibits Nf(x) := x – f(x)/f’(x) computed in 24-sig.bit floating-point at the same 16385 values
x as before. The smooth nearly hyperbolic graph exhibits Nf(x) uncontaminated by roundoff.

When iteration starts from the far right, accelerated by the procedure mentioned after Corollary
10.4, brackets soon turn into straddles that are Binary Chopped to inhibit iterates that converge
almost always to the 24-sig.bit adjacent pair [11862945, 11862946] . Actually the cubic f(x)
has only one real zero z ≈ -1217.051909940… found quickly if iteration starts from the left.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

4

 X - 11862103

N
f(

 X
)

 -
 1

18
62

10
3

•

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 27/67

§7. Local Behavior of Newton’s and Secant Iterations
The two best–known iterations for solving a given equation f(z) = 0 come from approximations
to the graph of f by linear graphs, one a tangent and the other a secant. They have the following
iterating functions:

N(x) := x - f(x)/f'(x) for Newton’s iteration xn+1 := N(xn) , and

S(x, y) := x - f(x)/f†(x, y) = S(y, x) for Secant iteration xn+1 := S(xn, xn-1) .
See the Appendix on Divided Differences for an explanation of the first Divided Difference

f†(x, y) := (f(x) - f(y))/(x - y) if y ≠ x ,
 := f'(x) if y = x .

Programmers can handle 0/0 in these formulas by stopping both iterations as soon as f(xn) = 0 ,
and otherwise by perturbing xn slightly whenever xn = xn-1 during Secant iteration. For a
mathematician the limiting value S(x, x) = N(x) is the obvious expedient. Not so obvious is how
to redefine N(z) when f'(z) = f(z) = 0 because then N(x) might oscillate too wildly to approach

a limit as x approaches z , as happens for the example f(x) := ∫ox t sin2(1/t) dt . None the less,
redefining N(z) := z whenever f(z) = 0 can be justified by the next lemma:

Lemma 7.1: Suppose f' is finite throughout some neighborhood of a zero z of
f , and N(x) approaches a limit as x → z . Then N(x) → z ; therefore defining
N(z) := z conserves the continuity of N(x) near z whenever possible.

Proof: If necessary, shrink the neighborhood around z to exclude any other point at which N is
undefined or infinite; then this neighborhood excludes every zero of f' except perhaps z , and
by Rolle’s theorem excludes also every zero of f other than z . Consequently the derivative
(ln|f(x)|)' = f'(x)/f(x) = 1/(x-N(x)) must be finite throughout this neighborhood except at x = z .
Therefore ln|f| is eligible for an application of the Mean Value Theorem of the Differential
Calculus to its first divided difference: for any distinct v and w on the same side of z in this
neighborhood, some x between v and w must satisfy

ln(f(v)/f(w))/(v-w) = (ln|f(v)| - ln|f(w)|)/(v - w) = f'(x)/f(x) = 1/(x - N(x)) .
Now suppose for the sake of argument that N(x) → L ≠ z as x → z ; we shall infer a
contradiction: For all distinct v and w close enough to z (and much closer to z than L is),
but not separated by z , we would find ln(f(v)/f(w))/(v-w) = 1/(x - N(x)) ≈ 1/(z-L) at some x
between v and w . The last approximation could be kept as close as we please by keeping v
and w close enough to z . But then, by fixing one of v and w and letting the other tend to z ,
we would infer that ln|f(z)| is finite, so z could not be a zero of f . But it is; therefore L = z .
END OF PROOF.

Now that N(x) and S(x, y) are defined properly, and practically always continuous around the
zero z , we turn to their local convergence properties. Their convergence to a simple zero z is

typified by their behavior when f(x) = (x-z)/(x-ô) ≠ 1 ; for this example N(x) = z + (x-z)2/(ô-z)
and S(x,y) = z + (x-z)(y-z)/(ô-z) . Simple computations confirm first that Newton’s iteration

(xn+1-z)/(ô-z) = ((xn-z)/(ô-z))2 converges quadratically to z from every x0 closer to z than the
pole ô is, and second that Secant iteration (xn+1-z)/(ô-z) = ((xn-z)/(ô-z)) ((xn-1-z)/(ô-z))
converges at order (1+√5)/2 to z from a wider range of starting iterates x0 and x1 satisfying

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 28/67

|x0-z|3-√5·|x1-z|√5-1 < (ô-z)2 . Orders of convergence different from these are uncommon for the
functions f typically encountered in practice, as we shall see.

Typical or not, these iterations’ local convergence to a zero z depends upon how f behaves in
the neighborhood of z . What kind of behavior guarantees convergence? The graph of f has to
resemble its tangents or secants closely enough in the sense that fluctuations in the derivative f'
have to stay sufficiently small compared with f' . How small is “ sufficiently small ” ? It’s not
obvious yet. The first hypotheses that come to mind do not suffice:

Non–Theorem 7.2: Suppose f'(x) and N(x) := x - f(x)/f'(x) are continuous at
every x in some open neighborhood Ω of a zero z of f . Then it seems at least
plausible that Newton’s iteration xn+1 := N(xn) should converge to z from
every initial x0 in Ω close enough to z ; but it ain’t necessarily so if f'(z) = 0 .

Counter–Example 7.2: A function f(x) will be contrived with these properties: f'(x) and N(x)
are continuous everywhere, f'(x) > 0 for all x ≠ 0 , and z = f(z) = f'(z) = N(z) = 0 . However,
around z every open neighborhood Ω , no matter how small, contains infinitely many closed
subintervals all of positive width from each of which Newton’s iteration tends to two-cycle,
jumping back and forth across z forever instead of converging to z .

The construction of this perverse f begins with an integer-valued step–function
k(x) := IntegerNearest(-ln(|x|)/ln(2)) = IntegerNearest(-log2(|x|)) ,

and a quartic polynomial

q(x) := 1+x + (13 + 9√2)(x-1)3 + (1 + 3/√8)(x-1)4
monotone increasing over 1/√2 ≤ x ≤ √2 . This q meets the following specifications:
 q(1) = 2 , q'(1) = 1 , q" (1) = 0 , q(√2) = 15/√8 - 1 = 4q(1/√2) , q'(√2) = 12 + √8 = 2q'(1/√2) .

Note that 1/√2 ≤ 2k(x)|x| ≤ √2 ; note too that k(x) is ambiguous when log2|x| is a half–integer,
but then either choice k = -log2|x| ± 1/2 is acceptable. Finally define f(0) := f'(0) := 0 and

f(x) := sign(x) q(2k(x)|x|)/4k(x) for x ≠ 0 .

The continuity of f(x) and of f'(x) = q'(2k(x)|x|)/2k(x) are easily confirmed along with the

identities f(x) = -f(-x) = f(2k(x)|x|)/4k(x) and f'(x) = f'(-x) = f'(2k(x)|x|)/2k(x) > 0 for x ≠ 0 .

The ranges of values taken by |f(x)|/x2 and by f'(x)/|x| over all x ≠ 0 are the same respectively

as the ranges of q(x)/x2 and q'(x)/x over 1/√2 ≤ x ≤ √2 , so as x → 0 we find |f(x)| ≤ 3x2

and f'(x) ≤ 12|x| , confirming continuity at x = 0 . And N(x) = x - f(x)/f'(x) = N(2k(x)|x|)/2k(x)
is continuous there too because |N(x)| ≤ 2|x| similarly.

The design of f(x) ensures that N(x) = -x and N'(x) = 0 whenever x = ±2k for every integer

k ; moreover 2k·0.9935 < |N(x)| < 2k·1.0064 whenever 2k·0.9935 < |x| < 2k·1.0064 , so from

any x0 in those intervals Newton’s iteration tends rapidly to a two-cycle +2k ↔ -2k , as
claimed. Numerical experiments suggest that such a two–cycle, though with a large negative k ,
is the likeliest outcome of iteration from a randomly chosen x0 . END OF COUNTER–EXAMPLE.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 29/67

In general, the convergence of Newton’s and Secant iterations cannot be taken for granted.
Their local convergence depends upon whether, as x → z and y → z , the limiting values of
certain first divided differences like

N†(x,z) := (N(x) - N(z))/(x-z) = (N(x) - z)/(x-z) → N'(z) and

S†({x,z},y) := (S(x,y) - S(z,y))/(x-z) = (S(x,y) - z)/(x-z) → ∂S(x, y)/∂x | x=y=z
exist and are small enough. In particular, convergence is superlinear if these derivatives vanish,
because then |xn+1 - z|/|xn - z| → 0 as the iterations converge; also the Order of convergence
depends then upon whether limiting values exist for certain second divided differences

N††(x,z,z) := (N†(x,z) - N'(z))/(x-z) = (N(x) - z)/(x-z)2 and

S††({x,z},{y,z}) := (S †({x,z},y) - S†({x,z},z))/(y-z) = (S(x,y) - z)/((x-z)(y-z))

from which bounds for quotients |xn+1 - z|/|xn - z|2 and |xn+1 - z|/|(xn - z)(xn-1 - z)| respectively
can be obtained. Such bounds will be obtained from first and second derivatives and divided
differences of f by invoking recondite identities like …

Identities 7.3: f(S(u, w)) = (S(u, w) - u) (S(u, w) - w) f††(S(u, w), u, w) . This

includes the limiting case f(N(v)) = (N(v) - v)2 f††(N(v), v, v) . Taking f(z) = 0

into account yields the identity (S(x,y) - z)/((x-z)(y-z)) = f††(x,y,z)/f†(x,y) and

its limiting case (N(x) - z)/(x-z)2 = f††(x,x,z)/f'(x) .

The identities’ proofs are entirely mechanical and left to readers who have reviewed the notation
and formulas in the first two pages of the Appendix on Divided Differences.

Conditions sufficient locally for convergence have been found in two ancient theorems of which at
least one applies in almost all practical situations. The first theorem is as old as Taylor series:

Theorem 7.4: Suppose f' is continuous throughout some neighborhood Ω of a
zero z of f at which f'(z) ≠ 0 . Then N'(z) = 0 ; therefore Newton’s iteration
converges superlinearly to z from every initial x0 close enough to z . Similarly
Secant iteration converges superlinearly to z from every initial x0 and x1 close
enough to z . If f" exists and is bounded throughout Ω then N" (z) = f" (z)/f'(z)
and the convergence of Newton’s iteration is at least quadratic (Order = 2), and
the convergence of Secant iteration has Order at least (1 + √5)/2 = 1.618… .

Proof: As u → z and w → z independently the continuity of f' carries f†(u, w) → f'(z) .

Consequently (N(x) - z)/(x-z) = (f'(x) - f†(x, z))/f'(x) → 0/f'(z) = 0 as x → z and so N'(z) = 0
as claimed, whence Newton’s iteration converges superlinearly. Similar reasoning shows that

(S(x,y) - z)/(x-z) = (f†(x,y) - f†(x,z))/f†(x,y) → 0 as x → z and y → z , so Secant iteration
converges superlinearly too.

When f" exists and is bounded, some constant C > | f" (x)/f'(z)| throughout Ω . Therefore

(N(x) - z)/(x-z)2 = f††(x,x,z)/f'(x) lies between ±C for all x close enough to z and therefore

1
2

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 30/67

|(xn+1 - z)/(xn - z)2| < C if x0 is close enough to z ; convergence is at least quadratic as claimed.

And (S(x,y) - z)/((x-z)(y-z)) = f††(x,y,z)/f†(x,y) also lies between ±C for all x and y close
enough to z , so |(xn+1 - z)/((xn - z)(xn-1 - z))| < C if x0 and x1 are close enough to z ,
thereby vindicating the claimed Order of convergence; here is an outline of how that works (cf.
Ostrowski [1966], or Dahlquist et al. [1974], or Vianello & Zanello [1992].):

For that constant C > | f" (x)/f'(z)| throughout Ω let Dn := -ln|C (xn - z)| ; then the Secant

iteration’s |(xn+1 - z)/((xn - z)(xn-1 - z))| < C means that Dn+1 > Dn + Dn-1 > 0 if x0 and x1 are
close enough to z . Next, Dn+1 > FnD1 + Fn-1D0 by induction where the Fibonacci numbers

Fn = Fn-1 + Fn-2 = (Çn+1 - (-Ç)-n-1)/(Ç + 1/Ç) for another constant Ç := (1 + √5)/2 = 1 + 1/Ç .

Thus Dn approaches +∞ at least as fast as some multiple of Çn . END OF PROOF.

(Continuity of f' in Theorem 7.4 cannot be replaced by mere existence of f' and its consequent

Darboux Continuity lest N oscillate violently for examples like f(x) := ∫ox sin2(1/t)dt whose
f(0) = 0 and f'(0) = 1/2 . In general a function, perhaps too wildly oscillatory to be continuous,
is called “Darboux Continuous” if, among the values it takes on every closed subinterval of its
domain, lie all values between those taken at that subinterval’s ends. Every derivative has that
property. For more about Darboux Continuity see Bruckner and Ceder [1965].)

The ultimate speeds of convergence of Newton’s and Secant iteration should not be compared
by considering only their orders of convergence. As many a textbook points out nowadays, the
two iterations yield correct decimal digits ultimately at about the same rate if the computation of
the derivative f' too adds about 44% to the time taken to compute f alone. If f' costs much
more than that, Secant iteration goes faster in the likeliest cases. But Theorem 7.4 says nothing
about the iterations’ speeds when f'(z) = 0 , in which case a different approach is needed.

Theorem 7.5: Suppose |f'(x)| increases as x moves away from z through some
neighborhood Ω on one side of a zero z of f . Then 0 < (N(x) - z)/(x-z) < 1 and
so Newton’s iteration converges monotonically to z from every initial x0 in Ω .
Similarly 0 < (S(x,y) - z)/(x-z) < 1 for all x and y in Ω and so Secant iteration
converges monotonically to z from every initial x0 and x1 in Ω .

In other words, this theorem’s hypothesis is that the graph of f(x) is convex towards the x–axis
as is the case, for example, when f" f > 0 inside Ω . Theorems like this appear in many texts,
for instance Ostrowski [1960 et seq.] ch. 9 and 10, and Dahlquist et al. [1974] p. 225. Texts
written in France attribute theorems like this to Dandelin and/or Fourier, as if it had not been
geometrically obvious before them. Let the reader compare the limpidity of his own proof–by–
pictures with the turgidity that follows.

Proof: Regardless of whether f'(z) = 0 , the growth of |f'(x)| as x moves away from z implies
that f'(x) can’t reverse sign, and therefore 0 < (f'(x) - f'(y))/f'(x) < 1 at that y strictly between

z and x where f'(y) = f†(x,z) . Therefore 0 < (N(x) - z)/(x-z) = (f'(x)-f†(x, z))/f'(x) < 1 for
every x ≠ z in Ω . This implies that the iteration xn+1 := N(xn) converges monotonically to a

1
2

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 31/67

limit between z and x0 inclusive from every initial x0 in Ω . Where is that limit? Since
f(xn)/f'(xn) = xn - xn+1 → 0 and |f'(xn)| ≤ |f'(x0)| , so does f(xn) → 0 , whence xn → z as

claimed. Similarly (S(x,y) - z)/((x-z)(y-z)) = f††(x,y,z)/f†(x,y) for all x and y in Ω from one
of Identities 7.3; what we do with this depends upon which of x and y lies closer to z . If x

lies strictly between y and z then (S(x,y) - z)/(x-z) = (f†(y,x) - f†(x,z))/f†(y,x) ; if y lies

strictly between x and z then (S(x,y) - z)/(x-z) = ((y-z)/(x-z)) (f†(x,y) - f†(y,z))/f†(x,y) . Either
way the quotient in question lies strictly between 0 and 1 , so the Secant iteration’s
xn+1 := S(xn, xn-1) converges monotonically to some limit between z and the closer of any two

starting iterates x0 and x1 in Ω . Where is that limit? Since f(xn)/f
†(xn, xn-1) = xn - xn+1 → 0

and |f†(xn, xn-1)| ≤ |f'(x0)| , so does f(xn) → 0 , whence xn → z as claimed. END OF PROOF.

For practical purposes Theorems 7.4 and 7.5 tell us to expect Newton’s and Secant iteration
to converge ultimately superlinearly or monotonically or both if started close enough to z . Alas,
the speed of convergence is not mentioned in Theorem 7.5, and for good reason; its convexity

hypothesis is compatible with arbitrarily slow convergence. For example, when f(x) = |x|m for

any constant m > 1 , Newton’s iteration yields xn = (1 - 1/m)n x0 convergent arbitrarily slowly

for m big enough; however f(xn)/f(x0) = (1 - 1/m)mn < e-n tends to 0 quickly. When m is a
negative constant tiny enough, f(xn)/f(x0) tends to 0 arbitrarily slowly although xn diverges to
z = ∞ quickly. Both xn and f(xn) converge arbitrarily slowly if m exceeds 1/2 by little
enough, but then the convexity hypothesis is violated. What light do these examples shed upon
the general case ? The case m > 1 turns out to be typical of what happens when the graph of
f(x) is convex towards the x-axis and xn converges to a finite zero z of both f and f' :

Theorem 7.6: Under the convexity hypothesis of Theorem 7.5, the iterates xn
may converge to z arbitrarily slowly, though monotonically; but f(xn) tends

monotonically to 0 at least so fast that ∑n (2
n f(xn))

2 ≤ f(x0)
2 (x0 -z)/(x0 - x1) .

(The “ 2 ” in “ 2n f(xn) ” cannot be replaced by a bigger constant since f(xn-1)/f(xn) → 2 when

Secant iteration is applied to the example f(x) := x exp(-1/x) with x0 > x1 > 0 . An example
f(x) that justifies “ 2 ” for Newton’s iteration is too complicated to be worth reproducing here
though “ e ” can be used instead of “ 2 ” for all infinitely differentiable examples f .)

Proof: For definiteness restrict attention to nonnegative functions f(x) and f'(x) increasing over
an interval z ≤ x ≤ x0 > z , and for Secant iteration suppose too that x1 lies inside that interval.
Theorem 7.5 implies z < xn+1 < xn , 0 = f(z) < f(xn+1) < f(xn) and 0 ≤ f'(z) < f'(xn+1) < f'(xn)
without constraining the rapidity with which xn → z . Given any such sequence xn convergent
monotonically downwards to z , no matter how slowly convergent, do convex functions f(x)
exist from which Newton’s or Secant iteration would have generated that sequence of iterates?
To answer this question, a sequence of values fn and f'n will be derived from xn , and then a
continuously once differentiable convex function f(x) satisfying f(xn) = fn and f'(xn) = f'n will

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 32/67

be constructed out of parabolic arcs; this is a function from which Newton’s or Secant iteration
generates the given sequence of iterates xn .

Consider Secant iteration first because it is easier. The values fn will have to satisfy
xn+1 = xn - (xn - xn-1)fn/(fn - fn-1) , which fixes fn := fn-1 (xn - xn+1)/(xn-1 - xn+1) recursively for
n = 1, 2, 3, ... starting from any arbitrarily chosen f0 > 0 . Since x0 > x1 > x2 > … > xn > xn+1 ,
also f0 > f1 > f2 > … > fn > fn+1 > 0 , and less obviously
 0 < (fn - fn+1)/(xn - xn+1) = ((xn - xn+1)/(xn - xn+2))((fn-1 - fn)/(xn-1 - xn)) < (fn-1 - fn)/(xn-1 - xn) .
Therefore leeway exists to choose a positive descending sequence of values f'n satisfying
(fn - fn+1)/(xn - xn+1) < f'n < (fn-1 - fn)/(xn-1 - xn) < f'n-1 for n = 1, 2, 3, After choices for all
values fn and f'n have been assigned, f(x) is defined in each subinterval xn ≤ x ≤ xn-1 as the
function whose graph is a convex parabolic arc subject to the constraints f(xn) = fn < f(xn-1) = fn-1
and f'(xn) = f'n < f'(xn-1) = f'n-1 . The existence of this parabola (its axis need not be vertical)
is the gist of Lemma A4.1 in Appendix A4: Parabolas. The triangle QRS in that lemma has Q
at (xn, fn) , R at (xn-1, fn-1) , and sides QS and RS with slopes f'n and f'n-1 respectively.
The arc lies inside the triangle and joins Q to R . Taken together, all such arcs make up the
graph of a function f(x) over the interval z < x ≤ x0 . This f(x) is convex and continuously once
(but not likely twice) differentiable. What remains to be proved is that this f(x) → 0 as x → z ;
it will be proved later.

A different f(x) is needed for Newton’s iteration, whose descending iterates xn determine all
quotients fn/f'n = xn - xn+1 > 0 but leave the values fn and f'n partially arbitrary. Let us choose
any positive f0 and any positive fn < fn-1(xn - xn+1)/(xn-1 - xn+1) recursively for n = 1, 2, 3, ... ,
thereby determining also f'n := fn/(xn - xn+1) . Obviously 0 < fn < fn-1 ; less obviously

0 < (fn - fn+1)/(xn - xn+1) = (1 - fn+1/fn) f'n
 < f'n = fn/(xn - xn+1)

 < (fn-1 - fn)/(xn-1 - xn) .
Next define f(x) in each subinterval xn ≤ x ≤ xn-1 to be the function whose graph is a convex
parabolic arc subject to the constraints f(xn) = fn < f(xn-1) = fn-1 and f'(xn) = f'n < f'(xn-1) = f'n-1
as before. Once again, all such arcs make up the graph of a convex and continuously once (but
not likely twice) differentiable function f(x) over the interval z < x ≤ x0 . What remains to be
proved is that this f(x) → 0 as x → z .

What remains to be proved, not just for the functions f constructed above but for every f that
satisfies the theorem’s convexity hypothesis, is that the values f(xn) tend to f(z) = 0 faster than
the terms of a geometric progression with common ratio 1/2 . Attention is still restricted to
nonnegative functions f(x) and f'(x) increasing over the finite interval z ≤ x ≤ x0 > z ; and for
Secant iteration x1 lies inside that interval. Now the abbreviations fn = f(xn) and f'n = f'(xn)
stand for values computed during the iteration and, because z < xn < xn-1 , they satisfy both
0 < fn < fn-1 and 0 < f'n < (fn-1 - fn)/(xn-1 - xn) < f'n-1 , the latter because f' is increasing.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 33/67

Consider Secant iteration xn+1 = xn - (xn - xn-1)fn/(fn - fn-1) first because it is easier. It has

2fn /fn-1 = 2/(1 +(xn-1 - xn)/(xn - xn+1)) ≤ √((xn - xn+1)/(xn-1 - xn)) . Next, Newton’s iteration
xn+1 = xn - fn/f'n has fn/(xn - xn+1) = f'n < (fn-1 - fn)/(xn-1 - xn) , from which follows again

2fn /fn-1 < 2/(1 +(xn-1 - xn)/(xn - xn+1)) ≤ √((xn - xn+1)/(xn-1 - xn)) . For both iterations, repeated

multiplication implies (2n fn/f0)
2 ≤ (xn - xn+1)/(x0 - x1) ; now sum over n . END OF PROOF.

Theorems 7.4, 7.5 and 7.6 are best regarded as contributions to local convergence theory since
they say too little about convergence from afar. Monotonic convergence is what disqualifies the
global pretensions of the latter two although their convexity hypothesis might hold in a wide
neighborhood Ω . More often the first few (if not all) iterates of a convergent iteration approach
z non–monotonically, in which cases the convexity hypothesis can hold in at most a bounded
domain. Therefore theorems 7.5 and 7.6, unable to discriminate between non–monotonic
convergence and interminable meandering, are too often applicable only locally.

For example, if f is a cubic polynomial monotonic over a non–finite (including +∞ or -∞ , or
both) interval Ω but not convex thereon, the iterations cannot meander in Ω but will either
escape from it or converge to a zero of f therein; this follows from Theorem 8.2 below, not
from theorems 7.5 and 7.6 above. On the other hand, if f is a quintic polynomial monotonic
over a non–finite interval Ω but not convex thereon, Newton’s iteration can meander in Ω

forever; f(x) := 5x5 - 18x3 + 45x is an instance with all the real axis for Ω and with f' ≥ 15.84 ,
but alternate iterates xn approach +1 and -1 if ever 1 ≤ |xn| < 1.076570927 .

What distinguishes monotonic cubics from other monotonic polynomials? The distinction will
become clear later when we deduce Theorem 8.2 from hypotheses that are the weakest and thus
most widely applicable conditions now known to suffice for convergence.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 34/67

§8. Sum–Topped Functions
A function Sum–Topped on an interval Ω is by definition a function q(x) that lies between 0
and q(u) + q(w) inclusive throughout every closed subinterval u ≤ x ≤ w of Ω . The label
“Sum–Topped” has been born out of desperation for lack of a better label. Also lacking is a neat
characterization of sum–topped functions. Some of their properties are obvious; for instance,
functions sum–topped on an interval Ω are also sum–topped on every subinterval of Ω , but not
vice versa. If q is sum–topped on Ω so is µq for every real constant µ , positive or negative.
Monotonic functions that do not reverse sign are sum–topped; and non–monotonic sum–topped
functions exist too. Here are some examples (plot them!) to illustrate their diversity:

Any quadratic q on an interval none of which falls between two simple zeros of q ;

3 + cos(ex) on the whole real x-axis ;
|x - sin(x)| on the whole real x-axis ;

1/(1 + x2) on the interval --1/w ≤ x ≤ w for any w > 0 ; and
2cos(x) + x - µ on the positive real x-axis for any constant µ ≤ 2 + 2π/3 - 2√3 = 0.63… .

Some properties of sum–topped functions are almost obvious:

Lemma 8.1: A function q sum–topped on Ω cannot reverse sign (by taking
both positive and negative values) therein; and if q(z) = 0 at some z in Ω then
|q(x)| is a non–decreasing function of |x-z| while x is in Ω .

Proof: If q(u) q(w) ≤ 0 for some u and w in Ω then, since (q(u) + q(w) - q(x))·q(x) ≥ 0 for
all x between u and w inclusive, setting x = w implies that q(u) q(w) = 0 . And if q(z) = 0
at some z in Ω then, because q(y) must lie between 0 and q(z) + q(x) = q(x) for all y
between z and x , we infer that 0 ≤ q(y)/q(x) ≤ 1 if q(x) ≠ 0 . Therefore q(x) may vanish
throughout some closed subinterval of Ω but must then become nonzero and monotonic as x
departs from that subinterval. END OF PROOF.

In the light of this lemma, the unobviously sum–topped functions q on Ω are the
non–monotonic ones that retain the same nonzero sign throughout; suppose q > 0 to simplify the
following exposition. Whether a continuous non–monotonic q is sum–topped is determined
solely by the values it achieves at its local extrema (maxima and minima) in Ω . Suppose all its
local minima are qj := q(vj) > 0 and all its local maxima strictly inside Ω are Qi := q(mi) for
v0 < m1 < v1 < m2 < … < mK < vK all in Ω . Then q is sum–topped if and only if every
Qi ≤ minj<i qj + minj ≥ i qj . This decision procedure can be inconvenient, as it is for large K ,
and gets worse when q has infinitely many extrema or is discontinuous. Among sum–topped
functions the easiest to recognize are those of Restrained Variation, which are explained below
in appendix A2. Before digressing to that explanation, let us see how sum–topped functions
figure in Newton’s and Secant iteration:

Theorem 8.2: A Sum-Topped Derivative
Suppose f' is continuous and sum–topped throughout a closed interval Ω . Then
Newton’s iteration xn+1 := xn - f(xn)/f'(xn) , started from any x0 in Ω , either
converges in Ω to the zero z of f or leaves Ω ; the iteration cannot meander in
Ω endlessly.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 35/67

Proof: At the cost perhaps of replacing f by -f , we may assume that f' ≥ 0 throughout Ω since
Lemma 8.1 prevents f' from reversing sign. Newton’s iterating function N(x) := x - f(x)/f'(x)
is therefore continuous except possibly where f'(x) vanishes. This possibility must be dispatched
first; later we shall deal with cases in which f' never vanishes in Ω .

The theorem’s hypotheses allow f and/or f' to vanish at most once in Ω . To see why, observe
first that f' must vanish between any two distinct zeros of f . Next suppose f'(u) = 0 . Then
Lemma 8.1 implies that there must be some closed subinterval ù ≤ x ≤ ú of Ω throughout
which f'(x) = 0 and f(ù) = f(x) = f(ú) while ù ≤ x ≤ ú ; but

f'(x) is positive and decreasing, and f(x) < f(ù) , while x < ù in Ω ; and
f'(x) is positive and increasing, and f(x) > f(ú) , while x > ú in Ω .

Only in the subinterval (it may be a single point u) need N be redefined:
•˚ Wherever f'(z) = 0 = f(z) define N(z) := z .
•' Wherever f'(u) = 0 ≠ f(u) define N(u) := -sign(f(u)) ∞ as if f'(u) = +0 .

At most one of these two cases can arise. In the first case (•˚), Theorem 7.5 guarantees the
convergence of Newton’s iteration to an endpoint of the subinterval of Ω wherein f(z) = 0 .
The same theorem dispatches the second case (•') too because, so long as f(xn) has the same
nonzero sign as f(u) , iteration must move monotonically in the direction that decreases |f| until
one of the following three eventualities occurs:

i) An iterate escapes from Ω , perhaps by jumping to ±∞ , or else
ii) Iterates stay in Ω and “converge” monotonically to +∞ or -∞ in Ω , or else
iii) An f(xn) reverses sign and subsequent iterates reverse course and converge to z .

Only eventuality (iii) delivers a finite root z of f(z) = 0 in Ω , and f'(z) ≠ 0 there. Whether
eventuality (ii) delivers a root depends upon whether the limit to which |f(x)| declines, as x
approaches that infinite endpoint of Ω at which f' vanishes, is zero.

Eventuality (i) must arise also when neither f nor f' vanishes in Ω since then too the iteration
must move monotonically in a direction that decreases |f| .

Now only one case is left to consider: Suppose henceforth that f' > 0 throughout Ω and
f(z) = 0 < f'(z) at some z in Ω . Now N must be continuous in Ω and its sole fixed–point
therein is z = N(z) . If finitely many iterates lie on one side of z and infinitely many on the other
side in Ω , then the iteration must converge ultimately monotonically because, except for finitely
many initial iterates, every subsequent iteration with xn ≠ z maintains 0 ≤ (xn+1 - z)/(xn - z) < 1
and 0 ≤ f(xn+1)/f(xn) < 1 , as is easily confirmed; of course the iteration converges to z . But if
the iteration neither escaped from Ω nor converged to z , as we shall assume henceforth for the
sake of argument by contradiction, infinitely many iterates would have to fall on both sides of z ,
which would have to lie strictly inside Ω . We shall complete the proof of theorem 8.2 by
demonstrating that its hypotheses are not consistent with the last assumption.

By virtue of Theorem 7.4, the iterates could not come arbitrarily close to z ; they would all have
to stay at least some positive distance away from z . Let u and w be the iteration’s points of
accumulation nearest z on both sides; say u < z < w . Then every open neighborhood of u
would contain infinitely many iterates, as would every open neighborhood of w , but any closed
interval strictly between u and w could contain at most finitely many iterates. Since N(u)

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 36/67

would be another point of accumulation and N(u) > u , we would find N(u) ≥ w too. Similarly
for N(w) ≤ u . Let’s scrutinize the last two inequalities; they would imply respectively that

0 < (w-u)f'(u) ≤ -f(u) and 0 < (w-u)f'(w) ≤ f(w) .
Adding them would produce

(w-u)(f'(u) + f'(w)) ≤ f(w) - f(u) = ∫uw f'(x)dx
which simplifies to

0 ≥ ∫uw (f'(u) + f'(w) - f'(x))dx .
But the theorem’s hypotheses force the integrand to be nonnegative and continuous, so it would
have to vanish at every x between u and w inclusive, which would force f'(u) = f'(w) = 0
contrary to the supposition f' > 0 made when this case began to be considered. END OF PROOF.

In showing that N cannot swap distinct points u and w of Ω , the foregoing proof resembles
an application of Sharkovsky’s No-Swap Theorem, but the resemblance is superficial for two
reasons. First, the theorem’s hypotheses merely suffice for its conclusion; they are not necessary.
Second, N was not required to map Ω to itself; determining whether such a requirement has
been fulfilled can be harder than solving the given equation f(z) = 0 . An easier expedient is to
incorporate whatever may be known about f and Ω into a bracketing procedure that decides
whether an excursion out of Ω should stop the iteration or be returned to Ω . After that the only
hazard to prevent is the possibility that, left alone, the iteration may meander in Ω forever. This
hazard is precluded if f' is sum–topped but, as we have seen just before Theorem 8.2, deciding
whether f' is sum–topped can be inconvenient. Fortunately, some oft–encountered sum–topped
configurations are easy to recognize:

Corollary 8.3: A Weak Convexity Condition
Suppose f = g-h is a differentiable difference between two convex functions, one
non–decreasing and the other non-increasing, throughout a closed interval Ω .
Then Newton’s iteration xn+1 := xn - f(xn)/f'(xn) , started from any x0 in Ω ,
either converges in Ω to the zero z of f or leaves Ω ; the iteration cannot
meander in Ω endlessly.

Proof: See Corollary A2.3 in Appendix A2: Functions of Restricted Variation ; apparently f' is
one of those, and therefore continuous and sum–topped over Ω . Therefore Theorem 8.2
applies. END OF PROOF.

Since f determines neither Ω nor the splitting g-h = f uniquely, arbitraryness can complicate
the application of Corollary 8.3. Take the (admittedly contrived) example f(x) := arctan(x) ,
for which Newton’s iteration converges to z = 0 from any x0 strictly between the points
±1.3917452 swapped by N , but diverges otherwise. These points cannot serve as endpoints for
Ω in Corollary 8.3; indeed, no Ω that includes both points ±1 in its interior can sustain a
splitting g-h = f satisfying the theorem’s requirements because f'(0) is too big for f' to satisfy
the sum–topped condition

“ 0 ≤ f'(v)/(f'(u) + f'(w)) ≤ 1 whenever v lies between u and w both in Ω ”
that every splittable f must satisfy. On the other hand, for every L > 0 the interval
Ω := [-L, 1/L] sustains such a splitting thus:

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 37/67

g(x) := arctan(x) - x/(1 + L2) for -L ≤ x ≤ 0 ,

:= x/(1 + 1/L2) for 0 ≤ x ≤ 1/L ; and
h(x) := g(x) - arctan(x) .

But then N maps Ω to itself only when 0.86033359 ≤ L ≤ 1.1623398 . Otherwise the iteration
may escape from Ω ; and after that it may come back and converge, or else diverge, according
to whether it started between ±1.3917452 or not.

In general, the weak conditions in Theorem 8.2 and Corollary 8.3 are not necessary for
convergence but are at best sufficient. Their virtue is their ease of application compared with
attempts to apply Sharkovsky’s No–Swap theorem to N .

Example 8.4: Corollary 8.3 was discovered first, before Theorem 8.2, in 1976 while I was
helping Dr. D.W. Harms and R.E. Martin to design a financial calculator (see Martin [1977]).
The equation f(z) = 0 to be solved for a positive root

z = 1 + (interest rate) or z = 1 - (discount rate)
was put into the theorem’s partitioned form f = g-h thus:

f(x) = (Cmxm + ... + C3x
3 + C2x

2 + C1x) - (c0 + c1/x + c2/x
2 + c3/x

3 + ... + ck/x
k)

with nonnegative coefficients C... and c... representing cash flows, perhaps investments and
returns, or borrowings and repayments. Ω was the positive real axis and was mapped to itself by
Newton’s iterating function N for this f . However, because m and k could be huge (many
thousands), a complicated initial guess x0 had to be contrived to prevent instances of intolerably
deferred convergence. The complexity of x0 cast a shadow over the design’s integrity.

R. Carone and I got rid of that complexity when we worked on the hp-12C financial calculator
introduced in 1982 (and still selling over thirty years later). It solves a different but equivalent
equation f(z) = 0 for its real root

z = ln(1 + (interest rate)) or z = ln(1 - (discount rate)) .
The partitioned form f = g-h required for Theorem 8.2 is obtained thus:

 f(x) = ln(Cmemx + ... + C3e
3x + C2e

2x + C1e
x) - ln(c0 + c1e

-x + c2e
-2x + c3e

-3x + ... + cke
-kx)

with the same coefficients as before. The convexity of g and h is less obvious than before. Ω is
all the real axis. Because this f(x) is so nearly linear when |x| is big, the iteration’s dependence
upon the initial guess x0 has become so mild that a crude guess provably suffices. END EX. 8.4.

The hypotheses of Theorem 8.2 and Corollary 8.3 are the weakest global conditions known to
be sufficient to prevent Newton’s iteration from meandering forever. Their hypotheses suffice
also to prevent Secant iteration from meandering, as we shall see in §9.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 38/67

§9. The Projective Connection between Newton’s and Secant Iterations
Before proving that Theorem 8.2 and Corollary 8.3 above apply as well to Secant as to
Newton’s iteration, we explore a connection that the reader may have anticipated: roughly, …

If Newton’s iteration converges to a simple zero of f , so does Secant iteration.
This connection grows out of the straight lines, the tangents and secants, that figure in both
iterations. The straightness of both kinds of lines is preserved by a family of Projective Maps of
the plane to itself; consequently both iterations’ convergence is invariant under these maps, as is
the convexity hypothesis in Theorems 7.5 and 7.6 above. See Appendix A3: Projective Images,
and especially Lemma A3.2, for details of which very few will figure directly in what follows.

Lemma 9.1: An Intermediate Value
If S(u, w) := u - f(u)(u - w)/(f(u) - f(w)) does not lie between u and w , i.e. if
f(u)f(w) > 0 , and if f'(x) is finite throughout u ≤ x ≤ w , then at some v strictly
between u and w either N(v) := v - f(v)/f'(v) = S(u, w) or f(v) = f'(v) = 0 .

Proof: There is a trivial case when u = v = w and S(u, w) := N(v) . A different special case can
arise with f(u) = f(w) ≠ 0 ; in this case S(u, w) = ∞ = N(v) at some v strictly between u and w
where Rolle’s theorem implies f'(v) = 0 . The lemma generalizes this special case. For finite
s := S(u, w) the proof is constructed from a projective map that preserves u and w but pushes s
off to ∞ . Then, like scaffolding under a newly built bridge, the projective map is removed to
leave only a slender proof standing.

Let Ø(x) := f(x)/(s-x) . Since s does not lie between u and w > u , Ø(x) and Ø'(x) are finite
throughout u ≤ x ≤ w . And Ø(u) = Ø(w) because of how s was defined, so Rolle’s theorem

implies Ø'(v) = 0 at some v strictly between u and w . Ø'(v) = f'(v)/(s-v) + f(v)/(s-v)2 = 0
implies that this v is where either N(v) = s or f(v) = f'(v) = 0 . END OF PROOF.

x
N(v) =
S(u, w)

f(x)

tangent
secant

u v w

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 39/67

Digression: Where between u and w may the lemma’s v fall? In general v need not be
unique. However, in the special case that sign(f" (x)) stays constant throughout u < x < w , the
aforementioned projective map can be used to show that the equation N(v) = S(u, w) has just one
root v between u and w ; and then the smaller the variation of log|f" (x)| , the more closely can
v be located. Its location is obtained from the first of Identities 7.3:

 f(S(u,w)) = (S(u,w) - u) (S(u,w) - w) f††(S(u,w), u, w) and f(N(v)) = (N(v) - v)2 f††(N(v), v, v) .

When f†† ≈ f" /2 is nearly constant, so that f is nearly a quadratic polynomial, combining these
identities with the equation N(v) = S(u, w) of Lemma 9.1 implies that its root v is

 v = S(u, w) + √((u - S(u, w)) (w - S(u, w)) f††(S(u, w), u, w)/f††(N(v), v, v)) sign(u - S(u, w))

 ≈ S(u, w) + √((u - S(u, w)) (w - S(u, w))) sign(u - S(u, w)) . END OF DIGRESSION.

Lemma 9.1 joins Newton’s iterating function N and the Secant’s S by a bridge that breaks
only over a zero of f across which f does not reverse sign; otherwise the bridge bears a big load:

Theorem 9.2: Suppose f' and N are continuous throughout a closed finite
interval Ω strictly inside which f does not vanish without reversing sign there
too. If Newton’s iteration converges in Ω from every initial x0 in Ω , then it
converges to the sole zero z of f in Ω , and Secant iteration also converges in
Ω to z from every two starting points x0 and x1 in Ω .

That Newton’s iteration always converges within Ω is an essential assumption independent of
the others; see Non–Theorem 7.2 above. Unless z is an endpoint of Ω , the assumption that f
reverses sign across its zero z is essential; otherwise two consecutive Secant iterates astride z
could send a third to ∞ . The assumption that N is continuous is essential too; otherwise, as
Example A3.3 shows, the theorem’s “ converges ” would have to be replaced by a complicated
assertion about convergent subsequences of iterates like the one in my report [1979']. This
theorem was discovered in 1977 in time to affect decisions made during the design of the
root–finder behind the [SOLVE] key on Hewlett-Packard hand-held calculators beginning with
the hp-34C described in my reprint [1979"]. The proof is long but, because it cannot now be
found elsewhere, it is presented here despite its length.

Proof of Theorem: Because N maps Ω continuously into itself (otherwise Newton’s iteration
could escape from Ω) it must contain at least one fixed–point z = N(z) , which has to be a zero
of f . This zero z cannot be a subinterval of Ω because f reverses sign at z . Another zero is
ruled out by Rolle’s theorem, which would imply a point between them where f' would vanish
and N would jump out of Ω to ∞ . In fact, f' cannot vanish in Ω except perhaps at z ;
elsewhere f is strictly monotonic in Ω . At the possible cost of replacing f by -f , we may
assume that f is strictly increasing throughout Ω . Finally, N satisfies all four conditions that U
satisfies in Sharkovsky’s No–Swap Theorem 5.1 above. These conditions will figure at several
places in the rest of the proof, which is presented below as a sequence of shorter propositions.

•Proposition 9.3: All Secant iterates xn+1 := S(xn, xn-1) stay in Ω .
This follows from Intermediate Value Lemma 9.1 above and the assumption that N stays in Ω .

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 40/67

•Proposition 9.4: For n ≥ 1 we might as well assume that every xn+1 ≠ xn ≠ z .
Otherwise nothing would be left to prove, because xn+1 := S(xn, xn-1) = xn if and only if
f(xn) = 0 and hence xn+1 = xn = z . The possibility that x1 = x0 and x2 = N(x1) is harmless.

•Proposition 9.5: If a subsequence of differences xn+1 - xn → 0 then, for every integer k ≥ 0
 fixed in advance, the corresponding subsequence xn+k → z .

Since divided difference f† lies between the minimum and maximum values taken by derivative

f' on Ω , the corresponding subsequence f(xn) = (xn+1 - xn) f
†(xn, xn-1) → 0 , and therefore

xn → z since f is strictly increasing, and then xn+1 → z too. For each n in the subsequence,
Intermediate Value Lemma 9.1 implies that some yn exists between xn and xn+1 satisfying
either xn+2 = yn or xn+2 = N(yn) ; either way, the subsequence xn+2 → z too because N is
continuous. Repeat as often as necessary to infer that xn+k → z . (Does the continuity of N then
imply by itself that all xn+k → z too no matter how k varies with n ?)

Definitions:

•A Variance is an iterate vn := S(xn-1, xn-2) for which f(xn-1)/f(vn) < 0 , and then both z and
xn+1 := S(vn, xn-1) must lie strictly between vn and xn-1 .

•A Permanence is an iterate pn := S(xn-1, xn-2) for which f(xn-1)/f(pn) > 1 , and then both z
and xn+1 := S(pn, xn-1) must lie strictly on the side of pn opposite from xn-1 .

•The Wraith of Permanence pn is its nearest solution wn of N(wn) = xn+1 strictly between
pn and xn-1 ; the existence of wn is assured by Intermediate Value Lemma 9.1.

•Proposition 9.6: For n ≥ 2 every iterate xn := S(xn-1, xn-2) is a Permanence or a Variance.
The possibility that 0 < f(xn-1)/f(xn) < 1 is ruled out by the strictly increasing nature of f as
follows: For the sake of argument suppose 0 < f(xn-1) < f(xn) . This supposition would imply

z < xn-1 < xn , since f is increasing, and then f†(xn-1, xn-2) = f(xn-1)/(xn-1 - xn) < 0 , which is
contradictory. The other impossibility 0 > f(xn-1) > f(xn) is dispatched similarly. Therefore
every iterate xn can be renamed either pn or vn .

•Proposition 9.7: If two consecutive iterates vn := S(xn-1, xn-2) and vn+1 := S(vn, xn-1) are both
 Variances, then vn+1 lies strictly between vn and xn-1 , and then both xn+2
 and z lie strictly between vn+1 and vn , and also (vn - xn-1)/(xn+2 - vn+1) > 4 .
 –––––––––– vn ———— xn+2 —— vn+1 --------------------- xn-1 ––––––––––
 ‹— — z — — →

Only the last inequality requires unobvious confirmation. The definition of Variance implies that
f(xn-1)/f(vn) < 0 and f(vn)/f(vn+1) < 0 , so sign(f(vn+1)) = sign(f(xn-1)) and then, since f is
monotonic, f(xn-1)/f(vn+1) > 1 because vn+1 is closer to z than xn-1 is. Consequently

 (vn - xn-1)/(xn+2 - vn+1) = (-(vn+1 - vn)(f(vn) - f(xn-1))/f(vn))/(-f(vn+1)/f
†(vn+1, vn))

 = (f(vn) - f(xn-1))(f(vn+1) - f(vn))/(f(vn)f(vn+1)) …

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 41/67

 = 1 - f(vn)/f(vn+1) - f(xn-1)/f(vn) + f(xn-1)/f(vn+1)
 ≥ 1 + 2√(f(xn-1)/f(vn+1)) + f(xn-1)/f(vn+1) > 4 as claimed.

•Proposition 9.8: If, among the Secant iterates xn , at most finitely many are Variances, or if
 at most finitely many are Permanences, then the iteration converges to z .

If all but the first finitely many iterates are Permanences they must converge monotonically in Ω
to something, and it must be z by Proposition 9.5. If all but the first finitely many iterates are
Variances then the subsequences {x2n} and {x2n+1} must ultimately converge monotonically in

opposite directions with |x2n - x2n±1| → 0 at least as fast as 1/4n , thanks to Proposition 9.7, so
the iteration converges to z as claimed.

Henceforth only those sequences {xn} containing infinitely many Permanences and infinitely
many Variances need be considered. Think of Permanences as punctuation marks separating
strings of consecutive Variances. What matters most about such a string is whether its length is
even or odd. Even lengths (including 0) will be treated first.

•Proposition 9.9: If a Permanence pn is followed by an even number 2k ≥ 0 of consecutive
 Variances vn+1, vn+2, …, vn+2k before the next Permanence pn+2k+1 , then the
 numbers

 xn-1, wn-1, pn, vn+2, vn+4, …, vn+2k, wn+2k+1, pn+2k+1, z , vn+2k-1 , …, vn+3, vn+1
 are exhibited here in strictly monotonic order (perhaps reversed).

If 2k = 0 then xn-1, wn, pn, wn+1 and pn+1 lie on the same side of z . If 2k = 2 only vn+1 lies
on the side of z opposite the other four iterates and two Wraiths. For 2k ≥ 2 this proposition
follows from Proposition 9.7.

•Proposition 9.10: If at most finitely many strings of Variances have odd lengths, the iterates
 xn converge to z .

Discard as many of the earliest iterates as necessary, and renumber the rest, to obtain a sequence
of iterates xn+1 := S(xn, xn-1) in which no string of Variances has odd length. Proposition 9.9
implies that the Permanences and their immediately antecedent iterates constitute a monotonic
subsequence bounded by z . In other words, if the successive Permanences are pn1, pn2, pn3,
… then xn1-1, pn1, xn2-1, pn2, xn3-1, pn3, …, z are exhibited here in monotonic order, but
perhaps not strictly so. This subsequence of iterates must converge and, by Proposition 9.5, it
must converge to z . Recall now the Permanences’ Wraiths; for j = 1, 2, 3, … each Wraith
wnj lies between xnj-1 and pnj and satisfies N(wnj) = xnj+1 . Evidently the Wraiths converge to
z and, since N is continuous, so must the subsequence of iterates xn1+1, xn2+1, xn3+1, … .
Among these lie all the initial Variances in strings of consecutive Variances, each string having
nonzero even length. With the aid of Proposition 9.9 again we conclude that the Variances
converge to z too.

(Were N not continuous, the Variances might not all converge to z ; see Example A3.3.)

Only the possibility that infinitely many strings of Variances have odd lengths remains to be
addressed to complete the proof of Theorem 9.2. For this purpose we introduce three more …

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 42/67

Definitions:

•A Scout sn is a Permanence followed by a string of Variances of odd length.

•A Guard gn+1 is the first Variance following (in the sequence of iterates) a Scout sn .

•A Convoy is the set of Wraiths belonging to the Permanences that come after (in the
sequence of iterates) a Guard but not after its subsequent Scout.

For instance, if Scout sn is followed by 2k+1 Variances gn+1, vn+2, …, vn+2k+1 followed by
Permanence pn+2k+2 , then the numbers

 xn-1, wn, sn, vn+2, …, vn+2k, z , pn+2k+2, wn+2k+2, vn+2k+1, …, vn+3, gn+1
appear here in monotonic order, according to the definitions of Permanences, Variances and
Wraiths. (If 2k+1 = 1 then vn+2, …, vn+2k do not appear here.) Only the desired zero z and
the Wraiths wn and wn+1 are not iterates. That last Permanence pn+2k+2 might be a Scout
too, or it might not. We have to confirm next that every Wraith belongs to a Convoy escorted
by a Scout ranging ahead of it and a Guard bringing up the rear, and that alternate Convoys
approach z from opposite sides.

•Proposition 9.11: In the sequence of iterates, suppose sn and sm are consecutive Scouts with
 m > n . Then m ≥ n+2 and the numbers xn-1, wn, gm+1, z , sm, wm, gn+1
 appear here in monotonic order; and the Convoy of Wraiths wj for
 n < j ≤ m lie numerically between Guard gn+1 and the next Scout sm on
 the other side of which lie first z and then gm+1 and then wn .

In the sequence of iterates, Scout sn is followed by some odd number 2k+1 of Variances gn+1,
vn+2, …, vn+2k+1 followed by Permanence pn+2k+2 followed perhaps by more strings of
Variances of even lengths separated by Permanences up to the Permanence–and–Scout sm
followed by an odd number of Variances gm+1, … . How are all these numbers ordered
numerically? It is easy to verify that

xn-1, wn, sn, vn+2, …, vn+2k, z , sm, wm, pn+2k+2, wn+2k+2, vn+2k+1 , …, gn+1
appear here in monotonic order except that if m = n+2k+2 then pn+2k+2 and wn+2k+2 are
redundant and should be dropped. If m > n+2k+2 then every string of Variances between (in
the sequence of iterates) pn+2k+2 and sm has even length, so Proposition 9.9 ensures that every
Permanence after (in the sequence of iterates) gn+1 but not after sm has its Wraith strictly
between the Guard gn+1 and the Scout sm of this Convoy of Wraiths all on the side of sm
opposite z . Moreover wm is this Convoy’s Wraith nearest z . The Guard gm+1 following
Scout sm falls somewhere on the other side of z ; where? Here Intermediate Value Lemma 9.1
combines with Sharkovsky’s No–Swap Theorem 5.1 to explain why this new Guard gm+1 must
come between z and the previous Convoy’s Wraith wn nearest z . If that were not so, if gm+1
fell on the side of wn opposite z , then the numbers

gm+1 = N(wm), wn, z , wm, gn+1 = N(wn)
would appear here in monotonic order and violate the No Crossover Condition that N must
satisfy if Newton’s iteration is to converge to z from every x0 in Ω .

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 43/67

Thus has every claim in Proposition 9.11 been vindicated, and without saying which of gm+1
and sn lies between the other and z ; it is impossible to say, and does not matter. What matters
is that alternate Convoys of Wraiths proceed monotonically towards z from opposite sides; on
each side every Convoy is separated by its Guard from the preceding Convoy on the same side.

•Proposition 9.12: If the sequence of Secant iterates contains infinitely many Guards then the
 Secant iteration converges to the desired zero z .

Let g« ≤ z be the least upper bound for those Convoys and their Guards less than z ; they
constitute a subsequence of iterates and Wraiths converging monotonically upward to g« .
Similarly for greatest lower bound g» ≥ z . For every guard gn > g» there is a Wraith wn < g«
for which gn = N(wn) ; as the subsequence wn → g«- the corresponding subsequence
gn = N(wn) → g»+ and so, because N is continuous, g» = N(g«) . Similarly N(g») = g« . Now
the No Swap Condition satisfied by N implies that g» = g« = z . Then all the Wraiths must
converge to z , pushing their Permanences (including the Scouts) ahead of them to converge
to z also. Then Permanences and Guards squeeze the rest of the Variances to converge too.

Propositions 9.8, 9.10 and 9.12 leave no alternative but convergence for the Secant iteration and
hence prove Theorem 9.2. END OF PROOF.

Note that Theorem 9.2 just proved has no converse; in many situations Secant iteration

converges from all starting points but Newton’s does not. f(x) := 5x5 - 18x3 + 45x is a strongly
monotonic (f' > 15.84) example for which Secant iteration always converges but Newton’s
iteration gets trapped when 1 ≤ |xn| < 1.076570927 , as we have already seen after Theorem 7.6.
Proposition 9.7 prevents Secant iteration from meandering in this example.

Another example is f(x) := arctan(x) discussed after Corollary 8.3, where we saw that
Newton’s iteration converges if started between ±1.3917452 but diverges otherwise. Apparently
Secant iteration converges if started anywhere in a wider interval between about ±2.25, but can
cycle on four points x4n = 4.75048222, x4n+1 = 1.12143673, x4n+2 = -x4n and x4n+3 = -x4n+1 ,
and certainly diverges from starting points both greater than about 2.5 .

Theorem 9.2 shows how slightly an ability to solve f(z) = 0 depends upon the computability of
the derivative f'(x) . This is not to say that Secant iteration obsoletes Newton’s. Instead the
theorem simplifies the choice between them. Secant iteration is preferable to Newton’s when …

•Computing the derivative f' adds more than about 44% to the cost of computing f , and
•The desired zero z is one across which f reverses sign, and
•The desired accuracy requires at least several iterations, and
•The contribution of roundoff to f is not so bad that its effect has to be minimized.

The last consideration arises out of Secant iteration’s greater susceptibility than Newton’s to
roundoff, especially if its contribution has been seriously underestimated. If roundoff has been
assessed reasonably well, and if iteration can be stopped as soon as the computed value of |f|
drops below or near its uncertainty due to roundoff, that last consideration becomes unimportant.
Anyway, the global convergence properties of the two iterations rarely provide a strong reason to
prefer one over the other.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 44/67

Finally, Theorem 9.2 also contributes to Theorem 8.2 another corollary that is easy to prove:

Corollary 9.13: Suppose f' is continuous and sum–topped throughout a closed
interval Ω ; or suppose f = g - h is a differentiable difference between two convex
functions, one non–decreasing and the other non-increasing, throughout a closed

interval Ω . Then Secant iteration xn+1 := xn - f(xn)/f
†(xn, xn-1) , started from

any x0 and x1 in Ω , either converges in Ω to the zero z of f or leaves Ω ; the
iteration cannot meander in Ω endlessly.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 45/67

§10. Accelerated Convergence to a Zero in a Cluster
Where do multiple zeros come from? They would be extremely rare if the equations we solve
were chosen at random; multiple zeros z imply an unlikely coincidence f'(z) = f(z) = 0 . Since
they are not so rare, their sources must be systematic. One such source is optimization. Suppose
we wish to minimize the largest root z(p) of an equation “ F(p, z) = 0 ” containing a parameter
p . Values p at which dz/dp = 0 are candidates, but they need not yield the desired minimum. It

may occur when the two largest roots coincide, as is the case for F(p, z) = z2 - (p + 1/p)z + 1 ; its
optimal p = 1 . For near–optimal values of p the two largest roots nearly coincide.

Where else may clustered zeros come from? Consider an analytic function f(x) with several real
and complex zeros z1, z2, …, zm inside a region ç in the complex plane, and suppose that ç
lies deep inside a far larger region Ç that contains no other zeros nor singularities of f . Let the
average of those m zeros be µ := ∑j zj /m ; then f(x) and its derivative must closely resemble

another analytic function f(x)(x - µ)m/∏j (x - zj) and its derivative at all x in Ç far enough from

ç . For all such x their respective Newton’s iterating functions N(x) := x - 1/(f'(x)/f(x)) and

x - 1/(f'(x)/f(x) - ∑j (µ - zj)
2/(x - µ)3 + O(x - µ)-4)

must resemble each other closely too. In other words, to Newton’s iterating function, any
collection of several zeros may appear, from far enough away, like clustered zeros practically
indistinguishable at that distance from a multiple zero. We have seen already, before and during
Theorem 7.6, that convergence to a multiple zero can be slow. Consequently we should expect
convergence to a cluster from afar to be retarded too. Usually it is retarded, but not always.

Take f(x) := 3ex - e3 x for example. All its zeros are simple. Two of them, z = 0.17856… and
Z = 3 , are real; but infinitely many are complex falling not far from 2 + ln(2kπ) ± (2k + 1/2)πı
for positive integers k . From any x0 < 1 , Newton’s iteration xn+1 := xn - f(xn)/f'(xn) converges
to z almost immediately because z - 0.003 < x2 < z no matter how huge (and negative) x0 is.
From any big x0 > 2·Z , Newton’s iteration converges to Z slowly at first, taking about x0
iterations to get between Z and Z + 0.001 because xn+1 ≈ xn - 1 for a while. Thus, from far
away on the positive (but not the negative) real axis, z and Z look to Newton’s iteration like
roots of infinite multiplicity towards which it must move very slowly. A simple way to cure this
lethargy is to replace f(x) by x - 3 - ln(x/3) , which has the same real zeros but none complex.

In general lethargic convergence has no simple cure. And, when found, a cure rarely saves much

time. No matter how slowly Newton’s or Secant iterates xn converge, usually 2n f(xn) → 0
because of Theorem 7.6. Then f(xn) → 0 so fast that it must soon fall below the threshold of
rounding error noise in f , or else below the computer’s Underflow threshold. Since the amount
of time that can be saved is usually limited, no cure for lethargic convergence is worthwhile if it
adds much to the cost of Newton’s or Secant iteration; nor is a cure satisfactory if it spawns
disagreeable consequences like convergence to an undesired zero.

When the multiplicity m > 1 of a desired zero z of f is known, superlinear convergence can be

achieved by applying Newton’s or Secant iteration to |f|1/m sign(f) instead of f ; then Newton’s

iteration takes the form xn+1 := xn - m
 f(xn)/f'(xn) . However z is usually computable more

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 46/67

accurately as a simple zero of the derivative f[m-1]
 , if this can be computed. (Could m be

known but not f[m-1] ? Perhaps that’s why an m > 1 is usually unknown.) An unknown m
known to exceed 1 is probably 2 since larger multiplicities are extremely unlikely.

An unknown multiplicity can be estimated. For instance, if z is a zero of f with multiplicity m
then 1/(1/(ln|f(x)|)')' → m as x → z . This appears to require the computation of f" but that can
be circumvented by introducing a multiplicity estimate mn into an accelerated version of
Newton’s iteration thus:

mn := Max{ 1, Integer Nearest (xn - xn-1)/(f(xn)/f'(xn) - f(xn-1)/f'(xn-1)) } ;
xn+1 := xn - mn f(xn)/f'(xn) .

When xn converges to a zero z of an analytic function f(x) it converges at least quadratically
and mn converges to the zero’s multiplicity, which must be an integer. This convergence is faster
than if Secant iteration had been applied to f(x)/f'(x) of which z is a simple zero. From far
enough away, however, a cluster of zeros (complex as well as real) of f can appear so much
like a multiple zero to Newton’s iteration that mn may actually approximate the number of zeros
in the cluster. Only if and when iterates approach z can its own lower multiplicity m become
manifest. Alas, the first few accelerated iteration steps can overshoot the zero nearest the starting
point too easily, after which subsequent iterates may diverge or converge to a zero other than the
one desired, especially if an extremal real zero was desired.

Take f(x) := 3ex - e3 x for example again. Starting from x0 > 5 , the foregoing acceleration
scheme practically always skips over the larger zero Z = 3 and converges to the smaller zero
z ≈ 0.17856 . In general no way is known to moderate the growth of mn so as to prevent this kind
of undesired overshoot in all cases.

There is a special but common case that can be accelerated modestly without overshoot. Define
N(x) := x - f(x)/f'(x) (Newton’s iteration function) and
W(x) := x - 2 f(x)/f '(x) (Doubled-Newton’s iteration function) .

This W(x) can be iterated with little harm from overshoot in the following circumstances:

• x

f(x)

N(x)

y zW(x)

N(W(x))
•• •• •
•

•

•

Illustrating Theorem 10.1

f'(y) = 0 > f(y)

y < W(x) < z < N(W(x)) < N(x) < x

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 47/67

Theorem 10.1: Suppose that f'(y) = 0 ≥ f(y) at the left-hand end of a closed finite
interval y ≤ x ≤ x0 inside which f" (x) is a positive nondecreasing function; also
assume f(x0) > 0 . Then, in that interval, ...
1) Equation “ f(z) = 0 ” has just one root z ≥ y ; and W(x) < N(x) when x > z .
2) N(x) > z if y < x ≠ z , and then W(x) > y unless W(x) = y = z .
3) If x > z then z < N(W(x)) ≤ N(x) , with equality only when f"' ≡ 0 .

Starting from x0 > z this theorem motivates the following procedure:

 Iterate xn := W(xn-1) , thereby descending faster than Newton’s iteration would, until xJ ≤ z
 (detected when xJ+1 ≥ xJ); then if xJ+1 > xJ replace xJ+1 by N(xJ) and continue Newton’s.

The theorem’s clause (3) guarantees that the last retained W-iterate xJ := W(xJ-1) , after which
iteration reverts to xn+1 := N(xn) , cannot jump beyond z so close to y that the next Newton
iterate xJ+1 would jump way back behind xJ-1 . On the contrary, xJ+1 comes closer to z than
N(xJ-1) would have come. An example will illustrate the procedure after the theorem’s proof.

Proof of Theorem 10.1:
1) As x - y increases through positive values, so does f'(x) because f" > 0 . Therefore at most
one root z ≥ y can exist in the given interval; f(x) increases through 0 to a positive value
f(x0) as x increases from y to x0 , so z ≥ y does exist in the interval. And then obviously
N(x) - W(x) = f(x)/f'(x) > 0 for all x > z therein.

2) N'(x) = f(x)f" (x)/f'(x)2 has the same sign as x - z if x > y ; therefore N(x) descends to its
minimum value N(z) = z as x → z from either side. A nondecreasing derivative is a continuous
and therefore integrable derivative, and f" (x) is nondecreasing as x increases beyond y , so

0 ≤ ∫yx ∫yτ (f" (τ) - f" (σ))dσ dτ = (x - y)f'(x) - 2f(x) + 2f(y) .
This implies W(x) ≥ y - 2f(y)/f'(x) ≥ y too with strict inequality unless y = z , in which special
case Theorem 7.5 above implies N(x) → z+ and W(x) → z+ as x → z+ . In the further special
case of a quadratic f (constant f" > 0) with a double zero y = z we find W(x) = z .

3) When z ≤ W(x) < x , inequality N(W(x)) ≤ N(x) is now obvious; but a proof is harder when
y < W(x) < z < x . The proof might be easier if N(x) - N(W(x)) = f(x)/f'(x) + f(W(x))/f'(W(x))

increased monotonically, but it needn’t; for example, try f(x) = x2 + (x/2)24 - 1 - 1/224
 . Worse,

N(x) - N(W(x)) vanishes like O(x -z)3 , so three differentiations (or integrations) would be
needed to infer the desired inequality directly from the hypothesis f'" ≥ 0 . We shall simplify the
work a little by proving that (N(x) - N(W(x)))·f'(W(x)) = f'(W(x))·f(x)/f'(x) + f(W(x)) ≥ 0 .

To exploit the symmetry of W(x) and x about N(x) , let’s use abbreviations q := f(x)/f'(x) ,
n := N(x) = x - q , and w := W(x) = n - q ; then f" (n + σ) - f" (n - σ) ≥ 0 when 0 ≤ σ ≤ q because
f" is nondecreasing. Integrate twice to get

0 ≤ ∫0q ∫τq(f" (n + σ) - f" (n - σ))dσ dτ = (f'(x) + f'(w))·q - f(x) + f(w) ,
which simplifies to the last inequality of the previous paragraph. This inequality becomes
equality just when f is quadratic (with constant f" > 0). END of PROOF.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 48/67

I first proved theorem 10.1 in the early 1960’s, but rather differently, for the special case of a
polynomial P(x) whose (at least two) zeros are all real, the largest being z ; one of f = P or
f = -P can easily be shown to satisfy the hypotheses of this theorem. A proof for this polynomial
case can be found in Stoer & Bulirsch [1980]; for this case, parts 1) and 2) of the theorem had
been quoted by Jim Wilkinson [1965], who had learned them from Hans Maehly as well as me.
Soon afterwards Werner Greub liberated the whole theorem from polynomials by suggesting that
the crucial hypothesis was merely f"' (x) ≥ 0 , from which the foregoing proof evolved.

The procedure described before the proof locates the largest real zero of a polynomial whose
other zeros, real and complex, all have lesser real parts. It locates the largest real zero (Z = 3)

of examples like f(x) = 3ex - e3 x discussed above, usually faster than would Newton’s iteration
all the way. Theorem 10.1 provides a guarantee that the doubled iteration xn+1 = W(xn) cannot
overshoot the desired zero z so far as would lose more than one iteration–step after reversion to
Newton’s. Except for that one step that overshoots z , the iterates of W starting from x0 > z
approach z faster than correspondingly numbered iterates of N would because N'(x) > 0 for all
x > z (see the proof of (2) above).

How much faster do iterates of W descend than iterates of N would? Since W(x) ≤ N(N(x)) at
x close enough to z ≠ y and usually at all x > z in the interval, W usually descends at least

twice as fast as N until z is overshot. It happens for f(x) := ex whose W(x) ≅ N(N(x)) ≅ x - 2
and -∞ = y = z < x < x0 < +∞ . But not always; f(x) := x/(1-x) in the interval z = 0 < x < x0 < 1
behaves differently because its W(x) > N(N(x)) when 1 > x > 2/(1 + √5) ≈ 0.618 . More nearly

typical is example f(x) := 3ex - e3 x for which iterates descend to Z = 3 from x0 = 8 thus:

The doubled iteration xn+1 := W(xn) can still converge arbitrarily slowly to a highly multiple
zero; but its values f(xn) tend to zero usually more than twice as fast as Newton’s would, and
always at least twice as fast as Theorem 7.6 described:

Table 1: For f(x) := 3ex - e3 x

Iterates of N Iterates of W

x0 8 8

x1 7.015757 6.031524

x2 6.052129 4.195981

x3 5.132988 2.912537

x4 4.302929 3.006191

x5 3.631900 3.000029

x6 3.198687 3

x7 3.025447

x8 3.000476

x9 3.000000

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 49/67

Corollary 10.2: Assume the hypotheses of Theorem 10.1 again, and suppose
also that the procedure described just after it is followed. Then either the iteration
ultimately reverts to Newton’s and converges quadratically, or else the doubled
iteration xn := W(xn-1) converges monotonically, though slowly, and f(xn) tends

monotonically to 0 at least so fast that ∑n 4
n |f(xn)| ≤ |f(x0)|

 (x0 - z)/(x0 - x1) .

Proof: Either y < z or y = z . If y < z then f'(z) ≠ 0 and ultimately xn := W(xn-1) falls upon z
and stops or falls between z and y . In the latter event the iteration reverts to Newton’s iteration
which, after stepping backward once to N(xn) between z and N(xn-1) , converges
monotonically according to Theorem 7.5, and quadratically according to Theorem 7.4.

If y = z then f'(z) = f(z) = 0 and the doubled iteration xn+1 := W(xn) converges monotonically
towards z . This iteration is the same as Newton’s applied to solve the equation √f(z) = 0 . Is √f
convex? To find out consider the Riemann–Stieltjes integral ∫ f df" , which exists since f" is

nondecreasing. If x > z then 0 ≤ 2∫zx f(τ) df" (τ) = 2f" (x)·f(x) - (f'(x))2 = 4(√f(x))3·(√f(x))" .
Therefore √f satisfies the convexity hypothesis f satisfied in Theorem 7.6, whence follows its
conclusion for √f , which is this Corollary’s inequality. END OF PROOF.

What if f' never vanishes, or whether f' ever vanishes is unknown? So long as W. Greub’s
hypothesis f"' ≥ 0 holds, the doubled Newton iteration xn+1 := W(xn) deserves to be tried:

Corollary 10.3: Redefine y in Theorem 10.1 to satisfy f" (y) = 0 and f(y) < 0 ,
leaving all else unchanged. Then all its three inferences 1), 2) and 3) persist
except if W(x) < y , in which case W(x) > y – (x–y) is all that can be inferred.

Proof: Almost the same as for Theorem 10.1. END OF PROOF.

• •

•

•• • •

•

x

f(x)

N(x)
z

N(W(x))

W(x)y

Illustrating Corollary 10.3

f" (y) = 0 ≥ f(y)

y < W(x) < z < N(W(x)) < N(x) < x

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 50/67

For example take f(x) := (x + 1)3 + p·x – 1 with a parameter p > 0 and initial x0 := 100 .

Corollary 10.4: Suppose f' > 0 and f" is nondecreasing throughout an interval
Ω wide enough to contain z , where f(z) = 0 , as well as x, N(x) and W(x) for
every x in Ω . Then N(x) must lie between x and N(W(x)) , though z may lie
anywhere on the same side of x as N(x) , including perhaps between them.

Proof: This corollary’s hypotheses apply to -f(-x) as well as to f(x) , so the assumptions that
x > z and f(x) > 0 simplify the proof without loss of generality. Then the double integral at the
end of Theorem 10.1’s proof proves that N(x) ≥ N(W(x)) , as claimed. END OF PROOF.

The corollaries above motivate the following procedure whenever ±f satisfies their assumptions:

Whenever f(xn)/f(xn-1) is not small, say whenever f(xn)/f(xn-1) > 0.1 , compute
xn+1 := W(xn) instead of N(xn) unless doing so would escape from a straddle
known to enclose only one zero of f .

Table 2: For f(x) := (x + 1)3 + p·x – 1 , f" (-1) = f(0) = z = 0 .

p = 6 p = 300

Iterates of N Iterates of W Iterates of N Iterates of W

x0 100 100 100 100

x1 66.3204 32.6407 65.6894 31.3788

x2 43.8610 10.1386 42.5040 6.20835

x3 28.8788 2.51426 26.5975 -3.60146

x4 18.8773 -0.156432 15.3795 -0.170196

x5 12.1906 0.00808341 7.22709 0.00025504

x6 7.70709 0.00002178 1.81222 0.000000001

x7 4.68552 0.00000000 0.067204 0

x8 2.63747 0 0.00004666

x9 1.25975 0.000000000

x10 0.410861 0

x11 0.0538886

x12 0.00096709

x13 0.000000312

x14 0.000000000

•

•

•••

•

• x

f(x)

N(x)z
W(x) N(W(x))

Illustrating Corollary 10.4

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 51/67

The doubled Newton iteration xn+1 := W(xn) works so well in the circumstances for which it
was intended that it encourages us to consider a doubled Secant iteration too. There are two
ways to double the Secant iterating function

S(x, X) := x - f(x)/f†(x, X) = x - f(x)·(X-x)/(f(X) - f(x)) .
One is the obvious way:

$(x, X) := x - 2·f(x)/f†(x, X) .
The unobvious way applies Secant iteration to the equation √f = 0 to get an iterating function

R(x, X) := x - (X-x)/(√(f(X)/f(x)) - 1) .
Both doubled iterations work. The latter is faster because, if z < x < X and so 0 < f(x) < f(X) ,
then R(x, X) < $(x, X) < S(x, X) , as is easy to verify. Therefore we concentrate upon R(…) .

Suppose the hypotheses of Theorem 10.1 are in force:
 f'(y) = 0 ≥ f(y) at the left-hand end of a finite interval y ≤ x ≤ x0 throughout
 which f" is a positive nondecreasing function; also assume f(x0) > 0 , so the
 equation “ f(z) = 0 ” has just one root z ≥ y in that interval.

The procedure that follows that theorem is now supplanted by this:
 Starting from x0 > x1 > z , …, iterate xn := R(xn-1, xn-2) , thereby descending
 faster than Secant iteration would, until xn < z (detected when f(xn-1)/f(xn) < 0),
 and then revert to xn+1 := S(xn, xn-1) .

Once again, as in Theorem 10.1 part 3), we seek reassurance that the last doubled–iterate xn
cannot overshoot z so far as might set subsequent Secant iterates back behind S(xn-1 , xn-2) .

Conjecture 10.5: Assume the hypotheses of Theorem 10.1 again, and also the
definitions of S and R ; then S(S(R(u, w), u), R(u, w)) ≤ S(u, w) if z < u < w .

Discussion: Intermediate Value Lemma 9.1 lets us define v(u, w) to lie strictly between u and
w and satisfy N(v(u, w)) = S(u, w) > z whenever either y ≤ w < u < z or z < u < w . This
v(…) is defined uniquely because N(x) is monotone decreasing when y ≤ x ≤ z , increasing
when z ≤ x .

 THERE ARE NUMEROUS DETAILS STILL TO BE SUPPLIED HERE.
???

Corollaries:

Convergence of f(xn) to 0 is faster than 1/3n for $ or 1/4n for R .

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 52/67

Example:

???

Work still to be rewritten out:

What to do when the search for a zero of f encounters a value of x outsude the domain of f ?
See pp. 23-5 of <www.eecs.berkeley.edu/~wkahan/Math128/LecRlRtF.pdf> .

§11. All Real Zeros of a Real Polynomial. Finding only real zeros of a real polynomial of high
degree is applicable to Tarsky resolution of rational (in)equalities, geometrical computation,
construction of numerical ODE formulas. Sturm Sequences (Turnbull [1952]) are costly to
compute or vulnerable to roundoff or both. A better way using Rolle’s Theorem and running
error–bounds is attractive when the real zeros are far fewer than the polynomial’s degree, as is
usually the case.

§12. Zeros of a Real Cubic. How to find the zeros of a real cubic quickly and accurately using
Newton’s iteration from an artfully chosen starting guess.

§13. Error Bounds for Computed Roots using §A5: Running Error Bounds

Table 3: For f(x) := 3ex - e3 x

Iterates of S Iterates of R

x0 9 9

x1 8 8

x2 7.427732 6.479176

x3 6.706504 5.205631

x4 6.057988 4.250802

x5 5.407616 3.166181

x6 4.800048 2.812781

x7 4.243171 2.976582

x8 3.766543 3.003603

x9 3.396594 2.999936

x10 3.154697 3.000000

x11 3.037465 3

x12 3.004024

x13 3.000111

x14 3.000000

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 53/67

§ççç. Conclusion:
These notes were written at the behest of two mathematicians who inhabit my body. The pure
mathematician savors surprises. The applied mathematician tries to avoid them by predicting how
computational procedures will behave. Both mathematicians rejoice when they prove a
procedure to be surprisingly predictable. But the latter’s joy must be short-lived for two reasons.
First, compared with the procedures they explain, our proofs are too long; they augur ill for our
understanding of more complicated procedures. Second, more complicated procedures will arise
inevitably from attempts to circumvent limitations in the simple procedures we have come to
understand at last. Thus, these notes contain the seeds of their own obsolescence.

We say “mature” when we wish to avoid the pejorative “obsolescent”. The material in these
notes will soon be mature if it isn’t already. The corresponding material in most textbooks is too
mature. Bringing textbooks up to date is a formidable challenge compounded by limitations upon
space and time, both the author’s and the readers’. Until a brave author rises to this challenge,
the burden of these notes will continue to be added to my students’ load. They and I pray that
their load will be lightened soon.

Surely Sharkovsky’s Theorem 5.1 deserves to appear in texts. So does Corollary 8.3 and an
example of its application, if not also Theorem 8.2, because they suggest how to reformulate
equations to make them easier to solve by Newton’s and Secant iteration. Theorem 9.2
deserves at least a footnote, more if someone finds a shorter proof, because it justifies the use of
Secant iteration instead of Newton’s. Error analysis, dull but necessary, deserves more space in
texts too; without it, who can tell when to quit iterating or how much the result is worth?

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 54/67

§A1. Appendix: Divided Differences Briefly
This topic is discussed at length in Numerical Analysis texts like Conte & de Boor [1980], but
usually in the context of Interpolation and always in a different notation. For an ancient subject
the persistence of diverse notations suggests that none are satisfactory and licenses us to introduce
another notation more nearly analogous to a widely used notation for derivatives. Inspired by
formulas attributed to Hermite, we define for any sufficiently smoothly differentiable function
f(x) its First Divided Difference

f†(u, w) := ∫01 f'(u + (w-u)t) dt
and its Second Divided Difference

f††(u, v, w) := ∫01 ∫0t f" (u + (v-u)t + (w-v)s) ds dt .

For positive integers k generally, the kth divided difference is the uniformly weighted average

of the kth derivative over a simplex, the convex hull of k+1 arguments, then divided by k! .
However k > 2 will not be needed in these notes. In general the argument x of f(x) could be a
vector but in these notes it will almost always be a real scalar. Then that simplex, the convex hull

of the k+1 real arguments, degenerates into an interval of the real x–axis over which the kth
divided difference becomes a positively (not necessarily uniformly) weighted average of the

kth derivative divided by k! . For instance, if u < v < w then it follows that

f††(u, v, w) = (∫uv (t -u)f" (t) dt /(v-u) + ∫vw (w-t)f" (t) dt /(w-v))/(w-u) .

Because it is an average, the kth divided difference lies between the largest and least values taken

in that interval by the kth derivative divided by k! . This Mean Value property figures in nearly
all applications of divided differences in these lecture notes. Divided differences turn up
elsewhere as coefficients in Newton's Interpolating Polynomials, which see below, or during
root–finding or optimization, or when differential equations are solved using finite differences.

Because the argument x of f(x) is a scalar, the foregoing integrals can always be “ simplified ”
into expressions with no integral signs. For instance,

f†(u, w) = (f(u) - f(w))/(u - w) if w ≠ u ,
 = f'(u) if w = u ,

 = f†(w, u) (arguments’ order doesn’t matter)
 = f'(v) at some v strictly between u and w if they are unequal.

The first two equations above constitute an alternative definition of f† in so far as they describe it
independently of whether f' exists strictly between u and w ; and then the last equation turns
out to be valid so long as f'(x) does exist at every x strictly between u and w , and f(x) is
continuous at u and w , even if f' is not integrable. Similarly the next two lines describe or

alternatively define f†† independently of whether f" exists:

 f††(u,v,w) = (f†(u,v) - f†(v,w))/(u-w) if w ≠ u ,

= ∂f†(u,v)/∂u = (f'(u) - f†(u,v))/(u-v) if w = u ≠ v
= f(u)/((u-v)(u-w)) + f(v)/((v-w)(v-u)) + f(w)/((w-u)(w-v)) if u ≠ v ≠ w ≠ u

= f††(v,w,u) = f††(u,w,v) = … (arguments’ order doesn’t matter)

= f" (y) at some y between min{u,v,w} and max{u,v,w} if f" exists

(Don’t confuse f††(u, v, w) with f'†(u, w) = (f'(u) - f'(w))/(u-w) = f††(u, u, w) + f††(u, w, w) .)

1
2

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 55/67

Strictly speaking, we should write f†({u, w}) instead of f†(u, w) because it is best construed as
a function of an unordered pair {u, w} that replaces the single argument x of f(x) . Similarly

we should write f††({u, v, w}) instead of f††(u, v, w) . The extra braces {…} are superfluous in
divided differences of functions of one argument, but a necessary nuisance in partial divided
differences of functions of more than one argument. For instance, given any function g(x, y) of

two scalar arguments, we must distinguish g†({u,w}, y) := (g(u,y) - g(w,y))/(u-w) from

g†(x, {u,w}) := (g(x,u) - g(x,w))/(u-w) by our placement of the braces to show which argument

was split into a pair; ∂g(x,y)/∂x = g†({x,x}, y) and ∂g(x,y)/∂y = g†(x, {y,y}) are distinguished
by the same imperative. Similarly the mixed partial divided difference

g††({t,u}, {v,w}) := (g(t,v) - g(u,v) - g(t,w) + g(u,w))/((t-u)(v-w))
has to be distinguished from

g††(t, {u,v,w}) := g(t,u)/((u-v)(u-w)) + g(t,v)/((v-w)(v-u)) + g(t,w)/((w-u)(w-v))

much as we distinguish ∂2g/∂x∂y = g††({x,x}, {y,y}) from ∂2g/∂y2 = 2g††(x, {y,y,y}) . (The

factor 2 will be vindicated in a moment; and if discontinuity invalidates ∂2g/∂x∂y = ∂2g/∂y∂x it

may render g††({x,x}, {y,y}) ambiguously dependent upon the order of limiting processes.)

Return to functions f(x) of one argument. A composed function f(x) = h(p(x)) has a derivative

f'(x) = h'(p(x)) p'(x) derived from a Chain Rule that works analogously for divided difference

f†({u,w}) = h†({p(u), p(w)}) p†({u,w}) . And, just as derivatives compound to form higher order
derivatives like f" (x) = (f'(x))' , divided difference operations compound to form higher order

divided differences. For instance, the alternative definition of f†† above amounts to

 f††({u, v, w}) = f††({{u,v}, w}) = f ††({u, {v,w}}) = f ††({v, {u,w}}) ;
in other words, every second divided difference is a first divided difference of a first divided
difference in as many as three ways. Since derivatives are limiting values of divided differences,

∂f†({u,w})/ ∂u = f††({{u,u},w}) = f ††({u,u,w}) and ∂f†({u,w})/ ∂w = f††({u,w,w})
provided the derivatives in question exist. Setting u = v = w vindicates the factor 2 in

f" (v) = df†({v,v})/dv = f ††({{v,v},v}) + f ††({v,{v,v}}) = 2f ††({v,v,v}) .

Like differentiation, divided differencing maps certain families of functions into themselves.
Divided differences of polynomials are polynomials, albeit with more arguments. Divided
differences of rational functions of scalar arguments are rational. Likewise algebraic. Irrational
algebraic functions are handled by implicit divided differencing just like implicit differentiation,
and derived in the same way from the Chain Rule. With the aid of that rule, any algorithm that
computes an algebraic function f(x) can be expanded mechanically into a similar algorithm that

computes divided difference f†(u, w) = (f(u) - f(w))/(u-w) at almost the same cost as computing

f(u) and f(w) but without ever dividing by u-w . A simple example is √†(u, w) = 1/(√u + √w) .
Ideally such expansions should be performed on request by computerized algebra software like
Derive, Macsyma, Maple and Mathematica, which ought to manipulate divided differences as
well as derivatives, but they don’t. Consequently the computing public remains largely unable to
exploit a valuable but little known application of divided differences, namely the suppression of
numerical instability attributable to systematic cancellation.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 56/67

Many a numerical computation turns out to be the computation of a divided difference in disguise.

Attempts to compute f†(u, w) naively from the obvious formula (f(u) - f(w))/(u-w) can be
thwarted by roundoff and then cancellation when u is too near w . If nonzero, the divisor u - w
is no problem because its cancellation occurs without error. But the computed value of f(u) is

generally rounded to, say, f(u) + ∆f(u) , and therefore the value computed naively for f†(u, w)

when f(u) - f(w) would mostly cancel turns out to be f†(u, w) + (∆f(u) - ∆f(w))/(u - w) instead,
overwhelmed by the last quotient if u - w barely exceeds roundoff. For example consider the

solution of a quadratic equation Az2 - 2Bz + C = 0 . Its solutions z are (B ± √(B2 - AC))/A .

The solution of smaller magnitude, z := C sign(B) √†(B2, B2 - AC) , is vulnerable to roundoff

and cancellation when |AC| << B2 unless the divided difference √† is “ expanded ” as was

mentioned above to yield z = C/(B + sign(B) √(B2 - AC)) , which stays accurate if |AC| << B2
 .

Sometimes the accuracy of transcendental expressions can be insulated from cancellation with the
aid of ancient formulas motivated by divided differences. For example, (tan(u) - tan(w))/(u - w)

is best computed from the formula tan†(u, w) = (1 + tan(u) tan(w)) tan†(u - w, 0) when u nearly
equals w . Sometimes an inverse divided difference can render cancellation harmless. For

instance, because ln†(v, 1) = ln(v)/(v - 1) does not suffer from cancellation when v nearly

equals 1 , the computation of exp†(u, 0) = (exp(u) - 1)/u can be protected from cancellation in

the numerator by the use of the formula exp†(u, 0) = 1/ln†(exp(u), 1) instead. These
transcendental examples work because they exploit the few occasions when transcendental
functions take simple rational values at rational arguments.

In general, transcendental functions afflict divided differences but not derivatives in two ways.
First, many transcendental functions have simple (perhaps algebraic) derivatives but no simple

“ expanded ” divided differences undefiled by cancellation. For example, d2 ln(v)/dv2 = -1/v2 ;

but no known simple finite formula for ln††(u, v, w) stays accurate no matter how u, v and w
approach each other. Secondly, the divided difference of a non–polynomial rational function of a
vector argument generally involves logarithms and/or arctangents. For example, let column

vectors x := and u := , and let f(x) := y/z ; then its derivative f'(x) = [1/z, -y/z 2] is a

rational row vector but Hermite’s formula for its first divided difference yields a transcendental

 f†(x, u) = [ln†(z,w), (y-v)(ln††(z,z,w) - ln††(z,w,w)) - (y + v)/(zw)] .

 ~
Newton’s Interpolating Polynomials approximate functions of scalar or vector arguments:

 f(x) := f(u) + f†(u,x)(x-u) ,

 = f(u) + (f†(u,v) + f††(u,v,x)(x-v))(x-u) ,

 = f(u) + (f†(u,v) + (f††(u,v,w) + f†††(u,v,w,x)(x-w))(x-v))(x-u) , … etc.

The polynomial in x obtained by substituting 0 for f††† interpolates (matches) f(x) at x = u ,
x = v and x = w ; elsewhere it differs from f(x) by a remainder term f"' (y)(x-w)(x-v)(x-u)/6
in which y falls somewhere inside the convex hull of { u, v, w, x } . Interpolation is osculatory
if two of u, v, w coincide. This polynomial’s degree is minimal only for a scalar argument x .

y

z

v

w

1
2
--- 1

2

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 57/67

§A2. Appendix: Functions of Restrained Variation
This digression concerns a way to sum an undulating function’s fluctuations. The Total Variation
of a real function Q(x) over a closed finite interval u ≤ x ≤ w is defined to be

 Vu
w Q := ∫uw |dQ(x)| = ∫uw |Q'(x)|dx

though the last equation is valid only if |Q'(x)| exists and is integrable. In general, a function
whose Total Variation over some interval is finite is called “ a function of Bounded Variation ”
thereon. Such functions figure in Measure Theory, Stieltjes integrals, and Fourier series. They
can have none but jump discontinuities, and at most countably many of these (Bartle [1976]).
In particular, a derivative of bounded variation must be a continuous derivative.

Obviously Vu
w Q ≥ |Q(w) - Q(u)| , with equality just when Q is monotonic. Where Q(x) is

continuous, so is Vu
x Q . Wherever Q(x) jumps, so do Vu

x Q and Vx
w Q , and by the same

amount, but the former always increases and the latter always decreases as x increases. Hence

Total Variation is Additive over abutting sub–intervals: if u ≤ x ≤ w then Vu
x + Vx

w = Vu
w

 . It

is a Semi–Norm because it satisfies the Triangle Inequality 0 ≤ Vu
w (P±Q) ≤ Vu

w P + Vu
w Q .

If Vu
w Q < ∞ and u ≤ x ≤ w then Q(x) admits infinitely many Splittings into a difference

Q = P - M between two non–decreasing functions P(x) := (R(x) + Q(x) + Vu
x Q - Vu

w Q)

and M(x) := (R(x) - Q(x) - Vx
w Q + Vu

w Q) in which R can be any non–decreasing

function. Conversely, any non–decreasing P and M determine both Q := P - M of bounded

variation and the function R(x) := (P(x) + M(x) - Vu
x (P - M)) + (P(x) + M(x) + Vx

w (P - M))

that appears in Q ’s splitting; this R is non–decreasing because P + M varies faster than P - M .

If Q and R are continuous, so are P and M , and vice-versa. If Q and R have integrable
derivatives, so do P and M , and vice-versa. But when Q' is so violently oscillatory that

Vu
w Q = +∞ then Q is unsplittable, as are examples like Q(x) = x2 cos(1/x2) around 0 .

Among functions Q of bounded variation, the ones that will interest us have a splitting
Q = P - M that is special because all three of Q, P and -M have the same sign and keep it
throughout the interval u ≤ x ≤ w . We shall call such a function Q “ a function of Restrained
Variation.”

Lemma A2.1: A Function of Restrained Variation
Q can be split into a difference Q = P - M between two non–decreasing functions
P and M , one non–negative and the other non–positive, throughout the closed

finite interval u ≤ x ≤ w if and only if Vu
w Q ≤ |Q(u) + Q(w)| .

Proof: If necessary, replace Q by -Q to get Q ≥ 0 . If r := Q(u) + Q(w) - Vu
w Q ≥ 0 then

choose any non–decreasing R ≥ 0 and P(u) ≥ 0 and M(w) ≤ 0 subject only to the constraint
2P(u) - 2M(w) + R(w) - R(u) = r , and construct functions

1
2
--- 1

2

1
2
--- 1

2

1
2
--- 1

2

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 58/67

P(x) := P(u) + (Vu
x Q + Q(x) - Q(u) + R(x) - R(u)) ≥ 0 , and

M(x) := M(w) - (Vx
w Q + Q(x) - Q(w) + R(w) - R(x)) ≤ 0 ;

evidently they are non–decreasing and satisfy P(x) - M(x) = Q(x) too as desired. If r = 0 this
splitting is determined uniquely with P(u) = M(w) = R(x) - R(u) = R(w) - R(x) = 0 . On the other
hand, if a splitting Q = P - M already exists with non–decreasing P and M and P ≥ 0 ≥ M ,

then this splitting also determines the non–decreasing R(x) := P(x) + M(x) - Vu
x Q + Vx

w Q

as explained before the lemma; therefore 0 ≤ R(w) - R(u) = P(w) + M(w) - P(u) - M(u) - Vu
w Q

whence Vu
w Q ≤ Q(w) +2M(w) - 2P(u) + Q(u) ≤ Q(u) + Q(w) as claimed. END OF PROOF.

What are here called “ functions of restrained variation ” are also called “ tame ” by Aharoni et
al. [1992], who characterized them by means of a discretized version of the foregoing lemma,
which now shortens the proof of their characterization:

Lemma A2.2: Tame Functions (Aharoni et al. [1992])
Q(x) is a nonnegative function of restrained variation over the interval u ≤ x ≤ w
if and only if Q(x0) - Q(x1) + Q(x2) - … - Q(x2k-1) + Q(x2k) ≥ 0 for every
integer k ≥ 0 whenever u ≤ x0 ≤ x1 ≤ x2 ≤ ... ≤ x2k-1 ≤ x2k ≤ w .

Proof: If Q = P - M for some non–decreasing P ≥ 0 and M ≤ 0 , then every alternating sum

Q(x0) + ∑j=1
2k (-1)jQ(xj) = P(x0) + ∑j=1

k (P(x2j) - P(x2j-1)) + ∑j=0
k-1 (M(x2j+1) - M(x2j)) - M(x2k)

is nonnegative term–by–term, which confirms the lemma’s “ only if ” part. Except for setting
k = 0 to prove Q ≥ 0 , the “if” part is harder to prove. Its proof is easier when Q(x) takes its
locally extreme values at only finitely many points in the interval u ≤ x ≤ w , including its
endpoints among them. Then we assign x0 := u , x2k := w , and for 0 < j ≤ k we set all other
x2j to be all consecutive points where Q2j := Q(x2j) is locally minimal, and x2j-1 to be all
consecutive points where Q2j-1 := Q(x2j-1) is locally maximal; these points interlace, including
possibly x1 = u if Q0 = Q(u) is locally maximal and/or x2k-1 = w if Q2k = Q(w) is locally
maximal. Because the lemma’s alternating sums are all nonnegative, we soon find that

 Q(u) + Q(w) ≥ (Q1 - Q0) + (Q1 - Q2) + (Q3 - Q2) + … + (Q2k-1 - Q2k-2) + (Q2k-1 - Q2k) = Vu
w Q .

Applying Lemma A2.1 completes the proof for the case when Q has just finitely many extrema.
When Q has infinitely many extrema the last equation is invalid but salvaged by taking its
left–hand side’s supremum over all partitions u = x0 ≤ x1 ≤ x2 ≤ ... ≤ x2k-1 ≤ x2k = w . END OF

PROOF.

Restrained variation has only one consequence significant for Newton’s or Secant iterations; it
is the following corollary, whose now nearly obvious proof is left to the reader:

Corollary A2.3: A function Q of restrained variation over an interval Ω is also
of restrained variation over every subinterval of Ω , and is sum–topped thereon.

(“ Sum–topped ” is case k = 1 of Lemma A2.2.)

1
2

1
2

1
2
--- 1

2

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 59/67

This corollary’s converse is false: A function can be of restrained variation over two abutting
intervals and yet not over their union. A function can be sum–topped but not of restrained
variation; Q(x) := 3 + cos(x) is an example over any interval wider than 2π . But a sum–topped
unimodal function is of restrained variation. (A function unimodal over an interval Ω has at
most one extremum, maximum or minimum, strictly inside Ω .)

Our interest in functions of restrained variation is now mainly historical. In the late 1970s they
were the first non–monotonic functions to be recognized as sum–topped; and in practice they are
still easier to recognize as such from their splittings than are most other sum–topped functions.
Their relevance to Newton’s and Secant iteration is apparent in Corollary 8.3.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 60/67

§A3. Appendix: Projective Images
The redefinition S(x, x) := N(x) connects Newton’s iteration xn+1 := N(xn) := xn - f(xn)/f'(xn)

to Secant iteration xn+1 := S(xn, xn-1) := xn - f(xn)/f
†(xn, xn-1) , but not so tightly as they are

connected by a shared family of invariants under certain Projective transformations. In general,
plane projective transformations are those that map straight lines to straight lines. Thus they map
tangents to tangents and secants to secants, which is why some of them are pertinent to Newton’s
and Secant iteration. The pertinent ones constitute a four–parameter family of projective maps
each of which takes a pair {x, f(x)} to a pair {X, F(X)} in such a way that both Projective
Images f(x) and F(X) are linear functions of their respective arguments, or else neither are.
Each of these maps is determined by the values of four constants ß, µ, b and m chosen almost
arbitrarily subject to two inequality constraints:

Constraint I: ç := ßm + bµ ≠ 0 , and
Constraint II: b/m does not lie strictly inside the interval Ω

in which we seek a zero z of f .
After these constants have been chosen, the projective map {x, f(x)} =› {X, F(X)} and its
inverse {x, f(x)} ‹= {X, F(X)} are defined thus:

X = X(x) := (µx + ß)/(b - mx) , F(X) := f(x(X))/(b - mx(X)) = f(x(X))(µ + mX)/ç ,
x = x(X) := (bX - ß)/(µ + mX) , f(x) = F(X(x))(b - mx) = F(X(x))ç/(µ + mX(x)) .

In the last two lines the last equation is derived from the first, which is a Möbius
(Bilinear–Rational) transformation, with the aid of a valuable identity

 (b - mx)(µ + mX) = ç ≠ 0 .
It and Constraint II prevent b - mx from reversing sign while x runs through Ω , and prevent
µ + mX from reversing sign while X runs through the interval X(Ω) . Whether this Möbius
map preserves or reverses order in those intervals depends upon the sign of ç in Constraint I
because the same sign turns up in

dX/dx = X' (x) = ç/(b - mx)2 and dx/dX = x'(X) = ç/(µ + mX)2 .

What do projective images F and f have in common? F has as many zeros strictly inside X(Ω)
as f has strictly inside Ω . (A zero at an end of an interval can evaporate if that end is mapped to
∞ ; for example consider f(x) := x and X(x) := -1/x for x ≥ 0 , whence F(X) = -1 for X ≤ 0 .)
Similarly, F and f have the same number of poles strictly inside their intervals. Therein F also
has as many Inflexion–points (where F" = 0) and Notches (where F" = ∞) as f has since

F" (X) = f" (x(X))ç/(µ + mX)3 . Other properties F and f share are less obvious.

Under composition, the projective transformations form a non–Abelian (non–commutative)
Group isomorphic to the multiplicative group of nonsingular 2-by-2 matrices. In other words,
suppose X j(x) := (µjx + ßj)/(bj - mjx) for j = 1, 2, 3 are the Möbius parts of three projective
transformations of which the third is composed from the first and second: X3(x) = X2(X1(x)) ;

then and ç3 = det() = ç2 ç1 ≠ 0 . In this isomorphism

the projective map associated with the constants {ß, µ, b, m, ç = bµ + ßm} has an inverse that
must be associated with constants respectively {-ß/ç, b/ç, µ/ç, -m/ç, 1/ç} . Every projective map

b3 m– 3

β3 µ3

b2 m– 2

β2 µ2

b1 m– 1

β1 µ1

⋅=
b3 m– 3

β3 µ3

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 61/67

can be decomposed into a sequence of at most five maps each selected from a subgroup listed in
the following table:

(* The Reciprocal subgroup has two elements including an Identity that changes nothing.)

Often the easiest way to prove an assertion true for all projective maps is to prove it for each
subgroup separately and then infer it for their compositions. Often the assertion is unobvious only
for the Reciprocal subgroup. Such is the case for the next two assertions:

Lemma A3.1: Æf := ((f3 f")')2 /(f5 (f")3) = (3 f' f" + f f"')2 /(f (f")3) is
invariant for projective maps {x, f(x)} ‹=› {X, F(X)} of nonlinear functions; in
other words, nonlinear projective images f(x) and F(X) satisfy Æf(x) = ÆF(X)
after substitution of the projective map’s Möbius part, say X = X(x) .

Lemma A3.2: Newton’s iterating function Nf(x) := x - f(x)/f'(x) and Secant
iterating function Sf(x, y) := x - f(x)(x-y)/(f(x) - f(y)) are constructed from f by
operators N and S that commute with projective maps {x, f(x)} ‹=› {X, F(X)} ;
in other words, NF(X(x)) = X(Nf(x)) and SF(X(x), X(y)) = X(Sf(x, y)) wherein
X = X(x) is the projective map’s Möbius part.

The tedious but easy proof of both lemmas is left to the reader. For example, a
Negative–Reciprocal projective map {x, f(x)} ‹=› {X, F(X)} defined by X := -1/x and
F(X) := Xf(-1/X) has NF(X) = X - F(X)/F'(X) = X - Xf(-1/X)/(f(-1/X) + f'(-1/X)/X) = -1/Nf(x)
as claimed in Lemma A3.2. It implies that whether the iterations converge or meander is another
invariant of projective maps and motivates us to learn more about them.

The Möbius part of a projective map is determined by what it does to any three distinct values u,
v, w of x . It must map them to some three distinct values U, V, W respectively of X , and vice
versa. It can be constructed from these triples by solving a bilinear Cross Ratio equation like

(x - u)(v - w)(X - W)(V - U) = (X - U)(V - W)(x - w)(v - u)
for either X = X(x) or x = x(X) , thereby determining the constants ß, µ, b and m except for a
common factor. (One member of the triple {u, v, w} can be ∞ if the cross–ratio equation is
replaced by an appropriate limit; similarly for {U, V, W} .) The sign of ç = ßm + bµ , which
determines whether the Möbius transformation preserves or reverses order, is the same as the
sign of

 (u-v)(v-w)(w-u)/((U-V)(V-W)(W-U)) = ((b - mu)(b - mv)(b - mw))2/ç3

Table 4: Subgroups of Projective Maps {x, f} ‹=› {X, F}

Subgroup Name X(x) x(X) F(X) ß µ b m ç

Scaling x X f(X)/b 0 b b ≠ 0 0 b2

Dilation µ x X/µ f(X/µ) 0 µ ≠ 0 1 0 µ

Translation x + ß X - ß f(X-ß) ß 1 1 0 1

Reciprocal* 1/x 1/X X f(1/X) 1 0 0 -1 -1

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 62/67

if both triples {u, v, w} and {U, V, W} are entirely finite. Moreover Constraint II, “ b/m does
not lie strictly inside the interval Ω ”, which ensures that X(Ω) be an interval too, requires both
triples {u, v, w} and {U, V, W} to have either the same or the opposite linear order whenever u,
v and w lie in Ω or, equivalently, whenever U, V and W lie in X(Ω) .

Many a theoretical problem is simplified by a projective map that transforms a finite interval Ω
into a semi–infinite X(Ω) . One example is the proof of the Intermediate Value Lemma 9.1.
Here is another example designed to show why the continuity of Newton’s iterating function N
is an hypothesis necessary for the conclusion of Theorem 9.2.

•Example A3.3: Twice differentiable function f will strictly increase throughout a finite interval
Ω . From any starting point in Ω Newton’s iteration xn+1 := N(xn) will always converge in Ω
to a zero z of f . On the other hand, Secant iteration won’t converge from some starting points
in Ω . This ostensible violation of Theorem 9.2 merely violates one of its hypotheses; this
example’s N is discontinuous at z . This example f(x) is the projective image of a simpler F(X)
constructed over the semi–infinite interval -∞ ≤ X ≤ X0 := 1/ln(2) = 1.442695 thus:

For n = 0, 1, 2, 3, … in turn let X3n := 1/ln(n+2) , X3n+1 := (X3n + X3n+3)/2 , X3n+2 := -∞ .
Evidently X0 ≥ X3n > X3n+1 > X3n+3 > 0 and X3n - 2X3n+3 + X3n+6 > 0 . Next define

 F(X) := X exp(1/X) if X < 0 ,
:= 0 if X = 0 ,
:= (X3n - X3n+3)/2 if X3n+1 ≤ X ≤ X3n , and
:= pn + qn T((2X - X3n+1 - X3n+3)/(X3n+1 - X3n+3)) if X3n+3 ≤ X ≤ X3n+1 ,

where
 pn := (F(X3n+1) + F(X3n+3))/2 = (X3n - X3n+6)/4 > 0 ,
 qn := (F(X3n+1) - F(X3n+3))/2 = (X3n - 2X3n+3 + X3n+6)/4 > 0 , and
 T(t) := tanh(tan(πt/2)) if -1 < t < 1 ,

:= sign(t) otherwise.
T is infinitely differentiable with T'(t) > 0 for -1 < t < 1 and T' = 0 otherwise; T(±1) = ±1 .
Consequently the graph of F(X) over 0 < X ≤ X0 looks like a rising staircase with rounded
corners and risers and treads that shrink to zero as X → 0+ . Between subintervals over which F
is constant are subintervals X3n+3 < X < X3n+1 over which F'(X) > 0 and F(X) increases
monotonically from F(X3n+3) = (X3n+3 - X3n+6)/2 to F(X3n+1) = F(X3n) = (X3n - X3n+3)/2 as
X increases. In the middle of each such subinterval the derivative F' rises to its local maximum
(π/2)(X3n - 2X3n+3 + X3n+6)/(X3n - X3n+3) , which approaches 0 roughly like 1/n as n → +∞ .
Consequently F(X) → 0+ and F'(X) → 0+ roughly like exp(-1/X) or faster as X → 0+ . It
soon follows that F(X) is twice differentiable wherever it is defined, namely -∞ ≤ X ≤ X0 .

The completed definition of Newton’s iterating function NF(X) := X - F(X)/F'(X) , including
NF(0) := 0 , NF(-∞) := -1 , and NF(X) := -∞ when X3n+1 ≤ X ≤ X3n , remains discontinuous at
0+ because NF(X) runs from -∞ up to a small positive value and back to -∞ as X runs
through each subinterval X3n+3 ≤ X ≤ X3n . None the less, Newton’s iteration converges to
Z = 0 ultimately monotonically and usually slowly from every starting iterate in the domain of
F . But Secant iteration need not converge.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 63/67

The completed definition of the Secant iterating function SF(X, Y) := X - F(X)/F†(X, Y) has to
include the limiting values SF(X, X) := NF(X) , SF(X, -∞) := X - F(X) , and SF(X,Y) := -∞
when F(X)-F(Y) = 0 ≠ X-Y . Then Xn+1 = S(Xn, Xn-1) for n = 1, 2, 3, … by design. Starting
from X0 and X1 , every third Secant iterate X3n+2 = -∞ ; thus Secant iteration does not
converge although the subsequence of finite Secant iterates converges slowly to Z = 0 .

To transform the semi–infinite interval -∞ ≤ X ≤ X0 into a finite interval -1 ≤ x ≤ 2.5887 set
x = x(X) := X/(2-X) , or X = X(x) = 2x/(1+x) , and f(x) := (1+x)F(X(x)) . This projective map
turns F into a twice differentiable strictly increasing function f while preserving the iterations’
(non)convergence; Newton’s iteration converges to z = 0 from every starting iterate between -1
and x0 := x(X0) but, starting from x0 and x1 := x(X1) , every third Secant iterate
x3n+2 = x(X3n+2) = -1 . Thus Secant iteration need not converge, though I have proved [1979']
that a subsequence of its iterates always imitates Newton’s by converging to z . END EX. A3.3.

• • •
Inverse to the problem of constructing a projective map is the problem of detecting one. Given
f(x) and F(X) , what test reveals whether they are projective images of each other? An easy test
works if they have at least three (but not too many) of the following special points:

zeros, poles, inflexion–points, notches.
For instance, suppose the triple {u, v, w} includes one zero and two inflexion–points of f , and
{U, V, W} does likewise respectively for F ; then solving the cross–ratio equation above
determines a prospective Möbius transformation X = X(x) that passes the test if f(x)/F(X(x)) is
a linear function, namely (b - mx) . If this X(x) fails the test, all other matching triples of
consecutive special points have to be tried and fail too before f and F can be deemed not to be
projective images; this is why we hope f and F have not too many special points.

Another test can be fashioned out of Lemma A3.1’s projective differential invariant

Æf := (3 f" f' + f"' f)2 /((f")3 f) .
After the substitution X = X(x) of their Möbius transformation, nonlinear projective images
f(x) and F(X) must satisfy Æf(x) = ÆF(X) . Conversely, if the equation Æf(x) = ÆF(X) is

satisfiable by a Möbius transformation X = X(x) for which f(x)3 f" (x)/(F(X(x))3 F" (X(x)))

simplifies to a positive constant (ç2) and f(x)/F(X(x)) simplifies to a linear function (b - mx) ,
then f(x) and F(X) are projective images. For example Æf(x) = 12 - 4 ln(x) - 9/ln(x) and
ÆF(X) = 12 + 4 ln(X) + 9/ln(X) when f(x) = ln(x) and F(X) = X ln(X) , so the equation
Æf(x) = ÆF(X) has two solutions X = X(x) of which only one is a Möbius transformation

X(x) = 1/x ; next ç2 = f(x)3 f" (x)/(F(X(x))3 F" (X(x))) = 1 and (b - mx) = f(x)/F(X(x)) = -x ,
whence µ = b = 0 and ß = -m = ç = -1 in the projective map {x, f(x)} ‹=› {X, F(X)} . For
another example, the projective map {x, (x - 1)/x)} ‹=› {X, X/(1 - X)} can have either of two
Möbius parts, either X(x) = (x - 1)/(-1) and ç = -1 , or X(x) = 1/(1 - x) and ç = 1 .

This test is complicated slightly by the possibility that infinitely many Möbius transformations
may be compatible with a given pair of of projective images. For instance, Æf = ÆF = 16 when
f(x) = exp(x) and F(X) = X exp(-1/X) , and then the equation Æf(x) = ÆF(X) is satisfied by all

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 64/67

Möbius transformations X = X(x) ; but ç2 = f(x)3 f" (x)/(F(X)3 F" (X)) = exp(4x + 4/X) is a
constant only if x + 1/X = ô is a constant, so the only compatible Möbius transformations are

X(x) = 1/(ô - x) , whereupon (b - mx) = f(x)/F(X(x)) = eô (ô - x) , whence ß = m = eô , µ = 0 ,

b = ôeô and ç = e2ô in projective maps {x, f(x)} ‹=› {X, F(X)} wherein ô is a parameter.
Another one–parameter family of projective maps with Möbius part X(x) = constant/x ≠ 0 has

projective images f(x) = xk and F(X) = X1-k and Æf = ÆF = 16/(1-1/(2k-1)2) for any constant
k . I know no other one–parameter family, nor other projective images with constant Æf .

We have seen that Æf , and the convergence of Newton’s and Secant iterations applied to solve
f(z) = 0 , are invariants of projective maps. Are they related? Is there some condition that Æf
can satisfy in an interval Ω to prevent the iterations from meandering in Ω forever? Because

f3 f" = ç2 F3 F" , another invariant is the sign of f f" if it is constant; it figures in Theorem 7.5.
Otherwise monotonicity is not a projective invariant, so neither are Theorem 8.2 nor Corollary
8.3; do invariant versions of them exist?

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 65/67

§A4. Appendix: Parabolas
This Appendix is provided for students who have taken a course on Cartesian Geometry in
High School but not yet in College.

Lemma A4.1: Let any nondegenerate triangle’s vertices be {Q, R, S} ; then one
parabola Ç passes through Q and R and is tangent there to sides QS and RS .

Proof: In Cartesian (x, y)–coordinates let the triangle’s sides have equations ax + by + c = 0
for QS , Ax + By + C = 0 for RS , and ex + fy + g = 0 for QR . Then for any µ define

 Hµ(x, y) := (ax + by + c)·(Ax + By + C) - µ·(ex + fy + g)2 .
For every choice of the constant µ , the equation Hµ(x, y) = 0 is the equation of a Conic
Section Çµ (an ellipse, parabola, hyperbola, or pair of straight lines) that passes through Q
and R . The set of all such conics Çµ is called a Pencil of conics. Every Çµ passes through Q
because (ax + by + c) = (ex + fy + g) = 0 at Q ; similarly Çµ passes through R . Therefore no
Çµ degenerates into a single point nor the empty set. The differential

dHµ(x, y) = (ax + by + c)·(Adx + Bdy) + (Ax + By + C)·(a dx + b dy) - 2µ·(ex + fy + g)·(e dx + f dy)

must vanish along Çµ ; this means that if (x, y) lies on Çµ because Hµ(x, y) = 0 , then
(dx, dy) points along the tangent to Çµ at (x, y) when dHµ(x, y) = 0 too. At Q ,

 dHµ(x, y) = 0 + (Ax + By + C)·(a dx + b dy) - 0 = 0 but (Ax + By + C) ≠ 0 ,
so a dx + b dy = 0 , which means that the tangent to Çµ at Q is parallel to QS ; therefore QS
is tangent to Çµ at Q . Similarly RS is tangent to Çµ at R .

The next step is to select the lemma’s parabola Ç = Çµ from the pencil of conics by choosing the
appropriate value for µ . For this purpose Hµ(x, y) must be expanded:

 Hµ(x, y) = (aA - µe2)·x2 + (aB + bA - 2µef)·xy + (bB - µf2)·y2 + (terms linear in x and y) .
Its Discriminant

(aB + bA - 2µef)2 - 4(aA - µe2)·(bB - µf2) = (aB - bA)2 + 4µ·(be - af)·(Be - Af)
vanishes just when µ takes the finite nonzero value

µ := -(aB - bA)2 /(4(be - af)·(Be - Af)) .
It is finite and nonzero because no two sides of the triangle QRS are parallel, so no factor of µ
can vanish. With this choice for µ the vanished discriminant implies that

Hµ(x, y) = ±(other terms linear in x and y)2 + (terms linear in x and y) ,
so “ Hµ(x, y) = 0 ” is the equation of either a pair of parallel straight lines or a parabola. The pair
is ruled out by the intersection of its tangents QS and RS , so Çµ is a parabola. END OF PROOF.

The parabola is a convex curve because it lies entirely on one side of its every tangent, as can be
verified easily. The triangle is a convex figure too; and its side QR lies inside the parabola.
Therefore an arc of the lemma’s parabola Ç stays inside QRS as the arc runs from Q to R .
This parabola figures in the proof of Theorem 7.6 .

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 66/67

§C. Citations

R. Aharoni, A. Regueros, J. Prashker & D. Mahalel [1992] “A Global Convergence Theorem
Result for the One-Dimensional Newton-Raphson and Secant Methods with an
Application to Equilibrium Assignment” 17 pp. draft stamped “DEC 03 1992” from
the Mathematics & Civil Engineering departments, Technion, Haifa, Israel

R.G. Bartle [1976]The Elements of Real Analysis 2d ed., Wiley, New York; pp. 225-227.

A.M. Bruckner & J.G. Ceder [1965] “Darboux Continuity” Jahresbericht der Deutschen
Mathem.–Verein 67 I. Abt., ss. 93-117

S.D. Conte & C. de Boor [1980] Elementary Numerical Analysis, an Algorithmic Approach 3d
ed., McGraw-Hill, New York; pp. 62-71.

G. Dahlquist, Å. Björck & N. Anderson [1974] Numerical Analysis, Prentice–Hall, New Jersey;
pp. 227-232.

R.J. Fateman [1977] “An Algorithm for Deciding the Convergence of the Rational Iteration
xn+1 = f(xn) ” in ACM Trans. Math. Software 3 pp. 272–278.

N.J. Higham [2002] Accuracy and Stability of Numerical Algorithms 2d ed., Soc. Indust. & Appl.
Math., Philadelphia.

X-C. Huang [1992] “From Intermediate Value Theorem to Chaos” Mathematics Magazine 65 #2
(April 1992) pp. 91-103.

W. Kahan [1979'] “No Period Two Implies Convergence, or Why Use Tangents when Secants
Will Do?” 69 pp. Memorandum No. UCB/ERL M79/61, 10 Oct. 1979, Electronics
Research Lab., Univ. of Calif. @ Berkeley, CA 94720. (Out of print.)

W. Kahan [1979"] “Personal Calculator Has Key to Solve Any Equation f(x) = 0.”
Hewlett–Packard Journal 30 #12 (Dec. 1979) pp. 20–26. The calculator was the
hp-34C. A scanned copy is at
http://www.cs.berkeley.edu/~wkahan/Math128/SOLVEkey.pdf .

R.E. Martin [1977] “Printing Financial Calculator Sets New Standards for Accuracy and
Capability” Hewlett–Packard Journal 29 #2 (Oct. 1977) pp. 22–28. The calculator
was the hp-92.

P.J. McClellan [1987] “An Equation Solver for a Handheld Calculator” Hewlett–Packard Journal
38 #8 (Aug. 1987) pp. 30–34. There were two calculators, the hp-18C and -28C.

M. Misiurewicz [1997] “Remarks on Sharkovsky’s Theorem” in Amer. Math. Monthly 104 #9
(Nov. 1997) pp. 846-7.

File: RealRoots Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 67/67

A. Ostrowski [1960] Solution of Equations and Systems of Equations, and 2nd ed. [1966] and 3rd
ed. [1973], Academic Press, New York; ch. 3.

W.H, Press, S.A. Teukolsky, W.T. Vetterling & B.P. Flannery [1994] Numerical Recipes in
Fortran – the Art of Scientific Computing, 2d ed. corrected, Cambridge Univ. Press;
p. 351.

Y. Saad [1974] “Shifts of Origin for the QR Algorithm” in Information Processing 74 — Proc.
IFIP Congress of Aug. 5-10, 1974, in Stockholm, pp. 527–531, North Holland Publ.,
Amsterdam.

A.N. Sharkovsky [1964] “Co-existence of cycles of a continuous mapping of the line into itself”
(Russian with English summary) Ukrain. Math. Zh. 16 no. 1, pp. 61–71; Math. Rev.
28 (1964) #3121. Translated in Internat’l J’l Bifurc. Chaos Appl. Sci. Engrg. 5
(1995) pp. 1263-1273.

A.N. Sharkovsky [1965] “On cycles and the structure of a continuous mapping” (Russian)
Ukrain. Math. Zh. 17 no. 3, pp. 104–111; Math. Rev. 32 (1966) #4213.

J. Stoer & R. Bulirsch [1980] Introduction to Numerical Analysis translated from the German
versions of 1972 and 1976 by R. Bartels, W. Gautschi & C. Witzgall, Springer–Verlag,
New York; pp. 274–277.

J.F. Traub [1964] Iterative Methods for the Solution of Equations, Prentice-Hall, New Jersey.

H.W. Turnbull [1952] Theory of Equations 5th ed., Oliver & Boyd, Edinburgh; pp. 103-107.

M. Vianello & R. Zanovello [1992] “On the Superlinear Convergence of the Secant Method” pp.
758-761 Amer. Math. Monthly 99 #8 (Oct.’92) A long proof from minimal hypotheses.

M.V. Wilkes, D.J. Wheeler & S. Gill [1951] The Preparation of Programs for an Electronic
Digital Computer, Addison Wesley, Cambridge, Mass.; pp. 84-85 and 130-132. The
computer was the EDSAC at Cambridge University, England.

G. Wilkins & M. Gu [2013] “A modified Brent’s method for finding zeros of functions” in
Numerische Mathematik 123 pp. 177-188

J.H. Wilkinson [1965] The Algebraic Eigenproblem, Oxford Univ. Press; p. 480.

