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Abstract

These course notes concern the solution of one real equation f(z) =0 for one real root z, also
called arealzero z of function f(x) . Theysupplement not supplant textbooks and deal
mathematically with troublesome practical details not discussed in my reprint [1979"] about a
calculator's [SOLVE] key, which should be read first; it offers easy—to—read advice about real
root-finding in general to anyone who wishes merely to use a root—finder to solve an equation in
hand. These course notes are harder to read; intended for the would—be designer of a root—finder,
they exercise what undergraduates may learn about Real Analysis from texts like Bartle [1976].
Collected here are proofs, mostly short, for mathematical phenomena, some little known, worth
knowing during the design of robust and rapid root-finders.

Almost all Numerical Analysis texts cover the solution of one real equation f(z) = 0 for one real
root z by a variety of iterative algorithms, like-xU(x) for some function U that has

z =U(z) as a fixed-point. The best known iteration is Newton's: xx f(x)/f'(x) . Another is
Secant iteration: pair {X, y} {w, X} where w:= x - f(x)-(x-y)/( f(x) - f(y) ) . But no text |

know mentions some of the most interesting questions:

* Is some simple Combinatorial (Homeomorphically invariant) condition both Necessary and
Sufficient for convergence of x U(x) ? (Yes; 85)

* Is that condition relevant to the design of root-finding software? (Yes; 86)
* Do other iterations x U(x) besides Newton's exist? (Not really; 83)

» Must there be a neighborhood of z within which Newton's iteration converdés) ifahd
x - f(x)/f'(x) are both continuous? (Maybe Not; 8§7)

» Do useful conditions less restrictive than Convexity suffice Globally for the convergence of
Newton's and Secant iteration? (Yes; 88)

» Why are these less restrictive conditions not Projective Invariants, as are Convexity and the
convergence of Newton's and Secant iterations? (I don't know; 8A3)

* Is slow convergence to a multiple root worth accelerating? (Probably not; §7)

* Can slow convergence from afar be accelerated with no risk of overshooting and thus losing the
desired root? (In certain common cases, Yes; 810)

* When should iteration be stopped™Nat for the reasons usually cited; 8§6)
* Which of Newton's and Secant iterations converges faster? (Depends; 87)

* Which of Newton's and Secant iterations converges from a wider range of initial guesses at z ?
( Secant, unless z has even multiplicity; 89)

Therefore, Why Use Tangents When Secants Will Do?

» Have all the foregoing answers begmoved ? Yes. Most were proved in the 1960s and
1970s [1979], and influenced the design of the [SOLVE] key on Hewlett-Packard Calculators.
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81. Overview
Before a real root z of an equatiorfi(Z) = 0” can be found, six questions demand attention:

«1» Which equation?
Infinitely many equations, some far easier to solve than others, have the same root z .

«2» What method?
Usually an iterative method must be chosen; there are infinitely many of them too.

«3» Where should the search for a root begin?
A global theory of the iteration’s convergence helps compensate for a vague guess at z .

«4» How fast can the iteration be expected to converge?
A local theory helps here. Convergence much slower than expected is ominous.

«5» When should iteration be stopped?
Error-analysis helps here. And the possibility that no z exists may have to be faced.

«6» How will the root’s accuracy be assessed?
Error-analysis is indispensable here, and it can be done in more than one way.

The questions are not entirely independent, nor can they always be answered in order. If question
«2» is answered by some available software that contains its own root—finder, the method it uses
should influence the answer to question «1». Question «5» may depend upon question «6»,
which may be easier to answer after z has been found. Anyway, these questions do not have tidy
answers. Instead, the following notes answer questions that resemble the foregoing six, and the
reader must decide whether available answers pertain well enough to his own questions.

Different contexts may call for different answers. Two contexts are worth distinguishing during

the design of root—finding software: General-purpose root—finders have to be designed without
knowing the equations they will be asked to solve; special-purpose root—finders are designed to
solve one equationF(z, p) = 0 foraroot z = z(p) regarded as a function of the parameter(s) p
over some preassigned range. General-purpose root—finders must be robust above all; they cope
with very diverse equations and with poor first guesses at roots that need not be unique or, in
other cases, need not exist; speed matters only because a root—finder that runs too slowly will be
abandoned by impatient users before it finds a root. Speed is the reason for a special-purpose
root—finder’s existence, and to that end it exploits every advantage that mathematical analysis can
wrest from the given expression F(x, phpplicability to many such special cases justifies the
inclusion of much of the theory presented in these notes.

Root—finders are almost always iterative; they generate a sequence of approximations intended to
converge to a desired root. For reasons outlined in 82, 83 gives the infinite variety of iterative
methods short shrift. Whereas textbooks concentrate mostly upon questions of local convergence
answerable often by appeals to Taylor series, these notes concentrate mostly upon questions of
global convergence. Doegglobal” convergence theory differ fromldcal” ? It's a distinction

with a small difference: Local theories touched in 83 and 84 describe what happens, and how
fast, in every sufficiently small neighborhood of a root; this kind of theory applies to practically
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all cases. A global convergence theory provides ways to tell whether a root exists, whether an
iteration will converge to it from afar, and whether slow convergence from afar can be sped up
without jeopardizing convergence to the desired root; these questions have usable answers only in
special cases. The special cases discussed in these notes arise often enough to make their study
generally worthwhile.

Most iterations discussed in these notes have the foum:=xU(x,), which may seem very

general but isn’t really; there is a senseg Thesis 3.1 belgwin which every such scalam@t
vector) iteration is really Newton’s iteration in disguise. Textbooks and our 84 treat iterations
whose U is aContraction (|U'| < 1) throughout some domain supposed to contain the desired
root and all but finitely many initial iterates. Finding that domain can be as hard as finding the
root, and futile too because Contraction iwiale domain surrounding the root is a condition
merely sufficient, not necessary, for convergence. There is a conceptually simpler combinatorial
condition necessary and sufficient for convergence from every starting point in a wide domain;
see Sharkovsky's No—Swap Theorem 5.1 below. This theorem provides an invaluable

“ One-Sided criterion by which to decide when a program must intervene to force an iteration to
converge. That decision may be necessitated by the intrusion of rounding errors whose worst
effects can be avoided only by using appropriate criteria to stop the iteration. Such criteria and
other software issues are discussed at length in 86.

Newton’s iteration X,;:= X, - f(x))/f'(x,) and Secant iterationmxlzzxn-f(xn)/f*(xn, Xn-1)

are treated next; heré fs a First Divided Differencewhose analogy with the first derivative f

is explained below in Appendix A1 on Divided Differences. Both iterations have such similar
local convergence properties that they are treated together in Theorems 7.4, 7.5 and 7.6. The
weakest known global conditions sufficient for convergence are named in Theorem 8.2 and
Corollary 8.3; roughly speaking, they require thgt bt vary too much. (A connection with

the classical theory of Functions of Bounded Variation is covered in Appendix A2.) Both
iterations have similar global convergence properties because those properties are invariants of
certain plane Projective Maps that are the subject of yet another Appendix A3. Unfortunately,
the aforementioned weakest known global conditions sufficient for convergence are not invariant
under projective maps; to find usable weaker invariant conditions remains an open problem.

The projective invariance of Newton’s and Secant iteration is the source of an astonishing
Theorem 9.2 which says, roughly, thatif f reverses sign wherever it vanishes in some interval,
and if Newton’s iteration converges within that interval from every starting point therein, then
Secant iteration converges too from every two starting points in that interval. Of course, they
converge then to the unique zero of f in the interval. This theorem has no converse; Secant
iteration can converge but not Newton’s. The discovery of this theorem over thirty years ago had
a profound effect upon the design of root—finders built into Hewlett—Packard calculators.

Slow convergence of Newton’s and Secant iteration to a multiple root is a problem that has
received more attention in the literature than it deserves in the light of Theorem 7.6, which is too
little known. This theorem provides good reasons to expect computed values of f(x) to drop
below the noise due to roundoff, or else below the underflow threshold, rapidly no matter how
slowly iterates x converge, so iteration cannot be arbitrarily prolonged. Convergence slowly
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from afar to a simple root that appears, from afar, to belong to a tight cluster of roots is a problem
deserving more attention. The problem is not how to accelerate the iteration, but how not to
accelerate it too far beyond the desired root. In cases covered by Theorem 10.1 the problem has
a simple solution that roughly halves the number of Newton iterations when they converge
slowly. A similar solution works for Secant iteration but the details of its proof are incomplete.

| have tried to prove every unobvious unattributed assertion in these notes. The proofs are as brief
as | could make them, and not merely by leaving steps out. Still, the proofs should be skipped on
first reading; to make doing so easier, each proof is terminatedbyF PROOE To ease the

location of this document’s sections, theorems, lemmas, corollaries, examples, ..., they will be
numbered consecutively when the notes are complete.

Yet to be transcribed are sections about finding all real zeros of a polynomial, all zeros of a real
cubic, error bounds for computed zeros, and running error bounds for computed values of a
polynomial. Meanwhile the author will welcome corrections and suggestions, especially for
shorter and more perspicuous proofs.
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82. Three Phases of a Search

Root-finding software invoked to solvef(2) = 0” seeks a root z by employing a procedure
generally more complicated than the mere iteration of some formula x := ... until it converges.
Watching such software at work, when it works, we can usually discern three phases:

Phase 1 : Flailing
Initial iterates x approximate the desired root z poorly. They may move towards
it, or wander, or jump about as if at random, but they do not converge rapidly.

Phase 2 : Converging
Differences between successive iterates x dwindle,— rapidly, we hope.

Phase 3 : Dithering
Indistinguishable from Flailing except that different iterates x differ much less
from a root and may (very nearly) repeat. Dithering is due entirely to roundoff.

Dithering is a symptom of an attempt to solvEz) = 0" more accurately than roundoff allows.
Ultimately accuracy is limited by what roundoff contributes unavoidably to the computed values

of f(x) . Accuracy much worse than that should be blamed upon an inept implementation of the
iteration formula x := ... or upon some other defect in the software, or else upon intentional
premature termination of the iteration because its accuracy was judged adequate. Judgments like
this posit the existence of a trustworthy error estimate, which is a nontrivial requirement. It looks
easy at first; the possession dbaaddle*,— two iterates x and x where f(x)f(x,) <0 ,—

suffices {f f is continuoug to locate a root z between them with an error less thanxJk

However the purchase of a sufficiently close straddle may cost almost twice as much computation
as a simple iteration x :=... that converges from one side, unless error analysis can be brought to
bear. Error analysis will be discussed at length later; without it, dithering could waste a lot of
time.

Converging is what we hope the chosen iteration does quickly, and usually it does; and when it
does, the search for a zero can spend relatively little time in Phase 2. Why then is so much of the
literature about numerical methods concerned with this phase? Perhaps because it is the easiest
phase to analyze. Ultimately superlinedasf) convergence is rarely difficult to accomplish, as

we shall see; Newton’s iteration usually converges quadratically. Convergence faster than that is
an interesting topic omitted from these notes because it reduces only the time spent in Phase 2;
higher order convergence is worth its higher cost only if extremely high accuracy is sought.

We shall devote more consideration than usual to Phase 1 because it is the least understood and
potentially most costly. A long time spent flailing is a symptom of a mismatch between the given
equation ‘f(z) = 0" and the root—finder chosen to solve it.

*Footnote: A Straddle is to the Navy what Bracket is to the Army;— a pair of shots fired one beyond and the other short of
a target to intimidate it or to gauge its range. But “Straddle” and “Bracket” have distinct meanings in these course notes
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83. Models and Methods

Every iterative method for solvingf(z) = 0” is motivated by amodel; this is a family of easily
solved equations from which is drawn a sequence of ever better approximations to the given
equation over a sequence of ever narrowing intervals around the desired root z . For example,
the given equation may be rewritten as an equivalent equation g(z) = h(z) with the same root z
but with h(x) slowly varying &pproximately constaftwhen x is near ,zand with g(x)

easily inverted. The last equation is turned into an iteration by solving p&h(x,) for each

new approximation . to replace the previous approximatiop to z. When KXx)/g'(x) is
continuous and 1tz)/d (z)| < 1, the iteration can easily be proved to converge to z from any
initial Xy close enough to .z( Look at (%+1-2)/(Xy-2) = hT(xn,z)/gT(xml,z) as ¥ - z,; here

h' is a divided difference analogous to the derivativeaid explained in Appendix Al.)

For instance take the equation? 3e2’z. It can be “solved” for z =3+ In(z/3) to construct an
iteration ¥,..1:= 3+In(x/3) , orfor z = 3&3 to construct an iteration,x := 3exp(%,-3).
Each iteration is attracted to a different roat (zZ~ind them! Why are there no more roots?)

More generally, a given equatiorf(2) = 0" may be rewritten §,,(z) = hy(z)” in a way that can
change with every iteration that solveg(xg.1) = h,(x,) for x,+1, and can depend also upon
previous iterates %1, X,.», .... These dependencies are motivated by a model all the same, but

now reinterpreted as a family of convenient curves from which is drawn a sequence of ever better
approximations to the graph of the given function f over a sequence of ever narrowing intervals
around the desired root. ZThe wider the interval over which f resembles a member of that

family, and the closer the resemblance, the faster the iteration derived from the model converges.

A substantial body of theory connects the qualities of a model to the ultimate speed of the derived
iteration’s convergence; see Traub [1964] or Ostrowski [1973]. Like most of today’s texts on
Numerical Analysis, these notes draw little more from that theory than two items of terminology:
Rate and Order are measures of the ultimate speed with which a sequgnzg ¥, ..., X, ...

may converge to its limit z as s o . Its Rate :=liminf -In(jx- z[)/n, and its

Order := lim inf (-In(]x, - z|))". Linear convergence has Order = 1 and a positive finite Rate,
which means the number of digits to which and z agree grows ultimately linearly with n;

slower than linear convergence is almost intolerable. For most practical purposes we expect
Superlinear convergence with Rate =o+and Order > 1 which means that ultimately each
iteration multiplies the number of agreeing digits by Order on average.

Here are examples: Newton’s iteratiop, = X, - f(x,))/f'(x,) approximates the graph of f by
its tangent | at a point (¥ f(x,)) that the iteration tries to move closer to (z, 0) by moving the
point of tangency to the point {3, f(X,+7)) on the graph above,§ intersection with the

x—axis. Convergence is typicallpuadratic (Order = 2. Similarly, the Secantiteration

Xn+1 -= Xp - f(xn)/fT(xn, Xn-1) = Xn- F(Xn) (X - Xn-D)/(F(X}) - f(X21)) approximates the graph of f by
its secant through two points ,(X(x,)) and (x.1, f(Xh.1)) , and replaces the latter by the point
(Xp+1, f(Xh+1)) above where the secant cuts the x—axis. The iteration’s ©id&t8 typically.
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f(x)
tangent
v -
Newton’s: %+1:= N(X,) where N(v) := v - f(vf' (v) .
f(x/)
secant

c
=

S(u, w)

Secant: Xi1:= S(%p, Xp.1) Where  S(u, w) := u - f(u)(u - W)f(u) - f(w) ) .
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David Muller's method fits a parabola through three points on the graph of f, and replaces one
of them by a point on the graph above the nearer intersection of the parabola with the horizontal
axis. An hyperbola with vertical and horizontal asymptotes can also be fitted through three points
on the graph of f, and provides an iteration simpler than Muller's and better suited to finding a
simple zero z close to a pole of {A pole of f isan argument 6 at which f(6y=) The
hyperbola is the graph qi(x - x,.+1)/(x - 6) for constantsu, 0, %,+; chosen by making that
expression interpolatenfatch) f(x) at three consecutive iterates, X,.1, X,.2 - Both these

iterations converge typically at Order.839.

Given two iterates x and x that straddle a sign-change of f becausg) fi(x,) <0, we may

well wish to continue the iteration in such a way that straddling persists even if preserving it slows
convergence. The simplest wayBsnary Chop this method models f by a step-function that
disregards everything about f but its sign, and in each iteration replaces gitberxx by

Xy := (X+X,)/2 according to sign(f(}) so that straddling persistRegula Falsidiffers from

Binary Chop only by determining, xas the place where a secant throug} f(x,)) and

(X, f(x,,)) cuts the horizontal axis. Both methods usually converge linearly, too slowly. Regula
Falsi can converge arbitrarily slower than Binary Chop when the graph of f is more nearly
L-shaped than straight, so D. Wheeler's methaee (program F2 in Wilkex al.[1951])

speeds up Regula Falsi by halving whichever of) fer f(x,) has not been supplanted after

two iterations. C.J.F. Ridder's method, promoted by W.H. Reeak [1994], choosesy, 13

and » to make the expression L(x)lréx-xA)eBX interpolate f(x) at ¥ X, := (X*+X,)/2 and

X, , and then retains whichever pair qf, X,, Xx, X, most closely straddles the sign-change of

f. (One of the pair is always,X) This method is plausible when the graph of f may be very

nearly L-shaped but not necessarily monotonic. Ridder's and Wheeler's methods usually
converge superlinearly; for the latter see Dahlqatstl.[1974].

Vastly many more models and iterative methods have been published. Do we need all of them?
Perhaps not; most of them converge superlinearly, so they spend similar small numbers of
iterations in Phase 2. Reducing these small numbers by increasing the Order of convergence is
relatively straightforward if enough derivatives of f are available. For instance, convergence
(typically) at Order = 3 is obtained by fitting osculatory hyperbolas instead of tangents to the
graph of f to derive Halley's iteration 6 := X, - 2f(x)/(2f (X)) - ' (Xp) FX)/F (Xp)) -

Widening the range of initial guesses from which convergence will follow is harder but worth a

try when dawdling in Phase 1 indicates a mismatch between the model and the equation to be
solved. Acquaintance with many models improves our prospects of finding one that matches the
given equation well. Alternatively, when possession of a software package implies the use of its
root—finder, awareness of the model(s) that motivated its root—finder may suggest how to recast
equations so as to match its model(s) better. Because all models include the straight line graph of
a linear equation as a special or limiting case, equations f(z) = 0 incur fewer iterations in Phases
1 and 2 according as f is more nearly linear over a wider range around z . This observation
motivates attempts to recast a given equation into an equivalent but more nearly linear form. A
successful attempt will be described below after Theorem 8.2.
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The two motivations, one to fit a model as closely to the equation as is practical, the other to
linearize the equation as nearly and widely as possible, may become indistinguishable in the final
analysis of a real dr compleX root—finder’'s performance. Here is a reason for thinking so:

Thesis 3.1: Newton'’s Iteration is Ubiquitous

Suppose that U is differentiable throughout some neighborfoada root z of
the given equation f(z) = 0” . If the iteration ¥.;:= U(X,) converges inQ to

z from every starting pointgxin Q, then this iteration is Newton’s iteration

applied to some equationg(z) = 0" equivalent onQ to the given equation; in
other words, U(x) =x - gy (x), and g(x)-» 0 in Q only as x- z.

Defense: g(x) =exp( [dx/(x - U(x))) with a “constant” of integration that may jump when x
passes from one side of z to the other, reflecting the fact that U is unchanged when g(x) is
replaced by, say, -3g(x) forall x on one side of z. ( There is no needZprtagexist since it

need not be computed when g(z) = 0 ; however the jump in the “constant” of integration can
often be so chosen that()g is continuous as x passes through Ehe iteration’s convergence

in Q to z alone implies first that x - U(x) vanishes only at x = £ inand then that x - U(x)

has the same sign as X.- £ The opposite sign would compel the iteration to flee frain z

Therefore the integral decreases monotonically as x approaches z from either side. To complete
the defense we shall infer from the differentiability of U that the integral descends to -

implying that g(x)-» 0 as x- z as claimed.

For the sake of simpler arithmetic, shift the origin to make z =0 and @titer what remains
of Q when 0 is removed from it. This makes U(X)/x <1 atall X2in Since U0) exists,
there also must exist some constant 1 - 1/C < U(x)/x < 1 for all Q' inwhence it follows that
the integralfdx/(x - U(x)) < (another constant) {&/x — -0 as x— 0 in Q' from one side or
the other.END OF DEFENSE.

(whatif U were merely continuous instead of differentiable? Then g could be discontinuous at
z like g(x) := (if x= 0 then (1 WX)?else ¥) . In general then, must g(z+)-g(z-) =0 ?

Don't read too much significance into Thesis 3.1 . It does suggests that an iteration, derived
from a family of curves that osculatamétch tangent and curvature)othe graph of f more

closely than tangents do, could equivalently have been derived as Newton’s iteration applied to a
function g whose graph is more nearly linear than the graph of f around the zero z that g and
f have in common. For instance, Halley’s third order iteration above is Newton’s applied to
g(x) := fX)NV(|f'(x)]) . But Thesis 3.1 does not say which derivation will be the more convenient.

Thesis 3.1 implies that most of these notes will never generalize to the iterative solution of

systems of equations nor to multi—point iterationsl(X) = x - g'(x) Ig(x)” generally cannot be
solved for a vector—valued functiaym of a vectorx . Iterations X.1:= U(Xq, Xn-15 -+ Xn-k)

generally do not behave like Newton’s ik , so Theorem 9.2 will come as a surprise.
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84. “Global” Convergence Theory from Textbooks

The behavior of iterationsx; := U(X,) , also called Discrete Dynamical Systems, has become
much better understood over the past few decades. Iteratiens=X (X, Xn-1, Xn-2 --» ¥1-k)

fall under the same rubric when rewritten as vector iterations := U(X,,) in which the vector

Xn = Xn Xn-1 Xn-2s ---» %kl - Although large values of k promise ultimately faster convergence,
they offer little advantage because “ ultimately ” need not arrive much sooner than adequate
accuracy would be achieved by simpler means. Anyway, so much less is known about the global
behavior of iterations with k¥ 1 that we shall keep k =0 except when discussing the Secant
iteration, whose k=1. And almost all variables will be kept real.

Presumably the roots z of the given equatid(z)“= 0" are roots of the equationz‘= U(z)”

too, so the desired roots lie among theed—pointsof U if any exist. The existence of fixed—
points, some of which may be spurious because they are not roots, is a nontrivial issue. For
example, the fixed—points of Newton’s iteration, for which U(x) := x - f(x)/f include the
poles of T as well as those zeros z of f at whi¢fz)# 0, plus those zeros of both f arld f
at which a justifiable redefinition of U sets U(z) := zJudtification will be tendered later.)
Fortunately poles areepulsive and zeros are usuallgttractive fixed—points of Newton’s
iteration; in general ...

» Afixed—point z = U(z) is called “Attractive” if it belongs to some non—degenerate inferval
from whose every other pointy Xhe iteration . := U(x,) convergesto z, though

some early iterates may stray outsidebefore later iterates converge.

* Afixed—point z = U(z) is called “Repulsive” if it belongs to some non—degenerate irerval
throughout which |U(U(x)) - z| > |x-z| when£x ; then, ifQ contains only every
other iterate X.1:= U(X,) , consecutive iterates i still move away from z .

A fixed—point can be both attractivdrdgm one sid¢ and repulsive ffom the othe}, as are all

the nonzero fixed—points of U(x) = x &/x) . Its fixed—point z = 0 is neither attractive nor
repulsive. So is the zero ofix| to Newton’s iteration; the zero of 1/In(|x|) is repulsive.

Global convergence theory is concerned with the existence of attractive fixed—points. In general,
the best known conditions sufficient for at least one fixed—point to exist figure in the following ...

Lemma 4.1: If U maps a closed intervdl continuously into itself, theif2
contains at least one fixed—point z = U(z) .

Proof: If neither endpoint of2 is a fixed—point of U then it maps each endpoint elsewhere into
Q, in which case they constituteStraddle for the equation U(z)-z = 0" . END OF PROOF

(Q must include its two endpoints lest the fixed point lie naRirbut on its boundary. If2 is
infinite it must include its endpoint(s) ate+and/or e , and the continuity of U there must be
understood in an appropriate sense: U is deemed continuous #teither of U(1/w) and
1/U(1/w) approaches a finite limit as w0+. Similarly for . And Q must have distinct
endpoints; the lemma may be rendered inapplicablecifand e are declared equal, thereby
turning Q topologically into a circle O that can be mapped continuously to itself by a rotation
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without a fixed—point. Lemma 4.1 is a special case of the Brouwer/Schauder theorem valid for
compact convex region® in spaces of arbitrarily high, even infinite, dimension.)

Do not misconstrue the interv&) as something introduced merely for the sake of additional
inessential generality. Such a misapprehension could arise from the observation that U may be
extended continuously to the whole real axis, and without introducing any new finite fixed—point,
by declaring U:=1 orelse U:=0 in each interval outsid® . However, generality is not the
motive for not thus dispatchin@ . It is essential to the following theory because U will be
assumed to satisfy convergence conditions that need not be satisfied everywhere in general, yet
they must be satisfied in an inten@l wide enough to support useful inferences.

The foregoing lemma is easier to prove than apply because, given Q ,attte confirmation

that UQ) is contained inQ is tantamount to an assertion about the extrema of Q.ilWhy

should such an assertion cost much less computation than the location of a fixed point? Besides,
the mere existence of fixed points cannot ensure that the itergtigr=>J(x,) will converge to

any of them. For example, in <Ix<1, U(X):=sinfx) has three fixed—points z =0 and

z =+0.736484448... , all repulsive; U(U(x)) has seven therein, all repulsive; iteration cannot
converge to any of them except by an unlikely accident. In general, if we desired no more than to
find a fixed—point whose existence is guaranteed by lemma 4.1's hypotheses, we should proceed
from those hypotheses to the construction of a fixed—point by Binary Chop guided in accordance
with the following now obvious ...

Corollary 4.2: If U maps a closed intervdd continuously into itself, and if x
in Q is not a fixed—point of U then there is at least one fixed—point z = U(z) in
Q on the same side of x as U(x) .

It makes Binary Chop foolproof. But such is not our purpose now. Our purpose is to investigate
whether and how the iteration, % := U(X,) converges. ( Faster than Binary Chop, we hope.)

The best known conditions sufficient for this iteration to converge require U to be a ...
Contraction [U(X) - U(y)] <|x-y| foralldistinct x and y in some inteiQal

Contraction U must be continuous, if not differentiable with 4l almost everywhere i ;
and its intervalQ can contain at most one fixed—point z = U(£Can you see why)?

Lemma 4.3: If U contractsQ into itself then the iteration,x; := U(X,) must
converge inQ to the fixed—point z = U(z) from every initial guessin Q, and
both errors |x-z| and steps J|x1-X,| shrink monotonically as n increases.

Proof outline: Contraction U shrinks,pz| monotonically, so iterates have one or two points

of accumulation v and wif different they would have to be swapped by tereby satisfying
0 < |v-w| = |U(w)- U(v)| < |w-v| paradoxically; instead, v =w = ZND OF PROOE

But a contraction might contract no interval into itself; In(x) fae X is an example. Under
what conditions can we ascertain that an intefals contracted into itself? Conditions typical
of the kind that appear in textbooks appear in the following lemmas:
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Lemma 4.4: Suppose -1 <& 0 throughout an interva® that includes both
Xg and X = U(Xg) ; then the iteration %4 := U(X,) converges inQ to the one

fixed—point z = U(z) therein. Convergence is alternating with diminishing steps
[Xn+1-Xnl- ( Proof is left to the reader.)

Lemma 4.5: Suppose & U'<u <1 for a positive constant throughout an
interval Q that includes both oxand (U(¥) - uxg)/(1- 1) ; then the iteration

Xp+1 .= U(X,) converges monotonically to the unique fixed—point z = U(z) in
Q with diminishing steps [x1-Xq|. ( Proofis left to the reader.)

Lemma 4.6: Suppose -1 <k u<1 fora positive constant throughout an
interval Q that includes both gxand X(%) := (U(Xg) - uxg)/(1-1) ; then the

iteration 41 := U(X,) converges with decreasing errof,-{x| and diminishing
steps |¥+1-Xn| to the unique fixed— point z = U(z) @.

Proof: Since U is a contraction d, the fixed—point z = U(z) is unique if it exists .
That z does exist i2 between ¥ and X := (X - uxg)/(1-p) follows from the observation

that (% - U(X))/(Xg - X) = (U(Xg) - UX))/(Xg - X) < provided X # Xg# z; that implies that

(X - UX))/(xog- U(xg)) < 0 and therefore x - U(x) changes sign at some x =z between X and
Xg. Infact z lies between X andgxx,)/2 since (X-2z)/(Xg-2) = (U(xy) - U(2))/(Xg-2) > -1;
consequently (z - & X1)/2)/(z - X)) > 0, which implies that z - §¢ x4)/2 has the same sign

as z -y, which has the same sign as >y- XTo complete the proof we shall show that U
contracts a subinterval @ including x into itself, and then invoke Lemma 4.3.

To simplify the argument suppose thgf<xx, ; otherwise reverse the signs of x and Now
we have ¥< (Xg+ X1)/2 <z< X = (X1 - uXg)/(1-p) . Set w:=z+ (Ap)(X-2)/(1+p) and
Vi=2z-(L)X-2)/[(1+p) =X+ (22 - %- X)/(1+1) ; evidently y<v<z<w<X Nowwe
shall confirm that U(x) contracts the subintervglx < w into itself. First we obtain upper
bounds for U(x) :

When < x<v, UX)<S U(Xg) + H(X-Xg) S X3+ U(V-Xg) =W ;

when vsx<z, UX)<U(@2)-(X-2) =2z-Xx<2z-v=Ww ,;

when z<xw, UX)sU(z) +u(x-z)<z+ (X-z)sw .
Next we obtain lower bounds for U(X) :

When <x<z, UKX)>xXq ;

when z<xw, UX)>U(z)- (x2) =2Z-x22Z-w=V>Xx .
Evidently % < U(X)<w too when y<x<w, as claimedEND OF PROOE

Lemma 4.6 is nearly the most general of its kind, and yet often too difficult to apply. Difficulty
arises from the possibility that and the minimum width {x xg|/(1-p) of Q may chase after

each other. For example, giveg and x := U(xy) and U(xp) < 1, we have to make a guess at
Q at least as wide as xxgl/(1-U'(Xp)) ; then somehow we must estimate the range'¢R)U
hoping it will be narrow enough to satisfy a lemma’s requirements. But if that estimated range is
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too wide, say ifu= U'(Q) is so big that (x- pxg)/(1-p) lies beyondQ, we must widemQ to
include this point, thereby perhaps increasingnd forcingQ to be widened again, and so on.
This can go on forever for examples like U(xV@& + ) - 1/(z +V(1 + Z)) when 0 < ¥<z-1

although its iteration always converges. The chase need never end because the lemmas’
requirements that -1 <’ p <1 in Q merely suffice for convergence; they are not necessary.
For example, iterates converge from evegytax z = 0 for U(X) := -arctan(x) with ') = -1,

and for U(x) := x - tanf(x) with U (z) = 1, though both examples convergablinearly (i.e.,
extremely slowly: [x,-z| =O(1~n).

The foregoing three lemmas are really local convergence theorems posing as global. They are
applicable only in a sufficiently small neighborho@d of a fixed—point z = U(z) at which
|U'(z)] < 1, inwhich case j¢z| ultimately decreases with every iteration, converging to zero

linearly like |U(2)[* or superlinearly if Uz) =0. However, finding a neighborhood to which a
lemma above is applicable can be almost as hard as findirBesides, convergence can occur
without ultimate monotonic decline inpxz|, as when U(x) :€*- 1; for this example the
iteration converges to z = 0 alternatingly, sublinearly and invariably, as we’ll see in Ex. 5.3 .

Apparently the “global” theory of iterations’ convergence presented in most textbooks answers
guestions that the designers of root—finding software are unlikely to ask, much less answer.
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85. Global Convergence Theory

What pattern of behavior distinguishes convergent iterations from the &hers
This question matters to software designers because, by mimicking this pattern in our
root—finding software, we hope to enhance its prospects for success. The pattern is slightly more
complicated than a monotonic decline i, -|%| as n increases. To suppress superfluous
complexity we shall try to describe only the pattern’s essentials. What is essential? It is whatever
persists after inessential changes of variables,after homeomorphisms.

Consider any change from x to a new variable X(x) which is continuous and invertible, and
therefore monotonic, on the domaih of x; we shall let x x(X) denote the inverse change
of variable, also continuous and monotonic on its domxgi2) . Usually both changes of
variable shall be differentiable too, in which cas€x) and x'(X) = 1/X'(x(X)) must keep the
same constant nonzero sign inside their domains. U(x) changes into E{J(xX))) . If the
iteration 441 := U(X,) converges from xto z =U(z), we expect X, := H(X,) to converge
too from Xy :=X(Xg) to Z :=X(z) = H(Z) , though divergence either teo Hor to e may have
to be redefined asconvergence to infinity in case z is an infinite endpoint 61, or Z an
infinite endpoint ofX(Q) .

Besides fixed—points and convergence, what qualities must each of U and H inherit from the
other independently oK ?

» Continuity

» Separation: x lies between U(x) and U(U(x)) if and only if

X :=X(x) lies between H(X) and H(H(X)) .

« Differentiability: H(X) = X" (UX(X))) U'(x(X)) x'(X) if all derivatives are finite.
When they exist, both derivatives (M) and U(x(X)) have the same sign but they usually have
different values except &tationary Points(where both derivatives vaniyhand at fixed—points:
Whenever z = U(z) and consequently Zz) = H(Z) then also HZ) = U'(z). Then, if both
fixed—points z and Z are finite and if the respective iteratigns:x U(x,) and X1 := H(Xp)

converge to them, both converge at the s&ma&e:= lim inf,, _  In(|X,- zrlm) =-In|U(2)|= 0.

Sublinear convergence has Rate zero; linear convergence has a positive Rate. And when this
Rate is infinite then both iterations may be shown to converge with the same superlinear

Order:=liminf, _ » (-In|x,- z|)1/n >1; higher Order implies ultimately faster convergence.

Like the foregoing qualities, conditions for convergence should ideally be inheritable by each of
U and H from the other. By this criterion typical textbook conditions, like the uninheritable
bounds upon Uinlemmas 4.4 to 4.6 above, are notideal. Ideal conditions follow.

Theorem 5.1: Sharkovsky's No-Swap Theorem

Suppose U maps a closed inter¢al continuously into itself; then the iteration
Xn+1 := U(X,) converges to some fixed—point z = U(z) from evegyirk Q if

and only if these four conditions, each of which implies all the others, hold
throughoutQ :

No-Swap Condition: U exchanges no two distinct points@f; in other words,
if UU(x)) =x in Q then U(X) =x too.
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No Separation Condition: No x in Q can lie strictly between U(x) and
U(U(x)) ; in other words, if (x - UX))(x - U(U(X)& O then U(x) =x.

No Crossover Condition: If U(x)<y<x<U(y) in Q then

Ux) =y =x=U(y) .

One-Sided Condition: If x; := U(xg) # Xg in Q then all subsequent iterates
Xn+1 = U(X,) also differ from ¥ and lie on the same side of it as dogs x

( Compare Corollary 4.2 above.)

These conditions have been rediscovered several times since they were first established by A.N.
Sharkovsky [1964, 1965]. The proof that each implies all others is too long to reproduce fully
here but elementary enough to leave to the diligent reader helped by the following suggestions:

Think of QxQ as a square whose lower—left—to—upper—right diagonal is touched or crossed at
every fixed—point by the graph of ,Uvhich enters the square through its left side and exits

through its right. That graph and its reflection in the diagonal touch or cross nowhere else when
the No—Swap condition holds. When the No Separation condition is violated, all attempts to
draw both graphs must violate the No—Swap condition too. Similarly for the No Crossover
condition; therefore these three are equivalent conditions. The One-Sided condition obviously
implies No Separation; and a violation of One—Sidedness can be shown soon to violate No
Crossover too. Thus all four named conditions are equivalent to each other though not yet proved
equivalent to convergence from every starting poinin that proof follows the next lemma.

Besides pertaining to an iterating function, the One-Sided condition is satisfied by any
sequence {¢ Xq, Xo, X3, ... }, regardless of its provenance, whose every mempdiescon the

same side of all subsequent membegsxwith m > 0. In other words, that sequence is

One-Sided just when, first, if any two members are equal so are all members between and after
them, and secondly, for every integee @, no members of the sequence of differences

{ Xn+1-Xn Xn+2-Xn Xn+3-Xn, .-} have opposite rfon-zerg signs. Note that every

subsequence of a One-Sided sequence is One-Sided too. Some One-Sided sequences are
Ultimately Monotonicin the sense that all but finitely many differencgs, xx,, have the same

sign; such sequences obviously converge, perhaps to infinity. Other One-Sided sequences are
the subject of the next lemma:

Lemma 5.2: The No-Man's-Land Lemma
If the One-Sided sequence { X, X, X3, ... } iS not ultimately monotonic

then it can be partitioned into two disjoint infinite subsequences, one of which
ascends strictly monotonically to a limit no larger than the limit to which the other
descends strictly monotonically; if these limits differ, the gap between them is a
no—man’s—land containing no member of this sequence.

Proof outlined: The ascending subsequence consists of these, % , and the descending
subsequence consists of those>%,.1 . For instance, if x is a local maximum and; xhe
subsequent local minimum in the sequence, whereupon
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e Xl <X > X1 > e > A 2 <Xyp - (M<),
then ,; and x are consecutive members of the ascending subsequence ( note that
One-Sidedness impliesyy <X ) while X, Xp4q, ..., %4 are consecutive members of the

descending subsequence. It soon follows that each subsequence is strictly monotonic and
bounded by the otheEND OF PROOE

Return to the proof of Sharkovsky’'s No-Swap theorem; suppose U satisfies the four named
conditions of his theorem of2 . Then the iteration X, := U(x,) generates a One-Sided

sequence. Ifit did not converge then, according to the no—man’s—land lemma, it would have two
points of accumulation with no iterate between them; and then because U is continuous it would
swap them, contrary to the No—Swap condition. Therefore the iteration does converge.

| am indebted to the late Prof. Rufus Bowen for pointing out Sharkovsky’s work. It answers
easily many convergence questions that would be awkward without it. Here are two examples:

Example 5.3: Suppose U(x)e- 1 andQ is the whole real axis; the iteration,x:= U(X,)

converges to z =0 from every starting point because 0J (so U has just one fixed—point )
and U cannot swap two points & . No—Swap follows from the fact that the graphs of U and

its inverse intersect just once, which follows from the fact &@tat 1 + In(1+x) cannot vanish if
-1 <x# 0, which follows after differentiation frore® > 1+x . Convergence is alternating
because Y0)=-1<0, and x=0O(6/n) because U(U(x)) = x 36 + .... ENDEX.5.3.

Example 5.4: Suppose f is a rational function with simple real interlacing zeros and poles, one
of them a pole ato . Aninstance is f(x) := p(x)/fx) where p(x) is a polynomial all of whose
zeros are real. Another instance is f(x) := det(xI - A)/det(xI - [} - z)/T]; (x - §) in which
A is an hermitian matrix, A is obtained from it by striking off its last row and column, and the
I’s are identity matrices; the zerog lie among the eigenvalues of A, and the polesré the
distinct eigenvalues of A that are not also eigenvalues of A. That they interlace, i.e.,

<0< <B<BH<.. <<%,
is a well-known theorem attributed to Cauchy. We do not know the zgerost, zlike Y. Saad
[1974], propose to compute them by running Newton’s iteratjar :% X, - f(x,))/f'(x,) . Does

it converge? If so, to what? These are thorny questions, considering how spiky is the graph of
f, and yet Newton’s iteration can be proved to converge to some;zéamzevery real starting

value except a countable nowhere—dense set of starting values from which the iteration must
converge accidentally ( after finitely many steps) to a ppIeTﬁe proof outlined below is

extracted from one first presented in my report [1979].

For the proof’s sake express f inthe forms f(x) = x 3Bw/(x-0;) = 1/;Vi/(x-z) inwhich

the coefficients 3, wand y are determined as sums, products and quotients of differences
among the zeros; and poles ;oby matching the behavior of f(x) as x approaches each pole or
zero. By counting negative differences we find evey @ and every ;> 0, and by matching
behavior ato we find 3jv; = 1. Newton’s iterating function now takes the forms
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N(x)

x - f(x)/f'(x) except at poles; df f,
(B +3; (2x-0)Wi/(x-8)?)I( 1 +3; wi/(x-0)?) ifno §=x,

= (Zizvil(x-z)? )5 vil(x-z)*  ifno z=x .
From these we infer easily that N maps the whole real axis continuously into an interval whose
endpoints are the outermost zergs and % ; and every zero; 2s a strongly attractive
fixed—point of N because () =0, and every pole; Gs a strongly repulsive fixed—point
because Nﬁj) =2 ; and N has no more fixed—points. To conclude that the iteration always
converges ( almost always to a zefg mwe have to confirm that N cannot swap two points. If
N did swap x and ¥ x, the equations y = N(x) and x = N(y) could be turned into
Vi vi(y-zi)/(x-zi)2 =0 andy; vi(x-zi)/(y-zi)2 =0 which, when subtracted and divided by y-x,

would simplify to 0 =3, vi( (x-z)? + (x-z) (y-z)* + (y-z)2) >0, which is impossibleEND
EX.5.4.

The foregoing example is an instance of a general algebraic decision procedure based upon
Sharkovsky’s No—Swap theorem:

Suppose an interva) and arational function U are given. Then the question

“Does the iteration %, := U(x,) converge inQ from every initial ¥ in Q ?”

can be decided by performing finitely many rational operations without solving

any nonlinear polynomial equation.
U satisfies the No—Swap condition if and only if the simplified form of the rational function

1+ (U(U(X) - Ux) )/ (UX) -x)

has no zeros if2 which are not also zeros of U(x) - x . This can be tested by removing common
divisors from certain polynomials and then counting their sign—chang@sliyy computing
Sturm sequences. Whether U mdpscontinuously into itself can also be determined from
certain polynomials’ sign—changes & counted by computing Sturm sequences. The details
were worked out by R.J. Fateman [1977] in a program written to run on the computerized
algebra system MACSYMA. The procedure is practical only on a fairly big computer because
some of the polynomials in question can have large degrees, as large as the square of the degree
of the numerator or denominator of U .

Sharkovsky's No—Swap theorem is the simplest of a family of relationships he discovered for the
properties of the fixed-points, z UM (z,) of a continuous iterating function U and of its
compounds

UKl(x) := UUU(...U(x)...))) k times.
For instance, if §! has a fixed-point that is not a fixed-point of U, then for every integer k > 1

there are fixed points of ¢ that are not fixed-points of [ for any divisor m of k. Foran
elementary treatment of Sharkovsky’s relationships see Huang [1992]. For a brief discussion
of these and related results and other proofs, see Misiurewicz [1997].
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86. A One-Sided Contribution to Software Strategy
Suppose an iterating function U has been chosen because its fixed—point(s) z = U(z) coincide(s)
with the root(s) of a given equation to be solved, and because the itergior ¥(x,) is
expected to converge to a root quickly. When should this iteration be stopped or amended?
* When it appears to have converged well enough, or about as well as it ever will.
* When it will converge too slowly.
* When it will not converge.

How can non-convergence be predicted? A portent, at least when U is continuous, is a violation
of the One-Sided condition in Sharkovsky’s No—Swap theorem. That condition is the only one
of the theorem’s conditions that software can check: Until One-Sidedness fails, or until so
many iterations have been executed as must arouse suspicions that convergence will be too slow,
the software has no better option than to persist in the chosen itergtiprF ¥(x,) . How can

software detect slow convergence or a failure of One—Sidedness? The answer to this question, at
least for continuous iterating functions, Us Brackets

A Bracket is an ordered pair {xx,} of arguments, normally both iterates, between which all
subsequent iterates must lie if they are to constitute a One—Sided sequence. A bracket is usually
a straddle but this is not obligatory; U{x) need not take opposite signs at the ends of a bracket.
Initially, x, and x are set to the endpoints, possibly infinite, of the inte@¥ah which a

fixed—point of U is being sought. Subsequently, as suggested by the no—man’s—land |gemma, x
is the most recent of any iterates that satisfied x< U(x,) , and x is the most recent, xthat

satisfied U(¥) < x,, if any. Consequently, once a bracket becomes a straddle it stays a straddle.

Normally every iteration narrows the bracket by moving one end closer to the other. Normally at
least one end of the bracket converges monotonically to the sought fixed—point of U

Software must cope with whatever abnormal behavior a bracket exposes. For instance, bracket
{X« X,} need not be a straddle; Ujx x, and U(x) - x, may have the same sign at first

because U does not m&p into itself, and later perhaps becaw¥econtains no fixed—point of

U or more than one. A new iterate L)(xmay stray outside the current bracket perhaps because

Xp IS too close to a strongly repulsive fixed—point, or perhaps because U violates the No—Swap
condition, or because U does not nfapinto itself. Normal behavior, consistent with the
no—man’s—land lemma, may require software intervention too if the width of the bracket does not
shrink fast enough, as may happen because convergence is alternating but very slow, or because
both ends of the brachet are converging to different limits swapped, bgr Decause one end

stopped moving after the iteration’s convergence became monotonic.

Tactics can be chosen to cope with aberrations only after they have been diagnosed. For instance,
splitting the difference gs in Binary Chop copes well with alternating slow (non)convergence;

a better expedient is Steffenson’s, which is tantamount to one step of Secant Iteration to solve
U(z) - z = 0. Occasional difference extensioex{rapolatior) helps to accelerate monotonic but

slow behavior; away to do itis Aitken® Process, which takes U®&)z + (x-z)i to be an
approximate model for unknown constants z gandetermined from three consecutive iterates:

Z= 7= Xos1 - (et - Xn) 2 (Xpag - 2%, + X,.1) . Such expedients afford software the possibility
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of extracting tolerable rates of convergence from iterations that would otherwise converge too
slowly or not at all. The programmer’s options and the occasions that call for them would
bewilder but for diagnostic information furnished by brackets and by Sharkovsky’s theorem, at
least when U is continuous.

Diagnosis is complicated when U may be discontinuous. Then a straddle may enclose a jump or
pole instead of a root or fixed—point. Reasons to doubt whether a pole can always be distinguished
from a root by solely numerical means will be presented later (Ex. 6.3).

Diagnosis is interesting also when U(x) may be undefined for some arguments x . What should
software do if an attempt to compute |)(produces instead an error—indication like “INVALID

OPERATION” ? In the past that has served as an excuse to abandon computation, but nowadays
the temptation to quit should be resisted. Unless itis trapped, an “Invalid” operation like 0/0 or
V-3 on most computers to-day will produceNaN, and subsequent arithmetic operations upon

it will almost all propagate it. It can be detected because the predibkte =NaN” is False;

this ostensible paradox merely confirms tN&N is Nota Number. Consequently, when )x

turns out to beNaN instead of a number the appropriate inference is thatas fallen outside
U’s domain. The appropriate response is to supplanbyxsomething else closer tq,_x and
therefore, presumably, inside U’s domain. Then computation can be resumed.

A policy of continued computation past an invalid operation may seem reckless, and sometimes it
is. However the opposite policy, that abandons computation after any “Invalid” operation, is
tantamount to abandoning the search for an equation’s root merely because the computer signaled
“Look elsewhere for what you seek.”
That policy of abandonment frustrates software users who wish to solve an equation without first
ascertaining the boundary of its domain. Why should its domain be much more obvious than the
equation’s root? Except for examples contrived for classroom purposes, an equation’s domain is
generally found by an exploration that resembles the search for a root. Combining both searches
by forgiving “Invalid” operations makes more sense than abandonment does.

Searching continued past “Invalid” operations is now the policy built intf80&VE] keys on
Hewlett-Packard calculators starting with the hp-B8Giness Consultardnd the hp-28C ; see
McClellan [1987]. Consequently they can be used with far less fuss than other unforgiving
software requires to solve difficult equations. Here is my favorite example:

Example 6.1: We wish to decide whether the equation (tan(z) - arcsiﬁ(z)O)/t\as goositive
root z or not. Unforgiving software will fail to find it despite repeated attempts each of which
starts, say, Newton’s iteration,f := N(x,) , whose iterating function is

N(x) := x + 1 4/x - (1 + taR(x) - IN((1-x)(1+x)) )/( tan(x) - arcsin(x)) ,
from small positive initial guesses likgy x 0.1 . For the sake of realism we must pretend not to
know that the equation’s domain is the interval 0<xIx. Whatever its domain, the iteration
behaves as if doomed to move through it from left to right and escape. ( N(x) > 1 whenever
0.46137 < x <9964 .) A few such escapes followed by “Invalid” operations suggest fairly
persuasively that no positive root z exists, butin fact #899060... . From random initial
guesses  scattered uniformly between 0 and 1, Newton’s iteration is more than 1000 times
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more likely to encounter an “Invalid” operation than to converge to thiDespite these odds,

the hp-28C solves this equation quickly ( by means of a modified Secant iteration ) from any
initial guess(es) between 0 and 1, thereby vindicating a policy of continued computation past
forgiven “Invalid” operations. (Some rece@asio calculators appear to do likewise.)

Sharkovsky’s No—Swap theorem contributes more than a convergence criterion to the strategy
and theory of iteration. It changes our attitudes. Rather than focus exclusively upon conditions
sufficient for convergence, we also make use of criteria that tell us when an iteration may not
converge unless we do something more than merely iterate. As we pursue this line of thought, we
come to understand why successful root-finding software need not always find a root, especially
if none exists. Satisfactory software should almost always find a root if any are to be found, and
usually find it fast, and come to a conclusion soon if a root is not going to be found. Deemed
unsatisfactory are indecisive iterations that meander interminably. Our foray into iteration theory
is a search for conditions under which an iteration won’t meander. We'll find some later in §8.

What if the object sought is nowhere to be found? Root—finding software can cope with this
possibility by finding something other than a root, provided the substitution is made manifest to
the user of the software. An obvious candidate to supplant a zero of f that cannot be found is a
local minimum of [f| . However this substitution poses two challenges, one for the designer of
the software and one for its user. The designer must devise an algorithm whose efficiency is not
too much degraded by the necessity to switch, sometimes repeatedly, between two tasks:
seeking a nonzero minimum, and
seeking a zero.
After the software has found one, the user may be unable to decide which of the two has been
found in some cases.

Example 6.2:

f(x) := (X - (7 - (x- (7-X))) )% and %(x) = 6(X - (7 - (X- (7-X)))) (DON'T REMOVE PARENTHESES
will be calculated exactly (unblemished by roundoff ) on every computer or calculator built in
the Western world for all x close enough to 14/366@..., and therefore neither calculated
value can vanish when computed in floating—point arithmetic since 14/3 is not a floating—point
number on any of those machines. Consequently, if s :=1.000...001 - 1 is a small positive
number like roundoff in numbers near, ho way exists to distinguish f and its derivative from

f+ & and its derivative using only their values computed in floating—point arithmetic. In other
words, software that finds a positive local minimum of [f| instead of a double zero deserves no
opprobrium if it cannot tell which it has found from numerical values alone.

Discriminating between a pole and a zero across which a function changes sign can be difficult
too in certain very rare cases like ...

Example 6.3: The computed values of f(x) := 1/( x - (7--(x))) ) and of
F(x) = ]/(( X-(7-X-(7-x))) + aé‘/( X - (7 - (x- (7-%))) )) are the same everywhere although
f has apoleand F azeroat x=14/3
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Despite a few ambiguous cases, root—finding software can describe its find to its user sufficiently
well to make the attempt worthwhile. The software can deliver its latest bracketx{k and,

to help the user interpret it, an indicator that points to one of the following cases:

*A zero z =¥ =X, has been found because the computed f(z) =0.

*A sign—reversal has been found;, and x differ only in their last significant digits and
f(XJf(X,) < 0. Three sub—cases have to be distinguished:
*Probably a zero since [f(x)] grows as {{(»¢X,) increases from O .
*Probably a pole since |f(x)|] drops as {{(»¢x,) increases from 0.
*Otherwise probably a jump discontinuity.

*A local minimum of |f(x)| has been found. Three sub—cases have to be distinguished:
*Probably a double zero since [f(x)|] grows rapidly as JfXx,) increases from O .

*Apparently f(x) is a nonzero constant when x is near or betwgeand x; .
*Otherwise probably a nonzero local minimum of |f(xX)| at some X ngandxy, .

Good root—finding software, able to present all those possibilities to its users without violating
Albert Einstein’s maxim, that
“ Everything should be made as simple as possible, but not simpler ”,
has to be more complicated to use than any single user might like, and harder to design than most
programmers will like. Well-designed software is parsimonious, uncluttered by extraneous
inputs and outputs. The necessary outputs, as we have seen, are now obvious:
» The latest bracket {x, x,} found in lieu of a zero and, to help interpret it,

* An integer indicator for use in an indexed brancltase statement.

The inputs needed by good root—finding software are unobvious because equations to be solved
are so diverse. Equations are liganapés after one comes another. Often the equation to be
solved has the form f(z, p) = 0 with a parameter p that will take several values for each of which
aroot z(p) has to be computed. For some equations the deridiiy@)/ox is easy to

compute, for others difficult. Often the equation has more than one root; some users seek all the
roots; other users wish to avoid all but one root. Sometimes high accuracy is desired; often not.
Only a cluttered menu can cater to all tastes. To promote parsimony | offer here my suggested list
of inputs to good root—finding software:

» The name of the program that computes either f(x, p) or else f@f() p)/ox .

» One or two initial guessesy x X, to start the search for aroot z of f(z, p)=0.

* An initial bracket {%, x,} to constrain that search. (It can beo{-tco} .)

* A place for (ptional) parameter(s) p to be passed to the named program f(...) .

Initial guesses are essential inputs even if brackets are supplied because, for example, when a
root z(p) is plotted as a function of a slowly changing parameter p the old value of z(p) is often
a good first guess at the new z(p) . The program that provides initial guesses should be able to
find arecord (inSAVE] or static  variables) of the old p and z(p) for use when the new p

is not too different;0z/dp = -@f/op)/(8f/9x)|, = , usually helps too.
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In programming languages that allow argument lists of variable lengths, the parameter(s) p can
be the root—finder’s last argument(s) and then can be pasd®dim to the named program

f(...) asits last argument(s), thereby avoiding unnecessary prejudice against parameters of mixed
types (arrays, lists, pointers, procedures, strings, integers, floating—point numbers, ... ). The
conveyance of optional parameter(s) p has to be fast, not encumbered by excessive overheads to
de—reference pbecause the root—finder invokes f(...) many times for each computation of

z(p) . This kind of computation, either the inversion of a given function f(z) = p or the

conversion of an implicit definition f(z, p) = 0 to an ostensibly explicit invocation of the solution
z(p), is the root—finder's most frequent application, and deserves software engineers’ attention.

Conspicuous omissions from my list deserve explanation. The list includes no upper limit upon
the number of iterations. There are three reasons to omit it. First, such a limit is difficult to
choose; might the search have succeeded had it been allowed two more iterations? Second,
abandoning a search prematurely may be justified after the expiry of some preassigned quantum
of time worth more than the root being sought; but f(...) can take longer to compute for some
arguments than for others, so a stopping criterion should count clock—ticks, notiterations. Third,
by using brackets, good software need never get stuck in an interminable sequence of iterations;
besides, as we shall see in the course of developing the theory below, well-designed software
can practically always ensure that f(...) becomes negligible after a moderate number of iterations
no matter how slowly they converge. By stopping after f(...) becomes negligible, or else after
the clock runs out, we can can omit iteration counts from our stopping criteria.

Also conspicuously absent from my list of inputs are two tolerances to serve in stopping criteria,
one for the negligibility of f(...) and a second for the negligibility of the difference between
consecutive iterates. Such tolerances will be chosen cavalierly if they must be constants chosen in
advance. Chosen properly, they generally depend upon the same arguments as f(...) depends
upon; therefore these tolerances should be computed inside the program that computes f(...) .

Example 6.4: Consider

f(X) == (((((((((x-12)x+66)x-220)x+495)X-792)x+924)X-792)X+495)x-220)x+66)X-12) X +1
and pretend not to notice that this is an unfortunate way to computéz(x-EiDror analysis reveals that the
difference, due to roundoff, between f(x) and its computed value must be smaller than roughly

Af(X) == 12|x|(|x] + ﬂlae but not often enormously smaller. Here & := 1.000...001 - 1 is the roundoff threshold

for the computer’s floating—point arithmetic; typically se =24£2222/10t® for 8-byte floating—point. For
arguments x nearthe zero z=1 of f, its error baMrvel 5.5/101 is not enormously bigger than observed errors
almost as big as 2/A® in computed values of f. How can someone be expected to guess either cabstatt 5
or 2/13°2 in advance?

Computing ( or guessing ) atolerantg...) for the negligibility of f(...) within the program
that computes f(...) letaf(...) serve in a simple way to stop the search for a zero as soon as
f(...) becomes negligible:

Whenever the computed f would be no bigger than return 0 in place of f.
This immediately stops the root—finder at what it thinks is a zero. Techniques for comfuting
include Running Error—Analysisand Interval Arithmeti¢ both described in a text by Higham
[2002] with ample references to the literature. These techniques can add considerably to the time
needed to compute f alone, so they should not be employed indiscriminately. The subprogram
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canrecord (inSAVEI or static  variables ) the last few arguments at which f was computed,
and computeAf only at new arguments close enough to an old one that stopping is a plausible
possibility. In any event, iterations prolonged much beyond the time wheAf [fivill waste
time dithering, so computingf too often may waste less time than not computhfigat all.

My list of inputs also omits a tolerand& for the difference between consecutive iterates, or the
width |x-x.| of a bracket or straddle, because the ustxoto stop iteration lends itself too

easily to misinterpretation. The clear intention is to stop when the iteration has cometAithin
of the desired zero ,zand that is what happens when convergence is so fast ( as it usually is)
that |x+1- X,| is rather bigger than ¥ - z| ; but then little is gained by stopping the iteration

before |fkk Af. Only when convergence is slow cAx be used to stop iteration in time to save
much time, but then this stopping criterion becomes treacherous. If convergence is slow because
z is a multiple zero dee 810 on Accelerated Convergence to Clustered Zeros )btiew

[Xh+1- Xn| can stay arbitrarily smaller than, |x- z| even though [fx,)| usually plunges below

any practical threshola@f fairly soon ( see Theorem 7.6 ); then not much is gained by stopping
sooner, say when ¥ - X, < Ax, beyond the illusion that Jx; - z|< Ax too. If roundoff

interferes severely with convergence, not even a straddlexfx can be trusted to contain, z
not even approximately.

Recall Example 6.4, f(x) :=(...)x + 1 = (x}f) above. The uncertaintyAf in f propagates into an uncertainty

i(Af)”12 in the computed zero=z1 ; for 8-byte floating—point arithmetic carrying the equivalent of about 15 sig.
dec., the computed z is uncertain in its second decimal after the point. In fact, root—finders frequently stop with a
straddle {x, x} whose ends differ only in their 13th decimal or beyond but which both differ from 1 by more

than 007 . How could a tolerancAx be chosen meaningfully in a case like this?

Generally, an appraisal of uncertainty in a computed zero z of f begins with an estimate of
uncertainty Af in the computed value of f. After that, uncertainty in z is either trivial or very
difficult to ascertain; see Higham [2002]. Including a tolerafikeamong the root—finder’s

inputs to stop iteration sooner deceives users too often while contributing little to speed and less to
error—analysis, in my experience, so | have omitted it from my root—finding software. Other
programmers think otherwise. Rather than argue longer here about whesal€ the root—

finder) error—analysis should play its r6le, | prefer to develop root—finding iterations that find
roots fast enough to render early terminatidrefore |fg Af) of the iteration uninteresting.

Still, if an iteration’s convergence is normally superlinear and never worse than linear, here is a
strategy that may save an iteration or two if monotonic convergence shrinks brackets too slowly:

SupposeDifference Quotients(X,+1 — X)/(Xx — %1) — 0 as k- o . Provided (while roundoff is insignificant)
these quotients will constitute a decreasing sequencg aszx after L := (k.1 — %)/ (Xx — %_1) <1 we can soon
deduce that the error |z x| < [%1 — %|-L/(1-L) . Therefore iteration can be stopped after at least two or three

consecutive difference quotients, all lessthan 1, have strictly decreased to a latest difference quotient L small
enough that [%, — X-L/(1-L) <Ax . If this ever happens, ¥ can be delivered with a reasonable expectation that

[x+1 — 2| <Ax, and without having to compute §(x) though checking that it is negligible would be prudent.
Don’t omit the divisor (1-L) lest iteration be stopped far too soon when convergence is slowly slowing.
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In the foregoing discussions of strategies for root-finding software, the avoidance of dithering and
other unpleasant consequences of roundoff has beesideratumachieved by stopping an

iteration before it can be deflected intolerably by roundoff. Such a stopping criterion entails an
error-analysis, either rigorous or approximate. “Perform an error-analysi€bussel of

Perfection (cf. Matthew19:21 and other early ecclesiastical writings) impractical for most users

of numerical software. Instead they are likely to run a root-finder until it stops with a result of
unknowable accuracy as good as unknown roundoff has allowed. Therefore, besides the short list
of inputs recommended above for a good root-finder, it must manage brackets and straddles well
enough to cope not much slower than Binary Chop with the raggedness of roundoff. Here is a
simple example that arose in one of my own computations; it was not contrived.

Example 6: Let cubic polynomial f(x) := ((x - b)-x + g)-x + h for coefficients b := 23722988

g 1= 167704352, h:=9968105%, all represented exactly in the 24-sig.bit floating-point
arithmetic that will be used for all this example’s computations. The computed value of (z)
vanishes at z := 11862103 ; and the computed value of f(11862945)-f(11862946) <0 . The
jagged graph below exhibits values of f(x) computed at 16385 consecutive 24-sig.bit floating-
point integers x centered around z . The smooth nearly parabolic graph exhibits f(x) exactly.
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X 4 ]
3 - -
2 - -
1 - -
ot T~ |
—
-1 L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X - 11862103

x 10"

As secant iterations converge to one of the real “roots” that f(x) should not have, two closely
spaced iterates may send a third far to the right unless inhibited by a bracket or straddle. How
should such an inhibition be implemented? An unlikely straddle, if available, can be Binary
Chopped; this is what Wilkins & Gu [2003] recommend after any five iterations fail to halve the
straddle’s width or a new iterate fails to halve the previous sample of |[f(x)|. More likely is a
bracket that does not straddle; it will require a treatment more complicated than Binary Chop.
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Usually roundoff degrades Newton’s iteration less than secant iteration. The jagged graph below
exhibits Nf(x) := x — f(x)/f'(x) computed in 24-sig.bit floating-point at the same 16385 values
x as before. The smooth nearly hyperbolic graph exhibits Nf(x) uncontaminated by roundoff.
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When iteration starts from the far right, accelerated by the procedure mentioned after Corollary
10.4, brackets soon turn into straddles that are Binary Chopped to inhibit iterates that converge
almost always to the 24-sig.bit adjacent pair [11862945, 11862946] . Actually the cubic f(x)
has only one real zero=z-1217051909940... found quickly if iteration starts from the left.
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87. Local Behavior of Newton’s and Secant Iterations
The two best—known iterations for solving a given equation f(z) = 0 come from approximations
to the graph of f by linear graphs, one a tangent and the other a secant. They have the following
iterating functions:

N(x) := x - f(x)/f'(x) for Newton’s iteration 3 := N(X,) , and

S(X,y) ==X~ f(x)/F(x, y) = S(y, X) for Secant iteration,% := S(%,, Xn-1) -
See the Appendix on Divided Differences for an explanation ofitsieDivided Difference

ffxy) = () -fy) M(x-y) if y£x,

= f(x) if y=x.

Programmers can handle 0/0 in these formulas by stopping both iterations as sogn=a8 ,f(x
and otherwise by perturbing, »slightly whenever x=x,.; during Secant iteration. For a

mathematician the limiting value S(x, X) = N(x) is the obvious expedient. Not so obvious is how
to redefine N(z) when'(k) = f(z) = 0 because then N(x) might oscillate too wildly to approach

a limit as x approaches z, as happens for the example f@i)smz(llt)dt. None the less,
redefining N(z) := z whenever f(z) =0 can be justified by the next lemma:

Lemma 7.1: Suppose 'fis finite throughout some neighborhood of a zero z of
f, and N(x) approaches a limit as-xz . Then N(x)- z; therefore defining
N(z) := z conserves the continuity of N(x) near z whenever possible.

Proof: If necessary, shrink the neighborhood around z to exclude any other point at which N is
undefined or infinite; then this neighborhood excludes every zero e@tcept perhaps z, and
by Rolle’s theorem excludes also every zero of f other than z . Consequently the derivative
(Injfx)|)" = f(x)/f(x) = 1/(x-N(x)) must be finite throughout this neighborhood exceptat x =z .
Therefore In|f| is eligible for an application of the Mean Value Theorem of the Differential
Calculus to its first divided difference: for any distinct v and w on the same side of z in this
neighborhood, some x between v and w must satisfy

In(f(V)/F(w))/(v-w) = (In|f(v)] - In|f(wW)])/(v - w) = TX)/f(X) = 1/(X - N(X)) .
Now suppose for the sake of argument that N{{) # z as x- z; we shall infer a
contradiction: For all distinct v and w close enoughto z ( and much closerto z than L is),
but not separated by z, we would find In(f(v)/f(w))/(v-w) = 1/(x - N&)JL/(z-L) at some X
between v and w. The last approximation could be kept as close as we please by keeping v
and w close enough to z. Butthen, by fixing one of v and w and letting the other tend to z,
we would infer that In|f(z)| is finite, so z could not be a zero of f. Butitis; therefore L=z.
END OF PROOE

Now that N(x) and S(x,y) are defined properly, and practically always continuous around the
zero z, we turn to their local convergence properties. Their convergence to a simple zero z is

typified by their behavior when f(x) = (x-z)/(x-8)1 ; for this example N(X) = z + (x%}6-z)
and S(x,y) =z + (x-z)(y-z)/(6-z) . Simple computations confirm first that Newton’s iteration
(Xp+1-2)/(6-2) = (()ﬁ-z)/(()-z))2 converges quadratically to z from every oloserto z than the
pole 6 is, and second that Secant iteratiog,{/(6-z) = ((%-2)/(0-2)) ((%,.1-2)/(6-2))
converges at order (¥%)/2 to z from a wider range of starting iteratgs axnd x satisfying
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|x0-z|3'\/§-|x1-z 51 < (8-zf¢ . Orders of convergence different from these are uncommon for the
functions f typically encountered in practice, as we shall see.

Typical or not, these iterations’ local convergence to a zero z depends upon how f behaves in
the neighborhood of z . What kind of behavior guarantees convergence? The graph of f has to
resemble its tangents or secants closely enough in the sense that fluctuations in the dérivative f
have to stay sufficiently small compared with How small is “ sufficiently small ” ? It's not
obvious yet. The first hypotheses that come to mind do not suffice:

Non-Theorem 7.2: Suppose 'fx) and N(x) := x - f(x)/f(x) are continuous at
every X in some open neighborho@d of a zero z of f. Then it seems at least
plausible that Newton’s iteration % := N(x,) should converge to z from

every initial )@ in Q close enough to z; but it ain’t necessarily so#)f 0 .

Counter—Example 7.2: A function f(x) will be contrived with these propertigg) dnd N(x)
are continuous everywhere,(x) > 0 for all x20, and z =1(z) ='{z) = N(z) = 0. However,
around z every open neighborho@d no matter how small, contains infinitely many closed
subintervals all of positive width from each of which Newton’s iteration tends to two-cycle,
jumping back and forth across z forever instead of converging to z

The construction of this perverse f begins with an integer-valued step—function
k(x) := IntegerNearest( -In(|x|)/In(2) ) = IntegerNearest(x{lap ) ,

and a quartic polynomial

q(x) := 1+x + (13 + 92)(x-1)3 + (1 + 3/8)(x-1)*
monotone increasing over VP/< x<v2. This g meets the following specifications:

ql)=2, H1)=1, §(1)=0, g{2) =15V8-1=4q(1¥2), d(V2) =12 +V8=2dq(1N2) .

Note that 2< 2M|x| <v2; note too that k(x) is ambiguous when Jlafy is a half-integer,
but then either choice k = -lgig|+ 1/2 is acceptable. Finally define f(0) :¢0) := 0 and

f(x) := sign(x) q( E®|x| y4®  for xz0.
The continuity of f(x) and of ') = g ( 2k(x)|x| )/2‘()() are easily confirmed along with the
identities f(x) = -f(-x) = f( 3®x| )/4&® and f(x) = f(-x) = f( 2X®x| )/Z¥) >0 for x£ 0.
The ranges of values taken by |f(x§|/amd by f(x)/|x| over all ¥ 0 are the same respectively
as the ranges of g(xfixand ¢(x)/x over W2<x<v2, soas x 0 we find [f(X)k 3x°
and f(x) < 12|x| , confirming continuity at x =0 . And N(X) = x - f604 = N( 2X®|x| )/Z®)
is continuous there too because |NOQ|x| similarly.

The design of f(x) ensures that N(x) = -x andxN=0 whenever x 22X for every integer
k ; moreover %.09935 < [N(X)| < ®-10064 whenever k209935 < |x| < %1.0064 , so from
any » inthose intervals Newton’s iteration tends rapidly to a two-cyclé 42K as

claimed. Numerical experiments suggest that such a two—cycle, though with a large negative k,
is the likeliest outcome of iteration from a randomly chosgn BND OF COUNTER-EXAMPLE.
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In general, the convergence of Newton’s and Secant iterations cannot be taken for granted.
Their local convergence depends upon whether, aszxand y- z, the limiting values of
certain first divided differences like

NT(x,z) = (N(X) - N(2))/(x-2) = (N(X) - 2)/(x-2) - N'(z) and

S'{x.zhy) = (S(oY) - SEY)(x-2) = (S(xY) - 2)/(x-2) » dS(X, )X | x=y=
exist and are small enough. In particular, convergence is superlinear if these derivatives vanish,
because then Jx; - z|/|%,- z| - O as the iterations converge; also the Order of convergence

depends then upon whether limiting values exist for certain second divided differences
NT(x,z,2) == (N(x,2) - N@))/(x-z) = (N(X) - 2)/(x-Z3 and
s(ix.zh{y,2h) = (S T(x.2hy) - ST{x.212)(y-2) = (S(xy) - 2/(x-2)(y-2))

from which bounds for quotients | - z|/|%, - zP and IX+1- Z|/|(% - 2)(%y-1 - 2)| respectively

can be obtained. Such bounds will be obtained from first and second derivatives and divided
differences of f by invoking recondite identities like ...

Identities 7.3:  f(S(u, w))_=(S(u, w) - ) (S(u, w) - W £ T(S(u, w), u, w) . This
includes the limiting case  f(N(v)) (V) - V)2 fTT(N(v), v, v) . Taking f(z) =0
into account yields the identity (S(x.y) -@x-2)(y-2)) = fT(x,y,2)/f'(x,y) and
its limiting case  (N(X) - 2)/(x-2)= fTT(x,x,2)/f (x) .

The identities’ proofs are entirely mechanical and left to readers who have reviewed the notation
and formulas in the first two pages of the Appendix on Divided Differences.

Conditions sufficient locally for convergence have been found in two ancient theorems of which at
least one applies in almost all practical situations. The first theorem is as old as Taylor series:

Theorem 7.4: Suppose 'fis continuous throughout some neighborhdadof a
zero z of f atwhich'@z)Z0. Then Nz) =0 ; therefore Newton’s iteration
converges superlinearly to z from every initigl odose enough to z . Similarly

Secant iteration converges superlinearly to z from every inigaarnd % close

enoughto z . If"f exists and is bounded throughduatthen N (z) = f' (2)/f'(z)
and the convergence of Newton’s iteration is at least quadratic (Order =2), and
the convergence of Secant iteration has Order at least/q)12+= 1618... .

Proof: As u- z and w- z independently the continuity of €arries T(u, w) - f'(2) .

Consequently (N(x) - z)/(x-z) ='(k) - fT(x, Z)If(X) - 0/f(z)=0 as x> z andso Nz)=0
as claimed, whence Newton’s iteration converges superlinearly. Similar reasoning shows that

(S(x,y) - 2)/(x-2) = (f(x,y) -fT(x,z))/fT(x,y) - 0 as x-» z and y- z, so Secant iteration
converges superlinearly too.

When f exists and is bounded, some constant %3">(>{)/f'(z)| throughoutQ . Therefore

(N(x) -z)/(x-z)zszT(x,x,z)/f(x) lies betweentC for all x close enoughto z and therefore
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(X1~ 2)/(%, - z| < C if X% Is close enoughto z; convergence is at least quadratic as claimed.

And (S(x,y) - 2)/((x-2)(y-2)) =TfT(x,y,z)/fT(x,y) also lies betweerC for all x and y close
enoughto z, so Hx-2)/((%,- 2)(X,-1-2))| <C if ¥ and x are close enoughto z,

thereby vindicating the claimed Order of convergence; here is an outline of how that wiorks (
Ostrowski [1966], or Dahlquigt al.[1974], or Vianello & Zanello [1992]. ):

For that constant C%r' &)/f'(z)| throughoutQ let D, :=-In|C (%,- z)|; then the Secant

iteration’s |(f+1- 2)/((%,- 2)(X4-1- 2))| < C means that [, > D, + D,.1>0 if x; and X are
close enoughto z. Next,,pB > RD; + FK,.1Dg by induction where the Fibonacci numbers

Fr=Fg+ B = (G- (-CY™Y/(C + 1/C) for another constant G := (VB)/2 =1+ 1/C .
Thus D, approaches o+ at least as fast as some multiple df. GND OF PROOE

( Continuity of f in Theorem 7.4 cannot be replaced by mere existen¢eanfdfits consequent

Darboux Continuitylest N oscillate violently for examples like f(x)[5* sir(1/t)dt whose

f(0) =0 and f0) = 1/2 . In general a function, perhaps too wildly oscillatory to be continuous,
is called “Darboux Continuous” if, among the values it takes on every closed subinterval of its
domain, lie all values between those taken at that subinterval’s ends. Every derivative has that
property. For more about Darboux Continuity see Bruckner and Ceder [1965].)

The ultimate speeds of convergence of Newton’s and Secant iteration should not be compared
by considering only their orders of convergence. As many a textbook points out nowadays, the
two iterations yield correct decimal digits ultimately at about the same rate if the computation of
the derivative 'f too adds about 44% to the time taken to compute f aloné. clbsts much

more than that, Secant iteration goes faster in the likeliest cases. But Theorem 7.4 says nothing
about the iterations’ speeds whelz)f= 0, in which case a different approach is needed.

Theorem 7.5: Suppose '|fx)| increases as x moves away from z through some
neighborhoodQ on one side of a zero z of f. Then 0 < (N(x) - z)/(x-z) <1 and
so Newton’s iteration converges monotonically to z from every inigah>Q .
Similarly 0 < (S(x,y) - 2)/(x-z) <1 forall x and y @ and so Secant iteration
converges monotonically to z from every initig and x in Q.

In other words, this theorem’s hypothesis is that the graph of f(x) is convex towards the x—axis
as is the case, for example, wheéri X0 inside Q . Theorems like this appear in many texts,

for instance Ostrowski [1966 sed].ch. 9 and 10, and Dahlquistal [1974] p. 225. Texts

written in France attribute theorems like this to Dandelin and/or Fourier, as if it had not been
geometrically obvious before them. Let the reader compare the limpidity of his own proof—by—
pictures with the turgidity that follows.

Proof: Regardless of whethel(z) = 0, the growth of '[fix)|] as x moves away from z implies
that f(x) can’t reverse sign, and therefore O'&{f- f'(y))/f'(xX) <1 atthat y strictly between

z and x where'(y) :fT(x,z). Therefore 0 < (N(X) - z)/(x-2) :'((X)-fT(x, z))If(x) <1 for
every xzz in Q. This implies that the iteration, := N(x,) converges monotonically to a
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limit between z and xinclusive from every initial ¢ in Q . Where is that limit? Since

fX)F' (X)) = Xq - Xp41 » O @nd [f(x,)| < |f(Xg)| , so does f@d -~ O, whence x- z as

claimed. Similarly (S(x,y) - 2)/((x-z)(y-2)) :TJ?(x,y,z)/fT(x,y) forall x and y inQ from one

of ldentities 7.3; what we do with this depends upon which of x and y lies closerto z. If x
lies strictly between y and z then (S(x,y) - z)/(x-z)Téy(X) -fT(x,z))/fT(y,x); if y lies

strictly between x and z then (S(X,y) - 2)/(x-z) = ((y-2)/(x-2YX(¥) - fi(y,2))/fT(x,y) . Either

way the quotient in question lies strictly between 0 and 1, sothe Secant iteration’s

Xn+1 = S(%, X,.1) converges monotonically to some limit between z and the closer of any two

starting iterates xand x in Q. Where is that limit? Since t()(fT(xn, Xn-1) = Xn - Xq41 — O

and |f(xn, Xn-D| < |f(Xg)| , so does f(y - 0, whence x— z as claimedEND OF PROOE

For practical purposes Theorems 7.4 and 7.5 tell us to expect Newton’s and Secant iteration
to convergelltimately superlinearly or monotonically or both if started close enough to z . Alas,
the speed of convergence is not mentioned in Theorem 7.5, and for good reason; its convexity

hypothesis is compatible with arbitrarily slow convergence. For example, when f(R) foix|
any constant m > 1, Newton's iteration yields=X1 - 1/m) x, convergent arbitrarily slowly

for m big enough; however f#f(xg) = (1 - 1/m"M<e" tendsto O quickly. When m is a
negative constant tiny enough, f(xy) tendsto O arbitrarily slowly although, xliverges to
z = quickly. Both x and f(x) converge arbitrarily slowly if m exceeds 1/2 by little

enough, but then the convexity hypothesis is violated. What light do these examples shed upon
the general case ? The case m >1 turns out to be typical of what happens when the graph of
f(x) is convex towards the x-axis an¢g zonverges to a finite zero z of both f ahd f

Theorem 7.6: Under the convexity hypothesis of Theorem 7.5, the itergfes x
may converge to z arbitrarily slowly, though monotonically; bup) feends

monotonically to 0 at least so fast thit, (2" f(x,))% < f(xg)? (Xg-2)/(Xo - Xq) -

(The “2” in “2"f(x,)” cannot be replaced by a bigger constant sincgqJ({(x,,) — 2 when

Secant iteration is applied to the example f(x) expx(-1/x) with x> Xx; >0 . An example

f(x) that justifies 2” for Newton’s iteration is too complicated to be worth reproducing here
though “e” can be used instead of2* for all infinitely differentiable examples f.)

Proof: For definiteness restrict attention to nonnegative functions f(x)'@ndinfcreasing over
an interval Zx<xy>z, and for Secant iteration suppose too thalies inside that interval.

Theorem 7.5 implies z <% <X,, 0=1(z) <f(%+7) <f(xp) and 0 (z) <f(Xy+1) < (X,
without constraining the rapidity with which, x. z. Given any such sequencg &onvergent

monotonically downwards to ,zno matter how slowly convergent, do convex functions f(x)
exist from which Newton’s or Secant iteration would have generated that sequence of iterates?
To answer this question, a sequence of valyeantl f,, will be derived from x, and then a

continuously once differentiable convex function f(x) satisfying,)fexf,, and f(x,) =f',, will
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be constructed out of parabolic arcs; this is a function from which Newton’s or Secant iteration
generates the given sequence of iterates x

Consider Secant iteration first because it is easier. The vgluesl have to satisfy
Xn+1 = X0 - X - XD/ (Fr - Tro) - which fixes f:= 1.1 (Xp - Xq+1)/(Xno1- Xp+1) recursively for
n=1, 2,3, ... starting from any arbitrarily chosgrm D . Since ¥>Xx;> X > ... > X%, > X141,
also §>f;>f,>...>f,>f,,1>0, and less obviously

0< (fn B fn+].)/(xn - Xn+1) = ((Xn B Xn+])/(xn B Xn+2))((fn-l' fn)/(xn-l' Xn)) < (fn-l' fn)/(xn-l' Xn) :
Therefore leeway exists to choose a positive descending sequence of yalsatsfying
(fr - fneD)/(Xn = Xn+1) <o < (Fog- T (X1 - X)) <fpoqp for n=1, 2, 3, ... After choices for all
values § and f, have been assigned, f(x) is defined in each subintepsl x x,,.; as the
function whose graph is a convex parabolic arc subject to the constrajts fi(x f(X,.1) = fn-1
and f(x,) =f, < f(x,.1) =fn.1. The existence of this parabola ( its axis need not be vertical )
is the gist of LemmaA4.1 in Appendix A4: Parabolas. The triangle QRS in that lemma has Q
at (%, fp), R at (x.1, fr.)) » and sides QS and RS with slopgsand f,.; respectively.
The arc lies inside the triangle and joins Q to R . Taken together, all such arcs make up the
graph of a function f(x) over the interval z <xg. This f(x) is convex and continuously once

(but not likely twice) differentiable. What remains to be proved is that this $)) as x- z;
it will be proved later.

A different f(x) is needed for Newton’s iteration, whose descending itergteletermine all
quotients §/f', = X,- Xh+1> 0 but leave the valueg, &ind f,, partially arbitrary. Let us choose
any positive § and any positive ,f< f,,_1(Xp - Xq+1)/(Xn-1- Xq+1) recursively for n=1, 2, 3, ...,
thereby determining alsd,f:= f,/(X, - Xp+7) . Obviously 0 <f<f,_1; less obviously
0 < (fh- fred/(Xn- Xn+d) = (1 - hao/f) Fy
<fn = HXq-Xn+2)
< (fh1- f)/(Xn.1- Xp)
Next define f(x) in each subinterval, xx < x,,.; to be the function whose graph is a convex
parabolic arc subject to the constraints, & f,, < f(x,.1) = fr.1 and f(x,) =, <f(Xn.1) =1
as before. Once again, all such arcs make up the graph of a convex and continuoudbyibnce (
not likely twice) differentiable function f(x) over the interval z <xy. What remains to be
proved is that this f(x)» 0 as x- z.

What remains to be proved, not just for the functions f constructed above but for every f that
satisfies the theorem’s convexity hypothesis, is that the valugs téxd to f(z) = O faster than

the terms of a geometric progression with common ratia Atfention is still restricted to
nonnegative functions f(x) and(X) increasing over the finite interval<zx < xy >z ; and for

Secant iteration xlies inside that interval. Now the abbreviations= f(x,) and f,=f(x;)
stand for values computed during the iteration and, because, € x,%, they satisfy both
0<f,<f,q and 0 <'f, < (fr.1- f)/(Xh-1- X)) < fh.q1, the latter becausé fs increasing.
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Consider Secant iteration, % = X, - (X- Xn-)f/(fr - fr-1) first because it is easier. It has

2 1= 2(1 +(%1 - X))/ (X - Xpa1)) < V(X - X4/ (X1 - X)) - Next, Newton’s iteration
Xpe1 = Xn- Trff'n has §(Xn- Xq+1) = 'y < (Fr-1- f)/(Xh-1- %) » from which follows again

26 1 < 2(L +(X-1 - %) (Xn - Xne1)) < V((Xn - Xne1)/(Xp1- X)) - For both iterations, repeated
multiplication implies (an/fo)2 < (Xn - Xn+1)/(Xg - X1) ; now sum over n END OF PROOE

Theorems 7.4,7.5 and 7.6 are best regarded as contributions to local convergence theory since
they say too little about convergence from afar. Monotonic convergence is what disqualifies the
global pretensions of the latter two although their convexity hypothesis might hold in a wide
neighborhoodQ . More often the first fewi{not all) iterates of a convergent iteration approach

z non—monotonically, in which cases the convexity hypothesis can hold in at most a bounded
domain. Therefore theorems 7.5 and 7.6, unable to discriminate between non—monotonic
convergence and interminable meandering, are too often applicable only locally.

For example, if f is a cubic polynomial monotonic over a non—finnelyding o or <o, or

both) interval Q but not convex thereon, the iterations cannot meand@r ut will either

escape from it or converge to a zero of f therein; this follows from Theorem 8.2 below, not
from theorems 7.5 and 7.6 above. On the other hand, if f is a quintic polynomial monotonic
over a non—finite intervaQd but not convex thereon, Newton’s iteration can meand€X in

forever; f(x) := 5% - 18X + 45x is an instance with all the real axis forand with f= 1584,
but alternate iterates,,xapproach +1 and -1 if ever<lx,| < 1076570927

What distinguishes monotonic cubics from other monotonic polynomials? The distinction will
become clear later when we deduce Theorem 8.2 from hypotheses that are the weakest and thus
most widely applicable conditions now known to suffice for convergence.
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88. Sum-Topped Functions
A function Sum—Toppedn an intervalQ is by definition a function q(x) that lies between 0
and q(u) + g(w) inclusive throughoetery closed subinterval ax<w of Q. The label
“Sum-Topped” has been born out of desperation for lack of a better label. Also lacking is a neat
characterization of sum—topped functions. Some of their properties are obvious; for instance,
functions sum—topped on an inten@l are also sum—topped on every subintervaof but not
vice versa If q is sum—topped o® so isuq for every real constant, positive or negative.
Monotonic functions that do not reverse sign are sum—topped; and non—monotonic sum-topped
functions exist too. Here are some examples ( plot them!) to illustrate their diversity:

Any quadratic g on an interval none of which falls between two simple zeros of q;

3 + cos(®&) on the whole real x-axis ;
[x - sin(x)] on the whole real x-axis ;

/(1 + x2) on the interval --1/ & x<w forany w>0 ; and
2cos(x) + x 4 on the positive real x-axis for any constant 2 + 273 - 2/3=063... .

Some properties of sum—topped functions are almost obvious:

Lemma 8.1: A function q sum-topped o2 cannot reverse sign ( by taking
both positive and negative values ) therein; and if q(z) = 0 at someQzthen
|a(x)| is a non—decreasing function of |x-z| while x IQin

Proof: If g(u) q(wx 0 forsome u and w iQ then, since (g(u) + gq(w) - q(x))-g&)0 for

all x between u and w inclusive, setting x =w implies that g(u) q(w) =0. Andif q(z) =0
atsome z inQ then, because q(y) must lie between 0 and q(z) + q(x) = q(x) forall y
between z and x, we infer thak@(y)/q(x)< 1 if q(x)#0 . Therefore g(x) may vanish
throughout some closed subinterval @f but must then become nonzero and monotonic as x
departs from that subintervatND OF PROOE

In the light of this lemma, the unobviously sum—topped functions @ cere the

non—monotonic ones that retain the same nonzero sign throughout; suppose g > 0 to simplify the
following exposition. Whether a continuous non—-monotonic q is sum-topped is determined
solely by the values it achieves at its local extrema ( maxima and minim@ ) fBuppose all its
local minima are = q(v) >0 and all its local maxima strictly inside are Q:=q(m) for
Vo<m<vi<mp<..<mg<V alin Q. Then q is sum—-topped if and only if every

Qi < ming g + Min ;g . This decision procedure can be inconvenient, as itis for large K,
and gets worse when g has infinitely many extrema or is discontinuous. Among sum-topped
functions the easiest to recognize are thosBRe@dtrained Variation which are explained below

in appendix A2. Before digressing to that explanation, let us see how sum-topped functions
figure in Newton’s and Secant iteration:

Theorem 8.2: A Sum-Topped Derivative

Suppose 'f is continuous and sum—topped throughout a closed int&valhen
Newton’s iteration x.q:= X, - f(x))/f'(x,) , started from any xin Q , either
converges inQ to the zero z of f orleaved ; the iteration cannot meander in
Q endlessly.
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Proof: At the cost perhaps of replacing f by -f, we may assumé that throughoutQ since
Lemma 8.1 prevents ffrom reversing sign. Newton’s iterating function N(X) := x - fOQUf

is therefore continuous except possibly whée(g) fvanishes. This possibility must be dispatched
first; later we shall deal with cases in whichnkever vanishes i .

The theorem’s hypotheses allow f and/ontd vanish at most once i2 . To see why, observe
first that f must vanish between any two distinct zeros of f. Next suppage=10 . Then
Lemma 8.1 implies that there must be some closed subintesval<ti of Q throughout
which f(xX) =0 and f(u)=f(x) =f(4) while ax<0; but

f'(x) is positive and decreasing, and f(x) <f(u), while x <Qin and

f'(x) is positive and increasing, and f(x) > f(4) , while x> 0Qn
Only in the subinterval (it may be a single point u) need N be redefined:

" Wherever '{z) =0 =f(z) define N(z):=z.

o' Wherever '{u) = 0# f(u) define N(u) :=-sign(flu asif f(u)=+0.
At most one of these two cases can arise. In the first case (°), Theorem 7.5 guarantees the
convergence of Newton’s iteration to an endpoint of the subinten@l @fherein f(z) =0 .
The same theorem dispatches the second cgs¢o¢rbecause, so long as J(has the same
nonzero sign as f(u) , iteration must move monotonically in the direction that decreases |f| until
one of the following three eventualities occurs:

i) An iterate escapes frof2 , perhaps by jumping tac , or else

i) Iterates stay iNQ and “converge” monotonically tocotor < in Q, or else

i) An f(x,) reverses sign and subsequent iterates reverse course and converge to z .

Only eventuality (iii) delivers a finite root z of f(z) =0 4n, and f(z) # 0 there. Whether
eventuality (i) delivers a root depends upon whether the limit to which |f(x)| declines, as x
approaches that infinite endpoint ©f at which f vanishes, is zero.

Eventuality (i) must arise also when neither f nowvdnishes inQ since then too the iteration
must move monotonically in a direction that decreases |f| .

Now only one case is left to consider: Suppose henceforth'thad throughoutQ and

f(z) =0<f(z) atsome z iM). Now N must be continuous 2 and its sole fixed—point
thereinis z = N(z) . If finitely many iterates lie on one side of z and infinitely many on the other
side in Q, then the iteration must converge ultimately monotonically because, except for finitely
many initial iterates, every subsequent iteration wifk x maintains & (X,+1- 2)/(X,-2) <1

and O< f(xn+)/f(xp) <1, asis easily confirmed; of course the iteration converges to z. But if
the iteration neither escaped frofh nor converged to z, as we shall assume henceforth for the
sake of argument by contradiction, infinitely many iterates would have to fall on both sides of z,
which would have to lie strictly insid€ . We shall complete the proof of theorem 8.2 by
demonstrating that its hypotheses are not consistent with the last assumption.

By virtue of Theorem 7.4, the iterates could not come arbitrarily close to z ; they would all have
to stay at least some positive distance away from z. Let u and w be the iteration’s points of
accumulation nearest z on both sides; say u <z <w. Then every open neighborhood of u
would contain infinitely many iterates, as would every open neighborhood of w, but any closed
interval strictly between u and w could contain at most finitely many iterates. Since N(u)
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would be another point of accumulation and N(u) > u, we would find 2Nfu}oo. Similarly
for N(w)<u. Let’s scrutinize the last two inequalities; they would imply respectively that
0 <(w-u)f(u)<-flu) and 0 < (w-u)fw) < f(w) .
Adding them would produce
(w-u)(F(u) +f(w)) < f(w) - f(u) = f" f'(x)dx
which simplifies to
0= [(\W(f()+Tf(w)-f(x))dx .
But the theorem’s hypotheses force the integrand to be nonnegative and continuous, so it would
have to vanish at every x between u and w inclusive, which would f¢mwe= f(w) =0
contrary to the suppositiorl ¥ 0 made when this case began to be considenn OF PROOF

In showing that N cannot swap distinct points u and w2 of the foregoing proof resembles

an application of Sharkovsky’s No-Swap Theorem, but the resemblance is superficial for two
reasons. First, the theorem’s hypotheses merely suffice for its conclusion; they are not necessary.
Second, N was not required to m@pto itself; determining whether such a requirement has
been fulfilled can be harder than solving the given equation f(z) =0 . An easier expedient is to
incorporate whatever may be known about f &dnto a bracketing procedure that decides
whether an excursion out @ should stop the iteration or be returnedo After that the only
hazard to prevent is the possibility that, left alone, the iteration may mear@efarever. This

hazard is precluded if fis sum—topped but, as we have seen just before Theorem 8.2, deciding
whether f is sum—topped can be inconvenient. Fortunately, some oft—-encountered sum-topped
configurations are easy to recognize:

Corollary 8.3: A Weak Convexity Condition

Suppose f=g-h is a differentiable difference between two convex functions, one
non—decreasing and the other non-increasing, throughout a closed if2erval

Then Newton’s iteration X1 := X, - f(x,)/f'(x,) , started from any xin Q,

either converges if2 to the zero z of f orleavel ; the iteration cannot

meander inQ endlessly.

Proof: See Corollary A2.3 in Appendix A2unctions of Restricted Variatignapparently 'fis
one of those, and therefore continuous and sum—toppeddverherefore Theorem 8.2
applies. END OF PROOFE

Since f determines neithé€ nor the splitting g-h =f uniquely, arbitraryness can complicate
the application of Corollary 8.3. Take the (‘admittedly contrived ) example f(x) := arctan(x) ,
for which Newton'’s iteration converges to z = 0 from agystictly between the points
+1.3917452 swapped by N, but diverges otherwise. These points cannot serve as endpoints for
Q in Corollary 8.3; indeed, nQ@ that includes both point&l in its interior can sustain a
splitting g-h =f satisfying the theorem’s requirements beca@g it too big for f to satisfy
the sum-topped condition
“0< f(v)/(f'(u) +f(w)) <1 whenever v lies between u and w botl@in’
that every splittable f must satisfy. On the other hand, for every L >0 the interval
Q :=[-L, 1/L] sustains such a splitting thus:
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gx) = arctan(x) - x/(1 + B) for -L<x<0,
= x(@1+113 for 0O<x<1/L; and
h(x) = g(x) - arctan(x) .

Butthen N map<£2 to itself only when 8603335% L < 11623398 . Otherwise the iteration
may escape fronf2 ; and after that it may come back and converge, or else diverge, according
to whether it started betweex.3917452 or not.

In general, the weak conditions in Theorem 8.2 and Corollary 8.3 are not necessary for
convergence but are at best sufficient. Their virtue is their ease of application compared with
attempts to apply Sharkovsky’s No—Swap theoremto N.

Example 8.4: Corollary 8.3 was discovered first, before Theorem 8.2, in 1976 while | was
helping Dr. D.W. Harms and R.E. Martin to design a financial calculator ( see Martin [1977]).
The equation f(z) = 0 to be solved for a positive root
z=1+ (interestrate) or z=1 - (discount rate)

was put into the theorem'’s partitioned form f = g-h thus:

f(X) = (CxM+ ... + @S+ Cx%+ Cx) - (G + Cfx + GolX2 + xS + ... + g/xK)
with nonnegative coefficients Cand ¢ representing cash flows, perhaps investments and
returns, or borrowings and repaymerfs.was the positive real axis and was mapped to itself by
Newton’s iterating function N for this f. However, because m and k could be huge ( many
thousands ), a complicated initial guegshad to be contrived to prevent instances of intolerably
deferred convergence. The complexity @f cast a shadow over the design’s integrity.

R. Carone and | got rid of that complexity when we worked on the hp-12C financial calculator
introduced in 1982 gnd still selling over thirty years later It solves a different but equivalent
equation f(z) =0 for its real root

z =In(1 + (interestrate)) or z=In(1 - (discount rate)) .
The partitioned form f=g-h required for Theorem 8.2 is obtained thus:

f(x) = IN( Gre™ + ... + G + G + Ci¥) - In( g+ X + e X + e + .. + &™)
with the same coefficients as before. The convexity of g and h is less obvious thanthafore.

all the real axis. Because this f(x) is so nearly linear when [x| is big, the iteration’s dependence
upon the initial guess gxhas become so mild that a crude guess provably sufc&EsEX. 8.4.

The hypotheses of Theorem 8.2 and Corollary 8.3 are the weakest global conditions known to
be sufficient to prevent Newton’s iteration from meandering forever. Their hypotheses suffice
also to prevent Secant iteration from meandering, as we shall see in §9.
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89. The Projective Connection between Newton’s and Secant lterations
Before proving that Theorem 8.2 and Corollary 8.3 above apply as well to Secant as to
Newton’s iteration, we explore a connection that the reader may have anticipated: roughly, ...

If Newton’s iteration converges to a simple zero of f, so does Secant iteration.
This connection grows out of the straight lines, the tangents and secants, that figure in both
iterations. The straightness of both kinds of lines is preserved by a fanitipjeictive Mapsof
the plane to itself; consequently both iterations’ convergence is invariant under these maps, as is
the convexity hypothesis in Theorems 7.5 and 7.6 above. See Appendix A3: Projective Images,
and especially Lemma A3.2, for details of which very few will figure directly in what follows.

Lemma 9.1: An Intermediate Value

If S(u, w) :=u - f(u)(u - w)/(f(u) - f(w)) does not lie between u and ive, if
f(u)f(w) >0, and if f(x) is finite throughout & x<w, then at some v strictly
between u and w either N(v) :=v - f({¥) = S(u, w) or f(v) =Mv)=0.

f(x)

secant
tangent

p X

u Vv w
S(u, w)
Proof: There is a trivial case when u=v =w and S(u, w) := N(v) . A different special case can
arise with f(u) = f(w} 0 ; in this case S(u, w)e== N(v) at some v strictly between u and w
where Rolle’s theorem implies(¥) = 0. The lemma generalizes this special case. For finite
s := S(u, w) the proof is constructed from a projective map that preserves u and w but pushes s
off to o . Then, like scaffolding under a newly built bridge, the projective map is removed to
leave only a slender proof standing.

Let @(x) :=f(X)/(s-x) . Since s does not lie between u and w>u, @(x) 4Ry atke finite
throughout ' x<w . And @(u) = d(w) because of how s was defined, so Rolle’s theorem
implies B(v) =0 at some v strictly between u and w . (VIZ= f'(v)/(s-V) +f(v)/(s-v)2: 0
implies that this v is where either N(v) =s or f(v)®)f=0 . END OF PROOF
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Digression: Where between u and w may the lemma’s v fall? In general v need not be
unique. However, inthe special case that sigr)J stays constant throughout u<x<w, the
aforementioned projective map can be used to show that the equation N(v) = S(u, w) has just one
root v between u and w ; and then the smaller the variation of ()gg|f the more closely can

v be located. Its location is obtained from the first of Identities 7.3:

f(S(U,W))_=(S(u,w)- u) (S(u,w)-w) FIT(Su,w),u,w) and FNV))=(NV) - vVZFTTINW), v, v) .
When fT=f"/2 is nearly constant, so that f is nearly a quadratic polynomial, combining these
identities with the equation N(v) = S(u, w) of Lemma 9.1 implies that its root v is

v = S(u, w) #( (u-Su, w)Xw - Su, W)TT(S(u, w), u, wATNV), v, v)) sign(u - S(u, w))
= S(u, w) +V/( (u - S(u, w)Xw - S(u, w))) sign(u - S(u, w)) . END OF DIGRESSION

Lemma 9.1 joins Newton’s iterating function N and the Secant’s S by a bridge that breaks
only over a zero of f across which f does not reverse sign; otherwise the bridge bears a big load:

Theorem 9.2: Suppose '‘fand N are continuous throughout a closed finite
interval Q strictly inside which f does not vanish without reversing sign there
too. If Newton’s iteration converges @ from every initial ¥ in Q, thenit

converges to the sole zero z of fdn, and Secant iteration also converges in
Q to z from every two starting pointg jand % in Q.

That Newton’s iteration always converges witlfin is an essential assumption independent of

the others; see Non-Theorem 7.2 above. Unless z is an end@intoé assumption that f
reverses sign across its zero z is essential; otherwise two consecutive Secant iterates astride z
could send a third teo. The assumption that N is continuous is essential too; otherwise, as
Example A3.3 shows, the theorem’sohverge$ would have to be replaced by a complicated
assertion about convergent subsequences of iterates like the one in my repdit 8939

theorem was discovered in 1977 in time to affect decisions made during the design of the
root—finder behind th¢SOLVE] key on Hewlett-Packard hand-held calculators beginning with

the hp-34C described in my reprint [1979The proof is long but, because it cannot now be

found elsewhere, it is presented here despite its length.

Proof of Theorem: Because N mafscontinuously into itself ( otherwise Newton’s iteration
could escape fronf2 ) it must contain at least one fixed—point z = N(@hich has to be a zero

of f. This zero z cannot be a subintervakbfbecause f reverses sign at Another zero is

ruled out by Rolle’s theorem, which would imply a point between them when®uid vanish

and N would jump out of2 to «. Infact, f cannot vanish i except perhaps at; z

elsewhere f is strictly monotonic iQ . At the possible cost of replacing f by, 4ve may

assume that f is strictly increasing throughQut Finally, N satisfies all four conditions that U
satisfies in Sharkovsky’s No—Swap Theorem 5.1 above. These conditions will figure at several
places in the rest of the proof, which is presented below as a sequence of shorter propositions.

*Proposition 9.3: All Secant iterateg.x:= S(%,, X,.1) Stay inQ.
This follows from Intermediate Value Lemma 9.1 above and the assumption that N sfays in
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*Proposition 9.4: For B 1 we might as well assume that every, % X, % z .
Otherwise nothing would be left to prove, becaugg; ¥ S(%, X,.1) = X, if and only if
f(x,) = 0 and hence X1 = X, = z. The possibility that x=X; and % = N(x;) is harmless.

*Proposition 9.5: If a subsequence of differencgs; xx, — 0 then, for every integer X0
fixed in advance, the corresponding subsequepge-xz.

Since divided difference flies between the minimum and maximum values taken by derivative
f' on Q, the corresponding subsequence )fex(X,+1- Xn) fT(xn, Xn-1) — 0, and therefore

X,y — Z since f is strictly increasing, and thep.x— z too. For each n in the subsequence,
Intermediate Value Lemma 9.1 implies that someeyists between xand x., satisfying

either X+2=Y, Or X,+2=N(y,) ; either way, the subsequencg,x— z too because N is
continuous. Repeat as often as necessary to infer that-xz. (Does the continuity of N then
imply by itself that all ¥, — z too no matter how k varies with h ?

Definitions:

*A Variance is an iterate y:= S(X,.1, Xn.2) for which f(x,.)/f(v,) <0, and then both z and
Xn+1 = S(My, Xn.1) Must lie strictly between,vand X .

*A Permanenceis an iterate p:= S(X,.1, Xh.o) for which f(x,_))/f(p,) > 1, and then both z
and X471 := S(3, X,-1) mMust lie strictly on the side of,, popposite from x; .

*The Wraith of Permanence pis its nearest solution wof N(w,) = X,+1 Strictly between
p, and x.1; the existence of yvis assured by Intermediate Value Lemma 9.1.

*Proposition 9.6: For B2 every iterate x:= S(%,.1, Xn.2) IS a Permanence or a Variance.
The possibility that 0 < f(x,)/f(x,)) < 1 is ruled out by the strictly increasing nature of f as
follows: For the sake of argument suppose 0 g{(x f(x,) . This supposition would imply
Z <X,.1<X,, Since f isincreasing, and theT(xf]_l, Xn-2) = f(Xn-1)/(Xp-1- X)) < 0, which is
contradictory. The other impossibility 0 > f(x) > f(x,) is dispatched similarly. Therefore
every iterate x can be renamed eithef, jpr \;, .

*Proposition 9.7: If two consecutive iterates:¥ S(X,.1, Xn.2) and V41 := S(W, X,.1) are both
Variances, theny; lies strictly between yand x_.;, and then both x,
and z lie strictly between,y and V,, and also (Y- Xn.1)/(Xn+2- V1) > 4.

W Xn+2 [ B Xn-1
—— 7 ——
Only the last inequality requires unobvious confirmation. The definition of Variance implies that
f(Xn.D/f(v) <0 and f(W/f(vp+y) <0, so sign(f(y+1) = sign(f(x,.1)) and then, since f is
monotonic, f(x.)/f(vh+1) > 1 because 4 is closerto z than,x is. Consequently
(Vn = Xn-D/(Xna2- Vied) = (Va1 - V) (F(VR) - f(Xn-p)/f(V)) )/( 'f(Vn+])/fT(Vn+1’ Vi) )
= (f(u) - D) F(V40) - FV) (FV)(Vie0) )
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1 - f0W/(Vntd) - {n2/f(vi) + T06.0)/f(Vieo)
> 1+ 2(f(X.)/f(Vper) ) + (6 )/f(vie) > 4 as claimed.

*Proposition 9.8: If, among the Secant iteratgs at most finitely many are Variances, or if

at most finitely many are Permanences, then the iteration convergesto z.
If all but the first finitely many iterates are Permanences they must converge monotoni@ally in
to something, and it must be z by Proposition 9.5. If all but the first finitely many iterates are
Variances then the subsequencesg{>and {x,,+;} must ultimately converge monotonically in
opposite directions with 4%- X,1] — O at least as fast as 1/4thanks to Proposition 9.7, so
the iteration converges to z as claimed.

Henceforth only those sequences,}{>containing infinitely many Permanences and infinitely

many Variances need be considered. Think of Permanences as punctuation marks separating
strings of consecutive Variances. What matters most about such a string is whether its length is
even or odd. Even lengths (including 0 ) will be treated first.

*Proposition 9.9: If a Permanencg s followed by an even number 2l0 of consecutive

Variances ¥i1, Vh+o .- Vhiok Defore the next Permanencg, .1, then the
numbers
-1 Wn-1 By Vn+2 Vness o0 Vnt2k Wnaok+l Pht2k+ 25 Vie2k-10 oo Vo3 Vit

are exhibited here in strictly monotonic order ( perhaps reversed ).
If 2k =0 then X.1, Wy, Py Wh+1 @and pyqlie onthe same side of z. If 2k =2 only,ylies

on the side of z opposite the other four iterates and two Wraiths. FoR 2kis proposition
follows from Proposition 9.7.

*Proposition 9.10: If at most finitely many strings of Variances have odd lengths, the iterates
X, convergeto z.

Discard as many of the earliest iterates as necessary, and renumber the rest, to obtain a sequence
of iterates ¥.1:= S(X,, X,.1) in which no string of Variances has odd length. Proposition 9.9

implies that the Permanences and their immediately antecedent iterates constitute a monotonic
subsequence bounded by z . In other words, if the successive Permanenggs pse i,

. then X1, P X2-1 P2 Xne-1 P ---» 2 are exhibited here in monotonic order, but

perhaps not strictly so. This subsequence of iterates must converge and, by Proposition 9.5, it
must converge to z . Recall now the Permanences’ Wraiths; for j=1, 2, 3, ... each Wraith
wy; lies between 1, and p; and satisfies N(y) = X+1 . Evidently the Wraiths converge to

z and, since N is continuous, so must the subsequence of itefateXX 1, Xna+1, -+ -

Among these lie all the initial Variances in strings of consecutive Variances, each string having
nonzero even length. With the aid of Proposition 9.9 again we conclude that the Variances
converge to z too.

(Were N not continuous, the Variances might not all converge to z ; see Example A3.3.)

Only the possibility that infinitely many strings of Variances have odd lengths remains to be
addressed to complete the proof of Theorem 9.2. For this purpose we introduce three more ...
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Definitions:
*A Scouts, isa Permanence followed by a string of Variances of odd length.

*A Guard g,;1 is the first Variance followingirf the sequence of iteratess Scout $.

*A Convoy is the set of Wraiths belonging to the Permanences that comeiaftee (
sequence of iterat@sa Guard but not after its subsequent Scout.

For instance, if Scout,sis followed by 2k+1 Variances,g, Vn+2 ---» Vh+2ok+1 followed by
Permanence Roi+o, then the numbers

Xn- Wny Sv Vn+2 - Vat2k 20 Be2k+2 Wna2k+2 Vne2k+n oo Va3 Ghet
appear here in monotonic order, according to the definitions of Permanences, Variances and
Wraiths. (If 2k+1 =1 thenpy,, ..., Vh+2x do not appear here.) Only the desired zero z and

the Wraiths w and w,.; are notiterates. That last Permanengs,f, might be a Scout

too, or it might not. We have to confirm next that every Wraith belongs to a Convoy escorted
by a Scout ranging ahead of it and a Guard bringing up the rear, and that alternate Convoys
approach z from opposite sides.

*Proposition 9.11: In the sequence of iterates, supppsnd §, are consecutive Scouts with
m>n. Then mn+2 and the numbers,X, W, Gn+1: Z. $v Wms Gh+1
appear here in monotonic order; and the Convoy of Wraith®rw
n <j<m lie numerically between Guard,,g and the next Scout,son
the other side of which lie first z and thep.gand then .

In the sequence of iterates, Scoptisfollowed by some odd number 2k+1 of Variancgs;,g

Vi - Vnroks1 followed by Permanence, .o followed perhaps by more strings of

Variances of even lengths separated by Permanences up to the Permanence—ang-Scout s

followed by an odd number of Variancegg, ... . How are all these numbers ordered
numerically? It is easy to verify that
Xp-1v Wny Sy Vo2 oo Va2 20 F W Pe2k+2 Wh2k+2 Vne2k+ls -0 Chel

appear here in monotonic order except that if m = n+2k+2 thes.p and Wik are

redundant and should be dropped. If m > n+2k+2 then every string of Variances between (in
the sequence of iterates ).p+» and g, has even length, so Proposition 9.9 ensures that every

Permanence after (inthe sequence of iteratgsy) lut not after § has its Wraith strictly
between the Guard,g and the Scout,s of this Convoy of Wraiths all on the side ¢f s
opposite z . Moreover W is this Convoy’s Wraith nearest z. The Guagggfollowing
Scout g, falls somewhere on the other side of z; where? Here Intermediate Value Lemma 9.1
combines with Sharkovsky’s No—Swap Theorem 5.1 to explain why this new Gaydngst
come between z and the previous Convoy’s Wraithnearest z . If that were not so, .9
fell on the side of y opposite z, then the numbers

Om+1= NWm), Wn, Z, Wan, Gher = N(Wp)
would appear here in monotonic order and violate the No Crossover Condition that N must
satisfy if Newton’s iteration is to converge to z from evegyirk Q .
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Thus has every claim in Proposition 9.11 been vindicated, and without saying whigh,of g
and g lies between the other and z ; itis impossible to say, and does not matter. What matters

is that alternate Convoys of Wraiths proceed monotonically towards z from opposite sides; on
each side every Convoy is separated by its Guard from the preceding Convoy on the same side.

*Proposition 9.12: If the sequence of Secant iterates contains infinitely many Guards then the
Secant iteration converges to the desired zero z .
Let g.<z be the least upper bound for those Convoys and their Guards less than z; they

constitute a subsequence of iterates and Wraiths converging monotonically upward to g
Similarly for greatest lower bound,,g z . For every guard,g g, there is a Wraith y< g,
for which g, = N(w,)) ; as the subsequence, w g.- the corresponding subsequence

Onh = N(w,,) - g,+ and so, because N is continuoug,= (g, . Similarly N(g,) =g.. Now
the No Swap Condition satisfied by N implies thgtg, =z . Then all the Wraiths must

converge to z, pushing their Permanences ( including the Scouts ) ahead of them to converge
to z also. Then Permanences and Guards squeeze the rest of the Variances to converge too.

Propositions 9.8, 9.10 and 9.12 leave no alternative but convergence for the Secant iteration and
hence prove Theorem 9.BND OF PROOE

Note that Theorem 9.2 just proved has no converse; in many situations Secant iteration

converges from all starting points but Newton’s does not. f(x)3= 58 + 45x is a strongly
monotonic (f>1584) example for which Secant iteration always converges but Newton’s
iteration gets trapped when<lx,| < 1076570927 , as we have already seen after Theorem 7.6.

Proposition 9.7 prevents Secant iteration from meandering in this example.

Another example is f(x) := arctan(x) discussed after Corollary 8.3, where we saw that
Newton’s iteration converges if started betwedr3917452 but diverges otherwise. Apparently
Secant iteration converges if started anywhere in a wider interval betweent@ithit but can
cycle on four points 4, = 475048222, X,+1= 112143673, Xy+2= X4 and %p+3= -Xan+1

and certainly diverges from starting points both greater than abdut 2

Theorem 9.2 shows how slightly an ability to solve f(z) =0 depends upon the computability of
the derivative '{x) . This is not to say that Secant iteration obsoletes Newton’s. Instead the
theorem simplifies the choice between them. Secant iteration is preferable to Newton’s when ...

*Computing the derivative' fadds more than about 44% to the cost of computingné

*The desired zero z is one across which f reverses sign, and

*The desired accuracy requires at least several iterations, and

*The contribution of roundoff to f is not so bad that its effect has to be minimized.
The last consideration arises out of Secant iteration’s greater susceptibility than Newton’s to
roundoff, especially if its contribution has been seriously underestimated. If roundoff has been
assessed reasonably well, and if iteration can be stopped as soon as the computed value of |f|
drops below or near its uncertainty due to roundoff, that last consideration becomes unimportant.
Anyway, the global convergence properties of the two iterations rarely provide a strong reason to
prefer one over the other.
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Finally, Theorem 9.2 also contributes to Theorem 8.2 another corollary that is easy to prove:

Corollary 9.13: Suppose 'fis continuous and sum—topped throughout a closed
interval Q; or suppose f=¢h is a differentiable difference between two convex
functions, one non—decreasing and the other non-increasing, throughout a closed

interval Q. Then Secant iteration, % := X, - f(x,)/f (X, %,.1) , Started from
any x and x in Q, either converges i@ tothe zero z of f orleave3; the
iteration cannot meander iQ endlessly.
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810. Accelerated Convergence to a Zero in a Cluster

Where do multiple zeros come from? They would be extremely rare if the equations we solve
were chosen at random; multiple zeros z imply an unlikely coincidé(me=1(z) = 0. Since

they are not so rare, their sources must be systematic. One such source is optimization. Suppose
we wish to minimize the largest root z(p) of an equatiéifp; z) = 0' containing a parameter

p. Values p atwhich dz/dp = 0 are candidates, but they need not yield the desired minimum. It

may occur when the two largest roots coincide, as is the case for F(f, zjp=4/p)z + 1; its
optimal p =1 For near—optimal values of p the two largest roots nearly coincide.

Where else may clustered zeros come from? Consider an analytic function f(x) with several real
and complex zeros,z7z, ..., Z,, inside a regiorg in the complex plane, and suppose that

lies deep inside a far larger regi@ that contains no other zeros nor singularities .ot ét the
average of those m zeros he:=3;z/m; then f(x) and its derivative must closely resemble

another analytic function f(x)(—xu)m/ﬂj (x-z) and its derivative atall x i far enough from
¢. Forall such x their respective Newton’s iterating functions N(x) :='{0/f(x)) and

X - L(F (/f(x) - 5} (n-2)7(x-p)° + Ox-p)*)
must resemble each other closely too. In other words, to Newton’s iterating function, any
collection of several zeros may appear, from far enough away, like clustered zeros practically
indistinguishable at that distance from a multiple zero. We have seen already, before and during
Theorem 7.6, that convergence to a multiple zero can be slow. Consequently we should expect
convergence to a cluster from afar to be retarded too. Usually it is retarded, but not always.

Take f(x) := 3&- &6x for example. All its zeros are simple. Two of them, z17866... and
Z = 3, are real; but infinitely many are complex falling not far from 2 + mj(2k(2k + 1/2)ru
for positive integers k From any ¥ <1, Newton’s iteration X1 := %, - f(x,))/f'(x,) converges

to z almost immediately because z00B < % < z no matter how hugea(d negativg X, is.
From any big ¥> 2-Z, Newton’s iteration converges to Z slowly at first, taking abgut x
iterations to get between Z and Z.8@L because  x;=X,-1 for a while. Thus, from far

away on the positive but not the negativereal axis, z and Z look to Newton’s iteration like
roots of infinite multiplicity towards which it must move very slowly. A simple way to cure this
lethargy is to replace f(x) by x - 3 - In(x/3which has the same real zeros but none complex.

In general lethargic convergence has no simple cure. And, when found, a cure rarely saves much
time. No matter how slowly Newton's or Secant iteratgsconverge, usually "3(x,) — O
because of Theorem 7.6. Then J(x O so fast that it must soon fall below the threshold of

rounding error noise in,for else below the computer’s Underflow threshold. Since the amount
of time that can be saved is usually limited, no cure for lethargic convergence is worthwhile if it
adds much to the cost of Newton’s or Secant iteration; nor is a cure satisfactory if it spawns
disagreeable consequences like convergence to an undesired zero.

When the multiplicity m > 1 of a desired zero z of f is known, superlinear convergence can be
achieved by applying Newton’s or Secant iteration ﬂtﬁmﬁign(f) instead of f then Newton’s
iteration takes the form x4 := x,- mf(x,)/f'(x,) . However z is usually computable more
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accurately as a simple zero of the derivatiV®&1}, if this can be computed.Could m be

known but not "1 2 Perhaps that's why an m > 1 is usually unknown.) An unknown m
known to exceed 1 is probably 2 since larger multiplicities are extremely unlikely.

An unknown multiplicity can be estimated. For instance, if z is a zero of f with multiplicity m
then 1/(1/(In|]f(x)[)' - m as x— z. This appears to require the computation“ofblit that can
be circumvented by introducing a multiplicity estimatg mto an accelerated version of

Newton'’s iteration thus:

m, = Max{1, Integer Nearest {xXu.))/( fX ) (Xn) - F D' K1) ) 35

Xn+1 = X - mnf(xn)/f'(xn) .
When x, converges to a zero z of an analytic function f(x) it converges at least quadratically
and m, converges to the zero’s multiplicity, which must be an integer. This convergence is faster

than if Secant iteration had been applied to f(X)/fof which z is a simple zero. From far

enough away, however, a cluster of zergsnfplex as well as replof f can appear so much

like a multiple zero to Newton’s iteration that, mmay actually approximate the number of zeros

in the cluster. Only if and when iterates approach z can its own lower multiplicity m become
manifest. Alas, the first few accelerated iteration steps can overshoot the zero nearest the starting
point too easily, after which subsequent iterates may diverge or converge to a zero other than the
one desired, especially if an extremal real zero was desired.

Take f(x) = 3&- ®x for example again. Starting fromy X 5, the foregoing acceleration

scheme practically always skips over the larger zero Z = 3 and converges to the smaller zero
z=0.17856. In general no way is known to moderate the growth gfsmas to prevent this kind

of undesired overshoot in all cases.

There is a special but common case that can be accelerated modestly without overshoot. Define
N(x) = x - fXx)/f(x) ( Newton’s iteration function) and
W(x) = x-2f(x)/f'(x) ( Doubled-Newton’s iteration function ) .

This W(x) can be iterated with little harm from overshoot in the following circumstances:

lllustrating Theoem 10.1 f(x)

y <W(x) <z < N(W(x)) < N(x) <x

y W(X) Z-
N(W(x)) N(X) X

f'(y) = 0>1(y)
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Theorem 10.1: Suppose that'(y) = 0= f(y) at the left-hand end of a closed finite
interval y< x < xq inside which 'f(x) is a positive nondecreasing function; also
assume f(¥) > 0. Then, in that interval, ...

1) Equation f(z) =0” has just one root zy; and W(x) < N(x) when x >.z

2) Nx)>z if y<x#z, andthen W(x) >y unless W(x) =y =z

3) If x>z then z<N(W(xg N(x), with equality only when"f =0.

Starting from ¥ > z this theorem motivates the following procedure:

Iterate ¥ :=W(X,.1), thereby descending faster than Newton’s iteration would, ujdilzx
(detected when 12 X3); thenif x> X; replace X.q1 by N(x) and continue Newton’s.

The theorem’s clause (3) guarantees that the last retained W-itgrat@V/(x;.,), after which
iteration reverts to %1 := N(X,), cannot jump beyond z so close to y that the next Newton
iterate %., would jump way back behind;x. On the contrary, y¢; comes closerto z than
N(xj.7) would have come. An example will illustrate the procedure after the theorem’s proof.

Proof of Theorem 10.1:

1) As x-y increases through positive values, so dogg because"f> 0. Therefore at most
one root zy can existin the given interval; f(x) increases through 0 to a positive value
f(Xg) as x increases from y tq xso zzy does exist in the interval. And then obviously

N(x) - W(x) = f(x)/f'(x) >0 for all x>z therein.

2) N(x) = f(x)f" (X)/f'(x)? has the same sign as z if x >y; therefore N(x) descends to its
minimum value N(z) =z as % z from either side. A nondecreasing derivative is a continuous
and therefore integrable derivative, aridxj is nondecreasing as x increases beyondoy

0< [Xf," (" (1) -1 (0) )do dt = (x-y)f'(x) - 2f(x) + 2f(y) .
This implies W(xk y-2f(y)/f'(x) =y too with strict inequality unless y =5 2n which special
case Theorem 7.5 above implies N{)z+ and W(x)- z+ as x- z+. Inthe further special
case of a quadratic fconstant T > 0) with a double zero y =z we find W(x)z=

3) When = W(x) < x, inequality N(W(x)x N(x) is now obvious; but a proofis harder when
y <W(x) <z <x. The proof might be easier if N(x) - N(W(x)) = f(x{K) + f(W(x))/f'(W(x))
increased monotonically, but it needn't; for example, try fOJ = &/2%*- 1 - 1/2*. Worse,
N(X) - N(W(x)) vanishes like O(x-z)3, so three differentiationsof integrationg would be
needed to infer the desired inequality directly from the hypoth&sis G. We shall simplify the
work a little by proving that{ N(x) - N(W(x)) )-f (W(x)) = f(W(x))-f(x)/f'(x) + f(W(x)) = 0.

To exploit the symmetry of W(x) and x about N(Xt's use abbreviations q := f(X]#) ,
n:=N(X) =x-q, and w:=W(x) =Rq; then f(n+0)-f'(n-0) >0 when o< q because
f* is nondecreasing. Integrate twice to get

0< Jo! (" (n+0) - " (n-0))do dt = (f'(x) + f'(w))-q - f(x) + f(w) ,
which simplifies to the last inequality of the previous paragraph. This inequality becomes
equality just when f is quadration{th constant 'f > 0). END of PROOE

Notes for Math. 128A & B Work in Progress: NOT READY FOR DISTRIBUTION Page 47/67



File: RealRoots  Lecture Notes on Real Root-Finding version of March 1, 2016 12:58 pm

| first proved theorem 10.1 in the early 1960’s, but rather differently, for the special case of a
polynomial P(x) whose &t least twQ zeros are all real, the largest being ane of f=P or

f =-P can easily be shown to satisfy the hypotheses of this theorem. A proof for this polynomial
case can be found in Stoer & Bulirsch [1980]; for this case, parts 1) and 2) of the theorem had
been quoted by Jim Wilkinson [1965], who had learned them from Hans Maehly as well as me.
Soon afterwards Werner Greub liberated the whole theorem from polynomials by suggesting that
the crucial hypothesis was merely' (k) = 0, from which the foregoing proof evolved.

The procedure described before the proof locates the largest real zero of a polynomial whose
other zeros, real and complex, all have lesser real parts. It locates the largest real=z8jo (

of examples like f(x) = 3e- ex discussed above, usually faster than would Newton’s iteration
all the way. Theorem 10.1 provides a guarantee that the doubled itergtion W(x,) cannot

overshoot the desired zero z so far as would lose more than one iteration—step after reversion to
Newton’s. Except for that one step that overshoqgtshe iterates of W starting fromy X z

approach z faster than correspondingly numbered iterates of N would be¢@gse ONfor all
X >z (see the proof of (2) aboye

How much faster do iterates of W descend than iterates of N would? Since M({%(}x)) at
x close enough to zy and usually at all x >z in the interval, W usually descends at least

twice as fastas N until z is overshot. It happens for f(X) :wieose W(XJJIN(N(x)) Ox-2
and e =y =z <Xx<y<+0. Butnotalways; f(x):=x/(1-x) intheinterval z =0 < xgx1
behaves differently because its W(x) > N(N(x)) when 1 > x > 24(&)+ 0.618. More nearly
typical is example f(x) := 3e e x for which iterates descend to Z =3 fromp=x8 thus:

Table 1: For f(x) := 3& - €x

Iterates of N Iterates of W

Xg 8 8

X1 7.015757 6031524
Xo 6.052129 4195981
X3 5.132988 212537
Xq4 4.302929 3006191
Xg 3.631900 3000029
Xg 3.198687 3

X7 3.025447

Xg 3.000476

Xg 3.000000

The doubled iteration %, := W(x,) can still converge arbitrarily slowly to a highly multiple
zero; butits values fgx tend to zero usually more than twice as fast as Newton’s would, and
always at least twice as fast as Theorem 7.6 described:
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Corollary 10.2: Assume the hypotheses of Theorem 10.1 again, and suppose
also that the procedure described just after it is followed. Then either the iteration
ultimately reverts to Newton’s and converges quadratically, or else the doubled
iteration x, := W(X,.1) converges monotonically, though slowly, and,)f(tends

monotonically to 0 at least so fast thit, 4" |f(x,)| < [f(x)| (Xg-2)/(Xg - X1) -

Proof: Either <z or y=1z If y<z then f(z) # 0 and ultimately x:=W(x,.1) falls upon z

and stops or falls between z and Iy the latter event the iteration reverts to Newton’s iteration
which, after stepping backward once to N(between z and N{x), converges

monotonically according to Theorem 7.5, and quadratically according to Theorem 7.4.

If y=12z then f(z) = f(z) = 0 and the doubled iteration_x:= W(X,) converges monotonically
towards z This iteration is the same as Newton’s applied to solve the equdt@re 0. Is Vf
convex? To find out consider the Riemann-Stieltjes intddmdfi' , which exists since"f is
nondecreasing. If x>z then <@[,*f(t) df* (1) = 2f' (x)-f(X) - (F (x))? = 4¢FX))- (VF(X))" .
Therefore Vf satisfies the convexity hypothesis f satisfied in Theorem 7.6, whence follows its
conclusion forvf, which is this Corollary’s inequalitfEND OF PROOE

What if f never vanishes, or whethér dver vanishes is unknown? So long as W. Greub’s
hypothesis 'f =0 holds, the doubled Newton iteratiop,x:= W(x,) deserves to be tried:

/

f(x)

[llustrating Comollary 10.3

y <W(X) <z < N(W(X)) < N(x) < x

Xe

f(y) = 0= (y)

Corollary 10.3: Redefine y in Theorem 10.1 to satisfyy) =0 and f(y) <Q
leaving all else unchanged. Then all its three inferences 1), 2) and 3) persist
except if W(x) <y, in which case W(x) >y — (x-y) is all that can be inferred.

Proof: Almost the same as for Theorem 1@EAD OF PROOE
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For example take f(x) := &1)® + p-x — 1 with a parameter p >0 and initigl:=x100.

Table 2: For f(x) := (x+ 1)3 +px-1, "f(-1)=f0)=z=0.

p=6 p =300

Iterates of N Iterates of W Iterates of N Iterates of W
Xo 100 100 100 100
X1 66.3204 326407 656894 313788
X5 438610 101386 425040 620835
X3 288788 251426 265975 -360146
X4 188773 -0156432 153795 -0170196
Xs 12.1906 000808341 22709 000025504
Xg 7.70709 000002178 B1222 0000000001
X7 4.68552 000000000 67204 0
Xg 2.63747 0 000004666
Xg 1.25975 0000000000
X10 0.410861 0
X11 0.0538886
X12| 0.00096709
X13 | 0.000000312
X14 | 0.000000000

lllustrating Cowllary 10.4

wx) NWX)
z N'(x)

X

Corollary 10.4: Suppose'f>0 and f is nondecreasing throughout an interval
Q wide enough to contain, zwhere f(z) = Q as well as x, N(x) and W(x) for
every x inQ. Then N(x) must lie between x and N(W(x}hough z may lie
anywhere on the same side of x as N(xicluding perhaps between them.

Proof: This corollary’s hypotheses apply to -f(-x) as well as to, 69 the assumptions that
x>z and f(x) >0 simplify the proof without loss of generality. Then the double integral at the
end of Theorem 10.1's proof proves that N{N(W(x)), as claimedEND OF PROOE

The corollaries above motivate the following procedure whengf/esatisfies their assumptions:

Whenever f(x)/f(x,.1) is not small, say whenever ff#(x,.;) > 01, compute
Xn+1 := W(X,) instead of N(¥) unless doing so would escape from a straddle
known to enclose only one zero of f.
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The doubled Newton iteration, := W(x,) works so well in the circumstances for which it
was intended that it encourages us to consider a doubled Secant iteration too. There are two
ways to double the Secant iterating function
S(x, X) = x - fO)M(x, X) = x - f(X)-(X-X)/(f(X) - f(x)) .
One is the obvious way:
$(x, X) = x - 20 (x, X) .
The unobvious way applies Secant iteration to the equafien0 to get an iterating function
R(X, X) := x - (X-xY(V(f(X)/f(x)) - 1) .
Both doubled iterations work. The latter is faster because, if z<x <X and so 0 < f(x) < f(X)
then R(X, X) < $(x, X) < S(x, X) as is easy to verify. Therefore we concentrate upon R(...)

Suppose the hypotheses of Theorem 10.1 are in force:
f(y) = 0=f(y) atthe left-hand end of a finite intervak x < X, throughout

which T is a positive nondecreasing function; also assumg ¥(®, so the
equation f(z) = 0” has just one root Zy in that interval.

The procedure that follows that theorem is now supplanted by this:
Starting from g>x; >z, ..., iterate x:= R(%,.1, X4-2) , thereby descending
faster than Secant iteration would, unfjkx (detected when f(x,)/f(x,) < 0),
and then revert to X := S(%, Xn-1) -

Once again, asin Theorem 10.1 part 3), we seek reassurance that the last doubled-iterate x
cannot overshoot z so far as might set subsequent Secant iterates back bghjndc,9\x

Conjecture 10.5: Assume the hypotheses of Theorem 10.1 again, and also the
definitions of S and R ; then S(S(R(u, w), u), R(u,s\u, w) if z<u<w

Discussion: Intermediate Value Lemma 9.1 lets us define v(u, w) to lie strictly between u and
w and satisfy N(v(u, w)) = S(u, w) > z whenever eithetw<u<z or z<u<w. This

v(...) is defined uniquely because N(x) is monotone decreasing wkeq<y , increasing

when z<x.

THERE ARE NUMEROUS DETAILS STILL TO BE SUPPLIED HERE.
Y v e e e e e e v v P i i e e e e e e e lp

Corollaries:
Convergence of f(§ to O is faster than )3for $ or 1/4 for R.
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Example:

Table 3: For f(x) := 3¢ - €’ x

Iterates of S Iterates of R
Xg 9 9
X1 8 8
X5 7.427732 6.479176
X3 6.706504 5.205631
Xq 6.057988 4.250802
Xs 5.407616 3.166181
Xg 4.800048 2.812781
X7 4.243171 2.976582
Xg 3.766543 303603
Xg 3.396594 2.999936
X10 3.154697 3.000000
X11 3.037465 3
X192 3.004024
X13 3.000111
X14 3.000000

PPV ?7?7?7?7?7?7?7?777

Work still to be rewritten out:

What to do when the search for a zero of f encounters a value of x outsude the domain of f?
See pp. 23-5 of <www.eecs.berkeley.edu/~wkahan/Math128/LecRIRtF.pdf> .

811. All Real Zeros of a Real Polynomial. Finding only real zeros of a real polynomial of high
degree is applicable to Tarsky resolution of rational (in)equalities, geometrical computation,
construction of numerical ODE formulas. Sturm Sequences ( Turnbull [1952]) are costly to
compute or vulnerable to roundoff or both. A better way using Rolle’s Theorem and running
error—bounds is attractive when the real zeros are far fewer than the polynomial’'s degree, as is
usually the case.

812. Zeros of a Real Cubic. How to find the zeros of a real cubic quickly and accurately using
Newton’s iteration from an artfully chosen starting guess.

813. Error Bounds for Computed Roots using 8A5: Running Error Bounds
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8¢ce. Conclusion:

These notes were written at the behest of two mathematicians who inhabit my body. The pure
mathematician savors surprises. The applied mathematician tries to avoid them by predicting how
computational procedures will behave. Both mathematicians rejoice when they prove a
procedure to be surprisingly predictable. But the latter’'s joy must be short-lived for two reasons.
First, compared with the procedures they explain, our proofs are too long; they augur ill for our
understanding of more complicated procedures. Second, more complicated procedures will arise
inevitably from attempts to circumvent limitations in the simple procedures we have come to
understand at last. Thus, these notes contain the seeds of their own obsolescence.

We say “mature” when we wish to avoid the pejorative “obsolescent”. The material in these
notes will soon be mature if it isn’t already. The corresponding material in most textbooks is too
mature. Bringing textbooks up to date is a formidable challenge compounded by limitations upon
space and time, both the author’s and the readers’. Until a brave author rises to this challenge,
the burden of these notes will continue to be added to my students’ load. They and | pray that
their load will be lightened soon.

Surely Sharkovsky's Theorem 5.1 deserves to appear in texts. So does Corollary 8.3 and an
example of its application, if not also Theorem 8.2, because they suggest how to reformulate
equations to make them easier to solve by Newton’s and Secant iteration. Theorem 9.2
deserves at least a footnote, more if someone finds a shorter proof, because it justifies the use of
Secant iteration instead of Newton’s. Error analysis, dull but necessary, deserves more space in
texts too; without it, who can tell when to quit iterating or how much the result is worth?
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8Al. Appendix: Divided Differences Briefly

This topic is discussed at length in Numerical Analysis texts like Conte & de Boor [1980], but
usually in the context ofnterpolation and always in a different notation. For an ancient subject

the persistence of diverse notations suggests that none are satisfactory and licenses us to introduce
another notation more nearly analogous to a widely used notation for derivatives. Inspired by
formulas attributed to Hermite, we define for any sufficiently smoothly differentiable function

f(x) its First Divided Difference

fT(u, w) = o' (u + (w-u} ) dt
and its Second Divided Difference
T, v, w) = folfo! (U + (v-u) + (w-v)s ) dst .
For positive integers k generally, th¥ Klivided difference is the uniformly weighted average

of the K" derivative over a simplex, the convex hull of k+1 arguments, then divided by k! .
However k > 2 will not be needed in these notes. In general the argument x of f(x) could be a
vector but in these notes it will almost always be a real scalar. Then that simplex, the convex hull

of the k+1 real arguments, degenerates into an interval of the real x—axis over whiéh the k
divided difference becomes a positively ( not necessarily uniformly ) weighted average of the
K derivative divided by k!. Forinstance, if u<v<w then it follows that

f”(u, v, w) = ([ t-uf (t)dt/(v-u) + [,V (w-t)f" (t)dt /(w-v) )/(w-u) .
Because it is an average, th8 Hivided difference lies between the largest and least values taken
in that interval by the % derivative divided by k!. ThisMean Valueproperty figures in nearly
all applications of divided differences in these lecture notes. Divided differences turn up

elsewhere as coefficients Mewton's Interpolating Polynomialsvhich see below, or during
root—finding or optimization, or when differential equations are solved using finite differences.

Because the argument x of f(x) is a scalar, the foregoing integrals can always be *“ simplified
into expressions with no integral signs. For instance,

fT(u, w) = (f(u) - f(w) )/(u - w) if wzu,
= f(u) if w=u,
fT(W, u) ( arguments’ order doesn’t matter )

f(v) atsome v strictly between u and w if they are unequal.

The first two equations above constitute an alternative definitioh of o far as they describe it
independently of whether fexists strictly between u and w; and then the last equation turns
out to be valid so long as(X) does exist at every x strictly between u and w, and f(x) is
continuous at u and w, even If i not integrable. Similarly the next two lines describe or
alternatively define i independently of whether" fexists:
fffuvw) = (f(uv) - fi(v,w) )(u-w) if wzu,

off(uvypu = (tu)-flu,v)u-v) if w=uzv
f(w/((u-v)(u-w)) + f(v)/((v-w)(v-u)) + f(w)/((w-u)(w-v)) if EvZwWZuU

= f”(v,w,u) = FT(u,W,v) = .. (‘arguments’ order doesn’t matter )

-
( Don't confuse ¥'(u,v,w) with fT(u,w) = (f(u) - £ (w))/(u-w) = f T(u,u,w) + fT(u, w, w) .)

f'(y) atsome y between min{u,v,w} and max{u,v,w} If £xists ....
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Strictly speaking, we should writd (fu, w}) instead of f(u, w) because it is best construed as
a function of an unordered pair {u, w} that replaces the single argument x of f(x). Similarly

we should write TfT({u, v, w}) instead of TT(u, v, W) . The extra braces {...} are superfluous in
divided differences of functions of one argument, but a necessary nuisance in partial divided
differences of functions of more than one argument. For instance, given any function g(x, y) of
two scalar arguments, we must distinguisi"({ng}, y) = (g(uy) - g(wy) )/(u-w) from
gT(x, {u,w}) := (g(x,u) - g(x,w) )/(u-w) by our placement of the braces to show which argument
was split into a pair;dg(x,y)/ox = gT({x,x}, y) and dg(x,y)loy = gT(x, {y,y}) are distinguished
by the same imperative. Similarly the mixed partial divided difference
g"tu}, (vwd) = (g(tv) - g(uv) - g(tw) + guw) )((E-u)(v-w))

has to be distinguished from

g™(t, {uvw}) = gtu)/((u-v)(u-w)) + gtv)/((v-w)(v-u)) + g(t,w)/((w-u)(w-v))
much as we distinguistd?g/oxdy = g'T({x,x}, {y,y}) from 8%giay? = 2d T(x, {y,y.y}) . (The
factor 2 will be vindicated in a moment; and if discontinuity invalidategaxdy = 8%g/dydx it
may render U({x,x}, {y,y}) ambiguously dependent upon the order of limiting processes.)

Return to functions f(x) of one argument. A composed function f(x) = h(p(x)) has a derivative
f'(x) = h(p(x)) p'(x) derived from aChainRule that works analogously for divided difference

fT({u,w}) = hT({p(u), p(w)}) pT({u,w}) . And, just as derivatives compound to form higher order
derivatives like 'f(x) = (f'(x))' , divided difference operations compound to form higher order

divided differences. For instance, the alternative definition bfabove amounts to
fqu, v wh) = vy, wh) = £ gu, v = f Ty, fuw))
in other words, every second divided difference is a first divided difference of a first divided
difference in as many as three ways. Since derivatives are limiting values of divided differences,
of T({u,w})/ au = fi(fu,upw)) = f TT{u,uw}) and aff({u,w})/ aw = fTT(u,w,w})
provided the derivatives in question exist. Setting u =v =w vindicates the factor 2 in

f (v) = df qvv/dv = v Vv + F TTv{vavi) = 2f TTgvvv))

Like differentiation, divided differencing maps certain families of functions into themselves.
Divided differences of polynomials are polynomials, albeit with more arguments. Divided
differences of rational functions of scalar arguments are rational. Likewise algebraic. Irrational
algebraic functions are handled by implicit divided differencing just like implicit differentiation,
and derived in the same way from the Chain Rule. With the aid of that rule, any algorithm that
computes an algebraic function f(x) can be expanded mechanically into a similar algorithm that
computes divided difference’ (@, w) = (f(u) - f(w))/(u-w) at almost the same cost as computing
f(u) and f(w) but without ever dividing by u-w . A simple exampIdTieJ, w) = 1/¢/u +vw) .

Ideally such expansions should be performed on request by computerized algebra software like
Derive, Macsyma, Maple and Mathematica, which ought to manipulate divided differences as
well as derivatives, but they don't. Consequently the computing public remains largely unable to
exploit a valuable but little known application of divided differences, namely the suppression of
numerical instability attributable to systematic cancellation.
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Many a numerical computation turns out to be the computation of a divided difference in disguise.

Attempts to computeT¢u, w) naively from the obvious formula (f(u) - f(w))/(u-w) can be
thwarted by roundoff and then cancellation when u is too nealf monzero, the divisor 1w
is no problem because its cancellation occurs without error. But the computed value of f(u) is

generally rounded to, say, f(uf{u), and therefore the value computed naively F(Qu,fw)

when f(u) - f(w) would mostly cancel turns out to bE(qu) + (Af(u) - Af(w))/(u-w) instead,
overwhelmed by the last quotient if-w barely exceeds roundoff. For example consider the

solution of a quadratic equation Az2Bz + C =0 . Its solutions z are ¢B/(B?-AC))/A .
The solution of smaller magnitude, z :si@n(B)\/T(Bz, B2- AC), is vulnerable to roundoff
and cancellation when |AC| <€Bunless the divided differencé’ is “ expanded " as was
mentioned above to yield z = C/(B + sign(#B? - AC)) , which stays accurate if |AC| <€B

Sometimes the accuracy of transcendental expressions can be insulated from cancellation with the
aid of ancient formulas motivated by divided differences. For example, (tan(u) - tar{w))/(u

is best computed from the formula Jfan w) = (1 + tan(u) tan(w)) té[(u-w, 0) when u nearly
equals w. Sometimes an inverse divided difference can render cancellation harmless. For

instance, because T(lcx, 1) = In(v)/(v-1) does not suffer from cancellation when v nearly
equals 1 the computation of eitu, 0) = (exp(u) - 1)/u can be protected from cancellation in

the numerator by the use of the formula TcémpO) = 1/IrT(exp(u), 1) instead. These
transcendental examples work because they exploit the few occasions when transcendental
functions take simple rational values at rational arguments.

In general, transcendental functions afflict divided differences but not derivatives in two ways.
First, many transcendental functions have simpertjaps algebrajcderivatives but no simple

“ expanded divided differences undefiled by cancellation. For exampfén(d)/dv? = -1/ ;

but no known simple finite formula for Tif{u, v, w) stays accurate no matter how u, v and w
approach each other. Secondly, the divided difference of a non—polynomial rational function of a
vector argument generally involves logarithms and/or arctangents. For example, let column

z

vectors x := M andu := M , and let ) :=y/z; then its derivative'(x) = [1/z, y/z?] is a
Wi

rational row vector but Hermite’s formula for its first divided difference yields a transcendental
i, u) =[Infzw), 3 g-V(InTTzzw) - INTzww)) - 3 y+v)/izw ] .

Newton’s Interpolating Polynomialapproximate functions of scalar or vector arguments:

f(x) = f(u) + fi(u,x)(x-u) ,

f(u) +( fT(u,v) + £ T(u,v,x)(x-v) )(x-u) ,

f(u) +( fT(u,v) + (T uvaw) + 17T vwx) (-w) ) (x-v) )(x-u) , ... etc.

The polynomial in x obtained by substituting 0 foffinterpolates ( matches) f(x) at x = u

x=v and x=w; elsewhere it differs from f(x) byemainderterm f' (y)(x-w)(x-v)(x-u)/6

in which y falls somewhere inside the convex hull of { u, v, w, x } . Interpolatiasailatory
if two of u, v, w coincide. This polynomial’'s degree is minimal only for a scalar argument x .
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8A2. Appendix: Functions of Restrained Variation
This digression concerns a way to sum an undulating function’s fluctuationslofdi&/ariation
of a real function Q(x) over a closed finite intervat xi< w is defined to be

V0" Q = M 1dQM)| =" [Q (x)ldx
though the last equation is valid only if'(Q| exists and is integrable. In general, a function
whose Total Variation over some interval is finite is called “a function of Bounded Variation ”
thereon. Such functions figure in Measure Theory, Stieltjes integrals, and Fourier series. They
can have none but jump discontinuities, and at most countably many of these ( Bartle [1976] ).
In particular, a derivative of bounded variation must be a continuous derivative.

Obviously V" Q= |Q(w) - Q(u)| , with equality just when Q is monotonic. Where Q(x) is

continuous, soi8/,*Q . Wherever Q(x) jumps, so d¥*Q and V,YQ, and by the same
amount, but the former always increases and the latter always decreases as x increases. Hence
Total Variation isAdditive over abutting sub—intervals: ifax<w thenV*+V, " =V,". It

is a Semi—-Normbecause it satisfies thEiangle Inequality0< V" (PtQ)< VP +V " Q.

If V,YQ < and i x<w then Q(x) admits infinitely mangplittings into a difference
Q = P-M between two non—decreasing functions P(x)}:: (R(x) + Q)R - %VUW Q)

and M(x) := % (RX) - QX)) V,VQ + %VUWQ) in which R can bany non—decreasing
function. Conversely, any non—-decreasing P and M determine both -@1:=oFbounded
variation and the function R(x) :3 P(X) + M(x) -V;* (P-M) ) + 2 (P(x) + M(x) +V," (P-M))
that appears in @ splitting; this R is non—decreasing becauseMPvaries faster than 1.

If Q and R are continuous, so are P and avid vice-versa If Q and R have integrable
derivatives, so do P and ,Mand vice-versa But when Q is so violently oscillatory that

V" Q =+ then Q is unsplittable, as are examples like Q(dcox(1/¥) around 0

Among functions Q of bounded variation, the ones that will interest us have a splitting

Q =P-M that is special because all three of Q, P and -M have the same sign and keep it
throughout the interval g x<w . We shall call such a function Qa ‘function of Restrained
Variation.”

Lemma A2.1: A Function of Restrained Variation
Q can be split into a difference Q =N between two non—decreasing functions
P and M, one non—negative and the other non—positive, throughout the closed

finite interval us x<w if and only if V,¥ Q < |Q(u) + Q(w)] .
Proof: If necessary, replace Q by -Q toget @. If r:=Q(u) + Qw) V,Y Q=0 then

choose any non—decreasing=R and P(ux 0 and M(wk 0 subject only to the constraint
2P(u) - 2M(w) + R(w) - R(u) = r, and construct functions
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P(x) = P(u) +3 MQ +Q(X)-Q(u) + R()-R(u) 20, and
M(x) := M(w) - Z(Vy" Q + Q(x) - QW) + RW) - R(x) )< 0 ;
evidently they are non—decreasing and satisfy P(x) - M(x) = Q(x) too as desired. If r=0 this

splitting is determined uniquely with P(u) = M(w) = R(X) - R(u) = R(w) - R(x) = 0 . On the other
hand, if a splitting Q =M already exists with non—decreasing P and M aad0B M,

then this splitting also determines the non—decreasing R(X) := P(x) + I%IWQ + %VXW Q

as explained before the lemma; therefore R(w) - R(u) = P(w) + M(w) - P(u) - Mu) V" Q
whence V" Q< Q(w) +2M(w) - 2P(u) + Q(ux Q(u) + Q(w) as claimedEND OF PROOF

What are here called *“ functions of restrained variation ” are also caleede™ by Aharoniet
al. [1992], who characterized them by means of a discretized version of the foregoing lemma,
which now shortens the proof of their characterization:

Lemma A2.2: Tame Functions (Aharonket al [1992])
Q(x) is a nonnegative function of restrained variation over the intergat uw

if and only if Q%) - Q(x) + Q(%) - ... - Q(%k.1) + Q) 20 for every
integer k=0 whenever & Xg< XS X< ... S Xop 1S X S W .

Proof: If Q =RM for some non—decreasing=® and M< 0, then every alternating sum

Q) + Tz (-1)Q(%) = P0p) + Tj1 (PO -POgi) + Tj=o ™ (M(Xgje1) -M(x3)) - M(x)

is nonnegative term—by—term, which confirms the lemma’s “only if 7 part. Except for setting
k=0 toprove @O0, the “if"” partis harder to prove. lIts proof is easier when Q(x) takes its
locally extreme values at only finitely many points in the intervalxw« w, including its
endpoints among them. Then we assign=x, % :=w, and for 0 <f k we set all other

Xpj to be all consecutive points wherey; @& Q(xy) is locally minimal, and x_; to be all
consecutive points where,Q = Q(%;.1) is locally maximal; these points interlace, including
possibly % =u if @ =Q(u) is locally maximal and/oryx;=w if Q= Q(w) is locally
maximal. Because the lemma’s alternating sums are all nonnegative, we soon find that

Q(u) + QW)= (Q1-Qp) + (Q-Q) + (X-Q) + ... + (Q1-Qok-2) + (Rx1-Q) = V' Q.
Applying Lemma A2.1 completes the proof for the case when Q has just finitely many extrema.
When Q has infinitely many extrema the last equation is invalid but salvaged by taking its
left—hand side’s supremum over all partitions ph=X; < Xy < ...< X 1< Xp = W . END OF
PROOF

Restrained variation has only one consequence significant for Newton’s or Secant iterations; it
is the following corollary, whose now nearly obvious proof is left to the reader:

Corollary A2.3: A function Q of restrained variation over an intergalis also
of restrained variation over every subinterval®f and is sum-topped thereon.

(“ Sum—-topped iscase k=1 of LemmaA2.2.)
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This corollary’s converse is false: A function can be of restrained variation over two abutting
intervals and yet not over their union. A function can be sum-topped but not of restrained
variation; Q(x) := 3 + cos(x) is an example over any interval wider tlren But a sum—topped
unimodal function is of restrained variation. (A functionimodal over an intervalQ has at
most one extremum, maximum or minimum, strictly ins{de)

Our interest in functions of restrained variation is now mainly historical. In the late 1970s they
were the first non—monotonic functions to be recognized as sum—-topped; and in practice they are
still easier to recognize as such from their splittings than are most other sum—topped functions.
Their relevance to Newton’s and Secant iteration is apparent in Corollary 8.3.
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8A3. Appendix: Projective Images
The redefinition S(x, x) := N(x) connects Newton’s iteratigq, x= N(X,) := X, - f{(X)/f' (Xp)
to Secant iteration (X; := S(%y, Xn-1) = X, - f(xn)/fT(xn, Xn.1) » but not so tightly as they are
connected by a shared family of invariants under ceRaajective transformations. In general,
plane projective transformations are those that map straight lines to straight lines. Thus they map
tangents to tangents and secants to secants, which is why some of them are pertinentto Newton’s
and Secant iteration. The pertinent ones constitute a four—parameter family of projective maps
each of which takes a pair {x, f(x)} to a pair {X, F(X)} in such a way that Hetbjective
Imagesf(x) and F(X) are linear functions of their respective arguments, or else neither are.
Each of these maps is determined by the values of four constamts b3and m chosen almost
arbitrarily subject to two inequality constraints:

Constraint I: ¢c:=Bm+b#0, and

Constraint II: b/m does not lie strictly inside the intergal

in which we seek a zero z of f.

After these constants have been chosen, the projective map {x, f(x)} = {X, F(X)} and its
inverse {x, f(x)} <= {X, F(X)} are defined thus:

X =X(x) := (ux + B)/(b - mx) , F(X) := %(X))/(b - mx(X)) = f(x(X))(1 + mX)/c ,

X = x(X) = (bX - B)/fa + mX) , f(x) = FX(X))(b - mx) = FK(x))¢/(1 + mX(X)) .

In the last two lines the last equation is derived from the first, whiciMélaius
( Bilinear—Rational ) transformation, with the aid of a valuable identity
(b-mx)u+mX) = ¢c# 0.
It and Constraint Il prevent b - mx from reversing sign while x runs thréughand prevent
KM+ mX from reversing sign while X runs through the inten¥#Q2) . Whether this Mdbius
map preserves or reverses order in those intervals depends upon the sign of ¢ in Constraint |
because the same sign turns up in

dX/dx =X'(x) = ¢/(b - mx¥ and  dx/dX x'(X) = ¢/( + mX)? .

What do projective images F and f have in common? F has as many zeros strictly (©3ide

as f has strictly insid€ . ( A zero at an end of an interval can evaporate if that end is mapped to
o ; for example consider f(x) :=x and X(x) :=-1/x foe®, whence F(X)=-1 for X0 .)
Similarly, F and f have the same number of poles strictly inside their intervals. Therein F also
has as manynflexion—points( where F =0 ) andNotches(where F =) as f has since

F' (X) = f* (x(X))c/(1 + mX)3. Other properties F and f share are less obvious.

Under composition, the projective transformations formoa—Abelian ( non—commutative )
Group isomorphic to the multiplicative group of nonsingular 2-by-2 matrices. In other words,
supposeX;(x) = (ux + 3)/(b; - mx) for j=1,2,3 arethe Mobius parts of three projective
transformations of which the third is composed from the first and seckgk) = X5(X1(X)) ;

then F _mﬂ -

B3 U3

by =My 1Py =My and £=det(|> ™| )=g¢ #0. In this isomorphism
By Uy B1 Mg Bz M3

the projective map associated with the constantgi,{B, m, ¢ = I + Bm} has an inverse that
must be associated with constants respectively {-B/cukyc;m/c, 1/c} . Every projective map
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can be decomposed into a sequence of at most five maps each selected from a subgroup listed in
the following table:

Table 4. Subgroups of Projective Maps {Xx, f} <= {X, F}

Subgroup Namgq X(x) | x(X) F(X) ) M b m| ¢

Scaling X X f(X)/b 0 b b20| O | p2

Dilation | ux X/u f(X/p) 0 |uz0 1 0| u

Translation] x+ B X-03 f(X-R) 3 1 1 Q 1

Reciprocal | 1/x | X | Xf1/X) | 1| 0O 0 | -1| -1

(* The Reciprocal subgroup has two elements including an Identity that changes nothing.)

Often the easiest way to prove an assertion true for all projective maps is to prove it for each
subgroup separately and then infer it for their compositions. Often the assertion is unobvious only
for the Reciprocal subgroup. Such is the case for the next two assertions:

LemmaA3.1: &f:= (Bf))2/( ()3 = @t +F )2/ ()% is

invariant for projective maps {x, f(x)} <= {X, F(X)} of nonlinear functions; in
other words, nonlinear projective images f(x) and F(X) satisfy Af(x) = £F(X)
after substitution of the projective map’s Mobius part, say X% .

Lemma A3.2: Newton’s iterating functiorNf(x) := x - f(xX)/f'(x) and Secant
iterating function Sf(x, y) := x - f(x)(x-y)/(f(x) - f(y)) are constructed from f by
operatorsN and S that commute with projective maps {x, f(X)} <= {X, F(X)};
in other words,NF(X(x)) = X(Nf(x)) and SF(X(x), X(y)) = X(Sf(x, y)) wherein
X = X(x) is the projective map’s Mobius part.

The tedious but easy proof of both lemmas is left to the reader. For example, a
Negative—Reciprocal projective map {x, f(x)} <=> {X, F(X)} defined by X :=-1/x and

F(X) := Xf(-1/X) hasNF(X) = X - F(X)/F (X) = X - Xf(-1/X)/ ( f(-1/X) + f'(-1/X)/X ) = -1Nf(x)

as claimed in Lemma A3.2. It implies that whether the iterations converge or meander is another
invariant of projective maps and motivates us to learn more about them.

The Mobius part of a projective map is determined by what it does to any three distinct values u,
v, w of x. It must map them to some three distinct values U, V, W respectively of Xvjcand
versa It can be constructed from these triples by solving a bili@ass Ratioequation like
(x-u)(v-w)(X-W)(V-U) = (X-U)V-W)X-w)v-u)
for either X =X(x) or x =x(X) , thereby determining the constantsufd) and m except for a
common factor. ( One member of the triple {u, v, w} cancbef the cross—ratio equation is
replaced by an appropriate limit; similarly for {U, V, W}.) The sign of ¢ = Bm+ lwhich
determines whether the Mdobius transformation preserves or reverses order, is the same as the
sign of

(U-V)(v-w) (W-uf (U-V)(V-W)(W-U)) = ((b - mu)(b - mv)(b - mw/¢?
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if both triples {u, v, w} and {U,V, W} are entirely finite. Moreover Constraint Il, “ b/m does
not lie strictly inside the interva®2 ”, which ensures thaX(Q) be an interval too, requires both
triples {u, v, w} and {U, V, W} to have either the same or the opposite linear order whenever u,
v and w lieinQ or, equivalently, whenever U, V and W lieX{Q) .

Many a theoretical problem is simplified by a projective map that transforms a finite in@erval
into a semi—infiniteX(Q) . One example is the proof of the Intermediate Value Lemma 9.1.
Here is another example designed to show why the continuity of Newton'’s iterating function N
is an hypothesis necessary for the conclusion of Theorem 9.2.

*Example A3.3: Twice differentiable function f will strictly increase throughout a finite interval

Q . From any starting point i®2 Newton’s iteration x.;:= N(X,) will always converge iQ

to azero z of f. On the other hand, Secant iteration won’t converge from some starting points
in Q. This ostensible violation of Theorem 9.2 merely violates one of its hypotheses; this
example’s N is discontinuous at z . This example f(x) is the projective image of a simpler F(X)
constructed over the semi—infinite intervad < X < Xy := 1/In(2) = 1442695 thus:

For n=0,1,2,3, ... inturnlet gX:=1/In(n+2) , Xn+1:= (Xgn+ X3p43/2, Xgpp:= 0.
Evidently X2 X3,> X3041> X3043> 0 and %, - 2X3n+43+ Xan+e> 0. Next define

F(X) := Xexp(1/X) if X<0,
=0 if X=0,
= (X3n - X3n+9/2 if X3n+1S X< X3n , and
= Pyt O T((2X - Xans1- X3n+d/(X3n+1- X3n+d)  if Xgnizs X< Xgpyq,
where
P = (F(Xgn+d) + F(X3n43 )/2 = (Xgn- X3ne0/4 >0,
Gh = ( F(X3n+]) - F(x3n+?) )/2 = (X3n - 2X3n+3"' X3n+6)/4 >0, and
T(t) := tanh(tart/2)) if -1<t<1,
= sign(t) otherwise.

T is infinitely differentiable with Tt) >0 for -1 <t<1 and "FE 0 otherwise; H1) =+1 .
Consequently the graph of F(X) over 0 <X looks like a rising staircase with rounded
corners and risers and treads that shrink to zero as0% . Between subintervals over which F
is constant are subintervalsg{3z < X < X3n+1 over which HX) >0 and F(X) increases
monotonically from F(X%,+3 = (X3n+3- X3n+6/2 t0 F(Xgn+1) = F(X3p) = (X3, - X304+39/2  as

X increases. In the middle of each such subinterval the derivativises to its local maximum
(W2)(X3n- 2X3n+3+ X3n+e/(X3n- X3n+3 , Which approaches 0 roughly like 1/n as. ro .
Consequently F(X)» 0+ and HX) - 0+ roughly like exp(-1/X) or faster as X 0+ . It
soon follows that F(X) is twice differentiable wherever it is defined, namely % < X .

The completed definition of Newton’s iterating functibii-(X) := X - F(X)/F (X) , including
NF(0) := 0 ,NF(-0) := -1, andNF(X) := <0 when X,+1< X < X3,, remains discontinuous at
0+ becauseNF(X) runs from e up to a small positive value and back to as X runs
through each subinterval 3X3< X < X3,. None the less, Newton’s iteration converges to

Z = 0 ultimately monotonically and usually slowly from every starting iterate in the domain of
F . But Secant iteration need not converge.
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The completed definition of the Secant iterating func@®bifX, Y) := X - F(X)/FT(X, Y) hasto
include the limiting valuesSF(X, X) := NF(X) , SF(X, -©) := X - F(X) , andSF(X,Y) := -0
when F(X)-F(Y) =0z X-Y . Then X,;1=S(X,, X,.p) for n=1, 2, 3, ... by design. Starting
from Xy and X, every third Secant iterateg,= -0 ; thus Secant iteration does not
converge although the subsequence of finite Secant iterates converges slowlyto Z=0.

To transform the semi—infinite intervado < X < X into a finite interval -k x< 25887 set

X =X(X) := X/(2-X) , or X =X(x) =2x/(1+x), and f(x) := (1+x)X{(x)) . This projective map

turns F into a twice differentiable strictly increasing function f while preserving the iterations’
(non)convergence; Newton’s iteration convergesto z = 0 from every starting iterate between -1
and x :=Xx(Xp) but, starting from x and x :=x(X4), every third Secant iterate

Xan+2 = X(X3n4+9) =-1. Thus Secant iteration need not converge, though | have proved [1979']
that a subsequence of its iterates always imitates Newton's by convergingE8DZEX.A3.3.

Inverse to the problem of constructing a projective map is the problem of detecting one. Given
f(x) and F(X), what test reveals whether they are projective images of each other? An easy test
works if they have at least three ( but not too many ) of the following special points:

zeros, poles, inflexion—points, notches.
For instance, suppose the triple {u, v, w} includes one zero and two inflexion—points of f, and
{U, V, W} does likewise respectively for F; then solving the cross—ratio equation above
determines a prospective Mdbius transformation X(x) that passes the testif f(Xx)¥)) is
a linear function, namely (b - mx) . If thi§(x) fails the test, all other matching triples of
consecutive special points have to be tried and fail too before f and F can be deemed not to be
projective images; this is why we hope f and F have not too many special points.

Another test can be fashioned out of Lemma A3.1’s projective differential invariant

Af= (3F F + £)2/(()3f)
After the substitution X X(x) of their Mobius transformation, nonlinear projective images
f(x) and F(X) must satisfy Af(x) = £F(X) . Conversely, if the equation Af(x) = £F(X) is
satisfiable by a Mobius transformation X&) for which f(x} f* (xX)/( FX(x))2 F' (X(x)) )
simplifies to a positive constant ?()gand f(X)/FK(x)) simplifies to a linear function (b - mx),
then f(x) and F(X) are projective images. For example Af(x) =12 - 4 In(x) - 9/In(x) and
EF(X) =12 + 4 In(X) + 9/In(X) when f(x) =In(x) and F(X) =X In(X), so the equation
Af(x) = £F(X) has two solutions XX{(x) of which only one is a Mdbius transformation
X(x) = 1/x ; next €=f(x)3 " )/ FX(X)2 F' (X(X))=1 and (b - mx) = f(X)/B{(x)) = - ,
whencep=b =0 and B =-m=¢ =-1 inthe projective map {Xx, f(xX)} <= {X, F(X)for
another example, the projective map {x; I¥x)} <= {X, X/(1 - X)} can have either of two
Mobius parts, eitheX(x) = (x-1)/(-1) and ¢=-1, oX(x) = 1/(1-x) and ¢=1

This test is complicated slightly by the possibility that infinitely many Mobius transformations

may be compatible with a given pair of of projective images. For instance, Af=/AF =16 when
f(x) = exp(x) and F(X) = X exp(-1/X) , and then the equation Af(x) = A£F(X) is satisfied by all
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Mabius transformations X ¥(x) ; but € = f(x)2 " (X)/( F(X)® F' (X) ) = exp(4x + 4/X) is a
constant only if x + 1/X =0 is a constant, so the only compatible Mdbius transformations are
X(X) = 1/(6 - xX) , whereupon (b - mx) = f(X)#(x)) = eﬁ(c“) -X), whence B =m De u=0,
b=06@ and ¢=# in projective maps {x, f(x)} <= {X, F(X)} wherein 6 is a parameter.
Another one—parameter family of projective maps with Mdbius K& = constant/xt 0 has
projective images f(x) =k and F(X) = XK and AEf=£F = 16/(1-1/(2k-21)) for any constant

k . I know no other one—parameter family, nor other projective images with constant Zf .

We have seen that Af, and the convergence of Newton’s and Secant iterations applied to solve
f(z) =0, are invariants of projective maps. Are they related? Is there some condition that Af
can satisfy in an interva@) to prevent the iterations from meanderingCinforever? Because

f3f" = @F3F", another invariant is the sign of"f if it is constant; it figures in Theorem 7.5.
Otherwise monotonicity is not a projective invariant, so neither are Theorem 8.2 nor Corollary
8.3; do invariant versions of them exist?
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8A4. Appendix: Parabolas
This Appendix is provided for students who have taken a course on Cartesian Geometry in
High School but not yet in College.

Lemma A4.1: Let any nondegenerate triangle’s vertices be {Q, R,t8gn one
parabola C passesthrough Q and R and is tangent there to sides QS.and RS

Proof: In Cartesian (x, y)—coordinates let the triangle’s sides have equations ax+ by +c=0
for QS, Ax+By+C=0 for RS and ex+fy+g=0 for QRThen for anyu define

Hu(x,y) = (ax+by+c)-(Ax + By + C) p-(ex +fy + gf.
For every choice of the constapt, the equation K{ X, y) =0 is the equation of @onic
Section G, (an ellipse, parabola, hyperbola, or pair of straight Jinbst passes through Q
and R The set of all such conics, s called aPencil of conics. Every ( passes through Q
because (ax +by +c)=(ex+fy+g)=0 af Qmilarly G, passes through RTherefore no
Cu degenerates into a single point nor the empty set. The differential

dH, (X, y) = (ax+ by +c)-(Adx+ Bdy) + (Ax+ By + C)-(adx + bdy) - 21-(ex+fy +g)-(edx + fdy)

must vanish along ¢ this means that if (x, y) lies on,Cbecause K{(X,y) =0, then
(dx, dy) points along the tangent tq, @t (x, y) when di{x, y) =0 too. At Q
dH,(x,y) = 0+ (Ax+By + C)-(dx + bdy) -0 = 0 but (Ax+By+G30,
so ax + bdy = 0, which means that the tangent tg & Q is parallel to QStherefore QS
istangentto ¢ at Q. Similarly RS is tangentto,Cat R

The next step is to select the lemma’s parabola ¢ fr@mn the pencil of conics by choosing the
appropriate value fop. For this purpose [fx, y) must be expanded:
Hy(X, ¥) = (A -pe?)x@ + (aB + bA - ief)-xy + (bB -uf?)-y* + (terms linear in x and .
Its Discriminant
(aB + bA - uef)? - 4(aA -pe?)-(bB -pfd) = (aB - bA¥ + 4u-(be - af)-(Be - Af)
vanishes just whemq takes the finite nonzero value
:= -(aB - bAY/(4(be - af)-(Be - A).
It is finite and nonzero because no two sides of the triangle QRS are parallel, so no factor of
can vanish. With this choice fqr the vanished discriminant implies that

H(x, y) = x(other terms linear in x and )9+ (terms linear in x and ),
so “Hy(x,y) =0" is the equation of either a pair of parallel straight lines or a parabola. The pair
is ruled out by the intersection of its tangents QS and RE(; is a parabolaEND OF PROOE

The parabola is a convex curve because it lies entirely on one side of its every tangent, as can be
verified easily. The triangle is a convex figure too; and its side QR lies inside the parabola.
Therefore an arc of the lemma’s parabola C stays inside QRS as the arc runs from. Q to R
This parabola figures in the proof of Theorem.7.6
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