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Error-Bounds  for a  Zero  of a  Polynomial

 

§1  Abstract  &  Introduction

 

A computed approximation  x  to a zero  z  of a polynomial  P  of degree  n  is given along with 
values of  P
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.  How well does  x  approximate  z ?  
Exhibited below are two upper bounds for the error  |x – z|

 

 

 

.  One comes as a classical inequality 
found by  E. Laguerre  late in the  19th century.  The other inequality is tighter,  sometimes much 
tighter,  but costs more to compute.  Both will be proved and then compared numerically.

 

§2  Proofs  of  Two Inequalities 

 

Let the zeros of  P  be  z
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 .  They may be complex,  and some may be repeated.  

Evidently  P(x) = 

 

α

 

·

 

Π

 

k 

 

(x – z

 

k

 

)  for some nonzero constant  

 

α
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This figures in  Newton’s  iteration,  which would replace approximation  x  by  x
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,  a 
better approximation if  x  is close enough to a zero of  P

 

 

 

.  Let  z  denote a zero nearest  x  and let  
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  sum over all the other zeros  z
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  (including any others that may coincide with  z ).  Then
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because  |x – z| 
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| .  Dividing the previous inequality by  |Q
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|  turns it into …

      

 

Laguerre’s Inequality:
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This inequality becomes equality just when  x  is equidistant from two zeros of  P  one of which 
has multiplicity  n
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,  or when  P  has one zero of multiplicity  n .  A slightly weaker version, 
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|                                          [£]
is the version of  Laguerre’s  inequality that is usually remembered.  It becomes equality just when 
all  n  zeros of  P  are coincident.  But the inequality is useless if  Q(x) 

 

≈

 

 0  when  x  is too close to 
a zero of  P

 

'

 

 

 

,  which has  n

 

 

 

–

 

 

 

1  zeros distributed within the convex hull of the zeros  z

 

k

 

  of  P .  In 
particular,  Laguerre’s  inequality  [£]  can be excessively pessimistic when some of those zeros of  
P'   are too near clusters of zeros of  P  though different from them.  We seek a remedy,  if one 
exists,  for this shortcoming.

Construe   Q(x)/n = (Σk 1/(x – zk))/n   as the  mean  or average of all reciprocals  1/(x – zk) .  

Their complex  variance  is  δ2(x)/n2
 ,  computable from  n,  P(x),  P'(x)  and  P" (x)  thus: 

 δ2(x) := (n – 1)·Q(x)2 – n·P" (x)/P(x)  =  n·Σk ( 1/(x – zk) – Q(x)/n )2 .

Laguerre  noticed that the polynomial  P(x)2·δ2(x)  has degree at most  2n – 4 ,  not  2n – 2 ,  and 
must be nonnegative when all the zeros  zk  are real,  which was the case that interested him.  The 
same polynomial,  but only for  n = 3 ,  is buried in  Curt McMullen’s  Proposition 1.2  where he 

found in  1987  that  Newton’s  iteration applied to solve  “ P(z)/(P(z)2·δ2(z)) = 0 ”  converges 
cubically to a zero of any given cubic  P  from almost every starting point in the complex plane. 
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Now an identity familiar to statisticians,  namely that

δ2(x)/n = Σk ( 1/(x – zk) – Q(x)/n )2  =  Σk 1/(x – zk)
2 – 2(Q(x)/n)·Σk 1/(x – zk) + n·(Q(x)/n)2 

              =  Σk 1/(x – zk)
2  – Q(x)2/n  ,

will be revisited to over-estimate  |δ2(x)|  thus:

  |δ2(x)| = | Σk ( n/(x – zk) – Q(x) )2
 |/n  ≤  Σk | n/(x – zk) – Q(x) |2/n  

  =  n·Σk 1/| x – zk |2  – 2Re{Q(x)·Σk 1/(x – zk)}  + |Q(x)|2 
  ≤  n2/|x – z|2 – |Q(x)|2   since   |x – z| ≤ | x – zk | . 

This inequality was buried in my  1967 paper cited below.  When rearranged it tells us that

 |x – z|  ≤  n/√( |Q(x)|2 + |δ2(x)| ) 
   =  n·|P(x)|/√( |P'(x)|2 + |(n – 1)·P'(x)2 – n·P(x)·P" (x)| ) .             [K]

This inequality becomes equality just when  x  is equidistant from two zeros of  P  of the same 
multiplicity  n/2 ,  or when  P  has only one zero of multiplicity  n .  The inequality’s right-hand 
side becomes  ∞  only when  x  is a multiple zero of  P'   but not of  P ;  it hardly ever happens.

§3  How do Inequalities  [£]  and  [KKKK]  Compare?
As an error-bound,  [K]  is always no bigger than  Laguerre’s  [£]  but costs more to compute.  
Typically,  in the punctured neighborhood of a simple zero  z  separated well from all others,  
[K]/[£] ≈ 1/√n ,  which is not a great improvement,  as error-bounds go,  unless degree  n  is huge.  
We should be concerned only with situations wherein an error-bound is at least a few orders of 
magnitude bigger than a very small error.  If such a situation arises too often,  that error-bound is 
likely to be disregarded like  The Little Boy Who Cried “Wolf !”  Only if  [£]  encounters such 
situations far more often than  [K]  does can  [K]  be worth its extra cost.

Aside from being zero at zeros  zk  of  P ,  error-bounds  [K]  and  [£]  are the same when  x  is one 

of the  2n – 4  zeros of  P(x)2·δ2(x) = (n – 1)·P'(x)2 – n·P(x)·P" (x) .  And  [£]/[K] → 1  as  x → ∞ .  
Therefore an undesirable situation with  [£] >> [K]  can arise only in a region surrounding a zero  
ζ  of  P'   that is not a zero  z  of  P  but is near one of a cluster.  This follows from the equation  
Q(ζ) = 0 ,  which implies   ζ – z = –1/( Σ'k 1/(ζ – zk) ) ,  whence follows that  |ζ – z|  can be very 
small only if at least one other  |ζ – zk|  is very small too  (or else  n  is enormous).  Among these 
undesirable situations are sometimes some with  [K]  also excessively big.  These rare situations 
can arise only in a region surrounding a  multiple  zero  ζ  of  P'   that is not a zero  z  of  P  but is 

near one of a cluster,  as follows from the equations  Q(ζ) = 0 = δ2(ζ) .

To compare  [£]  with  [K] ,  let us plot  Error-Bound/|Error|  for both bounds and for each of three 
polynomials  P  chosen to exhibit undesirable situations.  The plots’ downward spikes occur at 
zeros of  P ,  one or two at  z = ±h .  Upward spikes would go to  ∞  at zeros of  Q  but for cut-offs 
at the tops of the graphs.  Clusters of zeros can be unobvious;  for instance,  the twelve zeros of   

b(x) := x12
 – 1   on the unit circle are not clustered,  though separated by less than  0.51784 ,  but 

some of the twelve integer zeros of   e(x) := ∏1≤k≤12 (x – k)   are clustered,  as we shall see.
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  Error-Bounds/|Error|  for  Polynomial  e(x) := ∏1≤k≤12 (x – k) 

Here  [K]/|x – z|  never rises above  √12 ≈ 3.4641 ;  but  [£]/|x – z|  peaks up to  ∞  between each 
pair of  e(x)’s  adjacent zeros.  This intimation of clustering is corroborated by the sensitivity of 
some of the zeros to tiny perturbations of the polynomial’s coefficients.  For instance,  nearby 

polynomial   ê(x) := e(x) – e(– x)·τ   with tiny  τ ≈ 5.600278/1010  has coefficients differing from 
those of  e(x)  in the tenth sig.dec.;  this perturbation changes zeros  8  and  9  of  e  into a double 
zero of  ê  near  8.4835138 .  Generally,  a polynomial’s  “clustered zeros”  are less well defined 
than the smallest perturbation that causes some of them to coalesce,  though it is hard to compute.

• • • • • • • • • • • • • • • • • • 

 Error-Bounds/|Error|  for  Polynomial  b(x) := x12 – 1 
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The zeros of   b(x) := x12
 – 1   are not clustered at all.  Their multiplicities can be increased by a 

perturbation of nonzero coefficients only if the constant term  “ 1 ”  is replaced by  “ 0 ”  .  Now 
both  [£]/|x – z|  and  [K]/|x – z|  spike up to  ∞  as  x → 0 ,   but  [£]/|x – z|  has a much wider spike:  
Roughly,  for any big exponent  M ,  and for  z  the zero of  b  nearest  x ,  

 [£]/|x – z| > 10M when  |x| < 1/10M/11
 ;       [K]/|x – z| > 10M when  |x| <1/(111/10·10M/5) .

• • • • • • • • • • • • • • • • • • 

 Error-Bounds/Error  for  Polynomial  g(x) := (x2
 – h2)(x4

 + (h2
 – 3)(x2

 + h2) + 3  @  h = 9/8 

The zeros of  g  are  z = ±1.125  and  z ≈ ±( 0.939246 + 0.122459·ı  and its complex conjugate) .
The derivative  g'   has a simple zero  ζ = 0 ,  and two double zeros  ζ = ±1  where both  [£]  and  
[K]  spike up to  ∞ .  Here  [K]’s  spike is so much narrower than  [£]’s  because,  as  x → 1 ,  

asymptotically  [£] ≈ 0.0046854/|x – 1|2  >>  [K] ≈ 0.048401/√|x – 1| .  A pimple on the graph of  

[K]/Error  occurs at  x ≈ 0.8071784  where  δ2(x) = 0  whence  [K]/|x – z| = [£]/|x – z| ≈ 3.4586 .

This example’s spikes are typical in so far as  [£]  often spikes up to  ∞  near clustered zeros of a 
polynomial.  [K]  hardly ever spikes up to  ∞ ;  and when it does its spike is so narrow that  x  is 
unlikely to fall onto it during the search for a zero by some iterative method.  That this behavior is 
typical will be confirmed by the following asymptotic estimates.
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§4  Summary  of  Asymptotic Behaviors

Here  x  is an approximation to a zero  z  of a polynomial  P  of degree  n ,  and  [£]  and  [K]  are 
error-bounds computed at  x  from formulas exhibited above.

First let  z  be an  n-tuple  zero of  P ;  then  [£] = [K] = |x – z| .   This does not happen often.

Next let  z  be a zero of  P  of positive multiplicity  m < n .   As  x → z , 
  [£]/|x – z| → n/m            >                [K]/|x – z| → √n/m  .

This case,  with  m = 1 ,  occurs most often.

Next let  ζ  be a simple zero of  P'  ,  but not a zero of  P .   As  x → ζ , 

  [£] ≈ n·|P(ζ)/P" (ζ)|/|x – ζ| → ∞    >>    [K] → √n·|P(ζ)/P" (ζ)|  .

Finally let  ζ  be a zero of  P'   of multiplicity  m ≥ 2 ,  but not a zero of  P .   As  x → ζ , 

  [£] ≈ n·m!·|P(ζ)/P[m+1](ζ)|/|x – ζ|m    >>    [K] ≈ √( n·(m – 1)!·|P(ζ)/P[m+1](ζ)| /|x – ζ|m – 1 ) .  
In this rare case,  as both  [£]  and  [K]  spike up to  ∞ ,   |x – ζ|·[£]/[K]2 → m  in the spike.  This is 
why  [K]’s  spike is so much narrower than  [£]’s  and why,  if  [K]  has a spike,  x  is so unlikely 
to fall onto it.

§5  Resolution of Ambiguity
Suppose two estimates  x1 and x2  of zeros of  P  have been found.  Do  x1 and x2  approximate 
different zeros,  or the same one?  Sometimes this question can be answered by error-bounds:

Error-bounds  [£]1  for  x1  and  [£]2  for  x2  can be computed.  They answer the question above 
unambiguously if  [£]1 + [£]2 < |x2 – x1| ,  in which case  x1 and x2  aproximate different zeros.

Otherwise  [K]1  for  x1  and  [K]2  for  x2  can be computed.  They answer the question above 
unambiguously if  [K]1 + [K]2 < |x2 – x1| ,  in which case  x1 and x2  approximate different zeros.

Otherwise something else must be done to answer the question.  If the computed values of  P"  ,  P'   
and especially  P  are accurate enough,  they can be used to improve the estimates  x1 and x2  by 
using,  say,  Laguerre’s  iteration formula cited in my  1967  paper.  On very rare occasions,  
however,  attempts to improve clustered estimates actually worsen them unless extra-precise 
arithmetic is employed.

Ambiguous 
overlapping
error-bounds

Unambiguous
disjoint
error-bounds

•• • •
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§6  Conclusions
[£]  can spike up to  ∞  in the neighborhood of clusters of zeros.  When both  [£]  and  [K]  spike 
up,  which can happen only very rarely,  [K]’s  spike is so much narrower than  [£]’s  that  [K]’s  is 
unlikely to be encountered.

Though it costs more than  Laguerre’s  [£] ,  error-bound  [K]  is worth computing when it is likely 
to be far smaller than  [£] ,  as is likely during the numerical computation of a polynomial’s zero 
that belongs to a cluster of zeros hypersensitive to small perturbations.  But a cluster is no more 
obvious in advance than an unmarked minefield,  so it makes sense to compute  [£]  first and then,  
if it seems too big,  compute  [K] .
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