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Abstract

A brief sketch of the early days of eigenvalue hunting is followed

by a description of the QR algorithm and its major virtues. The

symmetric case brings with it guaranteed convergence and an elegant

implementation. An account of the impressive discovery of the algo-

rithm brings the essay to a close.
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1 Early History of Eigenvalue Computations

We assume that the reader shares the view that the rapid computation of the
eigenvalues of a square matrix is a valuable tool for engineers and scientists.
See [12] for eigenproblems in Engineering.

The QR algorithm solves the eigenvalue problem in a very satisfactory
way but this success does not mean that the QR algorithm is necessarily the
last word on the subject. Machines change and problems specialize. What
makes the experts in matrix computations happy is that this algorithm is a
genuinely new contribution to the �eld of numerical analysis and not just a
re�nement of ideas given by Newton, Gauss, Hadamard, or Schur.

Matrix theory dramatically increased in importance with the arrival of
matrix mechanics and quantum theory in the 1920s and 1930s. In the late
1940s some people asked themselves how the digital computer might be em-
ployed to solve the matrix eigenvalue problem. The `obvious' approach is to
use a two stage method. First compute the coeÆcients of the characteristic
polynomial, more on this in Sections 2, and then compute the zeros of the
characteristic polynomial. There are several ingenious ways to accomplish
the �rst stage in a number of arithmetic operations proportional to n3 or n4

where n is the order of the matrix. See [5], [8], [9]. The second stage was
a hot topic of research during this same time period. Except for very small
values of n, n � 10, this two stage approach is a disaster on a computer with
�xed word length because the zeros of a polynomial are, in general, incredi-
bly sensitive to tiny changes in the coeÆcients whereas the eigenvalues of a
matrix are often, but not always, insensitive to small uncertainties in the n2

entries of the matrix. In other words, the replacement of those n2 entries by
the n coeÆcients of the characteristic polynomial is too great a condensation
of the data.

A radical alternative to the characteristic polynomial is the use of sim-
ilarity transformations to obtain a nicer matrix with the same eigenvalues.
More on similarities in Sections 2. The more entries that are zero the nicer
the matrix. Diagonal matrices are perfect but a triangular matrix is good
enough for our purposes because the eigenvalues lie on the main diagonal.
For deep theoretical reasons a triangular matrix is not attainable in a �nite
number of arithmetic operations, in general. Fortunately one can get close
to triangular form with only O(n3) arithmetic operations. More precisely
a matrix is said to be upper Hessenberg if it is upper triangular with an
extra set of nonzero entries just below the diagonal in positions (i + 1; i),
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i = 1; 2; : : : ; n � 1, and these are called the subdiagonal entries. What is
more the similarity transformations needed to obtain a Hessenberg form (it
is not unique) can be chosen so that no computed matrix entry ever exceeds
the norm of the original matrix. Any proper norm will do such as the square
root of the sum of the squares of the entries. This property of keeping in-
termediate quantities from becoming much bigger than the original data is
important for computation with �xed length numbers and is called stability.
The hard task is to �nd similarity transformations that both preserve Hes-
senberg form and get rid of those subdiagonal entries. This is where the QR
algorithm comes to the rescue. For its discovery see Sections 4. The subrou-
tine DHSEQR in the LAPACK library embodies the latest implementation.
See [1].

Let us try to put the improvement based on QR in perspective. The
cost of forming the product of two n � n dense matrices in a conventional
way is 2n3 arithmetic operations. In 1950 there were no reliable ways to
solve the eigenvalue problem. Fifty years later standard software computes
all the eigenvalues of a dense symmetric matrix in about the same time as
1 (one!) conventional matrix multiply. To compute a triangular (Schur)
decomposition of a real nonsymmetric n � n dense matrix (B = QTQ�, T
triangular, Q� = Q�1) costs about 25n3 arithmetic operations. Up until the
1960's 
oating point arithmetic operations dominated execution time but
now the operations +;�; � take little more time than data movement (cache
access). So performance comparison is a complicated business. Nevertheless
the QR algorithm has reduced the time for standard eigenvalue computations
to the time required for a few matrix multiplies.

A feature that distinguishes numerical analysis from other branches of
computer science is that the basic arithmetic operations are carried out on
numbers with variable exponents but held to a �xed precision, to either eight
or sixteen decimal digits approximately. This constriction permits incredibly
fast execution but the price for lighting speed is that almost every arithmetic
operation produces a very slightly wrong result. The e�ect of these little
errors can be disastrous if intermediate quantities in a calculation are allowed
to grow much larger than the original data.
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2 The LU and QR Algorithms

Let us recall that if B is a n � n matrix with real or complex entries then
the eigenvalue/eigenvector equation is

Bv = v�; v 6= o; v an n-vector:

The characteristic polynomial of B is det (tI �B) and has degree n. Thus

det (tI �B) = tn +

n�1X
i=0

cit
i

and (1; cn�1; : : : ; c0) is the sequence of coeÆcients. The eigenvalues � of B are
the zeros of the characteristic polynomial. Since det (XY ) = det (X) det (Y )
it follows that similarity transformations, B �! X�1BX =: C, preserve
eigenvalues; det (tI � C) = det (tI �B).

We describe the algorithms here in a straightforward way. For their dis-
covery see Sections 4.

Suppose that B = XY with X invertible. Then the new matrix C := Y X
is similar to B since C = Y X = X�1BX. This observation is intriguing but
it is not clear that it is of much use to eigenvalue hunters. Let us recall two
well known ways of factoring a matrix.

I. Triangular factorization (or Gaussian elimination),

B = LU

where L is lower triangular with ones along the main diagonal and U is upper
triangular. This factorization is not always possible. The multipliers in the
reduction are stored in L, the reduced matrix in U .

II. The QR (or orthogonal triangular) factorization,

B = QR

where Q is unitary, Q�1 = Q� (conjugate transpose of Q), and R is upper tri-
angular with nonnegative diagonal entries. This factorization always exists.
Indeed the columns of Q are the outputs of the Gram-Schmidt orthonor-
malizing process when it is executed in exact arithmetic on the columns of
B = (b1; b2; : : : ; bn).
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Each factorization leads to an algorithm by iteration.
The LU-transform of B is UL = L�1BL and the QR-transform of B is

RQ = Q�1BQ = Q�BQ. In general the LU or QR transform of B will not
have more zero entries than B. The rewards of this transform come only by
repetition.

Theorem 1 (Fundamental Theorem) If B's eigenvalues have distinct ab-
solute values and the QR transform is iterated inde�nitely; starting from
B1 = B,

Factor Bj = QjRj ;

Form Bj+1 = RjQj; j = 1; 2; : : :

then, under mild conditions on the eigenvector matrix of B, the sequence
fBjg converges to the upper triangular (Schur) form of B with eigenvalues
in monotone decreasing order of absolute value down the diagonal.

This result is not obvious and proofs may be found in [20]. The procedure
that generates fBjg is called the basic QR algorithm.

A similar theorem holds for the basic LU algorithm provided that all the
transforms exist. Let C1 := B and

Factor Cj = LjUj;

Form Cj+1 := UjLj; j = 1; 2; : : :

then fCjg converges to an upper triangular matrix with the eigenvalues in
monotonic order down the diagonal. However this limit is not a Schur form
of B because the transforms do not use unitary similarities that preserve the
norm.

From a purely theoretical point of view there is not much more to be said.
However it takes several clever observations to turn this simple theory into
the highly successful QR algorithm of today.

� Invariance of the Hessenberg Form
If B is an upper Hessenberg matrix (entry (i; j) vanishes if i > j + 1

then so are all its QR iterates and all its LU iterates. This useful result
is easy to see. If Bj is Hessenberg then so is Qj, since R�1

J is triangular.
Consequently RjQj = (Bj+1) is also Hessenberg. The cost of computing the
QR factorization falls from O(n3) to O(n2) when the matrix is Hessenberg
and n� n. See [11]. A similar result holds for LU iterates.
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Fortunately any matrixmay be reduced by similarities to Hessenberg form
in O(n3) arithmetic operations in a stable way and from this point onwards
we shall assume that this reduction has been performed as an initial phase.
The mild conditions mentioned in the Fundamental Theorem are satis�ed by
upper Hessenberg matrices with nonzero subdiagonals. See [15].

� Accelerating Convergence
The Hessenberg sequences fBjg and fCjg produced by the basic algo-

rithms converge linearly and that is too slow for impatient customers. The
situation can be improved by making a subtle change in our goal. Instead of
looking at the matrix sequence fBjg we may focus on the (n; n� 1) entry of
each matrix, the last subdiagonal entry. When the (n; n � 1) entry is negli-
gible then the (n; n) entry is an eigenvalue, to within working precision, and
column n does not in
uence the remaining eigenvalues. Consequently the
variable n may be reduced by 1 and computation continues on the smaller
matrix. We say that the nth eigenvalue has been de
ated. Note that the
top of the matrix need not be close to triangular form. Thus, in practice,
convergence refers to the scalar sequence of (n; n�1) entries. The rate of con-
vergence of this sequence can be vastly improved, from linear to quadratic,
by the simple device of translation, or shift of origin.

The mechanism behind this improvement is not hard to understand. In
exact arithmetic if B is singular then R1 = Q�

1B = Q�

1B must be singular
since Q1 is unitary. The Hessenberg form dictates that it is the (n; n) entry
of R1 that must vanish. Hence the nth row of B2 = R�

1
Q1 vanishes and we

may de
ate, n �! n� 1, after one step. The implication of the observation
is that we should apply the QR transform to B�sI where s is our best guess
at the smallest eigenvalue of B. Thus we arrive at the shifted QR algorithm:
Let B1 = B. For i = 1; 2; : : : until convergence

Select a shift si

Factor Bi � siI = QiRi

Form Bi+1 = RiQi + siI = Q�

iBiQi:

In principle there is a (di�erent) convergence theory for each shift strategy.
This is not the place to discuss shift strategy but in the current imple-

mentations (see [1]) it is rare that more than 2n QR iterations are needed
to compute all the eigenvalues of B. The average number of iterations per
eigenvalue is less than 2 over a huge class of test matrices.
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� The Double Shift Implementation for Real Matrices
There is a clever variation on the shifted QR algorithm that should

be mentioned. In many applications the initial matrix is real but some of
the eigenvalues are complex. The shifted algorithm presented above must
then be implemented in complex arithmetic in order to achieve quadratic
convergence. The man who �rst presented the QR algorithm, J. G. F Francis,
see [10], showed how to keep all arithmetic in the real �eld and still retain
quadratic convergence.

Let us see how it is done. Without loss take j = 1. Consider two succes-
sive steps

B1 � s1I = Q1R1

B2 = R1Q1 + s1I

B2 � s2I = Q2R2

B3 = R2Q2 + s2I:

It turns out, after some manipulation, that

(Q1Q2)(R2R1) = (B1 � s1I)(B1 � s2I)

and
B3 = (Q1Q2)

�B1(Q1Q2):

Suppose that s1 and s2 are either both real or a complex conjugate pair then
(B1�s1I)(B1�s2I) is real. By the uniqueness of the QR factorization Q1Q2

is the Q factor of (B1 � s1I)(B1 � s2I) and so is real orthogonal, not just
unitary. Hence B3 is a product of three real matrices and thus real.

The next challenge is to compute B3 from B1 and s (complex) without
constructing B2. The solution is far from obvious and brings us to the con-
cept of `bulge chasing' which is a signi�cant component of the QR success
story. We will describe it brie
y without detailed justi�cation.

� Bulge Chasing
The theoretical justi�cation comes from the `Implicit Q' or `Uniqueness

of Reduction' property.

Theorem 2 (Uniqueness) If Q is orthogonal, B is real and H = Q�BQ is
a Hessenberg matrix in which each subdiagonal entry hi+1;i > 0 then H and
Q are determined uniquely by B and q1, the �rst column of Q.
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Now return to the equations above and suppose that s1 = s, s2 = �s 6= s.
If B1 is Hessenberg then so are all the Bi. Suppose that B3 has positive
subdiagonal entries. By the theorem both B3 and Q1Q2 are determined by
column 1 of Q1Q2, call it q. Since R2R1 is upper triangular q is a multiple
of the �rst column of

B2

1 � 2(Re s)B1 + jsj2I:

Since B1 is Hessenberg the vector q is zero except in its top 3 entries.
The following 3 stage algorithm computes B3. It makes use of orthogonal

matrices Hj , j = 1; 2; : : : ; n � 1, such that Hj is the identity except for a
3� 3 submatrix in rows and columns j; j +1; j +2. Hn�1 di�ers from I only
in its trailing 2� 2 matrix.

Step 1. Compute the �rst three entries of q.

Step 2. Compute a matrixH1 such thatH t
1
q is a multiple of e1, the �rst column

of I. Form C1 = H t
1
B1H1. It turns out that C1 is upper Hessenberg

except for nonzeros in positions (3; 1), (4; 1), and (4; 2). This little
submatrix is called the `bulge'.

Step 3. Compute a sequence of matrices H2; : : : ;Hn�1 and Cj = H t
jCj�1Hj,

j = 2; : : : ; n � 1 such that Cn�1 = H t
n�1 � � �H

t
2C1H2 � � �Hn�1 is a Hes-

senberg matrix with positive subdiagonal entries. More on the Hj

below.

We claim that Cn�1 = B3. Recall that column 1 of Hj is e1 for j >
1. Thus H1H2 � � �Hn�1e1 = H1e1 = q=kqk = (Q1Q2)e1. Now Cn�1 =
(H1 � � �Hn�1)tB1(H1 � � �Hn�1) and B3 = (Q1Q2)tB1(Q1Q2). The Implicit Q
Theorem ensures us that B3 and Cn�1 are the same. It can be shown that
if s is not an eigenvalue then Cn�1 must have positive subdiagonal entries in
exact arithmetic.

Step 3 involves n�2 minor steps at each of which only 3 rows and columns
of the array are altered. The code is elegant and the cost of forming Cn�1

is about 5n2 operations. The transformation C2 �! H t
2
C1H2 pushes the

bulge into positions (4; 2), (5; 2), and (5; 3) while creating zeros in positions
(3; 1) and (4; 1). Subsequently each operation with an H matrix pushes the
bulge one row lower down until it falls o� the bottom of the matrix and
the Hessenberg form is restored. The transformation B1 �! B2 is called a
double step.
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It is now necessary to inspect entry (n� 1; n� 2) as well as (n; n� 1) to
see whether a de
ation is warranted. For complex conjugate pairs it is the
(n� 1; n� 2) entry that becomes negligible, not (n; n� 1).

There is an analogous procedure for computing a double step with the
LU algorithm. Although the LU algorithm is somewhat faster than the
QR algorithm it is not guaranteed to keep all intermediate quantities nicely
bounded and for this reason it has been abandoned.

The current shift strategies for QR do not guarantee convergence in all
cases. Indeed examples are known where the sequence fBjg can cycle. To
guard against such misfortunes an ad hoc exceptional shift is forced from
time to time. It is possible that a more complicated choice of shifts would
produce a nicer theory but practical performance is excellent. See [2], [4], [3]
and [6] for blemishes in the simple shift strategy.

3 The Symmetric Case

The QR transform preserves symmetry for real matrices and preserves the
Hermitian property for complex matrices: B �! Q�BQ. It also preserves
Hessenberg form. Since a symmetric Hessenberg matrix is tridiagonal, entry
(i; j) vanishes if ji�jj > 1, the QR algorithm preserves symmetric tridiagonal
form and the cost of a transform plunges from O(n2) to O(n) operations. In
fact the standard estimate for the cost of computing all the eigenvalues of
an n�n symmetric tridiagonal matrix is 10n2 arithmetic operations. Recall
that all the eigenvalues are real.

One reason that this case is worthy of a section to itself is its convergence
theory. Recall that the basic algorithm, all shifts are zero, pushes the large
eigenvalues to the top and the small ones to the bottom. A shift strategy
suggested by J. H. Wilkinson in the 1960's consists of computing both eigen-
values of the trailing 2 � 2 submatrix, the one in rows and columns n � 1
and n, and choosing as shift the eigenvalue that is closer to the (n; n) en-
try. This choice is used from the very beginning and the beautiful fact is
that the (n � 1; n) and (n; n � 1) entries always converge to zero. Moreover
convergence is rapid. Everyone believes that the rate is cubic (very fast)
although our proofs only guarantee a quadratic rate (like Newton's iteration
for polynomial zeros). For more details see [16, Chap. 8].

The implementation for symmetric tridiagonals is particularly elegant and



9

we devote a few lines to evoke the procedure. The bulge chasing method de-
scribed in Sections 2 simpli�es because the bulge consists of a single entry on
each side of the diagonal. Moreover the orthogonal matrices Hi in Sections 2
may be replaced by what are called `plane rotations'. A plane rotation equals
the identity matrix except in a pair of adjacent rows and columns where it
has the form �

cos � � sin �
sin � cos �

�

and � is the angle of rotation. We show the changing part of the matrix
before and after a properly chosen plane rotation. The bulge is denoted by
the Greek letter �, new values by 0 and an x does not change. Thus0

BB@
x a � 0
a b e 0
� e d f
0 0 f x

1
CCA �!

0
BB@

x a0 0 0
a0 b0 e0 �0

0 e0 d0 f 0

0 �0 f 0 x

1
CCA

The value of � is given by

a sin � = � cos �

which dictates that cos � = a=
p
a2 + �2.

There is one more twist to the implementation that is worth mentioning.
The code can be rearranged so that no square roots need to be computed.
This is possible because the eigenvalues depend on diagonal entries such as b
and d above but only on the squares of the o�-diagonal entries such as a, e,
f . By using �2, a2, b, e2, d, and f2 it is possible to compute sin2 � and cos2 �
and the new entries (�0)2, (a0)2, b0, (e0)2, d0, and (f 0)2. The details are tricky
and may be found in [16, Chap. 8] and [11].

4 The Discovery of the Algorithms

There is no obvious bene�t in factoring a square matrix B into B = QR and
then forming a new matrix RQ = Q�BQ. Indeed some structure in B may
be lost in Q�BQ. So how did someone come up with the idea of iterating
this transformation?

Major credit is due to the Swiss mathematician and computer scientist
H. Rutishauser. His doctoral thesis [17] was not concerned with eigenval-
ues but with a more general algorithm he invented and called the quotient-
di�erence, or qd, algorithm. This procedure may be used for �nding zeros
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of polynomials or poles of rational functions or manipulating continued frac-
tions. The algorithm transforms an array of numbers which Rutishauser
writes as

Z = (q1; e1; q2; e2; : : : ; qn�1; en�1; qn)

into another one, Ẑ, of same form.
Let us de�ne two bidiagonal matrices associated with Z. For simplicity

take n = 5, then

L =

0
BBBB@

1
e1 1

e2 1
e3 1

e4 1

1
CCCCA ; U =

0
BBBB@

q1 1
q2 1

q3 1
q4 1

q5

1
CCCCA :

Rutishauser observed that the rhombus rules he discovered for the qd trans-
formation, namely

êi + q̂i+1 = qi+1 + ei+1

êiq̂i = qi+1ei

admit the following remarkable interpretation:

L̂Û = UL:

Note that UL and LU are tridiagonal matrices with all superdiagonal entries
equal to one. In other words the qd algorithm is equivalent to the following
procedure on tridiagonals J with unit superdiagonals:

Factor J = LU;

Form Ĵ = UL:

Thus was the LU transform born. It did not take Rutishauser a moment to
see that the idea of reversing factors could be applied to a dense matrix or a
banded matrix. Although the qd algorithm appeared in 1953/54 it was not
until 1958 that Rutishauser published his LU algorithm. See [17] and [18].
He called it LR but I use LU to avoid confusion with QR.

Unfortunately the LU transform is not always stable and so the hunt
was begun for a stable variant. This was found by a young computer sci-
entist J. G. F Francis, see [10], greatly assisted by his mentor C. Stra-
chey, the �rst professor of Computation at Oxford University. Indepen-
dently of Rutishauser and Francis the basic QR algorithm was presented
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by V. Kublanovskaya in the USSR in 1961, see [13] (in Russian) and [14]
(English translation). However Francis not only gave us the basic QR algo-
rithm but, at the same time, exploited the invariance of the Hessenberg form
and gave the details of a double step to avoid the use of complex arithmetic.
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