

File: MeanVar Version dated September 2, 2013 6:49 am

Prof. W. Kahan from Notes for Math 128A Page 1 / 5

Mean and Variance in One Pass over the Data

A hand-held calculator with limited storage capacity can compute the

Mean

 and

Variance

 of an
arbitrarily long sequence of real numbers x

1

, x

2

, x

3

, É, x

n-1

, x

n

, É without storing all of them.
As each datum x

n

 is entered into the calculator, it can compute the mean m

n

 and variance v

n

of all the data entered so far:

 m

n

 :=

∑

1
n

x

k

/

n and v

n

 :=

∑

1
n

(x

k

 Ð m

n

)

2

/

n .

(The

Unbiased Sample-Variance

 is náv

n

/(nÐ1) .)

To accomplish these computations the calculator requires two schemes:
¥ Formulas to update m

n

 to m

n+1

 and v

n

 to v

n+1

 as soon as x

n+1

 becomes available.
¥ Tricks to keep roundoff from ruining the formulasÕ accuracy when v

n

 stays very small.
These schemes are described below together with tests of their efÞcacy.

In the absence of roundoff the following recurrences would update m

n

 and v

n

 :

 m

n+1

 := m

n

 + (x

n+1

 Ð m

n

)

/

(n+1) , starting with m

1

 := x

1

 .

 v

n+1

 := v

n

 Ð

(

 v

n

 Ð ná(x

n+1

 Ð m

n

)

2

/

(n+1)

)/

(n+1) , starting with v

1

 := 0 .
These require only one pass over the sequence of data x

k

 . When n gets big, roundoff degrades
these formulas noticeably unless m

n

 and v

n

 are computed extra-precisely or else

Compensated

Summation

 is invoked to attenuate rounding errors that occur at Ò

m

n

 + É

Ó and Ò

v

n

 Ð É

Ó

.

Shufßing the order of sequence x

k

 shouldnÕt change m

n

 nor v

n

, but roundoff can violate this.

To test the recurrences their results should be compared with the deÞnitions above that require
two passes over the data for each n . Those deÞnitionsÕ formulas also require precautions to
attenuate roundoff unless the arithmeticÕs precision extravagantly exceeds the dataÕs.

Below two M

ATLAB

 programs

meanvrc1

 and

meanvrc2

 compare results from the one-pass
and two-pass formulas to see whether they disagree signiÞcantly. The second program runs
correctly

ONLY

 on 386-M

ATLAB

 3

.

5, 68040-Macintosh M

ATLAB

 5

.

2, and on PC-Windows
M

ATLAB

 6

.

5 after invocation of its command
 Ò

system_dependent(‘setprecision’, 64)

 Ó
because only these versions of M

ATLAB

 perform extra-precise accumulation of matrix products
necessary to obtain adequate accuracy from the two-pass formulas. A third program

meanvrc3

takes advantage of M

ATLAB

Õs vectorization to achieve much higher speed though at the cost of
slightly diminished accuracy despite efforts to exploit extra-precise scalar products.

M

ATLAB

Õs arithmetic carries almost 16 sig.dec., exceeding the precision of practically all data
extravagantly. Consequently only extravagant test data can reveal how different programs differ
in their sensitivities to roundoff. A more practical test compares the one-pass program

meanvrc1

with a simpler version

meanvrc4

, different only in its lack of Compensated Summation, when
performed in 4-byte wide

float

 arithmetic upon

float

 data instead of M

ATLAB

Õs 8-byte

double

.
This test data is more realistic though artiÞcial; its correct values m

n

 and v

n

 are known exactly.

File: MeanVar Version dated September 2, 2013 6:49 am

Prof. W. Kahan from Notes for Math 128A Page 2 / 5

function [m, v] = meanvrc1(x)
% [m, v] = meanvrc1(x) = mean and variance of array x
% computed in one pass over the data x(:) .
% W. Kahan, 19 July 2013
x = x(:) ; %... assumed real
L = length(x) ;
if (L<1), m = [] ; v = [] ; return, end
m = x(1) ; v = 0 ; dm = 0 ; dv = 0 ;
for n = 2:L
 xn = x(n) ; oldm = m ; oldv = v ;
 d = ((xn - m) - dm)/n ;
 t = d + dm ; m = oldm + t ; %... rounded
 dm = (oldm - m) + t ; %... compensates summation for m
 d = ((d*d*(n*(n-1)) - v) - dv)/n ;
 t = d + dv ; v = oldv + t ; %... rounded
 dv = (oldv - v) + t ; %... compensates summation for v
 end
% .

function [m, v] = meanvrc2(x)
% [m, v] = meanvrc2(x) = mean and variance of array x
% computed in two passes over the data x(:) .
% W. Kahan, 19 July 2013
x = x(:) ; %... assumed real
L = length(x) ;
if (L<1), m = [] ; v = [] ; return, end
sn = 0 ; ds = 0 ;
for n = 1:L
 t = x(n) + ds ; s = sn ; sn = s + t ;
 ds = (s - sn) + t ; %... compensates summation of sn
 end
m = sn/L ; %... almost current mean value
dm = ([sn, m, ds]*[1; -L; 1])/L ; %... extra-precisely
v = 0 ; dv = 0 ;
for k = 1:L %... second pass
 t = (x(k) - m) - dm ; t = t*t + dv ;
 s = v ; v = s + t ;
 dv = (s - v) + t ; %... compensates summation of v
 end
v = v/L ;
% .

function [m, v] = meanvrc3(x)
% [m, v] = meanvrc3(x) = mean and variance of array x
% computed in fast vectorized passes over the data x(:) .
% W. Kahan, 19 July 2013
x = x(:) ; %... assumed real
L = length(x) ;
if (L<1), m = [] ; v = [] ; return, end
u = ones(L,1) ;
sn = x'*u ; %... sum rounded to 53 sig.bits
ds = [sn, x']*[-1; u] ; %... extracts up to 10 more sig.bits
m = sn/L ; %... almost current mean value
dm = ([sn, m, ds]*[1; -L; 1])/L ; %... extracts a few more sig.bits
u = [x, u, u]*[1; -m; -dm] ; %... = x - m - dm extra-precisely
v = (u'*u)/L ;
% .

File: MeanVar Version dated September 2, 2013 6:49 am

Prof. W. Kahan from Notes for Math 128A Page 3 / 5

function [m, v] = meanvrc4(x)
% [m, v] = meanvrc4(x) = mean and variance of array x computed
% in one pass over the data x(:) without compensated summation.
% W. Kahan, 27 Aug. 2013
x = x(:) ; %... assumed real
L = length(x) ; if (L<1), m = [] ; v = [] ; return, end
m = x(1) ; v = 0 ;
for n = 2:L
 d = (x(n) - m)/n ; m = m + d ; %... rounded
 v = v + (d*d*(n-1) - v/n) ; %... rounded
 end
% .

Results from several example sequences x

k

 are exhibited hereunder. The second is the array

x = 100000000 + randn(1, 16384)

consisting of 16384 entries each differing from 100000000 by a

Normally

 distributed pseudo-
random variate with mean 0 and variance 1

. The Þrst three programs above agree to 15 sig.
dec.; any difference from the fourth is due to its uncompensated roundoff. That these programs
agree so closely corroborates that they are intended to compute the same mean m and variance
v

, though using four different methods affected differently by roundoff.

» Results from 386-PC-Matlab 3.5 on an old 80386-based Intel 302

» x = randn(1, 32768) ; %... 32768 “normal” random no’s, m = 0 , v = 1
» [m1,v1] = meanvrc1(x) ; [m2,v2] = meanvrc2(x) ;
» [m3,v3] = meanvrc3(x) ; [m4,v4] = meanvrc4(x) ;
» res1 = [m1,v1; m2,v2; m3,v3; m4,v4]

res1 = m v
 -1.422220178371109e-3 1.012960974376284 %... from meanvrc1
 -1.422220178371108e-3 1.012960974376284 %... from meanvrc2
 -1.422220178371108e-3 1.012960974376284 %... from meanvrc3
 -1.4222201783710 98e-3 1.0129609743762 78 %... from meanvrc4

» x = 100000000 + randn(1, 16384) ; %... m = 100000000 , v = 1
» [m1,v1] = meanvrc1(x) ; [m2,v2] = meanvrc2(x) ;
» [m3,v3] = meanvrc3(x) ; [m4,v4] = meanvrc4(x) ;
» res2 = [m1,v1; m2,v2; m3,v3; m4,v4]

res2 = m v
 100000000.0049386 0.9951514108806957 %... from meanvrc1
 100000000.0049386 0.9951514108806957 %... from meanvrc2
 100000000.0049386 0.9951514108806957 %... from meanvrc3
 100000000.004938 1 0.99515140 86945294 %... from meanvrc4

As expected,

meanvrc4 Õs variance v is most vulnerable to roundoff when √v/m is small.

The third example is the non-random array
z = 2^52 - 12345678 + [1:30000]

whose 30000 elements have easily calculated mean m = 4503599615039818 . 5 and variance
v = 7499999 . 916666… . But meanvrc3 will lose half the sig.dec. of v because its mean m is
too small by almost 0.5 , too little to show up in binary-decimal conversion to only 16 sig.dec.

File: MeanVar Version dated September 2, 2013 6:49 am

Prof. W. Kahan from Notes for Math 128A Page 4 / 5

» x0 = 2^52 - 12345678 ; %... = 4503599615024818
» n = 30000 ; x = x0 + [1:n] ; %... Length(x) = n
» m = x0 + (n+1)/2 ; v = (n-1)*(n+1)/12 ; %... if computed exactly
» ... etc. ...
resA = m v
 4503599615039818. 74999999.91666667 %... m & v correctly rounded
 4503599615039818. 74999999.91666667 %... from meanvrc1
 4503599615039818. 74999999.91666667 %... from meanvrc2
 4503599615039818. 75000000. 10300279 %... from meanvrc3
 4503599615039818. 74999999.91666667 %... from meanvrc4

» x = reshape([x(1:n/2); x(1+n/2:n)], n,1) ; %... shuffle preserves m & v ?
» ... etc. ...
resB = m v
 4503599615039818. 74999999.91666667 %... m & v correctly rounded
 4503599615039818. 74999999.91666667 %... from meanvrc1
 4503599615039818. 74999999.91666667 %... from meanvrc2
 4503599615039818. 74999999.91666673 %... from meanvrc3
 450359961503981 9. 7499 6802.16918673 %... from meanvrc4

Apparently meanvrc4 Õs simple uncompensated summation leaves v too vulnerable to roundoff.

Adding a constant to x should add that constant to m but leave v unaltered except by roundoff.
» x0 = 4650607080901020 ;
n = 30000 ; x = x0 + [1:n] ; %... Length(x) = n
m = x0 + (n+1)/2 ; v = (n-1)*(n+1)/12 ;
» ... etc. ...
res3 = m v
 4650607080916020. 74999999.91666667 %... m & v correctly rounded
 4650607080916020. 74999999.91666667 %... from meanvrc1
 4650607080916020. 74999999.91666667 %... from meanvrc2
 4650607080916020. 75000000. 10470454 %... from meanvrc3
 46506070809160 14. 750 69536.20090015 %... from meanvrc4

» x = reshape([x(1:n/2); x(1+n/2:n)], n,1) ; %... shuffle preserves m & v ?
» ... etc. ...
res4 = m v
 4650607080916020. 74999999.91666667 %... m & v correctly rounded
 4650607080916020. 74999999.91666667 %... from meanvrc1
 4650607080916020. 74999999.91666667 %... from meanvrc2
 4650607080916020. 74999999.916666 91 %... from meanvrc3
 46506070809160 16. 68971878.98776774 %... from meanvrc4

Again an error in vectorized meanvrc3 Õs m was too tiny for binary-decimal conversion to show,
but it affected v . And meanvrc4 Õs simple uncompensated summation left v utterly wrong.

So far, the only consistently exemplary test results have come from one-pass program meanvrc1
and two-pass meanvrc2 , both with compensated summation, and the latter with a tricky extra-
precise computation of dm . How well do these programs compute the variance v of an array x
whose elements xk = x0 ± 1 ßuctuate only in their last two bits?

» x0 = 4650607080901020 ;
» n = 30001 ; x = x0 + (-1).^[1:n] ; %... Length(x) = n
» m = x0 - 1/n ; v = 1 - 1/n^2 ;
» ... etc. ...

File: MeanVar Version dated September 2, 2013 6:49 am

Prof. W. Kahan from Notes for Math 128A Page 5 / 5

res5 = m v
 4650607080901020. 0.9999999988889630 %... m & v correctly rounded
 4650607080901020. 0.9999999988889630 %... from meanvrc1
 4650607080901020. 1.0000000 16665556 %... from meanvrc2
 4650607080901020. 1.0000000 16665556 %... from meanvrc3
 4650607080901020. 0.999 6871364846397 %... from meanvrc4

Only one-pass meanvrc1 has passed all tests unblemished. Perhaps they are too stringent. All
four programs will probably serve satisfactorily when applied to more realistic data, conveyed in
4-byte float variables deserving float results, provided the programs continue to perform all
arithmetic in 8-byte double .

If converted to perform only float arithmetic, only meanvrc1 will work fully reliably.

The next three tests pit meanvrc1 with compensated summation against meanvrc4 without.
Except for the correctly rounded m and v , all data, variables and arithmetic are in float .

» x0 = 8470605 ; n = 30000 ;
» x = x0 + [1:n] ; %... Length(x) = n
» m = x0 + (n+1)/2 ; v = (n-1)*(n+1)/12 ;
» precision = precn(24); [m1,v1] = meanvrc1(x) ; [m4,v4] = meanvrc4(x) ;
» precision = precn(64); res6 = [m,v; m1,v1; m4,v4]

res5 = m v
 8485605.5 74999999.91666667 %... m and v correctly rounded
 8485606.0 75000000. %... from meanvrc1
 8485606.0 74999 368 . %... from meanvrc4

» x = reshape([x(1:n/2); x(1+n/2:n)], n,1) ; %... shuffle preserves m & v ?
» ... etc. ...
res6 = m v
 8485605.5 74999999.91666667 %... m and v correctly rounded
 8485606.0 75000000. %... from meanvrc1
 8485606.0 68956288 . %... from meanvrc4

» x0 = 8470605 ; n = 30001 ;
» x = x0 + (-1).^[1:n] ; %... Length(x) = n
» m = x0 - 1/n ; v = 1 - 1/n^2 ;
» ... etc. ...
res7 = m v
 8470604.999966668 0.999999998888963 %... m & v correctly rounded
 8470605.0 1.00000000 %... from meanvrc1
 8470605.0 0.999 477327 %... from meanvrc4

Conclusion: To program even a simple computation satisfactorily for all instead of merely most
mathematically unexceptionable data may require more knowledge about error-analysis than can
be learned from one course in Numerical Analysis. An almost always adequate alternative is to
perform all arithmetic and carry all intermediate variables in extravagantly more precision, more
than twice as much, as is trusted in the initial data and desired in the Þnal result. Doing so may
run too slow. If you need both speed and accuracy, you may have to learn more about Numerical
Analysis and its rounding errors than you had intended. See my web pageÕs WrongR.pdf too.

