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Mean and Variance in One Pass over the  Data

 

A hand-held calculator with limited storage capacity can compute the  

 

Mean

 

  and  

 

Variance

 

  of an 
arbitrarily long sequence of real numbers  x

 

1

 

, x

 

2

 

, x
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, É, x

 

n-1

 

, x

 

n

 

, É  without storing all of them.  
As each datum  x

 

n

 

  is entered into the calculator,  it can compute the mean  m

 

n

 

  and variance  v

 

n

 

  
of all the data entered so far:  
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Unbiased Sample-Variance
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To accomplish these computations the calculator requires two schemes:
¥  Formulas to update  m

 

n

 

  to  m

 

n+1

 

  and  v

 

n

 

  to  v

 

n+1

 

  as soon as  x

 

n+1

 

  becomes available.
¥  Tricks to keep roundoff from ruining the formulasÕ accuracy when  v

 

n

 

  stays very small.
These schemes are described below together with tests of their efÞcacy.

In the absence of roundoff the following recurrences would update  m

 

n

 

  and  v

 

n

 

 :
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)/

 

(n+1) ,    starting with  v

 

1

 

 := 0 .
These require only one pass over the sequence of data  x

 

k

 

 .  When  n  gets big,  roundoff degrades 
these formulas noticeably unless  m

 

n

 

  and  v

 

n

 

  are computed extra-precisely or else  

 

Compensated

 

 

 

Summation

 

  is invoked to attenuate rounding errors that occur at  Ò

 

 

 

m

 

n

 

 + É

 

 

 

Ó  and  Ò

 

 

 

v

 

n

 

 Ð É

 

 

 

Ó

 

 

 

.

Shufßing the order of sequence  x

 

k

 

  shouldnÕt change  m

 

n

 

  nor  v

 

n

 

 

 

,  but roundoff can violate this.

To test the recurrences their results should be compared with the deÞnitions above that require 
two passes over the data for each  n .  Those deÞnitionsÕ formulas also require precautions to 
attenuate roundoff unless the arithmeticÕs precision extravagantly exceeds the dataÕs.

Below two  M

 

ATLAB

 

  programs  

 

meanvrc1

 

  and  

 

meanvrc2

 

  compare results from the  one-pass 
and  two-pass  formulas to see whether they disagree signiÞcantly.  The second program runs 
correctly  

 

ONLY

 

  on  386-M

 

ATLAB

 

 3

 

.

 

5,  68040-Macintosh M

 

ATLAB

 

 5

 

.

 

2,  and on  PC-Windows 
M

 

ATLAB

 

 6

 

.

 

5  after invocation of its command 
  Ò 

 

system_dependent(‘setprecision’, 64)

 

 Ó  
because only these versions of  M

 

ATLAB

 

  perform extra-precise accumulation of matrix products 
necessary to obtain adequate accuracy from the two-pass formulas.  A third program  

 

meanvrc3

 

  
takes advantage of  M

 

ATLAB

 

Õs  vectorization to achieve much higher speed though at the cost of 
slightly diminished accuracy despite efforts to exploit extra-precise scalar products.

M

 

ATLAB

 

Õs  arithmetic carries almost  16 sig.dec.,  exceeding the precision of practically all data 
extravagantly.  Consequently only extravagant test data can reveal how different programs differ 
in their sensitivities to roundoff.  A more practical test compares the one-pass program  

 

meanvrc1

 

  
with a simpler version  

 

meanvrc4

 

,  different only in its lack of  Compensated Summation,  when 
performed in  4-byte wide 

 

float

 

  arithmetic upon  

 

float

 

  data instead of  M

 

ATLAB

 

Õs  8-byte 

 

double

 

. 
This test data is more realistic though artiÞcial;  its correct values  m

 

n

 

  and  v

 

n

 

  are known exactly.
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function  [m, v] = meanvrc1(x)
%  [m, v] = meanvrc1(x) = mean  and  variance  of array  x
%           computed in one pass over the data  x(:) .
%                                   W. Kahan,  19 July 2013
x = x(:) ;  %... assumed real
L = length(x) ;
if (L<1),  m = [] ;  v = [] ;  return, end
m = x(1) ;  v = 0 ;  dm = 0 ;  dv = 0 ;
for  n = 2:L
    xn = x(n) ;  oldm = m ;  oldv = v ;
    d = ( (xn - m) - dm )/n ;
    t = d + dm ;  m = oldm + t ;  %... rounded
    dm = (oldm - m) + t ;  %... compensates summation for  m
    d = ( ( d*d*(n*(n-1)) - v ) - dv )/n ;
    t = d + dv ;  v = oldv + t ;  %... rounded
    dv = (oldv - v) + t ;  %... compensates summation for  v
  end
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

function  [m, v] = meanvrc2(x)
%  [m, v] = meanvrc2(x) = mean  and  variance  of array  x
%           computed in two passes over the data  x(:) .
%                                   W. Kahan,  19 July 2013
x = x(:) ;  %... assumed real
L = length(x) ;
if (L<1),  m = [] ;  v = [] ;  return, end
sn = 0 ;  ds = 0 ;
for  n = 1:L
    t = x(n) + ds ;  s = sn ;  sn = s + t ;
    ds = (s - sn) + t ;  %... compensates summation of  sn
  end
m = sn/L ;  %... almost current mean value
dm = ([sn, m, ds]*[1; -L; 1])/L ;  %... extra-precisely
v = 0 ;  dv = 0 ;
for  k = 1:L  %... second pass
    t = (x(k) - m) - dm ;  t = t*t + dv ;
    s = v ;  v = s + t ;
    dv = (s - v) + t ;  %... compensates summation of  v
  end
v = v/L ;
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

function  [m, v] = meanvrc3(x)
%  [m, v] = meanvrc3(x) = mean  and  variance  of array  x
%           computed in fast vectorized passes over the data  x(:) .
%                                   W. Kahan,  19 July 2013
x = x(:) ;  %... assumed real
L = length(x) ;
if (L<1),  m = [] ;  v = [] ;  return, end
u = ones(L,1) ;
sn = x'*u ;  %... sum rounded to  53  sig.bits
ds = [sn, x']*[-1; u] ;  %... extracts up to  10  more sig.bits
m = sn/L ;  %... almost current mean value
dm = ([sn, m, ds]*[1; -L; 1])/L ;  %... extracts a few more sig.bits
u = [x, u, u]*[1; -m; -dm] ;  %... = x - m - dm  extra-precisely
v = (u'*u)/L ;
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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function  [m, v] = meanvrc4(x)
%  [m, v] = meanvrc4(x) = mean  and  variance  of array  x  computed
%           in one pass over the data  x(:) without compensated summation.
%                                   W. Kahan,  27 Aug. 2013
x = x(:) ;  %... assumed real
L = length(x) ;  if (L<1),  m = [] ;  v = [] ;  return, end
m = x(1) ;  v = 0 ;
for  n = 2:L
    d = (x(n) - m)/n ;  m = m + d ;  %... rounded
    v = v + ( d*d*(n-1) - v/n ) ;  %... rounded
  end
% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

Results from several example sequences  x

 

k

 

  are exhibited hereunder.  The second is the array 

 

x = 100000000 + randn(1, 16384) 

 

consisting of  16384  entries each differing from  100000000  by a  

 

Normally

 

  distributed pseudo-
random variate with mean  0  and variance  1

 

 

 

.  The Þrst three programs above agree to  15 sig. 
dec.;  any difference from the fourth is due to its uncompensated roundoff.  That these programs 
agree so closely corroborates that they are intended to compute the same mean  m  and variance  
v

 

 

 

,  though using four different methods affected differently by roundoff.

 

» Results from  386-PC-Matlab 3.5  on an old  80386-based  Intel 302

» x = randn(1, 32768) ;  %...  32768 “normal” random no’s,  m = 0 ,  v = 1
» [m1,v1] = meanvrc1(x) ;  [m2,v2] = meanvrc2(x) ;
» [m3,v3] = meanvrc3(x) ;  [m4,v4] = meanvrc4(x) ;
» res1 = [m1,v1; m2,v2; m3,v3; m4,v4]

res1 =      m                         v
    -1.422220178371109e-3     1.012960974376284   %...  from  meanvrc1
    -1.422220178371108e-3     1.012960974376284   %...  from  meanvrc2
    -1.422220178371108e-3     1.012960974376284   %...  from  meanvrc3
    -1.4222201783710 98e-3     1.0129609743762 78   %...  from  meanvrc4

» x = 100000000 + randn(1, 16384) ;  %...  m = 100000000 ,  v = 1
» [m1,v1] = meanvrc1(x) ;  [m2,v2] = meanvrc2(x) ;
» [m3,v3] = meanvrc3(x) ;  [m4,v4] = meanvrc4(x) ;
» res2 = [m1,v1; m2,v2; m3,v3; m4,v4]

res2 =       m                    v
     100000000.0049386    0.9951514108806957   %...  from  meanvrc1
     100000000.0049386    0.9951514108806957   %...  from  meanvrc2
     100000000.0049386    0.9951514108806957   %...  from  meanvrc3
     100000000.004938 1    0.99515140 86945294    %...  from  meanvrc4

 

As expected,  

 

meanvrc4 Õs  variance  v  is most vulnerable to roundoff when  √v/m  is small.

The third example is the non-random array
z = 2^52 - 12345678 + [1:30000] 

whose  30000  elements have easily calculated mean  m = 4503599615039818 . 5  and variance  
v = 7499999 . 916666… .   But  meanvrc3   will lose half the sig.dec.  of  v  because its mean  m  is 
too small by almost  0.5 ,  too little to show up in binary-decimal conversion to only  16 sig.dec.
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» x0 = 2^52 - 12345678 ;  %... =  4503599615024818
» n = 30000 ;  x = x0 + [1:n] ;  %...  Length(x) = n
» m = x0 + (n+1)/2 ;  v = (n-1)*(n+1)/12 ;  %...  if computed exactly
»  ...  etc.  ...
resA =      m                    v
     4503599615039818.     74999999.91666667   %...   m & v  correctly rounded
     4503599615039818.     74999999.91666667   %...  from  meanvrc1
     4503599615039818.     74999999.91666667   %...  from  meanvrc2
     4503599615039818.     75000000. 10300279    %...  from  meanvrc3
     4503599615039818.     74999999.91666667   %...  from  meanvrc4

» x = reshape([x(1:n/2); x(1+n/2:n)], n,1) ;  %... shuffle preserves  m & v ?
»  ...  etc.  ...
resB =      m                    v
     4503599615039818.     74999999.91666667   %...   m & v  correctly rounded
     4503599615039818.     74999999.91666667   %...  from  meanvrc1
     4503599615039818.     74999999.91666667   %...  from  meanvrc2
     4503599615039818.     74999999.91666673   %...  from  meanvrc3
     450359961503981 9.     7499 6802.16918673    %...  from  meanvrc4

Apparently  meanvrc4 Õs  simple uncompensated summation leaves  v  too vulnerable to roundoff.

Adding a constant to  x  should add that constant to  m  but leave  v  unaltered except by roundoff.
» x0 = 4650607080901020 ;
n = 30000 ;  x = x0 + [1:n] ;  %...  Length(x) = n
m = x0 + (n+1)/2 ;  v = (n-1)*(n+1)/12 ;
»  ...  etc.  ...
res3 =       m                   v
     4650607080916020.     74999999.91666667   %...   m & v  correctly rounded
     4650607080916020.     74999999.91666667   %...  from  meanvrc1
     4650607080916020.     74999999.91666667   %...  from  meanvrc2
     4650607080916020.     75000000. 10470454    %...  from  meanvrc3
     46506070809160 14.     750 69536.20090015    %...  from  meanvrc4

» x = reshape([x(1:n/2); x(1+n/2:n)], n,1) ;  %... shuffle preserves  m & v ?
»  ...  etc.  ...
res4 =       m                   v
     4650607080916020.     74999999.91666667   %...   m & v  correctly rounded
     4650607080916020.     74999999.91666667   %...  from  meanvrc1
     4650607080916020.     74999999.91666667   %...  from  meanvrc2
     4650607080916020.     74999999.916666 91   %...  from  meanvrc3
     46506070809160 16.     68971878.98776774    %...  from  meanvrc4

Again an error in vectorized  meanvrc3 Õs  m  was too tiny for binary-decimal conversion to show,  
but it affected  v .  And  meanvrc4 Õs  simple uncompensated summation left  v  utterly wrong.

So far,  the only consistently exemplary test results have come from one-pass program  meanvrc1   
and two-pass  meanvrc2  ,  both with compensated summation,  and the latter with a tricky extra-
precise computation of  dm .  How well do these programs compute the variance  v  of an array  x  
whose elements   xk =  x0 ± 1  ßuctuate only in their last two bits?

» x0 = 4650607080901020 ;
» n = 30001 ;  x = x0 + (-1).^[1:n] ;  %...  Length(x) = n
» m = x0 - 1/n ;  v = 1 - 1/n^2 ;
»  ...  etc.  ...
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res5 =       m                    v
     4650607080901020.     0.9999999988889630   %...   m & v  correctly rounded
     4650607080901020.     0.9999999988889630   %...  from  meanvrc1
     4650607080901020.     1.0000000 16665556     %...  from  meanvrc2
     4650607080901020.     1.0000000 16665556     %...  from  meanvrc3
     4650607080901020.     0.999 6871364846397    %...  from  meanvrc4

Only one-pass  meanvrc1   has passed all tests unblemished.  Perhaps they are too stringent.  All 
four programs will probably serve satisfactorily when applied to more realistic data,  conveyed in  
4-byte  float   variables deserving  float   results,  provided the programs continue to perform all 
arithmetic in  8-byte double .

If converted to perform only  float   arithmetic,  only  meanvrc1   will work fully reliably.

The next three tests pit  meanvrc1   with compensated summation against  meanvrc4   without.  
Except for the correctly rounded  m  and  v ,  all data,  variables and arithmetic are in  float .

» x0 = 8470605 ;  n = 30000 ;
» x = x0 + [1:n] ;  %...  Length(x) = n
» m = x0 + (n+1)/2 ;  v = (n-1)*(n+1)/12 ;
» precision = precn(24);  [m1,v1] = meanvrc1(x) ;  [m4,v4] = meanvrc4(x) ;
» precision = precn(64);  res6 = [m,v; m1,v1; m4,v4]

res5 =   m              v
     8485605.5     74999999.91666667   %...   m  and  v  correctly rounded
     8485606.0     75000000.          %...  from  meanvrc1
     8485606.0     74999 368 .          %...  from  meanvrc4

» x = reshape([x(1:n/2); x(1+n/2:n)], n,1) ;  %... shuffle preserves  m & v ?
» ...   etc.   ...
res6 =   m              v
     8485605.5     74999999.91666667   %...   m  and  v  correctly rounded
     8485606.0     75000000.          %...  from  meanvrc1
     8485606.0     68956288 .          %...  from  meanvrc4

» x0 = 8470605 ;  n = 30001 ;
» x = x0 + (-1).^[1:n] ;  %...  Length(x) = n
» m = x0 - 1/n ;  v = 1 - 1/n^2 ;
» ...   etc.   ...
res7 =   m                      v
     8470604.999966668     0.999999998888963   %...   m & v  correctly rounded
     8470605.0             1.00000000         %...  from  meanvrc1
     8470605.0             0.999 477327         %...  from  meanvrc4

Conclusion:  To program even a simple computation satisfactorily for  all  instead of merely most  
mathematically unexceptionable data may require more knowledge about error-analysis than can 
be learned from one course in  Numerical Analysis.  An almost always adequate alternative is to 
perform all arithmetic and carry all intermediate variables in extravagantly more precision,  more 
than twice as much,  as is trusted in the initial data and desired in the Þnal result.  Doing so may 
run too slow.  If you need both speed and accuracy,  you may have to learn more about  Numerical 
Analysis  and its rounding errors than you had intended.  See my web pageÕs   WrongR.pdf   too.


