

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 1/15

Three Problems for Math. 128B Solutions due Mon. 9 Feb. 2004

The following computations are to be programmed in Matlab, Fortran,

C

, Basic or Java using
ordinary (not arbitrarily high-precision) floating-point arithmetic. The use of automated algebra
systems like Maple or Mathematica or Macsyma or … is allowed only to check your results,
not to produce them. Credit is awarded not for those results but for their explanation.

Problem 1:

 Jean-Michel Muller’s Recurrence

Starting with x

0

 := 11/2 and x

1

 := 61/11 , define in turn x

2

, x

3

, x

4

, …, x

N

, … from the

Recurrence Formula

 x

N+1

 := 111 - (1130 - 3000/x

N-1

)/x

N

 .
Compute x

34

 and x

340

 correct to at least 8 sig. dec. in more than one way, using perhaps
diverse computers or calculators. Can you detect that something has gone awry and explain why?
What short recurrence gets our values x

34

 and x

340

 very fast and accurately despite roundoff?

Solution 1:

The “correct” results computed

exactly

 (with no rounding errors) would be
 x

34

 = 1721981182794095961389986301

/

 287093876567205105910375321
 = 5

.

99797 25216 84911 60006 55307 61063 78444 31896 … and
 x

340

 = 5

.

99999 99999 99999 99999 99999 98802 22196 … .
But one rounding error, like rounding x

1

 := 61/11 = 5

.

5454545454… to the computer’s or
calculator’s working precision, is enough to change both computed results to 100 . Tabulated
below are computed results from nine computers’ and calculators’ arithmetics, namely …

Basica Single: 24 sig. bits provided by IBM PC Basica in ROM in 1982.
Bascom Single: 24 sig. bits provided by IBM PC Basic Compiler in 1982.
T-Basic Single: 24 sig. bits* provided by Borland’s Turbo-Basic on an IBM PC.
HP-97: 10 sig. dec. rounded conventionally, almost.
HP-71B: 12 sig. dec. conforming to IEEE standard 854.
M

ATLAB

 68040 53 sig. bits* from Matlab 5 on a 68040-based Apple Macintosh
T-Basic Double: 53 sig. bits* provided by Borland’s Turbo-Basic on an IBM PC.
Basica Double: 56 sig. bits provided by IBM PC Basica in ROM in 1982.
T-Pascal Extended: 64 sig. bits* provided by Borland’s Turbo-Pascal on an IBM PC.

 * These arithmetics perform on hardware that conforms to IEEE Standard 754 for Binary Floating-Point.

Roughly speaking, the more precise the arithmetic, the larger the values of N where computed
values X

N

 switch convergence from the right limit 6 to the wrong limit 100 . Here “wrong”
suggests that someone or something deserves blame. Don’t blame the computer’s floating-point
arithmetic. In its defence, an argument could be advanced that 100 is the

right

 limit for the
data (61/11 rounded off) actually presented to the computer’s arithmetic. The limiting value
x

∞

 turns out to be a

Discontinuous

 function of the initial values x

0

 and x

1

 ; this singularity is
what amplifies roundoff so badly. Still, different arithmetics trace different paths through
computed values X

1

≈

 61/11, X

2

, X

3

, …, X

34

≈

 100 ; these variations cry out for explanation.

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 2/15

Different computations of X

N

 by J-M. Muller's recurrence

 N
Basica
Single

Bascom
Single

T-Basic
Single

HP-97
10 Dec.

HP-71B
12 Dec.

M

ATLAB

68040
T-Basic
Double

Basica
Double

T-Pascal
Extended

0 5

.

5 5

.

5 5

.

5 5

.

5 5

.

5 5.5 5

.

5 5

.

5 5

.

5

1 5

.

545 5

.

545 5

.

545 5

.

545 5

.

545 5.545 5

.

545 5

.

545 5

.

545

2 5

.

590 5

.

590 5

.

590 5

.

590 5

.

590 5.590 5

.

590 5

.

590 5

.

590

3 5

.

633 5

.

633 5

.

633 5

.

633 5

.

633 5.633 5

.

633 5

.

633 5

.

633

4 5

.

675 5

.

675 5

.

675 5

.

675 5

.

675 5.675 5

.

675 5

.

675 5

.

675

5 5

.

713 5

.

668 5

.

709 5

.

713 5

.

713 5.713 5

.

713 5

.

713 5

.

713

6 5

.

743 4

.

941 5

.

681 5

.

749 5

.

749 5.749 5

.

749 5

.

749 5

.

749

7 5

.

676 -10

.

56 4

.

577 5

.716 5.781 5.782 5.782 5.782 5.782

8 3.948 160.5 -20.52 4.665 5.798 5.811 5.811 5.811 5.811

9 -41.36 102.2 134.1 -18.73 5.608 5.838 5.837 5.838 5.838

10 119.9 100.1 101.5 137.0 1.772 5.861 5.861 5.861 5.861

11 101.0 100.0 100.1 101.6 -224.7 5.884 5.883 5.882 5.881

12 100.1 100.0 100.0 100.1 108.5 5.936 5.919 5.904 5.899

13 100.0 100 100.0 100.0 100.5 6.534 6.244 5.994 5.914

14 100.0 100 100.0 100.0 100.0 15.41 11.20 7.260 5.925

15 100 … 100 100.0 100.0 67.47 53.02 24.29 5.886

16 100 100 100.0 100.0 97.14 94.74 81.49 5.053

17 … … 100.0 100.0 99.82 99.67 98.65 -11.76

18 100 100.0 99.99 99.98 99.92 156.6

19 100 100.0 100.0 100.0 100.0 102.2

20 … 100.0 100.0 100.0 100.0 100.1

21 100 100.0 100.0 100.0 100.0

22 100 100.0 100.0 100.0 100.0

23 … 100.0 100.0 100.0 100.0

24 100.0 100.0 100.0 100.0

25 100.0 100.0 100.0 100.0

26 100.0 100.0 100.0 100.0

27 100.0 100.0 100.0 100.0

28 100 100.0 100.0 100.0

29 100 100 100 100.0

30 … 100 100 100.0

31 … … 100.0

32 … … … … … … … … 100.0

33 100 100 100 100 100 100 100 100 100

34 100 100 100 100 100 100 100 100 100

 N
Basica
Single

Bascom
Single

T-Basic
Single

HP-97
10 Dec.

HP-71B
12 Dec.

MATLAB

68040
T-Basic
Double

Basica
Double

T-Pascal
Extended

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 3/15

Each iteration of Muller’s recurrence can be written

 := wherein F() := .

The iteration appears to converge to a fixed-point z = F(z) . Every such fixed-point has the form

z = in which z satisfies z3 – 111z2 + 1130z – 3000 = (z–100)(z–6)(z–5) = 0 , so there are

three fixed-points , and . Two are repulsive, one attractive. Which? If a column

v is close to a fixed-point z , then F(v)–z = F(v) – F(z) ≈ F'(z)(v–z) + O(v–z)2 where

F'() =

is the Jacobian matrix of first partial derivatives of F . Its eigenvalues tell us whether a fixed-

point is attractive or repulsive. The eigenvalues µ of F'() = , satisfying

det(µI – F') = (µ – 11/100)µ + 3/1000 = (µ – 1/20)(µ – 1/50) = 0 , are both much smaller than 1
in magnitude, so iterates xn converge rapidly towards 100 when they get close. On the other

hand, the eigenvalues µ of F'() = are 20 and 6/5 , both rather bigger than 1 ,

so iterates xn flee from 5 if ever they come near it. Finally F'() = has

eigenvalues µ = 5/6 < 1 and µ = 50/3 > 1 , which implies that iterate pairs {xn, xn–1} can
converge slowly towards {6, 6} only from a special direction. If iterate pairs depart even slightly
from this direction they will flee from {6, 6} , which is what roundoff caused to happen.

How do we know that, if computed exactly, xn → 6 as n → +∞ ? Iterates xn are functions
of n expressed in a simple way as follows: Substitute xn := qn+1/qn into Muller’s recurrence
to get a Linear Homogeneous recurrence qn+2 = 111·qn+1 – 1130·qn + 3000·qn–1 . Well-

known methods (see roots z above) provide its general solution qn = α·100n + β·6n + γ·5n
for arbitrary constants α, β and γ . When these are chosen to match given initial values
x0 := 11/2 and x1 := 61/11 , say α = 0 ≠ β = γ , we find that, when computed exactly,

xN = (6N+1 + 5N+1)/(6N + 5N) = 6 – 1/(1 + (1.2)N) → 6 as N → +∞ .
But roundoff alters (at first slightly) values computed from Muller’s recurrence to very near

XN := (100N+1·t + 6N+1 + 5N+1)/(100N·t + 6N + 5N) with a nonzero tiny constant t as big as
a rounding error. This XN → 100 as N → +∞ . Were xN computed from the recurrence

xN := 11 – 30/xN–1 instead, roundoff would have little effect; do you see why?

Without the foregoing analyses, how would anyone discover that 100 is the wrong result when
so many different arithmetics agree upon it? Should different arithmetics’ divergent intermediate
results arouse suspicions? Alas, many everyday computations, including linear equation solving
and eigensystems, often exhibit similar digressions among intermediate results while final results
agree and are quite correct. In general there is no easy way to detect a wrongly computed result.

xn 1+

xn

F
xn

xn 1–

() x

y

111 1130 3000 y⁄–() x⁄–

x

z

z

100

100

6

6

5

5

x

y
1130 3000 y⁄–() x

2⁄ 3000 y
2

x⋅()⁄–

1 0

100

100

11 100⁄ 3 1000⁄–

1 0

5

5

106 5⁄ 24–

1 0

6

6

35 2⁄ 125 9⁄–

1 0

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 4/15

Problem 2: Shifted Legendre Polynomials
These polynomials appear in a few problems of Mathematical Physics concerned with functions
on a line segment or a hemisphere; they also provide nodes xj and weights wj for Gaussian

Quadrature formulas that approximate ∫o1 f(x) dx closely by a weighted average ∑j wj f(xj) .
There are many ways to define these polynomials. One is explicit; it is a

Rodrigues Formula: PN(x) := (d /dx)N (x2 - x)N /N! .
Another way starts with P-1(x) := 0 and P0(x) := 1 and obtains in turn P1(x), P2(x), P3(x), ...,
PN(x), … from a

Recurrence Formula PN(x) := (2 – 1/N)(2x – 1)·PN-1(x) – (1 – 1/N)·PN-2(X) .
Can you confirm that both definitions of PN(x) yield the same polynomial for every nonnegative

integer N ? Can you confirm that PN(1-x) = (–1)N PN(x) ? Amazingly, all N+1 coefficients of
PN(x) are integers; can you explain why?

Compute all the zeros of P12(x) and P24(x) to at least 12 sig. dec., and accompany your results
with an account of how they were obtained and why you think they are as accurate as you claim.

Solution 2:
The Rodrigues formula yields Pn(x) = (–1)n·∑k≥0 (–x)k·(n+k)!/((k!)2·(n–k)!) subject to the
understanding that (n–k)! = ∞ when k > n . Substituting this formula into the given recurrence
satisfies it after considerable labor. Substituting x := y + 1/2 into the Rodrigues formula yields

PN(y + 1/2) = (d /dy)N (y2 – 1/4)N /N! = (–1)N·PN(–y + 1/2) , which confirms the allegation that

PN(1-x) = (–1)N PN(x) . Therefore the zeros of PN(x) are situated symmetrically about x = 1/2 .

The coefficients c(j) of P12(x) = ∑1≤k≤13 c(j)·x13–j are all integers (why?) that fit into eight
decimal digits and can therefore be computed exactly with ease in several ways to get …

Here is the MATLAB program slegc.m that computed this row c of coefficients:

function c = slegc(n)
% c = slegc(n) produces a row of coefficients from which
% polyval(c, x) computes the Shifted Legendre polynomial
% P[n](x) = c(1)*x^n + c(2)*x^(n-1) + ... + c(n+1)
% := (d/dx)^n ((x-1)x)^n / n! = ((2n-1)(2x+1)P[n-1] - (n-1)P[n-2])/n
% whose c(n+1) = (-1)^n and 0 < all P's zeros < 1 .
% See also slegt.m for those zeros. INEXACT if n > 22 .
if n < 1 , c = 1 ; return, end
c = zeros(n+1,2) ; j = [2, 1] ;
c(1:2, :) = [1, 2 ; 0, -1] ;
for k = 2:n
 j = 3-j ; % ... c(:,j(1)) belongs to P[k-2], c(:,j(2)) to P[k-1] .
 d = [4*k-2; 1-2*k; 1-k] ;
 c(1:k+1,j(1))= ([c(1:k+1,j(2)), [0;c(1:k,j(2))], [0;0;c(1:k-1,j(1))]]*d)/k ;
 end
c = round(c(:,j(1))') ; % ... a row of integers.

k : 1 2 3 4 5 6 7 8 9 10 11 12 13

c(k) : 2704156 -16224936 42678636 -64664600 62355150 -39907296 17153136 -4900896 900900 -100100 6006 -156 1

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 5/15

One way to compute the zeros of P12 uses MATLAB ’s roots(c) . Another way uses MATLAB ’s
fzero('pleg', guess, [], c) with pleg(x, c) = polyval(c, x) and using each zero
from roots(c) in turn as the guess . Alas, though MATLAB carries 53 sig. bits, about as
precise as 15 - 16 sig. dec., the two sets of zeros disagree in digits as early as the tenth sig. dec.

Alleged Zeros of the Shifted Legendre P12(x)

Computed by Matlab 5.2 on a 68040-based Mac Quadra 950

Which, if any, of these zeros should we trust? Perhaps none, since the sums of pairs of zeros
symmetrically situated about x = 1/2 should agree with 1 but actually disagree after the ninth or
tenth digit after the decimal point in the first column, after the tenth or eleventh in the second.
Should the second column be Presumed Innocent until Proved Guilty in the sense that it is no
less accurate than its sums? Are ten or eleven sig. dec. adequate when twelve were requested?

While we mull over those questions, let’s use our programs to do unto P24(x) what we did to
P12(x) . All 25 coefficients in row c = slegc(24) are integers again, but some are so huge
they must have been rounded off. And then z = roots(c) cannot be right because its largest
element z(1) = 1.006815226068646 > 1 whereas Rolle’s Theorem and the Rodrigues formula
tell us that every zero of P24(x) lies strictly between 0 and 1 . Worse, several of the alleged
zeros z are complex with imaginary parts of the order of 0.02 . And after coaxing 24 distinct
real zeros from fzero('pleg', …, c) and sorting them, we find that their sums of pairs agree
with 1 at best to six digits, at worst to two. Eight to fourteen of the arithmetic’s digits got lost.

Where do so many of the arithmetic’s decimal digits go?

They get lost after the coefficient-row c is computed even if it is exactly right. Computing the
zeros of Pn from those coefficients engenders rounding errors whose effect is about as bad as if
each coefficient had been perturbed by as many as n units in its last digit carried (53rd sig. bit)
by the arithmetic. This assertion is complicated to prove for roots(slegc(n)) , simple to prove
for fzero('pleg', …, c) which evaluates Pn(x) repeatedly from an expression like

Pn(x) = (…((c1·x + c2)·x + c3)·x + … + cn)·x + cn+1 .
The expression you see is not the expression you get. Each arithmetic operation, multiply or add,
if it cannot be performed exactly, must be rounded off to the arithmetic’s precision (here 53 sig.

roots(sleg(12)) fzero(‘pleg’, …)

1 0.9907803173102080 0.9907803171520745

2 0.9520586276890755 0.9520586282713346

3 0.8849513376839413 0.8849513371017566

4 0.7936589767059028 0.7936589771193403

5 0.6839157497188167 0.6839157495080903

6 0.5626167041824337 0.5626167042508767

7 0.4373832957592386 0.4373832957439742

8 0.3160842504994446 0.3160842505008112

9 0.2063410228566696 0.2063410228566984

10 0.1150486629028637 0.1150486629028469

11 0.04794137181476173 0.04794137181476259

12 0.009219682876640380 0.009219682876640380

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 6/15

bits). This is tantamount to multiplying the exact result by a factor like (1 + µ) , about which we

can know only that |µ| ≤ 1/253 , before storing the product as the computed result. Consequently
we get not Pn(x) but something like the long expression

 (…((c1·x·(1+µ1) + c2)·x·(1+µ2)
2 + c3)·x·(1+µ3)

2 + … + cn)·x·(1+µn)
2 + cn+1 .

The last addition … + cn+1 suffers no rounding since it is actually a subtraction that mostly cancels when x is near a zero of Pn .

Each factor like (1+µ) can be “moved” left in that long expression and attached to previous
cj’s , replacing c1 by something like c1·(1+µ1)

2n–1 , c2 by c2·(1+µ2)
2n–2 , c3 by c3·(1+µ3)

2n–4 ,
… . In effect, the value allegedly computed for Pn(x) is actually exactly the value at x of one
of infinitely many unknown polynomials whose coefficients differ from Pn ’s only in end-digits.

How do such perturbations in the last sig. digits of the coefficients of Pn affect its zeros?

This question can be answered easily by experiment, by intentionally perturbing the coefficient
row c by a little more than enough to swamp the effects of roundoff. After computing row c let
dc = [n:–1:0].*abs(c)*1e-14 and then compare roots(c) with roots(c+dc) and
roots(c–dc) . The effect of perturbations in the 13th and 14th sig. dec. of the coefficients of
P12 is to alter its larger zeros in their 6th sig. dec., smallest zero in its 14th. The larger zeros of
P24 are altered in their first sig. dec. Evidently the larger zeros of Pn are “Ill-Conditioned”
functions of its coefficients, the more so as the larger coefficients increase with increasing n .
The larger zeros’ ill-condition arises from their relatively close clustering though they are just as
closely clustered absolutely as are the smaller zeros. A better way to say this is that relatively
tiny end-figure perturbations of the coefficients suffice to cause larger but not smaller perturbed
zeros to coalesce, but that’s a story for another day.

To compute the larger zeros well (without just exploiting their symmetry about 1/2 and thus
abandoning the use of that relationship to check on their accuracy) we Eliminate the Middleman:
we compute the zeros of Pn from its definition, not its coefficients. We can get Pn ’s zeros by
using recurrence directly to compute Pn(x) = slegp(x, n) from a MATLAB program like this:

function y = slegp(x, n)
% slegp(x, n) = (d/dx)^n ((x–1)x)^n / n! = P[n](x) is the Shifted
% Legendre Polynomial of degree n computed from its recurrence
% P[k+1](x) = ((2k+1)(2x-1)P[k](x) - kP[k-1](x))/(k+1) starting
% with P[-1] = 0 and P[0] = 1 . Argument x may be a scalar or a
% column vector x = x(:) . Only an integer scalar n > -2 works.
if ((n~=round(n)) | (n<0)), N = n ,
 error('slegp(x, N) requires an integer N > -2 .'), end
x = x(:) ; L = length(x) ; u = ones(L,1) ;
P = [u, u*0] ; % ... = [P[0], P[-1]]
if (n<1), y = P(:, 1-n) ; return, end
x21 = 2*x - 1 ;
for k = 1:n,
 v = [2*k-1 ; 1-k]/k ;
 Q = P(:,1) ; P(:,1) = Q.*x21 ;
 P = [P*v, Q] ; % ... = [P[k](x), P[k-1](x)]
 end
y = P(:, 1) ;

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 7/15

How much better than pleg(x, slegc(n)) = polyval(slegc(n), x) is this slegp(x, n) ?
It’s unobvious when n = 12 , but when n = 24 some idea is conveyed by the following graphs:

polyval(slegc(24), x) slegp(x, 24)

Note the graphs’ different vertical scales.

Evidently polyval(slegc(n), x) is less accurate than slegp(x, n) for larger values of x .
Less obvious is that polyval(slegc(n), x) is the more accurate when x is tiny enough. The
absolute (in)accuracy of slegp(x, n) is spread fairly uniformly over the interval 0 < x < 1

because the recurrence preserves the identity Pn(1–x) = (–1)n·Pn(x) exactly including roundoff
whenever x is so chosen that 1–x can be computed exactly in binary floating-point, and such is
certainly the case throughout 1/2 ≤ x ≤ 1 . (Can you see why? Note that 2x–1 = x – (1–x) .)

The preservation of valuable relationships is as important to computation as to any other human activity.

The larger zeros of Pn can now be computed more accurately than before from slegp(x, n) by
invoking MATLAB ’s fzero(‘slegp’, guess, [], n) with n suitable guesses. These can be
obtained as before from roots(slegc(n)) if n is not too big. (12 isn’t but 24 is.). Or they
can be estimated from observed zero-crossings of plots of Pn(x) against x , though the graphs
above show why this scheme runs a risk that some of closely spaced zeros may be overlooked or
estimated twice. Risks worsen as n gets bigger, and they can be exacerbated by the idiosyncratic
way MATLAB ’s fzero carries out its search for a zero when supplied a single guess instead of
an Interval guess = [lower, higher] that straddles the desired zero.

MATLAB ’s fzero works well enough when it is supplied with intervals that straddle desired zeros

x = zk of Pn(x) , as do the known inequalities cos2(kπ/(2n+1)) < zk < cos2((k–1/2)π/(2n+1))
for k = 1, 2, 3, …, n . However, these might not be known to everyone. On the other hand,
fzero behaves erratically when its single guess is a known-to-be-close Asymptotic estimate

 xk := cos2((k–1/4)π/(2n+1) + cot((k–1/4)π/(2n+1))/(8n2)) ≈ zk + O(1/n3) .
These might not be known to everyone. Worse, z(k) = fzero('slegpd', x(k), [], n)
finds some zeros zk twice and overlooks others when n is too big (as is n = 24) despite that
xk is much closer to the desired zero than are adjacent zeros. MATLAB ’s fzero hastily casts too
wide a net when it begins its search for a zero zk near xk , but that is a story for another day.

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4

5

6

X

pleg(X, slegc(24)) = polyval(slegc(24), X)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

slegp(X, 24)

X

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 8/15

How can someone, who does not already know near enough where the desired zeros are, find
every one of them just once apiece?

Deflation is a scheme designed to eliminate the risk of overlooking some zeros and computing
others twice; it removes zeros already found. Numerical Deflation “cancels out” zeros already
found so that they will not likely interfere with the search for other zeros: If zeros z1, z2, and z3

have been computed, the zeros of Pn(x)/((x–z1)(z–z2)(x–z3)) are the remaining n–3 zeros zk
of Pn(x) . Submitting that quotient instead of Pn(x) to a root-finder, say to MATLAB ’s fzero ,
continues the search for zeros with diminished sensitivity to the initial guess. Alas, numerical
deflation has its failure modes. One is that roundoff’s raggedness may lead to two approximations
to one zero and none to another nearby. Less likely is that the search may alight accidentally upon
a zero computed previously, hit 0/0 , and stop. Still, numerical deflation is worth trying.

Here is a MATLAB program slegpd to compute Pn(x)/((x–z1)(z–z2)(x–z3)(…)(x–zj–1)) after
slegp has computed Pn(x) :

function y = slegpd(x,n, z,j)
% slegpd(x,n, Z,j) = slegp(x, n)/prod(x-Z(1:j-1))
% vectorized so that plot(X, slegpd(X, n, Z, j))
% will work assuming X = X(:) and Z = Z(:) .
x = x(:) ; j = round(j) ; % trims j to integer.
if j < 2, y = slegp(x, n) ; return, end
Ux = ones(length(x), 1) ;
z = z(:) ; zj = z(1:j-1) ; Uz = ones(j-1, 1) ;
y = slegp(x, n)./prod(x(:,Uz)' - zj(:,Ux))' ;

Still, of the four MATLAB couplets

z = zeros(n,1) ;
 for j = 1:n, z(j) = fzero('slegpd', 1, [], n, z,j) ; end
· — Old versions of MATLAB need [],[] instead of [] .
z = zeros(n,1) ;
 for j = 1:n, z(j) = fzero('slegpd', 0, [], n, z,j) ; end
· —
z = zeros(n,1) ; dg = 1e-8 ; g = 1 - dg ;
 for j = 1:n, z(j) = fzero('slegpd', g, [], n, z,j) ; g = z(j) - dg ; end
· · · · · · · · · · · · · · · · · ———————— · · · · · · · · · · ————————
z = zeros(n,1) ; dg = 1e-8 ; g = 0 + dg ;
 for j = 1:n, z(j) = fzero('slegpd', g, [], n, z,j) ; g = z(j) + dg ; end

all but the last malfunctioned for n = 24 . The first two find only 8 of the zeros of P12 , only 14
or 16 of the zeros of P24 and they are found out of order. The third finds only 22 of the zeros
of P24 , and out of order. The fourth finds all desired zeros as accurately as desired and in order.
The same results were obtained from MATLAB 5.2 on a Mac Quadra 950 and on an IBM PC.

What should be done by someone who couldn’t get fzero to work? Some other root-finding
method like Newton’s iteration x —> x – Pn(x)/Pn'(x) can be tried. The derivative Pn'(x) can
be computed in any of several ways. One way uses the row c = slegc(n) of coefficients of

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 9/15

Pn(x) to compute a row d = [n:–1:1].*c(1:n) of coefficients of Pn'(x) = polyval(d, x) .
Another way computes Pn'(x) simultaneously with Pn(x) from Horner’s recurrence used to
compute Pn(x) = (…((c1·x + c2)·x + c3)·x + … + cn)·x + cn+1 . The simultaneous recurrences
look like this in MATLAB :

p = c(1) ; p1 = 0 ;
for n = 2:n+1,

p1 = p1.*x + p ; % ... the derivative of ...
p = p.*x + c(n) ; % ... Horner’s recurrence.

end % ... yielding p = Pn(x) and p1 = Pn'(x) .

However, schemes based upon the coefficient-row c inherit its defect: Even if c is computed
exactly right, its huge coefficients amplify roundoff intolerably as it propagates unless n or x is
relatively small. As we have seen above (but not proved yet), no such defect afflicts the three-
term recurrence for Pn(x) ; it can be augmented to compute Pn'(x) simultaneously thus:

P–1(x) := P–1'(x) := P0'(x) := 0 ; P0(x) := 1 ;
for N = 1, 2, 3, …, n in turn do

PN'(x) := ((2N – 1)·((2x – 1)·PN-1'(x) + 2PN–1(x)) – (N – 1)·PN-2'(x))/N ,

PN(x) := ((2N – 1)(2x – 1)·PN-1(x) – (N – 1)·PN-2(x))/N .

Can you see how to augment slegp.m above to deliver Pn'(x) as well as Pn(x) ? How should

you modify the expression x – Pn(x)/Pn'(x) to deflate previously computed zeros z1, z2, and z3

numerically without a new program to compute the derivative of Pn(x)/((x–z1)(z–z2)(x–z3)) ?
Hint: P' /P = log(P)' .

Another formula for the derivative is Pn'(x) = n·((2x–1)·Pn(x) – Pn–1(x))/(2x(x–1)) . It looks too simple. Can you
prove it by induction? Can you see why it should be avoided, especially when x is near 0 or 1 ?

With or without the derivative, with or without deflation, the zeros of Pn computed by finding
where slegp(x, n) vanishes or reverses sign seem accurate enough. They pass two tests. One
compares 1 against sums of pairs of zeros situated symmetrically about 1/2 ; all sums agree
with 1 in all but its last (53rd) bit or two. Another test compares |c(n+1)| = 1 with the product
of all n computed zeros and coefficient c(1) ; they agree in all but the last few bits. Two such
tests prove nothing unless one fails, in which case some (we know not which) computed zero(s)
would be proved inaccurate.

Can convincing evidence be found for the accuracy of the computed zeros of slegp(x, n) ?
Yes; the desired zeros of Pn(x) can be computed in an utterly different way that corroborates
strongly the accuracy now in question and can be proved to suffer from roundoff about the same
as do zeros computed from the three-term recurrence, though their rounding errors are different.

Set the infinite column p(x) := [P0(x), P1(x), P2(x), P3(x), P4(x), …, Pn–1(x), Pn(x), …]’ ; set the
infinite diagonal matrix M := Diag([1, 3, 5, 7, 9, …, 2n–1, 2n+1, …]) ; and set the infinite
tridiagonal matrix

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 10/15

Y := .

In each instance the rows bracketed between pairs of “…” are rows #n and #n+1 . Now the
three-term recurrence for Shifted Legendre Polynomials can be written as a matrix equation
Y·p(x) = (2x–1)·M ·p(x) . This equation simplifies a little after the substitution q(x) := √M ·p(x) ,
or Qn(x) := √2n–1·Pn(x) , to become T·q(x) = (2x–1)·q(x) in which T is an infinite symmetric

tridiagonal matrix with [0, …, 0, (n–1)/√(4(n–1)2–1), 0, n/√(4n2–1), 0, 0, …] in its row #n .

Obtain Tn and qn(x) by deleting all rows and columns after #n from T and q(x) respectively.
If z is any zero of Pn(x) then Tn·qn(z) = (2z–1)·qn(z) because Qn(z) = Pn(z) = 0 . Conversely
if Tn·qn(z) = (2z–1)·qn(z) then Pn(z) = Qn(z) = 0 . In other words, all zeros z of Pn(x) can be
obtained from eigenvalues t = 2z–1 of Tn without ever computing the values or coefficients of
Pn ; in fact z = (1+t)/2 . Here is a MATLAB program slegt.m that computes Tn :

function Tn = slegt(n)
% slegt(n) is the symmetric n-by-n tridiagonal matrix whose
% eigenvalues t , all between -1 and 1 , are the zeros of
% the nth Legendre Polynomial; z = (1+t)/2 yields the zeros
% of the shifted Legendre polynomial Pn(x) = slegp(x, n) , q.v.
n = round(n) ; if n < 2 , Tn = zeros(n) ; return, end
x = [1:n-1] ; x2 = x+x ;
x = x./sqrt((x2+1).*(x2-1)) ;
Tn = diag(x,1) + diag(x,-1) ;

Computed eigenvalues t of Tn can be tested for accuracy in two ways. First, they should come

in pairs with opposite signs since Tn is Similar to –Tn = Dn
–1·Tn·Dn via a diagonal matrix

Dn = Diag[+1, –1, +1, –1, …] . Second, reversing the rows and columns of Tn should not
change its eigenvalues, but will change them slightly because of different rounding errors. We
find that t = sort(eig(slegt(n))) is very nearly sign-symmetric since t + flipud(t) has

elements all of the order of 10–15 . Likewise t – sort(eig(flipud(fliplr(slegt(n))))) .
These tests do not take the effects of roundoff in the elements of Tn into account. To test their
effects, compare 1 with c(1)*prod(z) where z = (1 ± t)*0.5 are the desired zeros of

Pn . This test of the computed column z of zeros produced a difference of the order of 10–14 , so
their accuracy seems to be corroborated. It can be proved, but that is a story for another day.

Tabulated on the next page are zeros z computed using a Pentium’s 10-byte floating-point:

0 1

1 0 2

 2 0 3

 3 0 4

 4 0 …

 … … n 1–

 n 1– 0 n

 n 0 n 1+

 n 1+ … …
 … …

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 11/15

Tabulated values are in error in only their last digit displayed.

Appendix: Brute-force verification that Rodrigues’ formula for Pn(x) satisfies its recurrence:
Differentiate n times the Binomial Expansion of (x2 - x)n/n! to get

 Pn(x) = (–1)n·∑0≤k≤n (–x)k·(n+k)!/((k!)2·(n–k)!)
 = (–1)n·∑0≤k≤n Xk·(n+k)!/(n–k)! where Xk := (–x)k/(k!)2 .

Every coefficient (n+k)!/((k!)2·(n–k)!) = n+kC2k·
2kCk is the product of two binomial coefficients and therefore an

integer. Note that x·Xk = –(k+1)2·Xk+1 . Substitute this into Pn ’s three-term recurrence formula in the form

RN = (–1)N+1·((N+1)·PN+1 – (2N+1)(2x–1)·PN + N·PN–1)

 = ∑0≤k≤N+1 Xk·(N+1)·(N+1+k)!/(N+1–k)! + ∑0≤k≤N Xk·(2N+1)(2x–1)·(N+k)!/(N–k)!

 + ∑0≤k≤N–1 Xk·N·(N–1+k)!/(N–1–k)!

 = ∑0≤k≤N+1 Xk·(N+1)·(N+1+k)!/(N+1–k)! – ∑0≤k≤N 2Xk+1·(k+1)2·(2N+1)·(N+k)!/(N–k)!

 – ∑0≤k≤N Xk·(2N+1)·(N+k)!/(N–k)! + ∑0≤k≤N–1 Xk·N·(N–1+k)!/(N–1–k)!

 = ∑0≤k≤N+1 Xk·(N+1)·(N+1+k)!/(N+1–k)! – ∑0≤k≤N+1 2Xk·k
2·(2N+1)·(N+k–1)!/(N–k+1)!

 – ∑0≤k≤N Xk·(2N+1)·(N+k)!/(N–k)! + ∑0≤k≤N–1 Xk·N·(N–1+k)!/(N–1–k)!

I wish I knew how to persuade Mathematica or Maple to perform the foregoing and following manipulations:

Coeff. of XN+1 : (N+1)·(2N+2)! – 2(N+1)2·(2N+1)! = 0 .

Coeff. of XN : (N+1)·(2N+1)! – 2·N2·(2N+1)·(2N–1)! – (2N+1)·(2N)! = 0 .

Coeff. of Xk for 0 ≤ k ≤ N–1 : (N+1)·(N+1+k)!/(N+1–k)! – 2·k2·(2N+1)·(N+k–1)!/(N–k+1)!

– (2N+1)·(N+k)!/(N–k)! + N·(N–1+k)!/(N–1–k)!

= ((N+k–1)!/(N–k+1)!)·((N+1)(N+k)(N+k+1) – 2·k2·(2N+1) – (2N+1)(N+k)(N–k+1)

+ N(N–k)(N–k+1)) = 0 .
Therefore RN = 0 ; the Rodrigues formula does satisfy the three-term recurrence.

Zeros of Shifted Legendre Polynomials Pn(x)

n = 12 n = 24

0.990780317123359625 1 0.997593609998510680 0.467971553568697187 13

0.952058628185237428 2 0.987364277985654749 0.404440566263191845 14

0.884951337097152344 3 0.969137276001366379 0.342478660151918313 15

0.793658977143308724 4 0.943207763502200517 0.283103246186977431 16

0.683915749499090097 5 0.910000992986951461 0.227289264305580232 16

0.562616704255734458 6 0.870062095789277182 0.175953174031512215 18

0.437383295744265542 7 0.824046825968487785 0.129937904210722818 19

0.316084250500909903 8 0.772710735694419768 0.0899990070130485390 20

0.206341022856691276 9 0.716896753813022569 0.0567922364977994829 21

0.115048662902847656 10 0.657521339848081687 0.0308627239986336208 22

0.0479413718147625710 11 0.595559433736808155 0.0126357220143452509 23

0.0092196828766403746712 0.532028446431302813 0.0024063900014893199324

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 12/15

Our Shifted Legendre Polynomials Pn(x) are called “Pn
*(x)” by Urs W. Hochstrasser, who uses “Pn(x)” for

(unshifted) Legendre Polynomials in ch. 22, as does Irene A. Stegun in ch. 8 of her Handbook of Mathematical
Functions … published in 1964 by the then National Bureau of Standards (now NIST) and subsequently reprinted

by Dover, N.Y. Their Pn(z) = Pn
*((z+1)/2) = (d/dz)n(z2–1)n/(2nn!) , so our Pn(x) is his Pn

*(x) = Pn(2x–1) . The
asymptotic estimates and inequalities for the zeros of Pn come from his #22.16.6 . The formula that should not be
used to compute the derivative comes from her #8.5.4 .

Problem 3: Fibonacci Numbers
When the Fibonacci numbers Fn are generated by the recurrence

F0 = 0 , F1 = 1 , and Fn+1 = Fn + Fn-1 for n = 1, 2, 3, … in turn,
computing just FN for a given large N takes time at least proportional to N . For example

F1471 = 11785114478791471849880…15229 (308 decimal digits).
If all we need is FN to, say, 12 sig. dec., how can we compute it much faster than that, and
accurate to within a few units in the last digit carried? How do you know your chosen method is
that accurate?

Solution 3:
Here is a MATLAB program fib.m to compute quickly Fn = round-to-nearest-integer(µn/√5)
wherein µ := (1 + √5)/2 . The program has to compensate for rounding the value of µ to an 8-

byte floating-point number u . Otherwise un could differ from µn by an amount that grows with

n , which can be as big as 1474 before un overflows. The compensation is devious; the
program exploits massive subtractive cancellation, which inherits error but adds none new, to

estimate rounding error v := µ – u ≈ –5.432/1017 to about 5 sig. dec. Then µn ≈ un + n·(v/u)·un

after terms of order (n·v/u)2·un are ignored.

function f = fib(n)
% fib(n) = F(n) = the nth Fibonnacci number for n >= 0
% = F(n-1) + F(n-2) starting from F(1) = F(2) = 1
% computed very quickly without computing earlier F's .
% Overflow turns fib(n) into NaN for n > 1474 .
% Fib(n) accepts arrays n of non-consecutive integers.
% (c) W. Kahan 2004
n = round(n) ; if any(n < 0)
 N = n
 error(' fib(N) accepts only N >= 0 .'), end
s = sqrt(5) ; u = (1+s)*0.5 ; % = (1+sqrt(5))/2 - v
% v = (207/128 - u) + 31/(8192*s + 18304) ; % ... 3 more digits UNUSED
v = (13255/8192 - u) - 1201/(33554432*s + 75030528) ; % ... 5 more digits
un = u.^n ;
f = round((un + ((v/u)*n).*un)/s) ;

How accurate is fib.m ? How much more accurate is it than if compensation v were omitted?
And how do we know? For MATLAB versions 5.x and 6.x , the relative error in fib.m turns
out to be tiny enough to be best measured in Ulps — Units in the Last Place stored for floating-
point variables in question.

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 13/15

We define ulp(x) to be the gap between the two floating-point numbers nearest x . If x is a
floating-point number then ulp(x) is the difference between x and its nearest neighbor. For

MATLAB ’s 8-byte floating-point carrying 53 sig. bits, ulp(x) = eps = 1/252 ≈ 2.22/1016 when
1 < x ≤ 2 . Computing ulp(x) can be tricky because of variations in the way different computers
round off floating-point arithmetic and handle exponent over/underflow. For example MATLAB ’s

ulp(0.0) should be 0. 5^1074 ≈ 4.94/10324 but can be realmin = 0 . 5^1022 ≈ 2.225/10308 on
a few aberrant computers. For the purposes of this problem about Fibonacci numbers,

min(abs((x + (0.51*eps)*x) – x), abs((x – (0.51*eps)*x) – x))

computes ulp(x) well enough on PCs, Macs and SPARCs. If real number x is approximated
by floating-point X then its error is (X–x)/ulp(x) ulps.

MATLAB versions 5.x and 6.x produce values fib(n) differing from Fn by from –2.5 ulps

to +1.5 ulps; about half of that error is generated by MATLAB ’s computation of un , so it’s

pretty good. Were the compensating term v/u ≈ –3.3572/1017 omitted, values of fib(n) would
come out too high by about from 0.15·n ulps to 0.3·n ulps for n > 75 . How do we know?

Here is a MATLAb program fibs.m that computes Fibonacci numbers Fn correctly rounded.
They are all integers, but rounded off to fit into 8-byte floating-point numbers for n > 78 .

function [F, dF] = fibs(n)
% F = fibs(n) = [F1, F2, F3, ..., Fn] is a row of
% Fibonacci numbers computed slowly but accurately
% from their recurrence F(n+1) = F(n) + F(n-1)
% started at F(1) = F(2) = 1 . If n > 78 roundoff
% is attenuated by Compensated Summation, and then
% [F, dF] = fibs(n) returns also a compensating term
% dF such that F + dF would be more accurate if its
% sum did not just round off to correctly rounded F .
% Overflow turns Fn into NaN when n > 1476 .
% (c) W. Kahan 2004
F = ones(1, n) ; dF = zeros(1, n) ;
if (n < 3), return, end
for k = 3:n
 s = ((dF(k-2) + dF(k-1)) + F(k-2)) + F(k-1) ;
 t = (((F(k-1) - s) + F(k-2)) + dF(k-1)) + dF(k-2) ;
 F(k) = s + t ; % ... rounded off, and
 dF(k) = (s - F(k)) + t ; % ... is the rounding error.
 end

Though f = fib(1:n) runs rather faster than [F, dF] = fibs(n) , the error in the latter’s F
is smaller than 0.5 ulps and approximated well enough by dF that the error in the former’s f
can be computed fairly well as ((f-F) - dF)./ulp(F) ulps. If compensated summation were
not used in fibs(n) , but instead it computed simply F(k) = F(k-1)+F(k-2) , its error for
n > 78 would look like a random walk ranging between about –13 ulps and +3 ulps.

The last dozen finite Fibonacci numbers F delivered by [F, dF] = fibs(1476) are tabulated
below together with the leading several digits of their corrections dF .

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 14/15

If you think you can copy, align and add the decimal digits of F(n) and dF(n) to get the leading 29 sig. dec. of
Fn , you have forgotten that What You See is Not What You Get from binary floating-point arithmetic. 18 sig. dec.
of F(n) displayed here more than suffice for MATLAB ’s command load nFdF -ascii to reproduce exactly the
8-byte binary floating-point number F(n) from which the displayed string of digits was obtained by binary-to-
decimal conversion. At least 40 of the 53 leading sig. bits of dF(n) will be reproduced too, but then adding it to
F(n) will be futile because MATLAB will round the sum back to F(n) . Can you see how to tease the leading 25
(say) sig. dec. of Fn from MATLAB without using its Symbolic Toolbox? The process is tricky. Here, obtained by
using the Symbolic Toolbox, is a value to compare with yours:

F1476 = 1306989223763399318036311553802719830983924439074126407260066594601927930704792
317402886810877770177210954631549790122762343222469369396471853667063684893626
608441474499413484628009227558189696347433489829164249540627441359698656154072
76492410653721774590669544801490837649161732095972658064630033793347171632.

For an earlier treatment of Problem 3 on earlier versions of MATLAB see
http://www.cs.berkeley.edu/~wkahan/~MxMuleps.pdf .

What’s worth remembering about the foregoing three problems? They illustrate
some of the hazards of approximate computation, and how to circumvent them.

First, roundoff gets amplified intolerably by a computation only when its data comes too close to
a singularity at which certain derivatives become infinite or nonexistent. In Problem 1, x34 and
x340 are too close to x∞ which is a discontinuous function of initial values x0 and x1 . When n
is big in Problem 2 the row c includes some coefficients so huge that, even computed exactly,
they amplify intolerably later rounding errors incurred during the computation of Pn(x) for x

near 1 . In Problem 3 the difference between µn ≈ (u + v)n and un becomes intolerable slowly
as n becomes huge though v is just one rounding error. To diagnose numerical misbehavior,

Seek the Singularity.

n F(n) dF(n)

1465 6.56761920344308045E305 -2.924700176543E288

1466 1.06266310963374150E306 -4.236201169795E289

1467 1.71942502997804946E306 3.267580021670E289

1468 2.78208813961179081E306 1.462388127012E290

1469 4.50151316958984058E306 -1.329354354469E290

1470 7.28360130920163108E306 3.251534256190E290

1471 1.17851144787914723E307 -4.314821065575E290

1472 1.90687157879931034E307 -1.063286809385E290

1473 3.08538302667845756E307 -5.378107874961E290

1474 4.99225460547776815E307 -3.138939855353E291

1475 8.07763763215622521E307 1.312850130988E291

1476 1.30698922376339934E308 -1.826089724365E291

Three Case Studies by Prof. W. Kahan, Math. Dept., University of California at Berkeley

February 10, 2004 8:00 am Page 15/15

Some singularities seem intrinsic to the computational problem we wish to solve, as is the jump
discontinuity of x∞ in Problem 1 . Then we attach pejoratives like “ill-conditioned” ot “ill-
posed” to the problem, as if to blame it for the troubles we must overcome to solve it. Some
singularities are accidents of the method chosen to solve the problem, as are the huge coefficients
c we need not but could compute to find the zeros of Pn . Then we attach the pejorative term
“numerically unstable” to the chosen method, as if to blame it for our computation’s inaccuracy,
though the method may work well on other problems for all we know. More than disparaging a
method or a problem, what matters is that we understand the source of numerical misbehavior
well enough to detect and diagnose it accurately, and then remove or evade or learn to live with it.

That’s not so easy as it sounds.

What is the true purpose of Problem 1 ? If it is to compute the result of repeated applications of
Muller’s Recurrence to uncertain data x0 and x1 , then the result’s near-discontinuity at this
data is an attribute of the result too important to leave unmentioned and too unobvious for casual
computation to expose. On the other hand, if the purpose is to compute a long sequence of terms
xn as if x0 and x1 were exact, then Muller’s Recurrence is a numerically unstable way to do

that; far more accurate is the simple but unobvious recurrence xn := 11 – 30/xn–1 . Elementary
though Problem 1 seems at first, it cannot be solved satisfactorily without mathematical analysis
that transcends what any computer program can be expected nowadays to do automatically.

Problem 2 exposes the curse of high dimensionality and/or high degree. If roots(slegc(n))
were tested only at n < 12 its gross inaccuracy at larger n would go unnoticed until too late.
Only scrutiny of a graph like the ones on p. 7 or the coefficients in c = slegc(n) reveals how
badly their huge magnitudes degrade the computation of the larger zeros of Pn(x) as n grows.

Degradation like that, which usually blights some zeros of characteristic polynomials of matrices
of other than small dimensions, astonished us in the 1950s when we tried to apply methods that
had often worked in previous decades to bigger problems on new electronic computers. Now the
(usually) prudent policy for floating-point arithmetic is to compute eigenvalues directly from a
matrix rather than from the zeros of its computed characteristic polynomial even if its coefficients
are computed exactly. (Some people still think rounding errors in the coefficients’ last digits are
solely to blame for all the trouble, but P23(x) provides a counter-example.) The homogeneous
linear three-term recurrence satisfied by polynomials Pn(x) connects them to a tridiagonal matrix
Tn = slegt(n) whose eigenvalues computed by MATLAB ’s eig(Tn) are, as usual, much more
reliable than the zeros of Pn(x) computed from its coefficients c = slegc(n) by MATLAB ’s
roots(c) or fzero(…) and polyval(c, x) using floating-point of just the same precision.

The weasel-word “usually” is necessary because some zeros, like the smallest few of Pn(x) , may be computable
faster and more accurately from its coefficients than from the eigenvalues of its associated matrix. The same may be
true for all the zeros of Lacunary polynomials most of whose coefficients vanish, and for the relevant one or two
zeros of a polynomial arising from financial calculation of an interest rate or Internal Rate of Return on investment.

Problem 3 provides the simplest illustration that over/underflow thresholds, not precision, are
what limit the accuracy of exclusively floating-point computations since arbitrarily high precision
can be simulated, albeit at some cost in complexity and time. If built properly into programming
languages, higher precisions would simplify computation and enhance its reliability enormously.

