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Three Problems for  Math. 128B                             Solutions due  Mon. 9 Feb. 2004

 

The following computations are to be programmed in  Matlab,  Fortran,  

 

C

 

,  Basic  or  Java  using 
ordinary  (not arbitrarily high-precision)  floating-point arithmetic.  The use of automated algebra 
systems like  Maple  or  Mathematica  or  Macsyma  or …  is allowed only to check your results,  
not to produce them.  Credit is awarded not for those results but for their explanation.

 

Problem 1:

 

  Jean-Michel Muller’s Recurrence

 

Starting with  x

 

0

 

 := 11/2  and  x

 

1

 

 := 61/11 ,  define in turn  x

 

2 

 

,  x

 

3 

 

,  x

 

4 

 

,  …,  x

 

N 

 

,  …  from the

 

Recurrence Formula

 

    x

 

N+1

 

 :=  111  -  ( 1130 - 3000/x

 

N-1 

 

)/x

 

N

 

   .
Compute  x

 

34

 

  and  x

 

340

 

  correct to at least  8  sig. dec.  in more than one way,  using perhaps 
diverse computers or calculators.  Can you detect that something has gone awry and explain why?  
What short recurrence gets our values  x

 

34

 

  and  x

 

340

 

  very fast and accurately despite roundoff?

 

Solution 1:

 

The  “correct”  results computed  

 

exactly

 

  (with no rounding errors)  would be
     x

 

34

 

 = 1721981182794095961389986301 

 

/

 

 287093876567205105910375321 
 = 5

 

.

 

99797 25216 84911 60006 55307 61063 78444 31896 …      and
    x

 

340

 

 =  5

 

.

 

99999 99999 99999 99999 99999 98802 22196 … .
But one rounding error,  like rounding  x

 

1

 

 := 61/11 = 5

 

.

 

5454545454…  to the computer’s or 
calculator’s working precision,  is enough to change both computed results to  100 .  Tabulated 
below are computed results from nine computers’ and calculators’ arithmetics,  namely …

Basica Single: 24 sig. bits provided by  IBM PC Basica  in  ROM  in  1982.
Bascom Single: 24 sig. bits provided by  IBM PC Basic Compiler  in  1982.
T-Basic Single: 24 sig. bits*  provided by  Borland’s  Turbo-Basic  on an  IBM PC.
HP-97: 10 sig. dec.  rounded conventionally,  almost.
HP-71B: 12 sig. dec.  conforming to  IEEE standard 854.
M

 

ATLAB

 

 68040 53 sig. bits*  from  Matlab 5  on a  68040-based Apple Macintosh
T-Basic Double: 53 sig. bits*  provided by  Borland’s  Turbo-Basic  on an  IBM PC.
Basica Double: 56 sig. bits provided by  IBM PC Basica  in  ROM  in  1982.
T-Pascal Extended: 64 sig. bits*  provided by  Borland’s Turbo-Pascal  on an  IBM PC.

 

 * These arithmetics perform on hardware that conforms to  IEEE Standard 754  for  Binary Floating-Point.

 

Roughly speaking,  the more precise the arithmetic,  the larger the values of  N  where computed 
values  X

 

N

 

  switch convergence from the right limit  6  to the wrong limit  100 .  Here “wrong”  
suggests that someone or something deserves blame.  Don’t blame the computer’s floating-point 
arithmetic.  In its defence,  an argument could be advanced that  100  is the  

 

right

 

  limit for the 
data  ( 61/11 rounded off)   actually presented to the computer’s arithmetic.  The limiting value  
x

 

∞

 

  turns out to be a  

 

Discontinuous

 

  function of the initial values  x

 

0

 

  and  x

 

1

 

 ;  this singularity is 
what amplifies roundoff so badly.   Still,  different arithmetics trace different paths through 
computed values  X

 

1

 

 

 

≈

 

 61/11,  X

 

2

 

,  X

 

3

 

, …, X

 

34

 

 

 

≈

 

 100 ;  these variations cry out for explanation.
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Different computations of  X

 

N

 

  by  J-M. Muller's  recurrence

 

 N 
Basica
Single

Bascom
Single

T-Basic
Single

HP-97
10 Dec.

HP-71B
12 Dec.

M

 

ATLAB

 

68040
T-Basic
Double

Basica
Double

T-Pascal
Extended

0 5

 

.

 

5 5

 

.

 

5 5

 

.

 

5 5

 

.

 

5 5

 

.

 

5     5.5 5

 

.

 

5 5

 

.

 

5 5

 

.

 

5

1 5

 

.

 

545 5

 

.

 

545 5

 

.

 

545 5

 

.

 

545 5

 

.

 

545    5.545 5

 

.

 

545 5

 

.

 

545 5

 

.

 

545

2  5

 

.

 

590  5

 

.

 

590  5

 

.

 

590  5

 

.

 

590  5

 

.

 

590    5.590  5

 

.

 

590  5

 

.

 

590  5

 

.

 

590

3 5

 

.

 

633 5

 

.

 

633 5

 

.

 

633 5

 

.

 

633 5

 

.

 

633    5.633 5

 

.

 

633 5

 

.

 

633 5

 

.

 

633

4 5

 

.

 

675 5

 

.

 

675 5

 

.

 

675 5

 

.

 

675 5

 

.

 

675    5.675 5

 

.

 

675 5

 

.

 

675 5

 

.

 

675

5 5

 

.

 

713 5

 

.

 

668 5

 

.

 

709 5

 

.

 

713 5

 

.

 

713    5.713 5

 

.

 

713 5

 

.

 

713 5

 

.

 

713

6 5

 

.

 

743 4

 

.

 

941 5

 

.

 

681 5

 

.

 

749 5

 

.

 

749    5.749 5

 

.

 

749 5

 

.

 

749 5

 

.

 

749

7  5

 

.

 

676 -10

 

.

 

56 4

 

.

 

577 5

 

.716  5.781    5.782  5.782  5.782  5.782

8 3.948 160.5 -20.52  4.665 5.798    5.811 5.811 5.811 5.811

9 -41.36 102.2 134.1  -18.73 5.608    5.838 5.837 5.838 5.838

10 119.9 100.1 101.5 137.0  1.772    5.861 5.861 5.861 5.861

11 101.0 100.0 100.1 101.6 -224.7    5.884  5.883 5.882  5.881

12 100.1 100.0 100.0 100.1 108.5    5.936 5.919 5.904 5.899

13 100.0 100 100.0 100.0 100.5    6.534  6.244 5.994 5.914

14 100.0 100 100.0 100.0 100.0    15.41 11.20 7.260  5.925

15 100 … 100 100.0 100.0    67.47  53.02 24.29 5.886

16 100 100 100.0 100.0    97.14 94.74  81.49 5.053

17 … … 100.0 100.0    99.82 99.67 98.65 -11.76

18 100 100.0    99.99 99.98 99.92 156.6

19 100 100.0    100.0 100.0 100.0 102.2

20 … 100.0    100.0 100.0 100.0 100.1

21 100    100.0 100.0 100.0 100.0

22 100    100.0 100.0 100.0 100.0

23 …    100.0 100.0 100.0 100.0

24    100.0 100.0 100.0 100.0

25    100.0 100.0 100.0 100.0

26    100.0 100.0 100.0 100.0

27    100.0 100.0 100.0 100.0

28     100 100.0 100.0 100.0

29     100 100 100 100.0

30      … 100 100 100.0

31      … … 100.0

32 … … … … …      … … … 100.0

33 100 100 100 100 100     100 100 100 100

34 100 100 100 100 100     100 100 100 100

 N 
Basica
Single

Bascom
Single

T-Basic
Single

HP-97
10 Dec.

HP-71B
12 Dec.

MATLAB

68040
T-Basic
Double

Basica
Double

T-Pascal
Extended
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Each iteration of  Muller’s  recurrence can be written

  :=   wherein   F( ) :=  .

The iteration appears to converge to a fixed-point  z = F(z) .  Every such fixed-point has the form

z =   in which  z  satisfies  z3 – 111z2 + 1130z – 3000 = (z–100)(z–6)(z–5) = 0 ,  so there are

three fixed-points   ,    and   .  Two are repulsive,  one attractive.  Which?  If a column  

v  is close to a fixed-point  z ,  then  F(v)–z = F(v) – F(z) ≈ F'(z)(v–z) + O(v–z)2  where

F'( ) = 

is the  Jacobian  matrix of first partial derivatives of  F .  Its eigenvalues tell us whether a fixed- 

point is attractive or repulsive.  The eigenvalues  µ  of  F'( ) = ,  satisfying  

det(µI – F') = (µ – 11/100)µ + 3/1000 = (µ – 1/20)(µ – 1/50) = 0 ,  are both much smaller than  1  
in magnitude,  so iterates  xn  converge rapidly towards  100  when they get close.  On the other

hand,  the eigenvalues  µ  of  F'( ) =   are  20  and  6/5 ,  both rather bigger than  1 ,

so iterates  xn  flee from  5  if ever they come near it.  Finally  F'( ) =   has 

eigenvalues  µ = 5/6 < 1  and  µ = 50/3 > 1 ,  which implies that iterate pairs  {xn, xn–1}  can 
converge slowly towards  {6, 6}  only from a special direction.  If iterate pairs depart even slightly 
from this direction they will flee from  {6, 6} ,  which is what roundoff caused to happen.

How do we know that,  if computed exactly,  xn → 6  as  n → +∞ ?  Iterates  xn  are functions 
of  n  expressed in a simple way as follows:  Substitute  xn := qn+1/qn  into  Muller’s  recurrence 
to get a  Linear Homogeneous  recurrence   qn+2 = 111·qn+1 – 1130·qn + 3000·qn–1 .  Well- 

known methods  (see roots  z  above)  provide its general solution   qn = α·100n + β·6n + γ·5n   
for arbitrary constants  α,  β  and  γ .  When these are chosen to match given initial values  
x0 := 11/2  and  x1 := 61/11 ,  say  α = 0 ≠ β = γ ,  we find that,  when computed exactly, 

xN =  ( 6N+1 + 5N+1 )/( 6N + 5N )  =  6 – 1/(1 + (1.2)N)  → 6  as  N → +∞ .
But roundoff alters  (at first slightly)  values computed from  Muller’s  recurrence to very near   

XN :=  ( 100N+1·t + 6N+1 + 5N+1 )/( 100N·t + 6N + 5N )  with a nonzero tiny constant  t  as big as 
a rounding error. This  XN → 100  as  N → +∞ .  Were  xN  computed from the recurrence  

xN := 11 – 30/xN–1  instead,  roundoff would have little effect;  do you see why?

Without the foregoing analyses,  how would anyone discover that  100  is the wrong result when 
so many different arithmetics agree upon it?  Should different arithmetics’ divergent intermediate 
results arouse suspicions?  Alas,  many everyday computations,  including linear equation solving 
and eigensystems,  often exhibit similar digressions among intermediate results while final results 
agree and are quite correct.  In general there is no easy way to detect a wrongly computed result.

xn 1+

xn

F
xn

xn 1–

( ) x

y

111 1130 3000 y⁄–( ) x⁄–

x

z

z

100

100

6

6

5

5

x

y
1130 3000 y⁄–( ) x

2⁄ 3000 y
2

x⋅( )⁄–

1 0

100

100

11 100⁄ 3 1000⁄–

1 0

5

5

106 5⁄ 24–

1 0

6

6

35 2⁄ 125 9⁄–

1 0
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Problem 2:  Shifted Legendre Polynomials
These polynomials appear in a few problems of  Mathematical Physics  concerned with functions 
on a line segment or a hemisphere;  they also provide nodes  xj  and weights  wj  for  Gaussian 

Quadrature  formulas that approximate  ∫o1 f(x) dx  closely by a weighted average  ∑j wj f(xj) .  
There are many ways to define these polynomials.  One is explicit;  it is a

Rodrigues Formula:     PN(x) :=  (d /dx)N (x2 - x)N /N!  .
Another way starts with  P-1(x) := 0  and  P0(x) := 1  and obtains in turn  P1(x),  P2(x),  P3(x),  ...,  
PN(x),  …  from a

Recurrence Formula   PN(x) :=  (2 – 1/N)(2x – 1)·PN-1(x)  –  (1 – 1/N)·PN-2(X)  .
Can you confirm that both definitions of  PN(x)  yield the same polynomial for every nonnegative 

integer  N ?  Can you confirm that  PN(1-x) = (–1)N PN(x)  ?   Amazingly,  all  N+1  coefficients of  
PN(x)  are integers;  can you explain why?

Compute all the zeros of  P12(x)  and  P24(x)  to at least  12  sig. dec.,  and accompany your results 
with an account of how they were obtained and why you think they are as accurate as you claim.

Solution 2:  
The  Rodrigues  formula yields   Pn(x) = (–1)n·∑k≥0 (–x)k·(n+k)!/((k!)2·(n–k)!)   subject to the 
understanding that  (n–k)! = ∞  when  k > n .  Substituting this formula into the given recurrence 
satisfies it after considerable labor.  Substituting  x := y + 1/2  into the  Rodrigues  formula yields  

PN(y + 1/2) =  (d /dy)N (y2 – 1/4)N /N!  = (–1)N·PN(–y + 1/2) ,  which confirms the allegation that  

PN(1-x) = (–1)N PN(x) .  Therefore the zeros of  PN(x)  are situated symmetrically about  x = 1/2 .

The coefficients  c(j)  of  P12(x) = ∑1≤k≤13 c(j)·x13–j  are all integers  (why?)  that fit into eight 
decimal digits and can therefore be computed exactly with ease in several ways to get …

Here is the  MATLAB   program   slegc.m   that computed this row  c  of coefficients:

function  c = slegc(n)
%  c = slegc(n)  produces a row of coefficients from which  
%  polyval(c, x)  computes the  Shifted Legendre  polynomial
%   P[n](x) = c(1)*x^n + c(2)*x^(n-1) + ... + c(n+1)
%          := (d/dx)^n ((x-1)x)^n / n! = ((2n-1)(2x+1)P[n-1] - (n-1)P[n-2])/n
%  whose  c(n+1) = (-1)^n  and  0 <  all  P's  zeros  < 1 .
%  See also  slegt.m  for those zeros.  INEXACT if  n > 22 .
if  n < 1 ,  c = 1 ;  return,  end
c = zeros(n+1,2) ;   j = [2, 1] ;
c(1:2, :) = [ 1, 2 ;  0, -1 ] ;
for  k = 2:n
  j = 3-j ;   % ...  c(:,j(1))  belongs to  P[k-2],  c(:,j(2))  to  P[k-1] .
  d = [ 4*k-2; 1-2*k; 1-k ] ;
  c(1:k+1,j(1))= ([c(1:k+1,j(2)), [0;c(1:k,j(2))], [0;0;c(1:k-1,j(1))]]*d)/k ;
  end
c =  round(c(:,j(1))') ;  % ... a row of integers.

k : 1 2 3 4 5 6 7 8 9 10 11 12 13

c(k) : 2704156 -16224936 42678636 -64664600 62355150 -39907296 17153136 -4900896 900900 -100100 6006 -156 1
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One way to compute the zeros of  P12  uses  MATLAB ’s  roots(c) .  Another way uses  MATLAB ’s  
fzero('pleg', guess, [], c)   with  pleg(x, c) = polyval(c, x)   and using each zero 
from  roots(c)   in turn as the guess .  Alas,  though  MATLAB   carries  53 sig. bits,  about as 
precise as  15 - 16  sig. dec.,  the two sets of zeros disagree in digits as early as the tenth sig. dec.

Alleged Zeros of the  Shifted Legendre  P12(x)

Computed by  Matlab 5.2  on a  68040-based Mac Quadra 950

Which,  if any,  of these zeros should we trust?  Perhaps none,  since the sums of pairs of zeros 
symmetrically situated about  x = 1/2  should agree with  1  but actually disagree after the ninth or 
tenth digit after the decimal point in the first column,  after the tenth or eleventh in the second.  
Should the second column be  Presumed Innocent until Proved Guilty  in the sense that it is no 
less accurate than its sums?  Are ten or eleven  sig. dec.  adequate when twelve were requested?

While we mull over those questions,  let’s use our programs to do unto  P24(x)  what we did to  
P12(x) .  All  25  coefficients in row  c = slegc(24)   are integers again,  but some are so huge 
they must have been rounded off.  And then  z = roots(c)   cannot be right because its largest 
element  z(1) = 1.006815226068646 > 1  whereas  Rolle’s Theorem  and the  Rodrigues  formula 
tell us that every zero of  P24(x)  lies strictly between  0  and  1 .  Worse,  several of the alleged 
zeros  z  are complex with imaginary parts of the order of  0.02 .  And after coaxing  24  distinct 
real zeros from  fzero('pleg', …, c)   and sorting them,  we find that their sums of pairs agree 
with  1  at best to six digits,  at worst to two.  Eight to fourteen of the arithmetic’s digits got lost.

Where do so many of the arithmetic’s decimal digits go?

They get lost  after  the coefficient-row  c  is computed  even if it is exactly right.  Computing the 
zeros of  Pn  from those coefficients engenders rounding errors whose effect is about as bad as if 
each coefficient had been perturbed by as many as  n  units in its last digit carried  (53rd sig. bit)  
by the arithmetic.  This assertion is complicated to prove for  roots(slegc(n))  ,  simple to prove 
for  fzero('pleg', …, c)   which evaluates  Pn(x)  repeatedly from an expression like

Pn(x) = (…((c1·x + c2)·x + c3)·x + … + cn)·x + cn+1 .
The expression you see is not the expression you get.  Each arithmetic operation,  multiply or add,  
if it cannot be performed exactly,  must be rounded off to the arithmetic’s precision  (here  53 sig. 

roots( sleg(12) ) fzero( ‘pleg’, …)

1 0.9907803173102080 0.9907803171520745

2 0.9520586276890755 0.9520586282713346

3 0.8849513376839413 0.8849513371017566

4 0.7936589767059028 0.7936589771193403

5 0.6839157497188167 0.6839157495080903

6 0.5626167041824337 0.5626167042508767

7 0.4373832957592386 0.4373832957439742

8 0.3160842504994446 0.3160842505008112

9 0.2063410228566696 0.2063410228566984

10 0.1150486629028637 0.1150486629028469

11 0.04794137181476173 0.04794137181476259

12 0.009219682876640380 0.009219682876640380
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bits).  This is tantamount to multiplying the exact result by a factor like  (1 + µ) ,  about which we 

can know only that  |µ| ≤ 1/253 ,  before storing the product as the computed result.  Consequently 
we get not  Pn(x)  but something like the long expression

       (…((c1·x·(1+µ1) + c2)·x·(1+µ2)
2 + c3)·x·(1+µ3)

2 + … + cn)·x·(1+µn)
2 + cn+1 .

The last addition  … + cn+1  suffers no rounding since it is actually a subtraction that mostly cancels when  x  is near a zero of  Pn .

Each factor like  (1+µ)  can be  “moved”  left in that long expression and attached to previous  
cj’s ,  replacing  c1  by something like  c1·(1+µ1)

2n–1 ,    c2  by  c2·(1+µ2)
2n–2 ,    c3  by  c3·(1+µ3)

2n–4 ,  
… .  In effect,  the value allegedly computed for  Pn(x)  is actually  exactly  the value at  x  of one 
of infinitely many unknown polynomials whose coefficients differ from  Pn ’s  only in end-digits.

How do such perturbations in the last sig. digits of the coefficients of  Pn  affect its zeros?

This question can be answered easily by experiment,  by intentionally perturbing the coefficient 
row  c  by a little more than enough to swamp the effects of roundoff.  After computing row  c  let  
dc = [n:–1:0].*abs(c)*1e-14   and then compare  roots(c)   with  roots(c+dc)   and  
roots(c–dc)  .  The effect of perturbations in the  13th  and  14th  sig. dec.  of the coefficients of  
P12  is to alter its larger zeros in their  6th  sig. dec.,  smallest zero in its  14th.  The larger zeros of  
P24  are altered in their first sig. dec.  Evidently the larger zeros of  Pn  are  “Ill-Conditioned”  
functions of its coefficients,  the more so as the larger coefficients increase with increasing  n .  
The larger zeros’ ill-condition arises from their  relatively  close clustering though they are just as 
closely clustered  absolutely  as are the smaller zeros.  A better way to say this is that relatively 
tiny end-figure perturbations of the coefficients suffice to cause larger but not smaller perturbed 
zeros to coalesce,  but that’s a story for another day.

To compute the larger zeros well  (without just exploiting their symmetry about  1/2  and thus 
abandoning the use of that relationship to check on their accuracy)  we  Eliminate the Middleman:  
we compute the zeros of  Pn  from its definition,  not its coefficients.  We can get  Pn ’s  zeros by 
using recurrence directly to compute  Pn(x) = slegp(x, n)   from a  MATLAB   program like this:

function  y = slegp(x, n)
%  slegp(x, n) = (d/dx)^n ((x–1)x)^n / n! = P[n](x)  is the  Shifted
%  Legendre Polynomial  of degree  n  computed from its recurrence
%  P[k+1](x) = ( (2k+1)(2x-1)P[k](x) - kP[k-1](x) )/(k+1)  starting
%  with  P[-1] = 0  and  P[0] = 1 .  Argument  x  may be a scalar or a
%  column vector  x = x(:) .  Only an integer scalar  n > -2  works.
if ((n~=round(n)) | (n<0)),  N = n ,
  error('slegp(x, N)  requires an integer  N > -2 .'), end
x = x(:) ;  L = length(x) ;  u = ones(L,1) ;
P = [u, u*0] ;  % ... = [ P[0],  P[-1] ]
if  (n<1),  y = P(:, 1-n) ;  return,  end
x21 = 2*x - 1 ;
for  k = 1:n,
     v = [2*k-1 ;  1-k]/k ;
     Q = P(:,1) ;  P(:,1) = Q.*x21 ;
     P = [ P*v, Q] ;  % ... = [ P[k](x), P[k-1](x) ]
   end
y = P(:, 1) ;
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How much better than  pleg(x, slegc(n)) = polyval(slegc(n), x)   is this  slegp(x, n)  ?
It’s unobvious when  n = 12 ,  but when  n = 24  some idea is conveyed by the following graphs:

polyval( slegc(24), x ) slegp( x, 24 )

        
Note the graphs’ different vertical scales.

Evidently  polyval(slegc(n), x)   is less accurate than  slegp(x, n)   for larger values of  x .  
Less obvious is that  polyval(slegc(n), x)   is the more accurate when  x  is tiny enough.  The 
absolute  (in)accuracy  of  slegp(x, n)   is spread fairly uniformly over the interval  0 < x < 1  

because the recurrence preserves the identity  Pn(1–x) = (–1)n·Pn(x)  exactly including roundoff 
whenever  x  is so chosen that  1–x  can be computed exactly in binary floating-point,  and such is 
certainly the case throughout  1/2 ≤ x ≤ 1 .  (Can you see why?  Note that  2x–1 = x – (1–x) .)

The preservation of valuable relationships is as  important  to computation as to any other human activity.

The larger zeros of  Pn  can now be computed more accurately than before from  slegp(x, n)   by 
invoking  MATLAB ’s  fzero(‘slegp’, guess, [], n)   with  n  suitable guesses.  These can be 
obtained as before from  roots(slegc(n))   if  n  is not too big.  ( 12  isn’t but  24  is.).  Or they 
can be estimated from observed zero-crossings of plots of  Pn(x)  against  x ,  though the graphs 
above show why this scheme runs a risk that some of closely spaced zeros may be overlooked or 
estimated twice.  Risks worsen as  n  gets bigger,  and they can be exacerbated by the idiosyncratic 
way  MATLAB ’s fzero   carries out its search for a zero when supplied a single  guess   instead of 
an  Interval  guess = [lower, higher]   that straddles the desired zero.

MATLAB ’s fzero   works well enough when it is supplied with intervals that straddle desired zeros  

x = zk  of  Pn(x) ,  as do the known inequalities  cos2(kπ/(2n+1)) < zk < cos2((k–1/2)π/(2n+1))  
for  k = 1, 2, 3, …, n .  However,  these might not be known to everyone.  On the other hand,  
fzero   behaves erratically when its single  guess   is a known-to-be-close  Asymptotic  estimate

    xk := cos2( (k–1/4)π/(2n+1) + cot((k–1/4)π/(2n+1))/(8n2) )  ≈  zk + O(1/n3) .
These might not be known to everyone.  Worse,   z(k) = fzero('slegpd', x(k), [], n)   
finds some zeros  zk  twice and overlooks others when  n  is  too big  (as is  n = 24 )  despite that  
xk  is much closer to the desired zero than are adjacent zeros.  MATLAB ’s  fzero   hastily casts too 
wide a net when it begins its search for a zero  zk  near  xk ,  but that is a story for another day.
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How can someone,  who does not already know near enough where the desired zeros are,  find  
every one  of them  just once  apiece?

Deflation  is a scheme designed to eliminate the risk of overlooking some zeros and computing 
others twice;  it removes zeros already found.  Numerical Deflation  “cancels out”  zeros already 
found so that they will not likely interfere with the search for other zeros:  If zeros  z1, z2,  and  z3  

have been computed,  the zeros of  Pn(x)/( (x–z1)(z–z2)(x–z3) )  are the remaining  n–3  zeros  zk  
of  Pn(x) .  Submitting that quotient instead of  Pn(x)  to a root-finder,  say to  MATLAB ’s  fzero ,  
continues the search for zeros with diminished sensitivity to the initial guess.  Alas,  numerical 
deflation has its failure modes.  One is that roundoff’s raggedness may lead to two approximations 
to one zero and none to another nearby.  Less likely is that the search may alight accidentally upon 
a zero computed previously,  hit  0/0 ,  and stop.  Still,  numerical deflation is worth trying.

Here is a  MATLAB   program  slegpd   to compute  Pn(x)/( (x–z1)(z–z2)(x–z3)(…)(x–zj–1) )  after  
slegp   has computed  Pn(x) :  

function  y = slegpd(x,n, z,j)
%  slegpd(x,n, Z,j) = slegp(x, n)/prod(x-Z(1:j-1))
%  vectorized so that  plot(X, slegpd(X, n, Z, j))
%  will work assuming  X = X(:)  and  Z = Z(:) .
x = x(:) ;  j = round(j) ;  % trims  j  to integer.
if  j < 2,  y = slegp(x, n) ;  return,  end
Ux = ones(length(x), 1) ;
z = z(:) ;  zj = z(1:j-1) ;  Uz = ones(j-1, 1) ;
y = slegp(x, n)./prod( x(:,Uz)' - zj(:,Ux) )' ;

Still,  of the four  MATLAB   couplets

z = zeros(n,1) ;
  for  j = 1:n,  z(j) = fzero('slegpd', 1, [], n, z,j) ;  end
· · · · · · · · · · · · · · · · · · · · —  Old versions of  MATLAB  need  [],[]  instead of  [] .
z = zeros(n,1) ;
  for  j = 1:n,  z(j) = fzero('slegpd', 0, [], n, z,j) ;  end
· · · · · · · · · · · · · · · · · · · · —
z = zeros(n,1) ;  dg = 1e-8 ;  g = 1 - dg ;
  for  j = 1:n,  z(j) = fzero('slegpd', g, [], n, z,j) ;  g = z(j) - dg ;  end
· · · · · · · · · · · · · · · · · ———————— · · · · · · · · · · ————————
z = zeros(n,1) ;  dg = 1e-8 ;  g = 0 + dg ;
  for  j = 1:n,  z(j) = fzero('slegpd', g, [], n, z,j) ;  g = z(j) + dg ;  end

all but the last malfunctioned for  n = 24 .  The first two find only  8  of the zeros of  P12 ,  only  14   
or  16  of the zeros of  P24  and they are found out of order.  The third finds only  22  of the zeros 
of  P24 ,  and out of order.  The fourth finds all desired zeros as accurately as desired and in order.
The same results were obtained from  MATLAB  5.2  on a  Mac Quadra 950  and on an  IBM PC.

What should be done by someone who couldn’t get  fzero   to work?  Some other root-finding 
method like  Newton’s  iteration  x —> x – Pn(x)/Pn'(x)  can be tried.  The derivative  Pn'(x)  can 
be computed in any of several ways.  One way uses the row  c = slegc(n)   of coefficients of  
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Pn(x)  to compute a row  d = [n:–1:1].*c(1:n)   of coefficients of  Pn'(x) = polyval(d, x)  .   
Another way computes  Pn'(x)  simultaneously with  Pn(x)  from  Horner’s  recurrence used to 
compute  Pn(x) = (…((c1·x + c2)·x + c3)·x + … + cn)·x + cn+1 .  The simultaneous recurrences 
look like this in  MATLAB  :

p = c(1) ;  p1 = 0 ;
for  n = 2:n+1,

p1 = p1.*x + p ;    % ... the derivative of ...
p = p.*x + c(n) ;    % ... Horner’s recurrence.

end  % ...  yielding  p = Pn(x)  and  p1 = Pn'(x) .

However,  schemes based upon the coefficient-row  c  inherit its defect:  Even if  c  is computed 
exactly right,  its huge coefficients amplify roundoff intolerably as it propagates unless  n  or  x  is 
relatively small.  As we have seen above  (but not proved yet),  no such defect afflicts the three-
term recurrence for  Pn(x) ;  it can be augmented to compute  Pn'(x)  simultaneously thus:

P–1(x) := P–1'(x) := P0'(x) := 0 ;   P0(x) := 1 ;
for  N = 1, 2, 3, …, n  in turn do

PN'(x) :=  ( (2N – 1)·((2x – 1)·PN-1'(x) + 2PN–1(x))  –  (N – 1)·PN-2'(x) )/N ,

PN(x) :=  ( (2N – 1)(2x – 1)·PN-1(x)  –  (N – 1)·PN-2(x) )/N .

Can you see how to augment  slegp.m   above to deliver  Pn'(x)  as well as  Pn(x) ?  How should 

you modify the expression  x – Pn(x)/Pn'(x)  to deflate previously computed zeros  z1, z2,  and  z3  

numerically without a new program to compute the derivative of   Pn(x)/( (x–z1)(z–z2)(x–z3) )  ?  
Hint:  P' /P = log(P)'  .

Another formula for the derivative is  Pn'(x) = n·( (2x–1)·Pn(x) – Pn–1(x) )/(2x(x–1)) .  It looks too simple.  Can you 
prove it by induction?  Can you see why it should be avoided,  especially when  x  is near  0  or  1 ?

With or without the derivative,  with or without deflation,  the zeros of  Pn  computed by finding 
where  slegp(x, n)   vanishes or reverses sign seem accurate enough.  They pass two tests.  One 
compares  1  against sums of pairs of zeros situated symmetrically about  1/2 ;  all sums agree 
with  1  in all but its last  (53rd)  bit or two.  Another test compares  |c(n+1)| = 1  with the product 
of all  n  computed zeros and coefficient  c(1) ;  they agree in all but the last few bits.  Two such 
tests prove nothing unless one fails,  in which case some  (we know not which)  computed zero(s) 
would be proved inaccurate.

Can convincing evidence be found for the accuracy of the computed zeros of  slegp(x, n)  ?  
Yes;  the desired zeros of  Pn(x)  can be computed in an utterly different way that corroborates 
strongly the accuracy now in question and can be proved to suffer from roundoff about the same 
as do zeros computed from the three-term recurrence,  though their rounding errors are different.

Set the infinite column  p(x) := [P0(x), P1(x), P2(x), P3(x), P4(x), …, Pn–1(x), Pn(x), … ]’  ;  set the 
infinite diagonal matrix  M  := Diag([1, 3, 5, 7, 9, …, 2n–1, 2n+1, … ]) ;  and set the infinite 
tridiagonal matrix
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Y :=  .

In each instance the rows bracketed between pairs of  “…”  are rows  #n  and  #n+1 .  Now the 
three-term recurrence for  Shifted Legendre Polynomials  can be written as a matrix equation  
Y·p(x) = (2x–1)·M ·p(x) .  This equation simplifies a little after the substitution  q(x) := √M ·p(x) ,  
or  Qn(x) := √2n–1·Pn(x) ,  to become  T·q(x) = (2x–1)·q(x)  in which  T  is an infinite symmetric 

tridiagonal matrix with  [0, …, 0, (n–1)/√(4(n–1)2–1), 0, n/√(4n2–1), 0, 0, …]  in its row  #n .

Obtain  Tn  and  qn(x)  by deleting all rows and columns after  #n  from  T  and  q(x)  respectively.  
If  z  is any zero of  Pn(x)  then  Tn·qn(z) = (2z–1)·qn(z)  because  Qn(z) = Pn(z) = 0 .  Conversely 
if  Tn·qn(z) = (2z–1)·qn(z)  then  Pn(z) = Qn(z) = 0 .  In other words,  all zeros  z  of  Pn(x)  can be 
obtained from eigenvalues  t = 2z–1  of  Tn  without ever computing the values or coefficients of  
Pn ;  in fact  z = (1+t)/2 .  Here is a  MATLAB   program  slegt.m   that computes  Tn :

function  Tn = slegt(n)
%  slegt(n)  is the symmetric  n-by-n  tridiagonal matrix whose
%  eigenvalues  t ,  all between  -1  and  1 ,  are the zeros of
%  the  nth  Legendre Polynomial;  z = (1+t)/2  yields the zeros
%  of the shifted  Legendre  polynomial  Pn(x) = slegp(x, n) ,  q.v.
n = round(n) ;  if n < 2 ,  Tn = zeros(n) ;  return,  end
x = [1:n-1] ;  x2 = x+x ;
x = x./sqrt((x2+1).*(x2-1)) ;
Tn = diag(x,1) + diag(x,-1) ;

Computed eigenvalues  t  of  Tn  can be tested for accuracy in two ways.  First,  they should come 

in pairs with opposite signs since  Tn  is  Similar  to  –Tn = Dn
–1·Tn·Dn  via a diagonal matrix  

Dn = Diag[+1, –1, +1, –1, … ] .  Second,  reversing the rows and columns of  Tn  should not 
change its eigenvalues,  but will change them slightly because of different rounding errors.  We 
find that  t = sort(eig(slegt(n)))   is very nearly sign-symmetric since  t + flipud(t)   has 

elements all of the order of  10–15 .  Likewise  t – sort(eig(flipud(fliplr(slegt(n)))))  .  
These tests do not take the effects of roundoff in the elements of  Tn  into account.  To test their 
effects,  compare  1  with  c(1)*prod(z)   where  z = (1  ±  t)*0.5   are the desired zeros of  

Pn .  This test of the computed column  z  of zeros produced a difference of the order of  10–14 ,  so 
their accuracy seems to be corroborated.  It can be proved,  but that is a story for another day.

Tabulated on the next page are zeros  z  computed using a  Pentium’s  10-byte floating-point:

0 1         

1 0 2        

 2 0 3       

  3 0 4      

   4 0 …     

    … … n 1–    

     n 1– 0 n   

      n 0 n 1+  

       n 1+ … …
        … …
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Tabulated values are in error in only their last digit displayed.

Appendix:  Brute-force verification that  Rodrigues’  formula for  Pn(x)  satisfies its recurrence:
Differentiate  n  times the  Binomial Expansion  of  (x2 - x)n/n!  to get

   Pn(x) = (–1)n·∑0≤k≤n (–x)k·(n+k)!/((k!)2·(n–k)!)   
 = (–1)n·∑0≤k≤n Xk·(n+k)!/(n–k)!   where  Xk := (–x)k/(k!)2 . 

Every coefficient  (n+k)!/((k!)2·(n–k)!) = n+kC2k·
2kCk  is the product of two binomial coefficients and therefore an 

integer.  Note that  x·Xk = –(k+1)2·Xk+1 .  Substitute this into  Pn ’s  three-term recurrence formula in the form

RN = (–1)N+1·( (N+1)·PN+1 – (2N+1)(2x–1)·PN + N·PN–1 )  

   =  ∑0≤k≤N+1 Xk·(N+1)·(N+1+k)!/(N+1–k)! + ∑0≤k≤N Xk·(2N+1)(2x–1)·(N+k)!/(N–k)! 

 + ∑0≤k≤N–1 Xk·N·(N–1+k)!/(N–1–k)! 

    =  ∑0≤k≤N+1 Xk·(N+1)·(N+1+k)!/(N+1–k)! – ∑0≤k≤N 2Xk+1·(k+1)2·(2N+1)·(N+k)!/(N–k)! 

 – ∑0≤k≤N Xk·(2N+1)·(N+k)!/(N–k)! + ∑0≤k≤N–1 Xk·N·(N–1+k)!/(N–1–k)! 

    =  ∑0≤k≤N+1 Xk·(N+1)·(N+1+k)!/(N+1–k)! – ∑0≤k≤N+1 2Xk·k
2·(2N+1)·(N+k–1)!/(N–k+1)! 

 – ∑0≤k≤N Xk·(2N+1)·(N+k)!/(N–k)! + ∑0≤k≤N–1 Xk·N·(N–1+k)!/(N–1–k)! 

I wish I knew how to persuade  Mathematica  or  Maple  to perform the foregoing and following manipulations:

Coeff. of  XN+1 :   (N+1)·(2N+2)! – 2(N+1)2·(2N+1)!  = 0 .

Coeff. of  XN :   (N+1)·(2N+1)! – 2·N2·(2N+1)·(2N–1)! – (2N+1)·(2N)!  = 0 .

Coeff. of  Xk  for  0 ≤ k ≤ N–1 :   (N+1)·(N+1+k)!/(N+1–k)! – 2·k2·(2N+1)·(N+k–1)!/(N–k+1)! 

– (2N+1)·(N+k)!/(N–k)! + N·(N–1+k)!/(N–1–k)!    

=  ((N+k–1)!/(N–k+1)!)·(  (N+1)(N+k)(N+k+1) – 2·k2·(2N+1) – (2N+1)(N+k)(N–k+1) 

+ N(N–k)(N–k+1)  )  = 0 .  
Therefore  RN = 0 ;  the  Rodrigues  formula does satisfy the three-term recurrence.

Zeros of  Shifted Legendre Polynomials  Pn(x)

n = 12 n = 24

0.990780317123359625 1 0.997593609998510680 0.467971553568697187 13

0.952058628185237428 2 0.987364277985654749 0.404440566263191845 14

0.884951337097152344 3 0.969137276001366379 0.342478660151918313 15

0.793658977143308724 4 0.943207763502200517 0.283103246186977431 16

0.683915749499090097 5 0.910000992986951461 0.227289264305580232 16

0.562616704255734458 6 0.870062095789277182 0.175953174031512215 18

0.437383295744265542 7 0.824046825968487785 0.129937904210722818 19

0.316084250500909903 8 0.772710735694419768 0.0899990070130485390 20

0.206341022856691276 9 0.716896753813022569 0.0567922364977994829 21

0.115048662902847656 10 0.657521339848081687 0.0308627239986336208 22

0.0479413718147625710 11 0.595559433736808155 0.0126357220143452509 23

0.0092196828766403746712 0.532028446431302813 0.0024063900014893199324
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Our  Shifted Legendre Polynomials  Pn(x)  are called  “Pn
*(x)”  by  Urs W. Hochstrasser,  who uses  “Pn(x)”  for  

(unshifted)  Legendre Polynomials  in  ch. 22,  as does  Irene A. Stegun  in  ch. 8  of her  Handbook of Mathematical 
Functions …  published in  1964  by the then  National Bureau of Standards  (now  NIST)  and subsequently reprinted 

by  Dover,  N.Y.  Their  Pn(z) = Pn
*((z+1)/2) = (d/dz)n(z2–1)n/(2nn!) ,  so our  Pn(x)  is his  Pn

*(x) = Pn(2x–1) .  The 
asymptotic estimates and inequalities for the zeros of  Pn  come from his  #22.16.6 .  The formula that should not be 
used to compute the derivative comes from her  #8.5.4 .

Problem 3:  Fibonacci  Numbers
When the  Fibonacci  numbers  Fn  are generated by the recurrence

F0 = 0 ,   F1 = 1 ,   and    Fn+1 = Fn + Fn-1   for  n = 1, 2, 3, …  in turn,
computing just  FN  for a given large  N  takes time at least proportional to  N .  For example

F1471 = 11785114478791471849880…15229         ( 308 decimal digits).
If all we need is  FN  to,  say,  12  sig. dec.,  how can we compute it much faster than that,  and 
accurate to within a few units in the last digit carried?  How do you know your chosen method is 
that accurate?

Solution 3:
Here is a  MATLAB   program  fib.m   to compute quickly  Fn = round-to-nearest-integer( µn/√5 )  
wherein  µ := (1 + √5)/2 .  The program has to compensate for rounding the value of  µ  to an  8-

byte floating-point number  u .  Otherwise  un  could differ from  µn  by an amount that grows with  

n ,  which can be as big as  1474  before  un  overflows.  The compensation is devious;  the 
program exploits massive subtractive cancellation,  which inherits error but adds none new,  to 

estimate rounding error  v := µ – u ≈ –5.432/1017 to about  5  sig. dec.  Then  µn ≈ un + n·(v/u)·un  

after terms of order  (n·v/u)2·un  are ignored.

function  f = fib(n)
%  fib(n) = F(n) = the  nth  Fibonnacci  number for  n >= 0
%         = F(n-1) + F(n-2)  starting from  F(1) = F(2) = 1
%  computed very quickly without computing earlier  F's .
%  Overflow turns  fib(n)  into  NaN  for  n > 1474 .
%  Fib(n)  accepts arrays  n  of non-consecutive integers.
%                                     (c)  W. Kahan  2004
n = round(n) ;  if any(n < 0)
        N = n
        error('  fib(N)  accepts only  N >= 0 .'),  end
s = sqrt(5) ;  u = (1+s)*0.5 ;  %  = (1+sqrt(5))/2 - v
%  v = ( 207/128 - u ) + 31/(8192*s + 18304) ;  %  ...  3 more digits UNUSED
v = ( 13255/8192 - u ) - 1201/(33554432*s + 75030528) ;  % ... 5 more digits
un = u.^n ;
f = round( ( un + ((v/u)*n).*un )/s ) ;

How accurate is  fib.m  ?  How much more accurate is it than if compensation  v  were omitted?  
And how do we know?  For  MATLAB   versions  5.x  and  6.x ,  the relative error in  fib.m   turns 
out to be tiny enough to be best measured in  Ulps —  Units in the Last Place  stored for floating-
point variables in question.
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We define  ulp(x)  to be the gap between the two floating-point numbers nearest  x .  If  x  is a 
floating-point number then  ulp(x)  is the difference between  x  and its nearest neighbor.  For  

MATLAB ’s  8-byte floating-point carrying  53  sig. bits,  ulp(x) = eps  = 1/252 ≈ 2.22/1016  when  
1 < x ≤ 2 .  Computing  ulp(x)  can be tricky because of variations in the way different computers 
round off floating-point arithmetic and handle exponent over/underflow.  For example  MATLAB ’s  

ulp(0.0)  should be  0. 5^1074  ≈ 4.94/10324  but can be  realmin = 0 . 5^1022  ≈ 2.225/10308  on 
a few aberrant computers.  For the purposes of this problem about  Fibonacci  numbers,

min( abs( (x + (0.51*eps)*x) – x ),  abs( (x – (0.51*eps)*x) – x ) )

computes  ulp(x)  well enough on  PCs,  Macs  and  SPARCs.  If real number  x  is approximated 
by floating-point  X  then its error is  (X–x)/ulp(x)  ulps.

MATLAB   versions  5.x  and  6.x  produce values  fib(n)   differing from  Fn  by from  –2.5  ulps  

to  +1.5  ulps;  about half of that error is generated by  MATLAB ’s  computation of  un ,  so it’s 

pretty good.  Were the compensating term  v/u ≈ –3.3572/1017  omitted,  values of  fib(n)   would 
come out too high by about from  0.15·n ulps  to  0.3·n ulps  for  n > 75 .  How do we know?

Here is a  MATLAb  program  fibs.m   that computes  Fibonacci  numbers  Fn  correctly rounded.  
They are all integers,  but rounded off to fit into  8-byte  floating-point numbers for  n > 78 . 

function  [F, dF] = fibs(n)
%  F = fibs(n) = [F1, F2, F3, ..., Fn]  is a row of
%  Fibonacci  numbers computed slowly but accurately
%  from their recurrence  F(n+1) = F(n) +  F(n-1) 
%  started at  F(1) = F(2) = 1 .  If  n > 78  roundoff
%  is attenuated by  Compensated Summation,  and then
%  [F, dF] = fibs(n)  returns also a compensating term
%  dF  such that  F + dF  would be more accurate if its
%  sum did not just round off to correctly rounded  F .
%  Overflow  turns  Fn  into  NaN  when  n > 1476 .
%                                (c) W. Kahan  2004
F = ones(1, n) ;  dF = zeros(1, n) ;
if  (n < 3),  return,  end
for  k = 3:n
    s = ((dF(k-2) + dF(k-1)) + F(k-2)) + F(k-1) ;
    t = (((F(k-1) - s) + F(k-2)) + dF(k-1)) + dF(k-2) ;
    F(k) = s + t ;             % ...  rounded off,  and
    dF(k) = (s - F(k)) + t ;   % ...  is the rounding error.
  end

Though  f = fib(1:n)   runs rather faster than  [F, dF] = fibs(n)  ,  the error in the latter’s  F  
is smaller than  0.5 ulps  and approximated well enough by  dF  that the error in the former’s  f   
can be computed fairly well as  ((f-F) - dF)./ulp(F)   ulps.  If compensated summation were 
not used in  fibs(n)  ,  but instead it computed simply  F(k) = F(k-1)+F(k-2)  ,  its error for  
n > 78  would look like a random walk ranging between about  –13 ulps  and  +3 ulps.

The last dozen finite  Fibonacci  numbers  F  delivered by  [F, dF] = fibs(1476)   are tabulated 
below together with the leading several digits of their corrections  dF .
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If you think you can copy,  align and add the decimal digits of  F(n)  and  dF(n)  to get the leading  29  sig. dec.  of  
Fn ,  you have forgotten that  What You See is Not What You Get  from binary floating-point arithmetic.  18  sig. dec. 
of  F(n)  displayed here more than suffice for  MATLAB ’s  command   load nFdF -ascii     to reproduce exactly the  
8-byte  binary floating-point number  F(n)  from which the displayed string of digits was obtained by binary-to-
decimal conversion.  At least  40  of the  53  leading sig. bits of  dF(n)  will be reproduced too,  but then adding it to  
F(n)  will be futile because  MATLAB   will round the sum back to  F(n) .  Can you see how to tease the leading  25  
(say)  sig. dec.  of  Fn  from  MATLAB   without using its  Symbolic Toolbox?  The process is tricky.  Here,  obtained by 
using the  Symbolic Toolbox,  is a value to compare with yours:

F1476 = 1306989223763399318036311553802719830983924439074126407260066594601927930704792
317402886810877770177210954631549790122762343222469369396471853667063684893626
608441474499413484628009227558189696347433489829164249540627441359698656154072
76492410653721774590669544801490837649161732095972658064630033793347171632. 

For an earlier treatment of  Problem 3  on earlier versions of  MATLAB   see  
http://www.cs.berkeley.edu/~wkahan/~MxMuleps.pdf .

What’s worth remembering about the foregoing three problems?  They illustrate 
some of the hazards of approximate computation,  and how to circumvent them.

First,  roundoff gets amplified intolerably by a computation only when its data comes too close to 
a singularity at which certain derivatives become infinite or nonexistent.  In  Problem 1,  x34  and  
x340  are too close to  x∞  which is a discontinuous function of initial values  x0  and  x1 .  When  n  
is big in  Problem 2   the row  c  includes some coefficients so huge that,  even computed exactly,  
they amplify intolerably later rounding errors incurred during the computation of  Pn(x)  for  x  

near  1 .  In  Problem 3  the difference between  µn ≈ (u + v)n  and  un  becomes intolerable slowly 
as  n  becomes huge though  v  is just one rounding error.  To diagnose numerical misbehavior,

Seek the Singularity.

n F(n) dF(n)

1465 6.56761920344308045E305 -2.924700176543E288

1466 1.06266310963374150E306 -4.236201169795E289

1467 1.71942502997804946E306 3.267580021670E289

1468 2.78208813961179081E306 1.462388127012E290

1469 4.50151316958984058E306 -1.329354354469E290

1470 7.28360130920163108E306 3.251534256190E290

1471 1.17851144787914723E307 -4.314821065575E290

1472 1.90687157879931034E307 -1.063286809385E290

1473 3.08538302667845756E307 -5.378107874961E290

1474 4.99225460547776815E307 -3.138939855353E291

1475 8.07763763215622521E307 1.312850130988E291

1476 1.30698922376339934E308 -1.826089724365E291
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Some singularities seem intrinsic to the computational problem we wish to solve,  as is the jump 
discontinuity of  x∞  in  Problem 1 .  Then we attach pejoratives like  “ill-conditioned”  ot  “ill-
posed”  to the problem,  as if to blame it for the troubles we must overcome to solve it.  Some 
singularities are accidents of the method chosen to solve the problem,  as are the huge coefficients  
c  we need not but could compute to find the zeros of  Pn .  Then we attach the pejorative term  
“numerically unstable”  to the chosen method,  as if to blame it for our computation’s inaccuracy,  
though the method may work well on other problems for all we know.  More than disparaging a 
method or a problem,  what matters is that we understand the source of numerical misbehavior 
well enough to detect and diagnose it accurately,  and then remove or evade or learn to live with it.

That’s not so easy as it sounds.

What is the true purpose of  Problem 1 ?  If it is to compute the result of repeated applications of  
Muller’s Recurrence  to uncertain data  x0  and  x1 ,  then the result’s near-discontinuity at this 
data is an attribute of the result too important to leave unmentioned and too unobvious for casual 
computation to expose.  On the other hand,  if the purpose is to compute a long sequence of terms  
xn  as if  x0  and  x1  were exact,  then  Muller’s Recurrence  is a numerically unstable way to do 

that;  far more accurate is the simple but unobvious recurrence  xn := 11 – 30/xn–1 .  Elementary 
though  Problem 1  seems at first,  it cannot be solved satisfactorily without mathematical analysis 
that transcends what any computer program can be expected nowadays to do automatically.

Problem 2  exposes the curse of high dimensionality and/or high degree.  If  roots(slegc(n))   
were tested only at  n < 12  its gross inaccuracy at larger  n  would go unnoticed until too late.  
Only scrutiny of a graph like the ones on  p. 7  or the coefficients in  c = slegc(n)   reveals how 
badly their huge magnitudes degrade the computation of the larger zeros of  Pn(x)  as  n  grows.

Degradation like that,  which usually blights some zeros of characteristic polynomials of matrices 
of other than small dimensions,  astonished us in the  1950s  when we tried to apply methods that 
had often worked in previous decades to bigger problems on new electronic computers.  Now the  
(usually)  prudent policy for floating-point arithmetic is to compute eigenvalues directly from a 
matrix rather than from the zeros of its computed characteristic polynomial  even if its coefficients 
are computed exactly.  (Some people still think rounding errors in the coefficients’ last digits are 
solely to blame for all the trouble,  but  P23(x)  provides a counter-example.)  The homogeneous 
linear three-term recurrence satisfied by polynomials  Pn(x)  connects them to a tridiagonal matrix  
Tn = slegt(n)   whose eigenvalues computed by  MATLAB ’s eig(Tn)   are,  as usual,  much more 
reliable than the zeros of  Pn(x)  computed from its coefficients  c = slegc(n)   by  MATLAB ’s 
roots(c)   or  fzero(…)   and  polyval(c, x)   using floating-point of just the same precision.

The weasel-word  “usually”  is necessary because some zeros,  like the smallest few of  Pn(x) ,  may be computable 
faster and more accurately from its coefficients than from the eigenvalues of its associated matrix.  The same may be 
true for all the zeros of  Lacunary  polynomials most of whose coefficients vanish,  and for the relevant one or two 
zeros of a polynomial arising from financial calculation of an interest rate or  Internal Rate of Return  on investment.

Problem 3  provides the simplest illustration that over/underflow thresholds,  not precision,  are 
what limit the accuracy of exclusively floating-point computations since arbitrarily high precision 
can be simulated,  albeit at some cost in complexity and time.  If built properly into programming 
languages,  higher precisions would simplify computation and enhance its reliability enormously.


