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Keplerian Orbits

 

Isaac Newton derived his now classical differential equation  d
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  from his laws of 
gravity and motion to explain  Johannes Kepler’s  laws of planetary motion in elliptical orbits.  
Nowadays the differential equation serves to test numerical methods for trajectory calculations.  
The function  
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  can be a real vector in  3-space  or  2-space,  or a complex number;  time  

 

τ

 

  is 
real.  The  Euclidean  length  ||
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  if  
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  is a complex number.  
The path traced by  

 

z

 

(

 

τ
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  is a lighter particle’s orbit around a heavier attracting body and lies in a 
plane that includes their center of mass,  which was put at the origin  

 

o

 

  of the plane’s coordinate 
system.  To further simplify the differential equation,  the masses and the gravitational constant 
have been absorbed into  

 

z

 

  and  

 

τ

 

  to render them dimensionless.

The differential equation keeps two things called  “integrals”  constant.  To explain them we write
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 ;
this converts the second-order differential equation into a pair of first order equations.  

 

w

 

  is the 
particle’s velocity and also its linear momentum.  Its  

 

Angular Momentum

 

  is  
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  (their 
cross-product),  a  3-vector for  3-space,  a scalar for  2-space  and for the complex plane,  where  
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;  here  
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  is the complex conjugate of  
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.  The particle’s  
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The differential equation keeps its  “integrals”  E  and  

 

Γ

 

  constant.

These constants are determined by substituting for  
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  and  

 

w

 

  their initial values,  say  
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at time  
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 = 0

 

 

 

,  and in turn they determine the shape of the orbit,  a conic section of eccentricity  
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  must be real because,  when  E < 0  and so  
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Consequently the orbit’s shape depends solely upon  Γ  and  ε  as determined from  z°  and  w° :

•  If  –∞ < –1/(2||Γ||2) ≤ E < 0  then  0 ≤ ε < 1  and the orbit is circular or elliptical with

period  T := 2π/(–2E)3/2
 ,   determined from the formula for  τ  below.

•  If  E = 0  the orbit is cometary,  an unbounded parabola with  ε = 1 ,  unless  ||Γ|| = 0 .
•  If  E > 0  the orbit is a branch of an hyperbola,  and  ε > 1 .

Assume  ||Γ|| ≠ 0  lest the orbit degenerate to a line segment,  finite if  E < 0  or  z°`·w° ≤ 0 .

Each of a differential equation’s integrals reduces its order,  dimension or degrees of freedom.  
Consequently the orbit can be expressed implicitly in polar coordinates  (r, θ)  in the orbit’s plane,  
which is perpendicular to  Γ  in  3-space.  θ  is the angle subtended at  o  by the orbit’s arc joining  
z  to the orbit’s  pericentre,  the orbit’s point nearest  o .  Complex  z(τ) = r(τ)·exp(ı·θ(τ)) .

||z(τ)|| := r(τ) := ||Γ||2/( 1 + ε·cos θ(τ) )    wherein  θ = θ(τ)  satisfies  …  

dθ/dτ  =  ( 1 + ε·cos θ )2/||Γ||3  for counter-clockwise rotation;  and if  E < 0  then …

   ,

assuming that initially  θ = 0  and  z  is at the pericentre when  τ = 0 .  Otherwise,  if the orbit is 
launched elsewhere,  an origin different from  τ = 0  must be determined from measurements of  
z°`·w°  (or  Re(z°·w°) ) ,  whose sign distinguishes outward bound  (+)  from inward bound  (–) ,  

and if  0  then  ||Γ||2 – ||z°||  whose sign distinguishes  pericentre (+)  from  apocentre (–) .  
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Exercises

Use representations of position  z  and velocity  w  as complex variables to answer the questions.

1.  The foregoing formulas were developed for a counter-clockwise orbit.  How do the initial 
values  z° and w°  determine whether the orbit is clockwise or counter-clockwise,  and how must 
the formulas be changed if the orbit is clockwise?

2.  Provide formulas that offset the origin for the time variable  τ  to accommodate arbitrary 
starting values  z° and w°  when the eccentricity  ε < 1 .

3.  Devise and test a  MATLAB   program to compute  z(τ)  given  z°,  w°  and  τ  when  ε < 1 .  You 
may use  MATLAB ’s  fzero  function.  How do you test a program when you have no other way to 
compute the desired result?  How accurate do you think your program is,  and why?

4.  How does the explicit formula relating  τ  to  θ  change for parabolic and hyperbolic orbits  
(when  ε ≥ 1 ) ?  You may consult a table of integrals or an automated algebra system.

5.  Derive the equation   Γ2 = |z| + ε·Re(z)   of the orbit,  and translate it into  Cartesian  (x, y)  
coordinates so that,  given a numerical value for either  x or  y,  you can compute the other’s two 
values.  Then derive a formula  w = ı·(ε + z/|z|)/Γ  to compute it numerically from  Γ,  ε  and  z .

6.  When  ε < 1 ,  the trigonometric formula above computes  τ  numerically from  E,  ε  and  θ .  
How should time  τ  be computed more directly from  E,  Γ,  ε  and position  z  instead?  At most 
one trigonometric function need be invoked if the following formulas are used:

Let     Ψ :=  =  ;   then

(-2E)3/2·τ = 2·arctan(Ψ) – y·ε·√(1 – ε2)/Γ2  determines  τ ± (integer)·T .

Can you confirm these formulas?

7.  How sensitive is an elliptical orbit to perturbations in its initial conditions?  To explore this 
question,  imagine two orbits initiated one at  z° and w°  and the other at  z° + δz° and w° + δw°  
with infinitesimal perturbations  δz° and δw°  so tiny that we can ignore their squares and higher 
powers.  Denote one orbit by  z(τ) and w(τ) ,  and the other by  z(τ) + δz(τ) and w(τ) + δw(τ) .  As  
τ  increases towards  +∞ ,  how fast can  |δz(τ)| and |δw(τ)|  grow?  Can they grow exponentially?  
Or can they grow at most like some power of  τ  ,  and if so,  which?  These questions deserve only 
qualitative answers since small non-infinitesimal perturbations cannot grow beyond the diameters 
of the ellipses.
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