Conjugate Gradients

Positive Definite A = A'. To solve Az = b for $z = A^{-1}b$, choose $x_{-1} := x_0$ arbitrarily and, for n = 0, 1, 2, 3, ... in turn, compute $x_{n+1} := x_n + \beta_n \cdot (b - Ax_n) + \mu_n \cdot (x_n - x_{n-1})$ with scalars β_n and μ_n chosen to minimize $(x_{n+1}-z)'A(x_{n+1}-z) = x_{n+1}' \cdot Ax_{n+1} - 2b'x_{n+1} + z'Az$. Simplify typography by dropping subscripts from $r_n := b - Ax_n$, $d_n := x_n - x_{n-1}$, β_n and μ_n to find that

$$[r, d]'A[r, d]\begin{bmatrix}\beta\\\mu\end{bmatrix} = \begin{bmatrix}r'Ar & r'Ad\\d'Ar & d'Ad\end{bmatrix}\begin{bmatrix}\beta\\\mu\end{bmatrix} = \begin{bmatrix}r'r\\d'r\end{bmatrix} = [r, d]'r$$

Solve this equation for β and μ . At least one solution always exists if A is positive definite.

In the absence of roundoff, successive residuals $r_n := b - Ax_n$ turn out to be orthogonal; in fact $r_m'r_n = 0 = d_m'Ad_n$ for all $m > n \ge 0$.

Consequently $r_m = o$ and $x_m = z$ at least as soon as m equals the dimension of A. But the point of the iteration is *not* to iterate that many times when the dimension is huge. Instead, take advantage of the tendency of residuals r_n and increments d_n to dwindle as n increases, and stop iterating when they both become small enough.

Overrelaxation

Positive Definite A = A' = -L + V - L' in which V := Diag(A) = V' is Positive Definite too, and -L = Subdiag(A). Given A and b we seek $z := A^{-1}b$. Starting from an arbitrary initial guess x_0 , for n = 0, 1, 2, 3, ... in turn, ordinary Gauss-Seidel iteration solves $V(x_{n+1}-x_n) = b + Lx_{n+1} - Vx_n + L'x_n$ for $x_{n+1} = (V - L)^{-1}(b + L'x_n)$. Then $(x_{n+1}-z) = E(x_n-z)$ where $E = (V - L)^{-1}L'$ can be shown to have eigenvalues all with magnitudes less than 1, though not necessarily much less unless ||L|| is rather smaller than the smallest eigenvalue of V.

To accelerate convergence, consider using an Over/Underrelaxation parameter δ confined to $-1 < \delta < 1$ for reasons to be explained later. To solve Az = b for $z = A^{-1}b$, choose x_0 arbitrarily and, for n = 0, 1, 2, 3, ... in turn, solve $V(x_{n+1}-x_n) = (1+\delta)(b + Lx_{n+1} - Vx_n + L'x_n)$ for $x_{n+1} = (V - (1+\delta)L)^{-1}(Vx_n + (1+\delta)(b - Vx_n + L'x_n))$. Then $(x_{n+1}-z) = E(x_n-z)$ where $E = (V - (1+\delta)L)^{-1}(-\delta V + (1+\delta)L'))$. Note that, because L lies strictly below the diagonal, (product of all E's eigenvalues) = det(E) = det(-\delta I). Therefore at least one eigenvalue of E has magnitude at least as big as $|\delta|$. This is why we keep $-1 < \delta < 1$.

E and its eigenvalues depend upon δ , as well as A, but the dependence is obscure except in special cases. An important special case arises when $A = \begin{bmatrix} I & -B' \\ -B & I \end{bmatrix}$. In this case every eigenvalue α of A has the form $\alpha = 1 \pm \beta$ where β is either a singular value of B or, if B is not square, 0. And in this case every eigenvalue ϵ of E can be shown easily to satisfy $(\epsilon + \delta) = \pm \beta (1+\delta)\sqrt{\epsilon}$; $\epsilon = ((1+\delta)\beta/2 \pm \sqrt{(((1+\delta)\beta/2)^2 - \delta))^2}$.

The largest of the magnitudes of eigenvalues ε is minimized when $\delta = (||B||/(1 + \sqrt{(1-||B||^2)}))^2$, and then every eigenvalue ε has the same magnitude δ .