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Conjugate Gradients

 

Positive Definite   A = A

 

'

 

 .  To solve  Az = b  for  z = A

 

–1

 

b ,  choose  x

 

–1

 

 := x

 

0

 

  arbitrarily and,  for  
n = 0, 1, 2, 3, …  in turn,  compute  x

 

n+1

 

 := x

 

n

 

 + ß

 

n

 

·(b – Ax

 

n

 

) + 

 

µ

 

n

 

·(x

 

n

 

 – x

 

n–1

 

)  with scalars  ß

 

n

 

  
and  

 

µ

 

n

 

  chosen to minimize  (x

 

n+1

 

–z)

 

'

 

A(x

 

n+1

 

–z) = x

 

n+1

 

'

 

·Ax

 

n+1

 

 – 2b

 

'

 

x

 

n+1

 

 + z

 

'

 

Az .  Simplify 
typography by dropping subscripts from  r

 

n

 

 := b – Ax

 

n

 

 ,  d

 

n

 

 := x

 

n

 

 – x

 

n–1

 

 ,  ß

 

n

 

  and  

 

µ

 

n

 

  to find that

         [r, d]

 

'

 

A[r, d]  = = [r, d]

 

'

 

r .

Solve this equation for  ß  and  

 

µ

 

 .  At least one solution always exists if  A  is positive definite.

In the absence of roundoff,  successive residuals  r

 

n

 

 := b – Ax

 

n

 

  turn out to be orthogonal;  in fact
r

 

m

 

'

 

r

 

n

 

 = 0 = d

 

m

 

'

 

Ad

 

n

 

   for all  m > n 

 

≥

 

 0 .
Consequently  r

 

m

 

 = o  and  x

 

m

 

 = z  at least as soon as  m  equals the dimension of  A .  But the 
point of the iteration is  

 

not

 

  to iterate that many times when the dimension is huge.  Instead,  take 
advantage of the tendency of residuals  r

 

n

 

  and increments  d

 

n

 

  to dwindle as  n  increases,  and 
stop iterating when they both become small enough.

 

Overrelaxation

 

Positive Definite   A = A

 

'

 

 = –L + V – L

 

'

 

  in which  V := Diag(A) = V

 

'

 

  is  Positive Definite  too,  

and  –L = Subdiag(A) .  Given  A  and  b  we seek  z := A

 

–1

 

b .  Starting from an arbitrary initial 
guess  x

 

0

 

 ,  for  n = 0, 1, 2, 3, …  in turn,  ordinary  Gauss-Seidel  iteration solves  

V(x

 

n+1

 

–x

 

n

 

) = b + Lx

 

n+1

 

 – Vx

 

n

 

 + L

 

'

 

x

 

n

 

  for  x

 

n+1

 

 = (V – L)

 

–1

 

(b + L

 

'

 

x

 

n

 

) .  Then  (x

 

n+1

 

–z) = E(x

 

n

 

–z)  

where  E = (V – L)

 

–1

 

L

 

'

 

  can be shown to have eigenvalues all with magnitudes less than  1 ,  
though not necessarily much less unless  ||L||  is rather smaller than the smallest eigenvalue of  V .

To accelerate convergence,  consider using an  Over/Underrelaxation parameter  

 

δ

 

  confined to  

–1 < 

 

δ

 

 < 1  for reasons to be explained later.  To solve  Az = b  for  z = A

 

–1

 

b ,  choose  x

 

0

 

  
arbitrarily and,  for  n = 0, 1, 2, 3, …  in turn,  solve  V(x

 

n+1

 

–x

 

n

 

) = (1+

 

δ

 

)(b + Lx

 

n+1

 

 – Vx

 

n

 

+ L

 

'

 

x

 

n

 

)  

for  x

 

n+1

 

 = (V – (1+

 

δ

 

)L)

 

–1

 

(

 

Vx

 

n

 

 + (1+

 

δ

 

)(b – Vx

 

n

 

+ L

 

'

 

x

 

n

 

)

 

)

 

 .  Then  (x

 

n+1

 

–z) = E(x

 

n

 

–z)  where  

E = (V – (1+

 

δ

 

)L)

 

–1

 

(

 

–

 

δ

 

V+ (1+

 

δ

 

)L

 

'

 

)

 

)

 

 .  Note that,  because  L  lies strictly below the diagonal,  
(product of all  E’s  eigenvalues) = det(E) = det(–

 

δI) .  Therefore at least one eigenvalue of  E  has 
magnitude at least as big as  |δ| .  This is why we keep  –1 < δ < 1 .

E  and its eigenvalues depend upon  δ ,  as well as  A ,  but the dependence is obscure except in 

special cases.  An important special case arises when   A =  .  In this case every eigenvalue  

α  of  A  has the form  α = 1 ± ß  where  ß  is either a singular value of  B  or,  if  B  is not square,  
0 .  And in this case every eigenvalue  ε  of  E  can be shown easily to satisfy  (ε+δ) = ±ß(1+δ)√ε ;

 ε = ( (1+δ)ß/2  ±  √( ((1+δ)ß/2)2 – δ ) )2 .

The largest of the magnitudes of eigenvalues  ε  is minimized when  δ = (||B||/(1 + √(1–||B||2)))2 ,  
and then every eigenvalue  ε  has the same magnitude  δ .
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