Conjugate Gradients

Positive Definite $A=A^{\prime}$. To solve $A z=b$ for $z=A^{-1} b$, choose $x_{-1}:=x_{0}$ arbitrarily and, for $\mathrm{n}=0,1,2,3, \ldots$ in turn, compute $\mathrm{x}_{\mathrm{n}+1}:=\mathrm{x}_{\mathrm{n}}+\beta_{\mathrm{n}} \cdot\left(\mathrm{b}-A \mathrm{x}_{\mathrm{n}}\right)+\mu_{\mathrm{n}} \cdot\left(\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{n}-1}\right)$ with scalars β_{n} and μ_{n} chosen to minimize $\left(x_{n+1}-z\right)^{\prime} A\left(x_{n+1}-z\right)=x_{n+1}^{\prime} \cdot A x_{n+1}-2 b^{\prime} x_{n+1}+z^{\prime} A z$. Simplify typography by dropping subscripts from $r_{n}:=b-A x_{n}, d_{n}:=x_{n}-x_{n-1}, \beta_{n}$ and μ_{n} to find that

$$
\left.[\mathrm{r}, \mathrm{~d}]^{\prime} \mathrm{A}[\mathrm{r}, \mathrm{~d}]\left[\begin{array}{l}
\beta \\
\mu
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{r}^{\prime} A r & \mathrm{r}^{\prime} \mathrm{Ad} \\
\mathrm{~d}^{\prime} A r & d^{\prime} A d
\end{array}\right]\left[\begin{array}{l}
\beta \\
\mu
\end{array}\right]=\left[\begin{array}{l}
\mathrm{r}^{\prime} \mathrm{r} \\
\mathrm{~d}^{\prime} \mathrm{r}
\end{array}\right]=[\mathrm{r}, \mathrm{~d}]\right]^{\prime} \mathrm{r} .
$$

Solve this equation for β and μ. At least one solution always exists if A is positive definite.
In the absence of roundoff, successive residuals $r_{n}:=b-A x_{n}$ turn out to be orthogonal; in fact

$$
\mathrm{r}_{\mathrm{m}}{ }^{\prime} \mathrm{r}_{\mathrm{n}}=0=\mathrm{d}_{\mathrm{m}}{ }^{\prime} \mathrm{Ad}_{\mathrm{n}} \text { for all } \mathrm{m}>\mathrm{n} \geq 0
$$

Consequently $r_{m}=o$ and $x_{m}=z$ at least as soon as m equals the dimension of A. But the point of the iteration is not to iterate that many times when the dimension is huge. Instead, take advantage of the tendency of residuals r_{n} and increments d_{n} to dwindle as n increases, and stop iterating when they both become small enough.

Overrelaxation

Positive Definite $A=A^{\prime}=-L+V-L^{\prime}$ in which $V:=\operatorname{Diag}(A)=V^{\prime}$ is Positive Definite too, and $-L=\operatorname{Subdiag}(A)$. Given A and b we seek $z:=A^{-1} b$. Starting from an arbitrary initial guess x_{0}, for $\mathrm{n}=0,1,2,3, \ldots$ in turn, ordinary Gauss-Seidel iteration solves $V\left(x_{n+1}-x_{n}\right)=b+L x_{n+1}-V x_{n}+L^{\prime} x_{n}$ for $x_{n+1}=(V-L)^{-1}\left(b+L^{\prime} x_{n}\right)$. Then $\left(x_{n+1}-z\right)=E\left(x_{n}-z\right)$ where $E=(V-L)^{-1} L^{\prime}$ can be shown to have eigenvalues all with magnitudes less than 1 , though not necessarily much less unless $\|\mathrm{L}\|$ is rather smaller than the smallest eigenvalue of V .

To accelerate convergence, consider using an Over/Underrelaxation parameter δ confined to $-1<\delta<1$ for reasons to be explained later. To solve $A z=b$ for $z=A^{-1} b$, choose x_{0} arbitrarily and, for $\mathrm{n}=0,1,2,3, \ldots$ in turn, solve $\mathrm{V}\left(\mathrm{x}_{\mathrm{n}+1}-\mathrm{x}_{\mathrm{n}}\right)=(1+\delta)\left(\mathrm{b}+\mathrm{Lx}_{\mathrm{n}+1}-\mathrm{Vx}_{\mathrm{n}}+\mathrm{L}^{\prime} \mathrm{x}_{\mathrm{n}}\right)$ for $x_{n+1}=(V-(1+\delta) L)^{-1}\left(V x_{n}+(1+\delta)\left(b-V x_{n}+L^{\prime} x_{n}\right)\right)$. Then $\left(x_{n+1}-z\right)=E\left(x_{n}-z\right)$ where $\left.\mathrm{E}=(\mathrm{V}-(1+\delta) \mathrm{L})^{-1}\left(-\delta \mathrm{V}+(1+\delta) \mathrm{L}^{\prime}\right)\right)$. Note that, because L lies strictly below the diagonal, (product of all E's eigenvalues) $=\operatorname{det}(E)=\operatorname{det}(-\delta I)$. Therefore at least one eigenvalue of E has magnitude at least as big as $|\delta|$. This is why we keep $-1<\delta<1$.

E and its eigenvalues depend upon δ, as well as A , but the dependence is obscure except in special cases. An important special case arises when $A=\left[\begin{array}{cc}I & -B \\ -B & I\end{array}\right]$. In this case every eigenvalue α of A has the form $\alpha=1 \pm \beta$ where β is either a singular value of B or, if B is not square, 0 . And in this case every eigenvalue ε of E can be shown easily to satisfy $(\varepsilon+\delta)= \pm ß(1+\delta) \sqrt{\varepsilon}$;

$$
\varepsilon=\left((1+\delta) \beta / 2 \pm \sqrt{ }\left(((1+\delta) \beta / 2)^{2}-\delta\right)\right)^{2}
$$

The largest of the magnitudes of eigenvalues ε is minimized when $\delta=\left(\|B\| /\left(1+\sqrt{ }\left(1-\|B\|^{2}\right)\right)\right)^{2}$, and then every eigenvalue ε has the same magnitude δ.

