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Refining the General Symmetric Definite Eigenproblem

 

§0:  Introduction

 

Given are two symmetric  n-by-n  matrices  A = A
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  and  H = H
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;  and  H  is  
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.  
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e
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e
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”  has  n  real eigenvalues  
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  and eigenvectors  
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eigenvalue is a zero of the  

 

Characteristic Polynomial

 

  det(

 

λ

 

·H

 

 

 

–

 

 

 

A)  and also a  

 

Stationary Value

 

  

of the  

 

Rayleigh Quotient

 

   

 

ρ

 

(

 

x

 

) := 

 

x

 

T

 

·A·

 

x

 

/

 

x

 

T

 

·H·

 

x

 

  for  

 

x

 

 

 

≠

 

 

 

o

 

  since only if  

 

x

 

  is an eigenvector can  
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  as  

 

e

 

 

 

+

 

 

 

∆

 

e

 

  approaches an eigenvector  

 

e

 

  whose eigenvalue 
is  

 

λ

 

 

 

.  This facilitates the refinement of approximate eigenvalues given approximate eigenvectors.  
Approximate eigenvectors are harder to refine.

A well-known way to refine an estimated eigenvector is  

 

Inverse Rayleigh Quotient Iteration

 

:
Choose an eigenvector estimate  

 

f

 

0

 

 

 

≠

 

 

 

o

 

 ;
For  k = 0, 1, 2, 3, …  in turn do …

{  

 

u

 

k
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)  }.
In the late  1950s  Alexandre Ostrowski  proved that a sequence  

 

±

 

f

 

k

 

  converges  

 

Cubically

 

  to an 
eigenvector  

 

e

 

  if  

 

f

 

0

 

  is close enough to it.  In the late  1960s  I proved that convergence to some 
eigenvector occurs from every choice of  

 

f

 

0

 

  except those in a repulsive set of measure zero;  see  

§§4

 

.

 

6

 

 

 

-

 

 

 

4

 

.

 

9 of  B.N. Parlett’s (1998) book.  But  Rayleigh  quotient iteration takes too long,  

 

O

 

(n

 

4

 

),  
to refine all  n  eigenvectors.  There seems to be a faster way;  it is the main subject of this paper.

The faster way is an iteration analogous to  Jacobi’s  iteration used when the eigenproblem’s  H  is 
the identity matrix  I

 

 

 

;  see  Ch. 9  of  Parlett’s book.  When  H ≠ I  analogous iterations have been 
used for about four decades by structural engineers to compute vibrational modes and frequencies 
of undamped elastic structures;  see  Ch. 15  of  Parlett’s book,  and  Slapnicar & Hari (1991).  
Engineers have used similar iterations despite that their convergence had not been proved unless 
started close enough.  A proof that this paper’s iteration converges globally is outlined in  §6.

This paper’s and other analogous iterations are algorithms that admit several implementations as 
computer programs not all of which are numerically stable in the face of rounding errors.  The 
instability of the most obvious implementations was diagnosed with the aid of a debugging tool 
unavailable to almost all other programmers.  This tool’s prowess is displayed in  §3.  A stable 
reformulation derived in  §2  is embodied in a  MATLAB   program  gnsymeig.m   listed in  §11.

MATLAB ’s  own  eig(A, H)  ,  like every other program intended to solve the general symmetric 
definite eigenproblem,  is susceptible to a rarely occurring failure mode induced by roundoff and 
difficult to detect.  The failure can occur only when vectors exist that are too nearly annihilated by 
both  A  and  H .  When this failure occurs,  albeit very rarely,  current computing practice most 
likely lets it pass unnoticed;  we cannot know how often.  How to detect such a failure and how to 
remedy it aided by iterative refinement of eigenvectors is discussed with an example in  §8.  Of 
course,  iterative refinement’s intricacies would have little value if fast floating-point hardware of 
extravagantly high precision were commonplace,  but that might not come about anytime soon.
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§1:  A Characterization of Eigenvectors and their Pathologies
Let  E  be a matrix whose columns are the  n  eigenvectors  e  of the eigenproblem  “ A·e = H·e·λ ”,  

and let  Λ  be the corresponding diagonal matrix of  n  eigenvalues  λ ,  so that  A·E = H·E·Λ .   E–1  
exists because the eigenvectors are linearly independent;  and we can normalize them so that  

ET·H·E = I .  This last equation is not obvious;  to simplify its proof assume temporarily that the  n  

eigenvalues  λ  are distinct.  Then the equation   ET·H·E·Λ = ET·A·E = (ET·A·E)T = Λ·ET·H·E   

implies that  ET·H·E  is diagonal.  We make  ET·H·E = I  by scaling the columns of  E ;  then  

ET·A·E = Λ  exhibits eigenvalues in the same order as the columns of  E  exhibit eigenvectors.

Conversely,  if  ET·H·E = I  and diagonal  Λ = ET·A·E  for a square  E-1  then   A·E = H·E·Λ ,  so  
E ’s  columns are a full set of eigenvectors regardless of whether eigenvalues in  Λ  are distinct.  
Consequently,  the eigenproblem  “ A·e = H·e·λ ”  is best solved by computing a  Simultaneous 

Congruence  E  that renders  ET·H·E = I  while simultaneously rendering  Λ := ET·A·E  diagonal.  
If the eigenvalues in  Λ  are sorted,  these equations determine each column of  E  uniquely within 
a sign-reversal except for columns belonging to repeated eigenvalues.

This eigenproblem has three pathologies:

•  If some eigenvalues in  Λ  are repeated,  their columns in  E  must be partially indeterminate.
•  If  H  is merely semidefinite,  some eigenvalues in  Λ  and their columns in  E  may be infinite.
•  If  H  and  A  share a nullspace,  some eigenvalue(s) and all eigenvectors are partially arbitrary.

Rounding errors threaten to degrade results computed from data too nearly pathological.  “Too 
nearly …”  must be gauged in terms of the floating-point arithmetic’s precision.  As engineering 
computations migrate onto relatively inexpensive and very fast graphics boards optimized for  4-
byte wide arithmetic adequate for computer games,  pathologies judged too rare to care about 
when arithmetic was predominantly  8-bytes  wide come to pose palpable threats.

Data too near the first pathology,  repeated eigenvalues,  can lead to eigenvectors some of which 
are too nearly linearly dependent.  This is very unlikely but,  if it occurs,  it can be detected and 
remedied by means illustrated in  §8  below.  More likely,  should eigenvalues be repeated,  some 
formulas for the computation of eigenvectors will be derailed when floating-point arithmetic turns  
0/0  into unpredictable  roundoff/roundoff . The way this contingency is treated in  §2  and then in  
§11’s program  gnsymeig   renders  (near-)repeated  eigenvalues innocuous.

Data too near the second pathology,  a semidefinite  H ,  can lead to eigenvectors and eigenvalues 
with such huge magnitudes that their rounding errors spill over into the rest of the eigensystem’s 
computation,  spoiling its accuracy.  This situation calls for iterative refinement.

Data too near the third pathology,  a nonzero intersection of the nullspaces of  A  and  H ,  can turn 
roundoff into unnecessarily huge eigenvectors too nearly linearly dependent,  and thereby incur 
excessive inaccuracies whose detection and remedy require costly supererogatory computation,  
including iterative refinement.  An example is scrutinized in  §8.  Although this pathology occurs 
extremely rarely,  it can occur;  and then it is most likely to be overlooked,  with consequences 
currently incalculable.
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§2:  Formulas for a  2-by-2  Example
We rely heavily upon this example later.  Let   A :=   and  H := ,  and assume  –1 < σ < 1

to ensures that  H  is positive definite.  Later we shall also assume that  σ  and  α  are relatively 
tiny.  The characteristic polynomial of the eigenproblem is 

 L(λ) := det( λ·H – A ) = (1 – σ2)·λ2 – (v1 + v2 – 2σ·α)·λ + v1·v2 – α2 .
Its discriminant’s nonnegative square root is 

 δ := √( (1 – σ2)·(v1 – v2)
2 + (σ·(v1 + v2) – 2α)2 ) ; 

temporarily assume it strictly positive.  Then the eigenproblem’s eigenvalues  λ1  and  λ2  are the 

distinct values   (v1 + v2 – 2σ·α ± δ)/(1 – σ2) .  They straddle both  v1 and v2  between them since  

L(v2) = –(σ·v2 – α)2 ≤ 0   and   L(v1) = –(σ·v1 – α)2 ≤ 0 .  Moreover  λ1  and  λ2  can be so ordered 

that  (λ1 – λ2)/(v1 – v2) ≥ 1/√(1 – σ2) ;  then the eigenproblem’s eigenvectors are the columns of 

 E := /√(δ·sgn(λ1 – λ2)) ,                    ( sgn(x) := x/|x| = ±1 )

and are normalized to satisfy   ET·H·E = I   and   ET·A·E = Λ := Diag([λ1, λ2]) .  Consequently  
A·E = H·E·Λ .  These equations are not so simple as they seem;  although  MAPLE 11  confirmed 
them almost instantly,  DERIVE 4.11 could confirm them only indirectly.

Worse,  this formula for  E,  though derived from  Λ  in the usual way,  is  Numerically Unstable.

This formula loses its accuracy to roundoff for otherwise innocuous data  A  and  H ,  namely 
when eigenvalues are too nearly equal.  Only when the example’s  A = λ·H  does  δ = 0 ,  and then  
λ1 = λ2 = λ  and  E  becomes indeterminate;  any  2-by-2  E  can satisfy  A·E = H·E·λ  without 

satisfying  ET·H·E = I  nor  ET·A·E = λ·I .  Consequently,  when  A ≈ λ·H  too closely,  the 
example’s formulas above produce an  E  that may well satisfy  A·E ≈ H·E·λ  but severely violate  

ET·H·E ≈ I  and  ET·A·E ≈ λ·I  because of roundoff in the formulas.  Try them!  Roundoff afflicts 
similarly many other procedures that purport to solve the eigenproblem  “ A·e = H·e·λ ”.  For 
instance,  MATLAB ’s  [E, V ] = eig(A, H)   used to satisfy  A·E ≈ H·E·V very closely,  though  

ET·H·E  and  ET·A·E  could depart substantially from diagonal,  until  MATLAB  6+,  which now 
malfunctions only at data deemed to  “deserve”  it for  H  too nearly singular  ( σ  too near  ±1 ).

The simplest presentation of better formulas for  E  uses trigonometric expressions starting with  
θ := arcsin(σ)  and  φ := arctan( (2·α – (v1 + v2)·σ)/((v1 – v2)·cos(θ)) )  between  ±π/2 .  Then

      E := E(φ, θ) := /cos(θ) = /cos(θ) 

satisfies  ET·H·E = I  and  ET·H·E = Λ = Diag([λ1, λ2])  within roundoff no matter what angle 
between  ±π/2  replaces  φ  if  arctan(0/0)  is encountered,  in which case reset  φ := 0  to minimize  

||E–I||F
2 := Trace((E–I)T(E–I)) .  Again,  E  has a positive diagonal and can be shown to so order  Λ  

that  (λ1 – λ2)/(v1 – v2) ≥ 1/√(1 – σ2) > 1  if  v1 ≠ v2 .  These properties will be exploited later.

v1 α

α v2

1 σ
σ 1

1
2
---

λ1 v2–      
σ λ2 α–⋅

v1 λ2–
-----------------------

α σ– λ1⋅

λ1 v2–
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φ θ+
2

------------cos φ θ+
2

------------sin–

φ θ–
2

------------sin φ θ–
2

------------cos

θ
2
---cos θ

2
---sin–

θ
2
---sin– θ

2
---cos

φ
2
---cos φ

2
---sin–

φ
2
---sin φ

2
---cos

⋅
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If the eigenvalues in  Λ  differ too widely in magnitude the smaller may be obscured too badly by 
roundoff that is attenuated somewhat when the bigger eigenvalue,  call it  λ ,  is used to recompute 

the smaller eigenvalue  λ  from the formula   λ := (v1·v2 – α2)/(λ·cos2(θ)) .

Equivalent to the trigonometric formulas for  E  above are faster but more complicated purely 
algebraic formulas that could be used instead to compute  E :

  If  |σ| < 0.75  then  cos(θ) := √(1 – σ2)  else  cos(θ) := √(1 – σ)·(1 + σ) ;

  cos(θ/2) := ·( √1 – σ + √1 + σ ) ;    sin(θ/2) := ·σ/cos(θ/2) ;

  τ := (2·α – (v1 + v2)·σ)/((v1 – v2)·cos(θ))  = tan(φ) ;    if  τ  is indeterminate reset  τ := 0 ;

  ß := /√(1 + τ2) = ·cos(φ) ;    cos(φ/2) := √ß + 1/2 ;     sin(φ/2) := ß·τ/cos(φ/2) ;   etc.

The foregoing formulas’  E → I  as  A  and  H  approach diagonal matrices,  i.e.  as  σ → 0  and  
α/(v1 – v2) → 0 ,   except possibly if eigenvalues in  Λ  coincide.  This behavior will figure later in 
a criterion for stopping iterative refinement of nearly diagonal  n-by-n  matrices  A  and  H .

On the other hand,  when  H  is too nearly singular  (when  |σ|  is too near  1 ),  the foregoing 
formulas for  E  and  Λ  suffer obscuration by roundoff amplified by a factor like  1/(1 – |σ|) .  
Some such amplification is unavoidable because  E·ET = H–1  so  E  has the biggest-singular-value 

norm  ||E|| = √(||H–1||) = 1/√1 – |σ| .  Since at least one column of  E  must become almost as big as  
||E|| ,  terms almost as big as  1/(1 – |σ|)  must appear during the evaluation of the matrix product  

ET·H·E  before cancellation boils it down to  I  contaminated by amplified rounding errors.  Also,  
at least one eigenvalue  λ  must become huge unless  A  is very nearly a scalar multiple of  H ,  in 
which case  E  and an eigenvalue in  Λ  may become practically indeterminate as all coefficients of  
L(λ)  cancel.  Consequently numerically bad things can happen when  σ  comes too near  ±1 .

Only rarely is  |sin(θ)| = |σ|  so big,  say  |σ| ≥ 0.75 ,  that  E  and  Λ  are best computed from a 
formula that mitigates most of roundoff’s ill effects by incurring critical cancellations before 

intermediate results are rounded off.  Such a formula makes   E := X·V–1·Y  and   Λ := Y·T·Y  for

 Y := ,    V :=    and    X :=  

in which  sgn  is the  signum  function  (MATLAB ’s  sign ),  so  sgn(σ) = σ/|σ|  except  sgn(0) := 0 .  

To compute  ψ  start with   T := V–1·(X·(A·X))·V–1   and set   τ := arctan( 2·t12/(t11 – t22) )/2 ;  
DON’T DISREGARD PARENTHESES NOR SUBSTITUTE  t21  FOR  t12 ,  which gets computed more 

accurately than  t21  in critical cases.  Then   ψ := τ + (sgn(σ)·sgn(τ) – 1)·sgn(τ)·π/4 .  The use of  
sgn(…)  is intended to make this formula for  E  match the previous ones except for roundoff and 
the indeterminate case when  τ  encounters  0/0 ,  in which case resetting  ψ := 0  is good enough.

Thus,  if computed accurately enough,  the columns of  E  are the normalized  ( ET·H·E = I ) 

eigenvectors of the example’s  2-by-2  eigenproblem,  and diagonal  Λ = ET·A·E  exhibits the 
corresponding eigenvalues except for roundoff’s interference,  severe when  ||E||  is huge.

1
2
--- 1

2
---

1
2
--- 1

2
---

ψ( )cos ψ( )sin

ψ( )sin ψ( )cos–

2 2 σ+ 0

0 2 2σ–

1 σ( )sgn

σ( )sgn 1–
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§3:  Two Numerical  2-by-2  Examples
The following tests were carried out upon  4-byte  data in  4-byte floating-point carrying  24  sig. 
bits.  Three formulas above were tested:  The first computes eigenvalues in  Λ  first and then,  from 
them,  eigenvectors in  E .  The second formula computes  E  first and then,  from it,  Λ .  The third 
formula,  intended to be used only when  H  is nearly singular,  first applies a congruence  X  to 

induce cancellation before roundoff and then applies congruences  V–1  and  Y  to reveal  E  and  
Λ .  Strictly algebraic  (using only  +, –, ·, /  and  √,  no trigonometry)  versions of the second and 
third formulas were used to insulate results from the vagaries of  math. libraries,  though the best 
libraries nowadays produce slightly better results from the trigonometric versions.  Enough digits 
are displayed to let decimal-binary conversion reproduce all binary data and results perfectly.

Displayed also are  Normalized Residuals  to indicate how well or poorly computed results satisfy 

the equations  ET·H·E = I ,  ET·A·E = Λ  and  A·E = H·E·Λ  compared with the uncertainty these 
equations accrete when their constituents are computed in  24-sig.-bit  arithmetic whose roundoff 

bound here is  ε/2 := 2–24
 .   Residual  eHe  is the biggest element of  |ET·H·E – I|./(ε·|ET|·|H|·|E|)  

in which the absolute values  |…|  and division  ./  apply  elementwise  to their respective arrays,  
but  ·  is matrix multiplication as usual.  Similarly,  residual  eAe  is the biggest element of  

|ET·A·E – Λ|./(ε·|ET|·|A|·|E|) ,  and the biggest element of  |A·E – H·E·Λ|./(ε·(|A|·|E| + |H|·|E|·|Λ|))  is  
aeher .  A residual so normalized gets much bigger than  3  only when its equation is dissatisfied 
much worse by computed results  E  and  Λ  than by the ideal  E  and  Λ  and data  A  and  H  after 
all four have been muddied by roundoff-like perturbations in their last digits stored.

1st Data:  v1 := 13981013/223
 ;   v2 := 13981011/223

 ;   α := 13981012/226
 ;   σ := (223

 – 125)/226

    A = [ 1.666666627     0.208333313 ]     H = [          1     0.124998137 ]
[ 0.208333313     1.666666388 ] [  0.124998137              1   ]

Accurate     E = [ 0.680938538    -0.743098407 ] diag(Λ) = [ 1.666669269 ]  
[ 0.652154220      0.768483837 ]                 [ 1.666662958 ]  

Note that eigenvalues are nearly equal.

1st Formula’s     E = [ 0.664820254      -0.740706980 ] diag(Λ) =[ 1.666669130 ]  
[ 0.672046542      0.771829128 ]                [ 1.666662931 ]  

     Normalized Residuals eHe = 2.08e5  eAe = 2.08e5   aeher = 0.68
Unacceptable eigenvectors produced for near-equal eigenvalues.

2nd Formula’s     E = [ 0.680961311     -0.743077636 ] diag(Λ) = [ 1.666669607 ]  
[ 0.652130783      0.768503785 ]                 [ 1.666663170 ]  

     Normalized Residuals eHe = 1.41  eAe = 0.35   aeher = 0.85
Acceptable eigenvectors considering their hypersensitivity to roundoff.

3rd Formula’s     E = [ 0.680401206     -0.743590474 ] diag(Λ) = [ 1.666669369 ]  
[ 0.652709603      0.768012285 ]                 [ 1.666662812 ]  

     Normalized Residuals eHe = 0.89  eAe = 1.48   aeher = 0.29
Eigenvectors somewhat worse than the second formula’s.
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2nd Data:   v1 := v2 := 13981013/223
 ;    α := 13981012/223

 ;    σ := 1 – 5/224

    A = [ 1.666666627     1.666666508 ]     H = [          1     0.999999702 ]
[ 1.666666508     1.666666627 ] [ 0.999999702              1   ]

Accurate     E = [  1295.268930     0.500000037 ] diag(Λ) = [ 0.400000000 ]  
[ -1295.268930     0.500000037 ]                 [ 1.666666816  ]  

Note the huge eigenvector and that  H  is very nearly singular.

1st Formula’s     E = [  1330.762329      305.2990417 ] diag(Λ) = [ 0.400000036 ]  
[ -1330.762329     305.2973938 ]                 [ 1.600000143  ]  

     Normalized Residuals eHe = 8.39e6  eAe = 8.39e6   aeher = 1.71e5
Unacceptable results produced because  H  is too nearly singular.

2nd Formula’s     E = [  1295.268921     0.499896228 ] diag(Λ) = [ 0.632455528 ]  
[ -1295.268921     0.499896228 ]                 [ 1.665974736 ]  

     Normalized Residuals eHe = 3.48e3  eAe = 0.46   aeher = 1.74e3
Unacceptable results produced because  H  is too nearly singular.

3rd Formula’s     E = [ 0.500000000     -1295.268921 ] diag(Λ) = [ 1.666666746 ]  
[ 0.500000000      1295.268921 ]                 [ 0.400000006 ]  

     Normalized Residuals eHe = 1.25  eAe = 0.90   aeher = 0.18
Exemplary results despite that  H  is nearly singular.

The foregoing results corroborate the error-analyses that preceded them:

•  When eigenvalues are so nearly coincident that eigenvectors are partially indeterminate,
the first formula’s eigenvectors in  E  can be very wrong.

•  When  H  is so nearly singular that at least one eigenvector in  E  is enormous,  only the
third formula’s results can be expected to produce tolerable normalized residuals.

But the foregoing results are utterly unrealistic.  They rely upon too many unlikely assumptions:
•  An error-analysis has been performed.  Error-analyses are attempted only rarely.
•  Accurate results are known for comparison.  Accurate results are knowable only rarely.
•  Residuals were computed to help assess accuracy.  Residuals get computed only rarely.
•  Three numerical methods were compared.  More than one are available only rarely.

What can be done when a numerical program is problematical because its results’ consequences  
(perhaps remote)  for one data-set have aroused suspicion?  What can be done to assuage,  deflect 
or focus suspicion?  If part of the program deserves closer scrutiny,  how can it be localized?

By using techniques described in  §14  of my web page’s  <…/Mindless.pdf> ,  a formula above 
for  E  and  Λ  has been excised from a lengthy program whose results aroused suspicion one day.  
Suppose one of that lengthy program’s big data-sets produced intermediate results from which,  
after arduous labor,  one of the two numerical  4-tuples  called  “Data”  above was extracted.  How 
did this  4-tuple  attract attention to itself?  Its four results from the formula in question dispersed 
too widely when re-evaluated with arithmetic’s rounding altered in each of four ways:

•  Rounded to Nearest  (as usual) •  Rounded Down toward  –∞
•  Roundes Up toward  +∞ •  Rounded toward Zero
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The results are displayed below with  x’s  in place of divagated digits:

1st Data:  v1 := 13981013/223
 ;   v2 := 13981011/223

 ;   α := 13981012/226
 ;   σ := (223

 – 125)/226

    A = [ 1.666666627     0.208333313 ]     H = [          1     0.124998137 ]
[ 0.208333313     1.666666388 ] [  0.124998137              1   ]

1st Formula’s     E = [ 0.7x                  -0.7x               ] diag(Λ) = [ 1.666669x ]  
[ 0.7x      0.8x               ]                 [ 1.666663x ]  
Unacceptable eigenvectors produced for near-equal eigenvalues.

2nd Formula’s     E = [ 0.6809x            -0.7431x         ] diag(Λ) = [ 1.66667x ]  
[ 0.652x      0.768x           ]                 [ 1.66666x  ]  
Acceptable eigenvectors considering their hypersensitivity to roundoff.

3rd Formula’s     E = [ 0.680x              -0.743x           ] diag(Λ) = [ 1.666669x ]  
[ 0.652x      0.768x           ]                 [ 1.66666x    ]  
Eigenvectors somewhat worse than the second formula’s.

2nd Data:   v1 := v2 := 13981013/223
 ;    α := 13981012/223

 ;    σ := 1 – 5/224

    A = [ 1.666666627     1.666666508 ]     H = [          1     0.999999702 ]
[ 1.666666508     1.666666627 ] [ 0.999999702              1   ]

1st Formula’s     E = [  1xxx.x               ±xxx.x         ] diag(Λ) = [ 0.4000000x ]  
[ -1xxx.x            xxx.x          ]                 [ 2.x                ]  
Unacceptable results produced because  H  is too nearly singular.

2nd Formula’s     E = [  1295.269x         0.500x          ] diag(Λ) = [ 0.x     ]  
[ -1295.269x      0.500x          ]                 [ 1.66x  ]  
Unacceptable results produced because  H  is too nearly singular.

3rd Formula’s     E = [  1295.269x         0.5000000x  ] diag(Λ) = [ 0.4000000x ]  
[ -1295.269x         0.5000000x  ]                 [ 1.666667x    ]  
Exemplary results despite that  H  is nearly singular.

Thus,  recomputation with redirected roundings has helped focus suspicion upon a short stretch of 
a long program using the first or second formula.  Suspicion is not conviction;  no formula can be 
condemned until after an error-analysis without which,  for all we know,  the formula might have 
been designed to work correctly only when arithmetic is rounded to Nearest as usual.  Some math. 
libraries’  divide,  sqrt,  elementary transcendental functions and  Binary ↔ Decimal conversions 
are like that.  Neither can a formula be exonerated until after an error-analysis without which,  for 
all we know,  the formula might deliver very nearly the same wrong result regardless of roundoff’s 
redirection,  though such a formula is probably  (not surely)  wrong algebraically absent roundoff.

Think of recomputation with redirected roundings as a way to prioritize the search for aberrant 
constituents of a numerical program.  We put subprograms or formulas that seem excessively 
sensitive to roundoff at the head of the list of candidates for more intensive scrutiny.

Results from the foregoing sets of data and others,  many generated randomly,  support these …
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§4:  Conclusions Drawn from an Error-Analysis of the  2-by-2 Example:

•  A relatively small residual  R := A·E – H·E·Λ  testifies to the accuracy of  Λ  but maybe not  E .

•  All three residuals  R,  ET·H·E – I  and  ET·A·E – Λ  are relatively small when  E  is accurate, 
         but also if it has lost accuracy because eigenvalues nearly coincide or  H  is nearly singular.

•  Eigenvectors  E  from the first formula above can be quite wrong if eigenvalues are too close.

•  Accuracies of the first and second formulas above deteriorate when  H  is too nearly singular.

•  The third formula’s accuracy tends to improve as  H  becomes more nearly singular.

Consonant with these conclusions is a policy that employs the second formula when  |σ| < 3/4 ,  
and the third formula when  3/4 ≤ |σ| < 1 ,  to get results  E  and  Λ  at least about as accurate as 
the data’s and arithmetic’s precisions deserve in so far as all three of these results’ residuals are 
relatively tiny.  (Cf. §8.)  This policy’s computational cost barely exceeds the cost of a policy that 
would employ any one of those three formulas above for all data.

§5:  Iterative Refinement of All  n  Eigenvectors
Now let  F  be any matrix that approximates the desired matrix  E  of  n  eigenvectors well enough 

that  FT·H·F  and  FT·A·F  are nearly diagonal.  Moreover we normalize the columns of  F  to make   

FT·H·F ≈ Diag(FT·H·F) = I   and   FT·A·F ≈ V := Diag(FT·A·F)   so that the  n  diagonal elements 
of  V  exhibit our currently best estimates of the desired eigenvalues.  To refine the accuracy of  F  
we shall generate a sequence of improved approximations  F1,  F2,  F3, …  converging rapidly to  
E  by using a process analogous to  Jacobi’s  iteration for the eigensystem of a symmetric matrix:

Starting from  F0 := F ,  each  Fk+1 := Fk·Ek  wherein  Ek  differs from the  n-by-n  identity  I  in 
the four elements of a  2-by-2  principal submatrix.  This submatrix of  Ek  is the normalized 
eigenvector matrix of the  2-by-2  example’s eigenproblem taken from the corresponding  2-by-2  

principal submatrices of  Ak := Fk
T·A·Fk  in place of the example’s  A ,  and of  Hk := Fk

T·H·Fk  in 
place of its  H .  In the locations where  Ek  has nonzero off-diagonal elements,  corresponding off-
diagonal elements of  Ak+1  and  Hk+1  are annihilated,  while  Diag(Hk+1) = I  is preserved.  But 
doing so puts small nonzero elements back into some locations where  Ak  and  Hk  had zeros.

As iteration converges,  Ak → Λ  and  Hk → I ;  and  Ek → I  since  diag(Ek) > o .  Convergence is 

obviously quadratic if all eigenvalues  λ  are distinct and  F0
T·H·F0  and  F0

T·A·F0  start near 
enough to diagonal.  The iteration always converges regardless of the initial normalized  F ;  this is 
proved in  §6.  The speed of convergence is a very interesting question whose answer seems to 
depend upon how some further questions are answered.  …

In what order should off-diagonal elements be annihilated?  The first,  if not the best,  order that 
comes to mind is  Lexicographic :   (1, 2), (1, 3), (1, 4), …, (1, n), (2, 3), (2, 4), …, (2, n), (3, 4), 
(3, 5), …, …, (n–2, n–1), (n–2, n), (n–1, n)   constitutes one pass over all off-diagonal elements.  
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Repeated passes drive all off-diagonal elements towards zero provided the diagonal elements of  
Ak  are kept sorted.  Whether keeping them sorted is necessary or advantageous for convergence is 
an interesting question for research.  Another is whether an order better than  Lexicographic  
exists.  These questions bear upon the practicality of iterative refinement of sparse or banded 
systems of huge dimensions.  Currently only systems of modest dimensions get refined quickly by 
the iteration’s experimental  MATLAB   implementation in  §11.  To refine huge systems quickly 
will require the incorporation of perhaps tricky task-switching to perform anticipatory fetches 
from  DRAM  to fill cache lines just in time for arithmetic consumption.  To keep concurrent 
processors busy will require programs like those in  §§8.4.6-7  of  Golub & Van Loan (1996).

Regardless of the order chosen for annihilation,  matrices  Ek  that would annihilate elements of  
Ak  and  Hk  already tinier than some suitably declining threshold should be skipped to save  time.  
What is a  “suitable”  sequence of thresholds?  They cannot apply solely to differences  ||Ek – I||F  
since some of these can be almost arbitrarily big for arbitrarily tiny off-diagonal elements when 
eigenvalues are repeated.  Suitable thresholds may depend upon the order chosen for off-diagonal 
annihilations.  If the order is  Lexicographic,  for instance,  an off-diagonal element already rather 
tinier than average in its row and column might not be worth annihilating yet;  and a row whose 
elements are all too much tinier than other rows’ averages might not yet be worth scanning for 
elements worth annihilating.  “Average”  implies that a running sum of each row’s off-diagonal 
magnitudes or their squares must be updated after each annihilation,  which is feasible though it 
adds noticeably to the cost of each annihilation.  This cost,  significantly greater than the cost of 
simpler threshold schemes explored by  D. Corneil (1965),  J.H. Wilkinson (1965)  and others 
mentioned in  ch. 9 of Parlett (1998)  and  ch. 8.4 of Golub & Van Loan (1996),  was incurred to 
cope with occasional concentrations of huge elements in a few rows and columns of some  Ak  
after their growth revealed  H  to be nearly singular.   Choices of  “suitable”  thresholds and how 
best to exploit them remain questions for research even though some rather different choices have 
worked about equally well.

The iteration is incremental.  Each application of an  Ek  alters two columns of  Fk+1 := Fk·Ek  and 

two rows and two columns of  Ak+1 := Ek
T·Ak·Ek  and of  Hk+1 := Ek

T·Hk·Ek ,  so one pass over all 

off-diagonal elements costs time proportional to  n3
 .  Quadratic convergence entails so few passes 

that adequate accuracy for all eigenvectors should cost time proportional to  n3
 .  Whether this cost 

estimate is valid in all cases is an interesting question for research.  In particular,  …

Test matrices of the contrived form   A =   and  H =   have every eigenvalue repeated.  

Consequently the iteration described above converges slowly at first,  the more so if the matrices’ 
dimension is large or  H  is nearly singular,  and yet the iteration terminates after few if any more 
annihilations than if eigenvalues were well separated.  Why?

Another question for research is …
•  What should be done if  A  and  H  are complex  Hermitian  instead of real symmetric?

2X X

X X

2Y Y

Y Y
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§6:  Why Does the Iteration Converge?
For about forty years structural engineers have run iterations like the one described above,  whose  

2-by-2  congruences  Ek  annihilate two off-diagonal elements of  Ak+1 := Ek
T·Ak·Ek  and two of  

Hk+1 := Ek
T·Hk·Ek ,  to find vibrational modes and frequencies of undamped elastic structures,  

but with no proof that iteration always converges.  Ch. 15  of  Parlett’s  (1998)  book has accounts 
and citations.  I believe the first proof that such an iteration’s sequence  Fk+1 := Fk·Ek  converges 
from every invertible  F0  is outlined hereunder.  The outline begins with a nearly obvious …

Lemma:  If  h  is the biggest magnitude of the off-diagonal elements of a positive definite  n-by-n  

matrix  H  whose diagonal  Diag(H) = I ,  then  0 < det(H) ≤ 1 – h2 .  And if also  0 < h·(n–1) < 1  

then  det(H) > (1 – (n–1)·h)n
 .

Proof:  Since  det(H) = det(P·H·PT)  for every permutation matrix  P ,  choose it to put a biggest off-diagonal element  

±h  into the first row and second column.  The  Choleski  factorization  P·H·PT = UT·U  exhibits  P·H·PT  as a product 

of a real upper-triangular matrix  U  and its transpose  UT .  Each diagonal element  1  of  P·H·PT  is the sum of the 
squares of all elements in a corresponding column of  U ,  so none of its elements can exceed  1  in magnitude.  This 
holds particularly for  U ’s  diagonal elements,  whose product is  det(U) ;  and the second diagonal element is  

√(1 – h2) .  Therefore  det(H) = det(U)2 ≤ 1 – h2  as claimed.

Next suppose  0 < h·(n–1) < 1 ,  and set  n-by-1  column  u := [1, 1, …, 1]T
 .  Then in magnitude  | H – I | ≤ h·(u·uT – I)  

elementwise.  Apply  Gershgorin’s Circle Theorem  to infer that all  n  eigenvalues of  H  lie between  1 ± (n–1)·h .  

The eigenvalues’ product is  det(H) ,  so it cannot be less than  (1 – (n–1)·h)n
 ,  and it cannot be that small since the 

eigenvalues’ sum is  Trace(H) = n .  Thus the  Lemma’s  lower bound for  det(H)  is proved.  It will be adequate for 

our purposes though much smaller than a lower bound  (1 – (n–1)2·h2)n/2   that takes rather longer to prove. 

Each iteration    Hk+1 := Ek
T·Hk·Ek  annihilates some off-diagonal element — call it  hk — of  Hk  

while preserving  Diag(Hk+1) = Diag(Hk) = I .  The congruence  Ek  has  det(Ek) = 1/√(1 – hk
2)  

according to all the formulas for  E  in  §2,  so  det(Hk+1) = det(Hk)/(1 – hk
2) .  Since the iteration 

visits every super-diagonal location infinitely often to annihilate any bigger-than-average element 
of  Ak  or  Hk  found there,  the sequence  {det(Hk)}  is monotone non-decreasing and converges 

up to a limit;  call it  1 – Θ2  where  0 ≤ Θ < 1 .  Later we shall find  Θ = 0 ,  but now we assume 
for the sake of an argument by contradiction that  Θ > 0 .  Let  h  be the greatest lower bound of 
the biggest magnitudes of off-diagonal elements of all positive definite  n-by-n  matrices  H  with  

Diag(H) = I  and  det(H) = 1 – Θ2
 ;  the  Lemma  implies that  Θ ≥ h > 0  if  Θ > 0 .

The convergence of  {det(Hk)}  to a positive limit implies that  det(Ek) → 1 ,  which implies that 
the previous paragraph’s  hk → 0  despite that every  Hk  had at least two elements no smaller than  
h  in magnitude.  Therefore all but finitely many congruences  Ek = E(φk, θk)  are determined by 
the second formula,  not the third in  §2,  and their  θk → 0  so that all but finitely many of the 
congruences  Ek  come arbitrarily close to rotations  E(φk, 0)  through angles  φk  between  ±π/4  
calculated to annihilate bigger-than-average off-diagonal elements of  Ak  regardless of  hk .
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Were  h > 0 ,  the rotations would somehow circulate the biggest elements of  Hk ,  at least two no 
smaller than  h ,  to evade annihilation.  Our iteration would ultimately approximate arbitrarily 
closely a classical  Jacobi  iteration whose rotations diagonalize any given real symmetric matrix.  
Its rotations are known to converge to  I  quadratically even if eigenvalues are repeated;  see  ch. 9 
of  Parlett (1998)  or  ch. 8.4 of Golub & Van Loan (1996)  and the references they cite.  But then 
the matrices  Hk  would converge to a limit with at least two off-diagonal elements no smaller in 
magnitude than  h  and eligible for annihilation because they are bigger than average.  This would 
contradict the convergence of  det(Ek)  to  1 .  Instead  h = Θ = 0 ,  so  Hk → I  and  Ak → Λ  
quadratically,  as claimed.           End of Proof’s Outline

This proof is a lucky consequence of a decision to force every  Diag(Hk) = Diag(H0) = I  by diagonal scaling instead 
of leaving the diagonals unconstrained.  Leaving them unconstrained would not change the eigenvalues:  If the  2-by-

2  congruences  Ek  drove  Hk → Y2 = ET·H·E  and  Ak → W = ET·A·E ,  both limits being diagonal,  then the 

eigenvalues in  Λ = W·Y–2  would be the same as before except for their order,  and the reordered eigenvectors in  
E = E·Y  would be the same as before except for column-scaling.  But different criteria for choosing elements big 
enough to be worth annihilating would alter the order of annihilations of off-diagonal elements of  Ak  and  Hk .  Can  
“Big”  be distinguished from  “Small”  in a way independent of diagonal scaling?

“Big”  and  “Small”  should be gauged relative to the size of the data and its nearness to whatever pathologies may 
undermine accuracy.  Singular matrices  H  would cause the worst damage.  These form a cone through  O  in the 
space of  n-by-n  symmetric matrices.  One plausible measure of the nearness of the given matrix  H  to that cone is 

the angle between them subtended at  O ;  this angle is  arcsin(1/κ(H))  wherein  κ(H) := ||H||·||H–1||  is the  Condition 

Number  of  H ,  a frequently cited measure of the sensitivity of  H–1  to perturbations of  H .  But  κ(H)  can differ 
drastically from  κ(D·H·D)  if the elements of the diagonal matrix  D  vary too wildly,  whereas changing data from  

{A, H}  to  {D·A·D, D·H·D}  changes eigenvalues in  Λ  not at all,  and changes eigenvectors in  E  trivially to  D–1·E .  

Perhaps  κ(H)  is not so appropriate a measure of the sensitivity of  H–1  to perturbations of  H  that matter  as its 
frequency of citation suggests.  For further exploration of this issue see my web page’s  <…/Math128/FailMode.pdf>  .

To immunize the congruences  Ek  against an accident of diagonal scaling,   one must be applied initially so that given 
data {D·A·D, D·H·D} will get scaled back to distinguished data  {A, H}  independent of  D .  The diagonal scaling 
that makes  Diag(H0) = I  was chosen because of a theorem of  A. van der Sluis (1969)  that says then  κ(H0)  cannot 
exceed  n·minD κ(D·H·D) .  Besides,  this roughly minimized condition number has never been enormously big for 
any mechanical vibration problem that I have seen.  These thoughts motivated forcing  Diag(Hk) = I ;  the consequent 
proof of convergence was a serendipitous byproduct.

When should iteration stop?  Hard to know for sure.  Small residuals can mislead.  Suppose  v  
approximates an eigenvector.  Then the  Rayleigh Quotient  ω := v'·A·v/v'·H·v  approximates an 
eigenvalue better.  How well?  The residual  r  := A·v – ω·H·v  figures in an eigenvalue estimate  

ω ± √(r' ·H-1·r /v'·H·v)  that is costly to compute and can be wide,  though  r   is tiny,  when  H  is 
too nearly singular.
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§7:  Extra-Precise Accumulation of Residuals
The obvious residual  A·F – H·F·V  reveals too little.  Better,  after  F  has been scaled to make  

Diag(FT·H·F) = I ,  is to compute two residuals  ∆V := FT·A·F – V  and  ∆I := FT·H·F – I  each 
with  diag(∆V) = diag(∆I) = o .  If the cost is tolerable,  these residuals should be accumulated 
extra-precisely before cancellation;  all additions/subtractions should be extra-precise,  and then 
multiplications will involve at most one extra-precise factor.  Then apply iterative refinement to 
annihilate the off-diagonal elements of  V + ∆V  and  I + ∆I .  Then the algebraic formulas for the  
2-by-2  matrices  Ek  should be altered to compute each small  ∆Ek := Ek – I  relatively accurately,  
and likewise alter  Fk+1 := Fk·Ek = Fk + Fk·∆Ek  to accumulate a lengthy sequence of successive 
matrices  Fk  a little extra-precisely with the aid of  Compensated Summation  described in  ch. 4 
of  N.J. Higham’s (2002) book.  The same goes for 

         ∆Ik+1 :=  Hk+1 – I = ∆Ik + ( ∆Ek
T·Ηk + (∆Ek

T·Ηk)
T

 + (∆Ek
T·Hk)·∆Ek ) 

and similarly for  ∆Vk  and  Vk+1 – Vk ;  the intricate details are a story for another day.

Especially when some roughly computed eigenvalues in  V  and their normalized eigenvectors 
among the columns of  F  are rather bigger than the others,  most of the benefit of extra-precise 
accumulation of matrix products accrues during the very first matrix multiplications that produce  

A0 := FT·(A·F)  and  H0 := FT·(H·F)  for subsequent refinement with none of the intricacies of the 
previous paragraph.  Old versions of  MATLAB   running on old  68040-based  Macintoshes  and  
Wintel PCs  accumulated matrix products by default in registers with  64  sig. bits before storing 
each accumulation’s leading  53  sig. bits into the matrix product in memory.  That way was the 
most convenient way to use the hardware.  Then old versions of the  MATLAB   program  gnsymeig   
listed in  §11,  invoked to refine initial results obtained from   [F, V] = eig(A, H)  ,  routinely 
improved the less accurate among these initial results by two or three sig. dec.,  often far more.

Extra-precise arithmetic is available in the hardware of most computers on which  MATLAB   runs,  
but inaccessible at a bearable cost.  Consequently  gnsymeig ,  an experimental  MATLAB   program 
in  §11  that implements the  Jacobi-like  iteration discussed above,  does not accumulate residuals 
extra-precisely.  It was motivated by  MATLAB  5’s  results from  [F,  V] = eig(A,  H)  ,  which can 
be complex if  H  is too nearly semi-definite,  and otherwise  F’*A*F   and  F’*H*F   can be far from 
diagonal.  The program   [E, v] = gnsymeig(F’*A*F, F’*H*F)    has cleaned up  MATLAB  5’s  
results by overwriting real  F = F*E   (or better  F = F+F*(E-I)   if  E ≈ I )  and then replacing  
diag(V)   by  v  .  Similarly cleaned up results from  MATLAB  6.5  have improved substantially,  
mostly when dimensions were big and/or  H  was not far from singular,  provided the invocation

 system_dependent(‘setprecision’, 64)   
on  PCs  preceded  gnsymeig(…)   to enhance the accuracy of some critical matrix multiplications 
like the initial  H*E  and  A*E .  But that invocation seems ineffective in  MATLAB  7.4,  whose 
misbehavior I do not yet understand.

How does  MATLAB  6.5  compute  [F, V] = eig(A, H)  ?  According to its documentation,  after  U = chol(H)   

produces an upper-triangular factor of  H = UT·U ,  the equation  UT·W·U = A  is solved for the symmetric  W  with 
less work than  W = U’\A/U  .  Then  [Q, V] = eig(W)   computes the sorted diagonal  V  of eigenvalues and an 

orthogonal  Q = Q–T  of eigenvectors,  and then  F = U\Q  .  I have failed to confirm this description by experiments.
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§8:  How Well at Best Can  gnsymeig   Work?
Ideally,  two numbers,  Speed  and  Accuracy,  should answer this question about the experimental 
program presented in  §11.  Actually,  complications obstruct every approach to the ideal.

A hardware-independent assessment of speed can no longer be inferred from a count of floating-
point arithmetic operations now that most of them,  all but perhaps divisions and square roots,  
cost so much less time than out-of-cache memory accesses.  So,  instead of arithmetic operations,  
gnsymeig   counts four kinds of operations:

•  ksteps  := how many  Jacobi-like congruences  Ek  were executed each to annihilate two
pairs of off-diagonal elements of  Ak  and  Hk  of which at least one pair was bigger
than average.  Each such congruence costs time proportional to  n ,  so  ksteps   has

been expected not to exceed a modest multiple  (like  4 ) of  n2 .
•  ksweeps  := how many  sweeps,  each visiting all  n·(n–1)/2  superdiagonal locations to

see whether they hold any  bigger-than-average  off-diagonal elements,  have been

executed.  Each such sweep costs time proportional to  n2  plus time spent on the
sweep’s annihilations counted separately by  ksteps ,  so  ksweeps   has been
expected not to exceed a modest fraction  (like  1/2 )  of  n .

•  ksorts  := the number of times when a sweep had to be preceded by a rearrangement
of the rows and columns of  Ak  and  Hk  to impose or restore the increasing order
of the diagonal elements of  Ak .  This was expected to occur infrequently,  but it
has occurred several times when many eigenvalues were nearly repeated,  and each 

occasion cost time proportional to  n2 ,  so perhaps a cheaper but more complicated
way  (suggested by  B.N. Parlett)  to preserve order should be reconsidered.

•  kbigH  := the number of congruences  Ek  determined by  §2’s  third formula whenever
hk ≥ 3/4 .  This cannot happen often unless initially  H0  is practically singular.

All four counts were expected to be relatively small for nearly diagonal initial data  A  and  H  of 
a kind  gnsymeig   was intended to handle well.  But  “the best laid schemes of mice and men … .”

The iteration’s stopping criterion influences counts  ksteps   and  ksweeps ,  inflating them greatly 
if accuracy is sought beyond what the computer’s arithmetic can achieve economically.  Thus do 
we become entangled in complicated questions that beset assessments of accuracy:

   •  How should we measure  (absolute?  relative?  …?)   accuracy?
   •  How much accuracy do the data deserve?
   •  How much accuracy can be achieved economically with the computing resources available?
   •  How close will a chosen program come to achieving whatever accuracy is deserved  and/or

achievable economically?

At first sight the accuracy deserved by the data is determinable from the computed results thus:

Suppose the given data  {A, H}  is augmented by given arrays  {∂A, ∂H}  of tiny positive numbers 
representing the uncertainty tolerable in the given data in so far as  A   is deemed indistinguishable 
from  A + ∂A  for practical purposes whenever  |∂A| ≤ ∂A  elementwise,  and likewise for  H + ∂H .
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Normally  {∂A, ∂H}  are somewhat bigger than roundoff in  {A, H}  but far tinier than the uncertainties that data 
inherit from the physical and geometrical uncertainties in parameters  (like strength and length)  that determine the 
elements of  {A, H} .  These are usually rather more numerous than the parameters whose physical and geometrical 
variations induce variations in  {A, H}  that are correlated in ways mere numerical analysts cannot know.  Therefore 
perturbations induced by the finite precisions of memory and arithmetic must be kept far tinier than these variations 
lest computational artifacts blight computed results beyond the bounds of physics or geometry.  For some simpler 
geometrical examples of that kind of blight see  §§11 & 17  of my web page’s  <…/MathH110/Cross.pdf>  .

Perturbations  ∂A  and  ∂H  perturb eigenvalues in ways predictable with the aid of eigenvectors:  

If  A·e = λ·H·e  and  eT·H·e = 1  then changing  A  to  A + ∂A  and  H  to  H + ∂H  changes  λ  to  

λ + ∂λ  with   ∂λ ≈ eT·(∂A – λ·∂H)·e   if terms  (∂…)2  are ignored.  This simple approximation to  
∂λ  obtained by differentiation holds for simple eigenvalues,  and for repeated eigenvalues  λ  too 

provided  e  is forced to range over all normalized  ( eT·H·e = 1 )  eigenvectors belonging to  λ .

Roughly,  then,   |∂λ| ≤ ∂λ := |e|T·(∂A + |λ|·∂H)·|e|  elementwise,  which reveals the uncertainty  ∂λ  
that an eigenvalue  λ  inherits from the uncertainties  {∂A, ∂H}  in the given data  {A, H} .

This inheritance  ∂λ  from data’s uncertainty also indicates how much accuracy the data deserve in 
an eigenvalue estimate  v :  If its eigenvector estimate  f  is accurate enough and normalized to 

make  fT·H·f ≈ 1 ,  we should not complain about an error  |λ – v|  not much bigger than

    ∂λ = |e|T·(∂A + |λ|·∂H)·|e| ≈ |f|T·(∂A + |v|·∂H)·|f|  elementwise.
Of course,  this is not worth computing unless either …
   •  λ  is known and the accuracy of the program that computed  v  and  f  is being tested,   or else
   •  λ  is unknown but the estimates  v  and  f  are thought to be about as accurate as data deserve.

Even with no estimated eigenvalues nor eigenvectors the formula for  ∂λ  exposes something well 
worth knowing:

   At least one eigenvalue is threatened by extreme uncertainty whenever  H  is too nearly singular.

Why?  The normalization  eT·H·e = 1  implies  ||e||2 ≤ ||H–1|| ,  which overestimate supplies an 
upper bound for uncertainty,  namely

 ∂λ = |e|T·(∂A + |λ|·∂H)·|e|  ≤  ||e||2·(||∂A|| + |λ|·||∂H||)  ≤  ||H–1||·(||∂A|| + |λ|·||∂H||) , 
that can exceed  ||∂A|| + |λ|·||∂H||  enormously whenever  H  is too nearly singular.  This upper 

bound is not excessively pessimistic;  the eigenvectors’ normalization  ET·H·E = I  compels at 

least one eigenvector  e  to have a huge  ||e||2 ≥ ||E||2/n = ||H–1||/n .  Therefore the threat is real.

Rarely is enough information available to compute  ∂λ  and apply it,  yet a notion like inherited 
uncertainty remains pertinent to an assessment of a program’s accuracy.  This notion concerns the 

uncertainty added to computed residuals   ∆I := FT·H·F – I  and  ∆V := FT·A·F – V   by roundoff’s 

accumulation during their computation from the program’s output   V ≈ Diag(FT·A·F)  and  F .  If 
the residuals could be computed accurately enough they would provide rough estimates for the 
errors in computed eigenvalues  V ,  namely   Λ – V ≈ Diag(∆V – V·∆I) ,  as follows:

Let   ∂H := F–T·∆I·F–1  and   ∂A := F–T·∆V·F–1  though neither is likely to be computed.  Since  

FT·(H – ∂H)·F = I  and  FT·(A – ∂A)·F = V ,  the eigenvalues  v  in  V  and eigenvectors  f  in  F  
belong to perturbed matrices  H – ∂H  and  A – ∂A ,  so the same derivation as produced estimates 
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for  ∂λ ≈ eT·(∂A – λ·∂H)·e  on the previous page now produces a column of first-order estimates:

     diag(Λ – V) ≈ diag(FT·∂A·F – V·FT·∂H·F) =  ∆v := diag(∆V – V·∆I)   ignoring  (∆…)2  terms.

Alas,  eigenvalues repeated or clustered too closely invalidate the foregoing estimate’s derivation.  
Then complicated estimates like those in  ch. VI §3  of the book by  Stewart & Sun (1990)  are 
afflicted by  “difficult and unresolved problems”.  Their complications will be left unexplored 
here because,  among other things,  without extra-precise arithmetic the residuals  ∆I  and  ∆V  can 
rarely be computed accurately enough to provide reliable estimates  ∆v  of  diag(Λ – V) .

Though roundoff contaminates the residuals,  some of them badly,  they remain worth computing 
to assess the adequacy of a program’s computed eigenvectors  F .  In so far as these are usually 
computed only to provide a new coordinate system that uncouples the natural modes of an elastic 
structure’s vibrations,  usually almost all that matters is how nearly  F  diagonalizes  A  and  H .  

Tiny residuals  ∆I := FT·H·F – I  and   ∆V := FT·A·F – V ,  where  V ≈ Diag(FT·A·F) ,  are about as 
tiny as we can reasonably expect from the program if the computed residuals are not much bigger 
than the uncertainties they acquire from roundoff when computed with the same arithmetic as the 
program’s.  (We also expect no column of  F  to be unnecessarily big;  more about this shortly.) 

How much uncertainty must these residuals inherit from the act of computing them?  Let’s see …

The product  P := B·C  of two  n-by-n  matrices is obscured by roundoff from floating-point scalar 
multiplications and additions.  The multiplications’ rounding errors are easiest to over-estimate:

Were only additions performed exactly  (not rounded off),  the computed  P  would satisfy simply  
|P – B·C| ≤ |B|·|C|·ε/2  elementwise,  where  ε  is a roundoff threshold like  MATLAB ’s  eps  .

Rounded additions contribute additional uncertainty dependent upon the order in which additions 
are performed.  For large  n  the simplest bound that is not outrageously pessimistic  (but not 
necessarily the smallest uncertainty)  is obtained from a divide-and-conquer order of additions 
that form a binary tree;  see  (4.6) on p. 83 of  N. Higham’s (2002) book.  The resulting estimate is

  |P – B·C| ≤ |B|·|C|·(1 + )·ε/2  elementwise

if terms of order  ε2  are ignored.  Judicious applications of this inequality define rough estimates 
of the intrinsic uncertainty each residual will be deemed to inherit from the act of computing it:

Here diagonal matrix  V ≈ Diag(FT·A·F)  is stored typically as a column  v := diag(V)  intended to 
approximate the desired eigenvalues’  diag(Λ) .  Its first-order error-estimate  ∆v  inherits from the 
residuals its uncertainty  ∆v ,  both computed elementwise from the formulas tabulated above.  
Given  A, H, F  and  v ,  a  MATLAB   program  rsdls.m   listed in  §11 automatically determines an 
appropriate  ε  and computes  ∆I, ∆V, ∆I, ∆V, ∆v  and  ∆v  from formulas like those tabulated.

Computed Residual Its Approximated Uncertainty

∆I := FT·(H·F) – I ∆I := |F|T·(|H|·|F| + |H·F|)·(1 + )·ε/2

∆V := FT·(A·F) – V ∆V := |F|T·(|A|·|F| + |A·F|)·(1 + )·ε/2

R := A·F – H·(F·V) R := (|A|·|F| + |H|·|F·V|)·(2 + )·ε/2

∆v := diag(∆V) – v·diag(∆I) ∆v := diag(∆V) + |v|·diag(∆I)

log2 n( )

log2 n( )

log2 n( )

log2 n( )
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Those uncertainties  ∆…  tend to over-estimate the contributions of roundoff very pessimistically,  
as if the rounding errors had conspired to achieve their worst imaginable effect.  Rounding errors 
usually seem random and uncorrelated  (though actually they are not);  and if rounding conforms 
to the default specifications of  IEEE Standards 754 & 854  then rounding errors seem unbiased 
too,  which inclines the  Law of Averages  more towards cancellation than reinforcement of errors.  
Consequently those approximated uncertainties  ∆…  tend usually to be too big by factors roughly 
as big as  √12·n  for a product of two  n-by-n  matrices,  and  √24·n  for a product of three,  unless 
some small minority of the intermediate terms in those products are much bigger than the rest.

Comparisons of computed residuals each with its intrinsic uncertainty,  despite their pessimism,  
seem at least plausibly to indicate how adequately a program has performed its intended task:— 
computation of eigenvector estimates  F  that make all three residuals negligible.  Therefore …

Each computed residual will be divided by its overestimated uncertainty elementwise,  and
a large quotient shall be deemed a sure signal of inadequate accuracy in computed results.

“Inadequate Accuracy”  will be signaled too frequently if our definition of intrinsic uncertainty is 
too small,  and too infrequently if too big.  Alas,  this signal can get muffled,  misleading us to 
accept results far worse than the data deserve,  by a rare phenomenon that generates excessively 
big residuals and their alleged uncertainties:

The computed  F  can have some unnecessarily big column(s).

Any program intended to solve the general eigenproblem can be undermined by this phenomenon.  
It can happen only when  A  and  H ,  though scaled to make  Diag(H) ≈ I ,  share a near nullspace.  
Then accurate eigenvectors may appear to be inaccessible because,  if a vector  z ≠ o  in that near 
nullspace satisfies both  A·z ≈ o  and  H·z ≈ o ,  almost arbitrary multiples of  z  can be added to all 

different approximate eigenvectors in  F  without much altering  FT·H·F  nor  FT·A·F .  If this 
phenomenon is detected,  some of the contamination by  z  of a computed eigenvector  f  can be 

removed from  f  by replacing it by  g := f – z·(zT·H·f)/(zT·H·z)  provided doing so does not shrink  

gT·H·g = fT·H·f – (zT·H·f)2/(zT·H·z)   too much below  fT·H·f .  Then the new matrix  G  of near- 
eigenvectors  g  must be iteratively refined by a program like  gnsymeig   unlikely to resurrect the 
contamination.

How can this misleading phenomenon be detected?  First it must be suspected.  First suspicion is 
aroused by exceptionally big computed eigenvectors  f  associated with intolerably big computed 
uncertainties among the elements of  ∆v  compared with the corresponding eigenvalues in  v .  
Among these big eigenvectors  f  the ones belonging to comparatively small eigenvalues in  v 
seem most likely to serve as the previous paragraph’s  z .  Weasel-words like  “exceptionally big”,  
“comparatively small”  and  “most likely”  fail to define the phenomenon sharply.  It hardly ever 
happens sharply,  but it does happen.

For example,  suppose the first three true eigenvalues in  Λ  are repeated but otherwise separated 
well from the rest.  Then the first three columns of  E  must be partially indeterminate in so far as 

they can be postmultiplied by any  3-by-3  orthogonal matrix  Q = Q–T  and still serve no less well 

than before as eigenvectors satisfying    Diagonal Λ = ET·A·E ,   ET·H·E = I ,   and   A·E = H·E·Λ .  
In a world without perturbations,  Q  would not matter.  It can matter a lot in our perturbed world.
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No matter what program computes them,  if computed well the first three computed eigenvalues in  
V  will be clustered closely and separated well from the others.  The first three columns  [f1, f2, f3]  
of the computed  F ,  though accidents of roundoff,  will approximate three eigenvectors well.  
How nearly linearly dependent are they?  Maybe too nearly if  H  is too nearly singular,  in which 
case at least one of these columns will be bigger than necessary.  The remedy is to replace these 
columns by  [f1, f2, f3]·Q  with an aptly chosen  3-by-3 orthogonal  Q .  Apt choices will yield
three columns  [f1, f2, f3]·Q  of which about as few as necessary are extraordinarily big.  The
Singular-Value Decomposition   [f1, f2, f3] = P·Φ·QT,  wherein  PT·P = I  and  Φ  are  3-by-3  
diagonal matrices,  offers an apt choice for  Q .  This replacement of unnecessarily big columns of  
F  by smaller ones should precede both iterative refinement and the subsequent computations of 
residuals and alleged intrinsic uncertainties.  Note that iterative refinement can order the cluster’s 
eigenvalues and their eigenvectors differently than before,  which can complicate comparisons of 
residuals and error estimates after refinement against before.

The remedy just proposed falls short of a prescription if close clusters of eigenvalues separated 
well enough from the rest are unobvious.  Fortunately the remedy is needed extremely rarely.  If 
the need is obvious the proposed remedy can reduce by orders of magnitude the norms of some 
computed eigenvectors and the the errors and alleged uncertainties in their computed eigenvalues.

The following  6-by-6  example was run under  MATLAB  6.5  on  IBM T21  and  Dell OptiPlex 
GX400  Wintel  computers to illustrate that …

•  The need for the foregoing remedy is an unlikely accident of roundoff that cannot occur 
  unless  H  is very nearly singular and shares a near nullspace with  A .

•  If suspected,  the need can be confirmed most quickly by applying the remedy.
•  If needed,  the remedy attenuates some errors enormously,  and all the more so

  when matrix multiplications are accumulated extra-precisely.

The example’s  A := GT·Diag(a)·G  and  H := GT·Diag(h)·G  are generated exactly as matrices of big integers from 
this given data:   

Each element of  A  and  H  is an accumulation of  14-digit integers;  no element exceeds  1043661783423569 < 250  
in magnitude.  Therefore no rounding errors occurred during their computation in  MATLAB ’s  arithmetic carrying  53  
sig. bits,  so all six true eigenvalues can be computed as   ê := sort(a/h elementwise)   accurate to fully  53  sig. bits:

The three repeated eigenvalues chosen to be zeros were so chosen to make their errors easier to appreciate.  At least 
one of their errors must be big because  H  so nearly annihilates at least one of their three eigenvectors.  H  has a huge 

condition number  ||H||·||H–1|| = 8.49e14 ;   after  H  is diagonally scaled to make its diagonal  I  its condition number 
drops slightly to  6.74e14 .   This compels at least one eigenvector to be relatively huge;  just one is.  All eigenvectors 

Matrix  G Column  a Column  h 

2 3 9 5 -16 17 1436714424605 1041044474703

-9 -3 18 16 14 -12 0 1502331013996

-10 -11 14 -17 0 -13 1527439170635 293126770298

-18 0 -1 -8 14 9 0 1020518759025

-4 8 15 7 10 -7 0 1

10 14 -18 3 6 -1 -1694061335945 1278112860186

 êT : -1.3254395513229311 0 0 0 1.3800701694467767 5.2108484294428896
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are hypersensitive to roundoff-like perturbations because  A  and  H  so nearly share a nullspace.  Eigenvectors were 

computed in extra-wide arithmetic from the formula   Ë := G–1·Diag(1/√h elementwise) ,  and then the columns of  Ë  
were reordered to match the sorted eigenvalues,  rounded off,  and stored.  These eigenvector columns are accurate to 
the last  (53rd)  sig. bit or two.  Their squared norms turned out to be respectively …

…  which indicate that the fourth eigenvalue  ê(4)  may be hypersensitive to roundoff-like perturbations.  To check 
this out,  MATLAB   program  rsdls.m    employing the formulas for  “Computed Residual”  and  “Its Approximated 
Uncertainty”  tabulated above  (this program is listed in  §11)  computed residuals  ∆I  and  ∆Ê  and first-order error-
estimate  ∆ê  along with respective uncertainties  ∆I ,  ∆Ê  and  ∆ê  inherited from matrix multiplications’ roundoff,  
but using  Ë  and  Ê := Diag(ê)  in place of the tabulated formulas’  F  and  V = Diag(v) .  By default  MATLAB  6.5’s 
arithmetic is rounded to  53 sig. bits;  this arithmetic produced  |∆I| ≤ 0.0791·∆I  and  |∆Ê| < 0.135·∆Ê  elementwise.  
Residuals that much tinier than their uncertainties were likely to be drowned in their own rounding errors.  The same 
went for the utterly wrong first-order correction   ∆ê   and its uncertainty   ∆ê  inherited from roundoff:

MATLAB  6.5’s  system_dependent(‘setprecision’, 64)   accumulated every subsequent matrix multiplication to  
64  sig. bits before  rounding it back to  53  to get residuals and a first-order correction more nearly deserved by data  
Ë  and  ê .  Their elementwise  max |∆I|/∆I ≈ 29.05  and  max |∆Ê|/∆Ê ≈ 11.0 .  Consequently the first several binary 
digits of some residuals became worth having;  and the same went for some much-improved first-order corrections:

Now we shall not be surprised by huge errors and/or uncertainties afflicting at least one of the three computed values 
of tiny eigenvalues  ê(2:4)  because now we know how big are an eigenvector and its contribution to uncertainty.

Rarely would the foregoing facts about the eigensystem and  H ’s  condition numbers be known in advance.  They 
have been exposed here to help readers decide what to scrutinize among the following voluminous computations.

MATLAB  6.5’s  default mode,  system_dependent(‘setprecision’, 53)   that rounds all arithmetic to  53  sig. 
bits,   was in force for all results below until declared otherwise.  MATLAB   commands  [F, V] = eig(A, H)   and  
v = diag(V)    computed approximate eigenvectors  F  and a column of eigenvalues  v  whose errors are displayed 
here above the squared norms of respective eigenvectors:

Two of the computed eigenvalues appear to be about eighteen sig. bits less accurate than the others;  they correspond 
to two computed eigenvectors enormously bigger than the others,  which are all a little too big.  How can anyone 
assess whether both of the two enormous vectors deserve to be so much bigger than the others?  It’s not obvious.

Residuals  ∆I  and  ∆V  seem appropriately small compared with their uncertainties  ∆I  and ∆V   computed from the 
aforementioned tabulated formulas:   |∆I| ≤ 0.086·∆I   and  |∆V| ≤ 0.31·∆V  elementwise.  These inequalities arouse no 
suspicions that parts of  eig ’s  results  F  and  V  are far worse than they have to be.  On the contrary,  the residuals are 
sufficiently smaller than their uncertainties that we might reasonably expect many of  eig ’s  eigenvalues’ errors  ê – v  
and their first-order error estimates  ∆v  (almost all blighted by roundoff during their computation)  to be at least an 
order of magnitude tinier than their crude uncertainties  ∆v .  Most are much tinier:

sum(Ë.*Ë) : 3.1418e-13 1.4043e-13 6.6622e-15 0.2246 1.8611e-13 6.4182e-13

∆êT : 3.9968e-15 -1.4178e-15 -5.2676e-17 -3.4787e-3 1.1102e-15 4.0856e-14

∆êT : 4.6432e-13  6.5457e-14 1.0436e-15   9.6749e-2 2.7184e-13 2.702e-12

∆êT : 6.6613e-16 -3.1656e-19 6.4748e-21 3.7334e-7 0 -1.7764e-15

∆êT : 4.2633e-15  3.1962e-17 5.0958e-19 4.7629e-5 3.0039e-15  1.2736e-14

( ê – v )T :  3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

sum(F.*F) : 3.1629e-13 0.11447 1.9608e-14 0.11135 1.8699e-13 6.4444e-13

( ê – v )T: 3.1086e-15 6.9111e-10 2.165e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

∆vT : 1.0214e-14 1.5868e-3 2.3777e-15 -1.716e-3 -1.3545e-14 8.1712e-14

∆vT : 4.6744e-13 4.9713e-2 7.7406e-15   4.8362e-2 2.7316e-13 2.7134e-12



File:  GnSymEig                              WORK  IN  PROGRESS                     version dated  September 6, 2011 3:37 am

Prof. W. Kahan                                                  Math. 221 and 128 B                                                         Page 19/27

Rarely would we know that.  Instead we might reasonably infer that two eigenvalues are extremely hypersensitive to 
roundoff-like perturbations.  Can iterative refinement improve their accuracy?  New eigenvalue estimates  w  obtained 
from  [Z, w] = gnsymeig(F’*A*F, F’*H*F)  have errors  ê – w  compared here with the old errors  ê – v :

Most of the  “refined”  estimates  w  are  worse  than the old because  53 sig. bit  roundoff has contaminated  FT·H·F  

and  FT·A·F  badly,  and more so since one column of  F  is unnecessarily big.  The remedy described above is needed:

Three computed eigenvalues  v(2:4)  constitute a tight cluster separated well from the others.  MATLAB ’s  compact 
singular value decomposition  [P, Phi, Q] = svd(F(:,2:4), 0)    supplied a  3-by-3  orthogonal matrix  Q  which 
was used to replace the cluster’s three computed eigenvectors  F(:, 2:4)  by  F(:, 2:4)·Q  to obtain the remedied matrix  
Fr = [F(:,1),  F(:, 2:4)*Q,  F(:, 5:6)]  of eigenvectors.  Comparing the old squared norms with the new …

…  suggests that only one of the three eigenvectors has to be big.  Cancellation has left few of the other two’s leading. 
digits uncorrupted by roundoff.  Consequently some residuals in  ∆I  and  ∆V  recomputed using  Fr  in place of  F  are 
now huge compared with their recomputed uncertainties  ∆I  and  ∆V ;  the biggest of the ratios  |∆I|/∆I elementwise  

has grown to  8.02e5 ,  and of  |∆V|/∆V  to  9.93e5 .  Thus has remediation reduced two eigenvectors’ magnitudes and 
also their amplification of roundoff in the residuals,  some of which now rise high enough above their noise to justify 
recomputation of the first-order correction  ∆v ,  especially  ∆v(3:4)  :

Now  ∆v(3:4)  are so much smaller than  ∆v(3:4)  that  v(3:4) + ∆v(3:4)  are almost surely more accurate than  v(3:4) .   
To improve the accuracies also of the remedied eigenvectors in  Fr  we must invoke iterative refinement:

[Z, w] = gnsymeig(Fr’*A*Fr, Fr’*H*Fr)  has errors  ê – w  compared here with the old errors  ê – v :

Again  “refinement”  has slightly worsened most of the eigenvalues;  but besides reordering the three tiny eigenvalues 
it has improved two of them by orders of magnitude.  The third tiny eigenvalue seems not so tiny any more;  it has 

been inflated by rounding errors in  FrT·H·Fr  and  FrT·A·Fr  amplified by  Fr ’s  one big column.  Refined remedied 
eigenvector matrix  Frz := Fr·Z  was substituted for  F ,  and  W := Diag(w)  for  V ,  in the tabulated formulas above to 
recompute   Frz ’s  squared norms,  residuals  ∆I  and  ∆W ,  first-order eigenvalue error-estimates  ∆w ,  and their 
uncertainties  ∆I ,  ∆W  and  ∆w  resp.  to get   |∆I| ≤ 0.21·∆I ,   |∆W| ≤ 0.62·∆W   and  … 

Again,  the residuals are sufficiently smaller than their uncertainties to be mostly overwhelmed by roundoff,  so their 
derived estimate  ∆w  of the eigenvalues’ error  ê – w  is far tinier than its crude uncertainty  ∆w  and hence almost all 
wrong,   submerged in roundoff.   ê – w  is wrong mainly because  gnsymeig(Fr’*A*Fr, Fr’*H*Fr)  got the wrong 

matrices to refine;  roundoff accumulating during the matrix multiplications   FrT·A·Fr  and  FrT·H·Fr   vitiated the 
processes of remediation and refinement.  53 sig. bits are too few to compute all residuals reliably enough.

new  ( ê – w )T:  -7.1054e-15 1.718e-3 -7.9518e-17 -1.5893e-3 1.3323e-14 -6.1284e-14

old  ( ê – v )T:  3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

old sum(F.*F) : 3.1629e-13 0.11447 1.9608e-14 0.11135 1.8699e-13 6.4444e-13

new sum(Fr.*Fr) :  3.1629e-13 0.22582 1.8248e-15 1.2781e-15 1.8699e-13 6.4444e-13

( ê – v )T : 3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

∆vT : 1.0214e-14 1.4499e-3 2.1339e-15 -6.7233e-10 -1.3545e-14 8.1712e-14

∆vT : 4.6744e-13 9.6958e-2 7.8532e-16   6.7731e-16 2.7316e-13 2.7134e-12

old  ( ê – v )T:  3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

new  ( ê – w )T: -6.6613e-15 6.4616e-17 2.0476e-17 -1.4499e-3 1.2879e-14 -6.1284e-14

sum(Frz.*Frz) : 3.1073e-13 1.5264e-15 4.2094e-15 0.22325 1.8333e-13 6.4133e-13

 actual  ( ê – w )T : -6.6613e-15 6.4616e-17 2.0476e-17 -1.4499e-3 1.2879e-14 -6.1284e-14

computed ∆wT :  -2.3315e-14 6.0208e-18 -6.7974e-18   3.1025e-3 1.5099e-14 -1.8741e-13

its uncertainty  ∆wT :   4.5921e-13 8.8346e-16  1.4754e-15   9.7605e-2 2.6769e-13  2.6998e-12
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
The invocation  system_dependent(‘setprecision’, 64)   makes  MATLAB  6.5  accumulate each matrix product 
to  64  sig. bits,  before storing it rounded back to  53,  provided the product and factors fit in the processor’s cache.   
When that invocation preceded the application of  rsdls   to compute residuals and first-order corrections etc.  for the 
eigenvectors  F  and eigenvalues  v  that  eig   computed before that invocation,  rsdls ’s  results had elementwise   
max |∆I|/∆I ≈ 65.7 ,   max |∆V|/∆V ≈ 573. ,  and first-order correction  ∆v  and its uncertainty  ∆v  tabulated here:  

Whichever element of uncertainty  ∆v  is smaller than the magnitude of the corresponding element of  correction ∆v ,  
adding this to the corresponding element of  v  reduces its error well below its uncertainty.  Thus has extra-precise 
accumulation of matrix products during residual computation improved three of the eigenvalues;  but two others seem 
excessively uncertain again.  To reduce their uncertainties as much as possible,  three of the computed eigenvectors in  
F  had already been replaced to get   Fr = [F(:,1),  F(:, 2:4)*Q,  F(:, 5:6)]  .  This remedied  Fr  already in 
hand was iteratively refined via  [S, u] = gnsymeig(Fr’*A*Fr, Fr’*H*Fr)   with  64 sig. bit accumulation of each 
matrix product.  Then  Frs = Fr·S  replaced  F  and  U := Diag(u)  replaced  V  for recomputation of  Frs ‘s squared 
norms,  residuals  ∆I  and  ∆U ,  first-order eigenvalue error-estimate  ∆u ,  and their respective uncertainties  ∆I ,  ∆U  
and  ∆u .   Rsdls ’s  results had elementwise   max |∆I|/∆I  ≈ 59.6 ,   max |∆V|/∆V ≈ 6.99    and  …  <<<<<<<<<

The first-order error-estimate  ∆u  provides a rough indication smaller than  ∆u  of the errors in the eigenvalues  u ,  all 
of which are now at least about as accurate as can reasonably be demanded after taking their different sensitivities to 
perturbations into account.  That is how remediation and refinement have repaid the efforts invested in them.

This example’s phenomemon,—  computed eigenvectors unnecessarily big causing unnecessary inaccuracy to part of 
a computed eigensystem,—  is a rare accident of roundoff.  It would not have happened if some of  eig ’s  rounding 
errors had fallen differently.  Some do fall differently when matrix multiplications are accumulated with  11  extra sig. 
bits;  then  [Fx, Vx] = eig(A, H)   and  vx = diag(Vx)    compute approximate eigenvectors  Fx  and a column of 
eigenvalues  vx  whose errors are displayed here above the squared norms of respective eigenvectors:

Compare these with  eig ’s  eigenvectors  F  and eigenvalues  v  computed earlier entirely in  53 sig. bit arithmetic:

Neither  vx  nor  v  appears entirely better than the other.  Differences between  F  and  Fx  showed up when  rsdls   
computed extra-precisely accumulated residuals  ∆I  and  ∆Vx  and their uncertainties  ∆I  and  ∆Vx  from  Fx  and  
Vx := Diag(vx)   instead of  F  and  V .   Now their elementwise  max |∆I|/∆I ≈ 75.7  and  max |∆Vx|/∆Vx ≈ 63.7  were 
smaller than before but ample enough to make first-order correction  ∆vx  and its crude uncertainty  ∆vx  worth 
computing to bring the error in  vx + ∆vx   well below  ∆vx :  

( ê – v )T: 3.1086e-15  6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

∆vT : 4.2188e-15 -6.1121e-8 2.1651e-15  3.4782e-7  2.2204e-16 2.0428e-14

∆vT : 4.277e-15  2.4207e-5 3.7796e-18  2.3551e-5  3.011e-15 1.2764e-14

sum(Frs..*Frs) : 3.1399e-13 1.5681e-13 1.5105e-15 0.2246 1.8618e-13 6.4182e-13

 error  ( ê – u )T : -1.1102e-15 1.079e-19 -6.1794e-21 -1.4808e-7 -4.4409e-16 0

estimate ∆uT :  -1.9984e-15 1.8283e-18 -8.0573e-21  -1.4946e-6 -6.6613e-16 -1.7764e-15

its uncertainty  ∆uT :  4.262e-15 3.1928e-17  4.7711e-19   4.7629e-5  3.0045e-15  1.2736e-14

( ê – vx )T: 4.4409e-15 1.0794e-15 -3.3461e-17 -6.9733e-4 -1.5543e-15 -4.1744e-14

sum(Fx..*Fx) : 3.1558e-13 2.8959e-13 2.0168e-15 0.22513 1.8696e-13 6.4513e-13

( ê – v )T:  3.1086e-15 6.9111e-10 2.165e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

sum(F.*F) : 3.1629e-13 0.11447 1.9608e-14 0.11135 1.8699e-13 6.4444e-13

 error  ( ê – vx )T : 4.4409e-15 1.0794e-15 -3.3461e-17 -6.9733e-4 -1.5543e-15 -4.1744e-14

estimate ∆vxT : 4.2188e-15 1.0806e-15 -3.3469e-17 -6.9667e-4 -2.4425e-15 -3.9968e-14

its uncertainty  ∆vxT : 4.2724e-15 6.636e-17  5.2549e-19  4.7686e-5  3.0108e-15  1.2772e-14
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No remediation but iterative refinement was performed to improve the accuracies of the eigenvector matrix  Fx ;  the 
results from    [Zx, wx] = gnsymeig(Fx’*A*Fx, Fx’*H*Fx)  ,  and  rsdls   applied to  Fx·Zx  and  Wx := Diag(wx)  
instead of  F  and  V ,  benefited from matrix multiplication’s  11  extra sig. bits.  Now elementwise  max |∆I|/∆I ≈ 53.7  
and  max |∆Vx|/∆Wx ≈ 21.2  and the other results  …

…  have roughly the same accuracies as the results  u ,  ∆u  and  ∆u  obtained after remediation. 

Thus the foregoing example supports the conclusion that,  after the unlikely need for a remedy has 
been detected,  our remedy for unnecessarily big computed eigenvectors undoes their ill effects.  
Another conclusion is that  11  extra sig. bits carried during matrix multiplication sufficiently 
suppress the noises that beset numerical signals to ease greatly the task of delivering at least about 
as much accuracy as the data deserve,  but we all already knew that;  see my web page’s posting at  
<.../MxMulEps.pdf>  .  

What we do not know is how often,  in practice,  results from programs like  eig(A, H)   need 
remediation nor,  without it,  how often and how badly those results mislead their consumers.  
Nobody is keeping score;  to do so would require at least the computation of residuals and their 
uncertainties by a program like  rsdls  ,  and possibly refinement by a program like  gnsymeig  .  
We could regard these supererogatory computations’ costs as premiums paid for insurance against 
dire consequences of being misled by misleading results,  but only if the risks were quantified.  
Usually they aren’t.  Instead,  in the current climate,  programs like  rsdls   and  gnsymeig   will be 
employed occasionally to evince the exercise of  Due Diligence,  or to diagnose suspicious results.  
Suspicions might be aroused by a computed eigenvector matrix more ill-conditioned  (closer to 
singular)  than expected,  or by a symmetry  (repeated eigenvalues)  unexpectedly broken,  or by 
an unexpected bump in computed results’ variation as a parameter changes,  or by a  buzz  (high-
frequency vibration)  of a structural component whose secure attachment had been overlooked,  if 
anyone is looking now. 

§9:  How Well Does  gnsymeig   Work?
How do   gnsymeig ’s  residuals compare with their inherited uncertainties?  This question is being 
explored for a wide range of input data  {A, H} .

TO BE CONTINUED.

 error  ( ê – wx )T : 2.2204e-16 1.4385e-19 -2.8943e-19 -6.6453e-7 8.8818e-16 -1.7764e-15

estimate ∆wxT : 4.4409e-16 9.8384e-20 -3.139e-19  1.742e-6 1.3323e-15 -2.6645e-15

its uncertainty  ∆wxT : 4.2635e-15 1.0788e-18  3.2414e-19  4.7629e-5 3.0027e-15  1.2737e-14
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§11:   gnsymeig.m  ,  an Experimental  MATLAB   Program,  and  rsdls.m   

function  [F,v,K] = gnsymeig(A, H)
%  F = gnsymeig(A, H)  is the matrix of a  Congruence  that
%  simultaneously diagonalizes given symmetric  A  = A'  and
%  positive definite  H = H'  to  F'*H*F = I ,  the identity,
%  and  F'*A*F = V ,  a diagonal matrix of eigenvalues whose
%  respective eigenvectors are the columns of  F .  Optionally
%  [F,v] = gnsymeig(A, H)  yields a  v  better than  diag(V).
%  Gnsymeig  is intended for data  A  and  H  that are already
%  nearly diagonal,  as happens when  [E, V] = eig(A, H)  but
%  roundoff degrades eigenvectors  E  and eigenvalues  V  too
%  severely,  so that  F = gnsymeig(E'*A*E, E'*H*E)  provides
%  refined eigenvectors  E*F .  The method used in  gnsymeig
%  is a  Jacobi-like  iteration whose convergence has now been
%  proved.  Optionally  [F,v,K] = gnsymeig(A,H)  counts actual
%  Jacobi-steps,  scan-sweeps,  sorts and instances when
%  |H(i,j)| >= 3/4  in  K = [ksteps, ksweeps, ksorts, kbigH] .
%  Sweeps go through successive rows in lexicographic order.
%  Intended for  MATLAB 5+ .      (C)  W. Kahan  23 May 2008

%  Check the data's dimension(s)  n :
[n,m] = size(A) ;  [i,j] = size(H) ;
if ((n~=m)|(m~=i)|(i~=j)),  sizeA = [n,m] ,  sizeH = [i,j],
    error('gnsymeig(A, H)  needs square arrays of equal dimensions')
  end

%  Symmetrize the data,  which should be real:
A = (A + A')*0.5 ;  H = (H + H')*0.5 ;
if ~(isreal(A)&isreal(H))
    error('gnsymeig(A, H)  needs real symmetric  A and H.')
  end

disp('Sweeps go through successive rows in lexicographic order.')
%<<<<<<<<<<<<<<<<<<<<<<<<<for debugging<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
% C = zeros(n) ;  kc = 0 ;  %<<<< to check the order of scan <<<<<<<

%  Scale  diag(H)  to  1 :
csH = diag(H) ;  if ~all(csH > 0),  diagH = csH'
   error('gnsymeig(A, H)  needs positive definite  H .'),  end
csA = sqrt(csH) ;  G = csA(:, ones(1,n)) ;  G = G.*G' ;
G = G + diag(csH - diag(G)) ; %...  so  diag(G) == diag(H)  exactly
A = A./G ;  H = H./G ;  F = diag(1.0./csA) ;  %  H = F'*H*F ,  etc.

%  Miscellaneous constants:
im = sqrt(-1) ;  eps2 = eps*2 ;  piby2 = atan(inf) - eps ;
n1 = n*1.0625 ;

%  Initializations:
ksteps = 0 ;  ksweeps = 0 ;  ksorts = 0 ;  kbigH = 0 ;
kstp = 1 ;  unsort = 1 ;
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%  Initialize column-sums of off-diagonal squares:
G = H - eye(n) ;  csH = sum(G.*G) ;
G = A - diag(diag(A)) ;  csA = sum(G.*G) ;
ssH = sum(csH) ;  ssA = sum(csA) ;
clear G ;  % ... to leave space for permutations

%  Perform successive sweeps of  Jacobi-like  iteration:
while kstp ,  ksweeps = ksweeps + 1 ;  kstp = 0 ;

%  May  diag(A)  have to be  (re)sorted?
if unsort,  unsort = 0 ;  % ... perhaps  diag(A)  is unsorted
    v = diag(A) ;  [v, J] = sort(v) ; % ... Is  diag(A)  unsorted?
    if any(J' - [1:n]),  ksorts = ksorts + 1 ;  % ... Yes,  alas.
%      Permute rows and columns to get  diag(A)  sorted (again):
        A = A(J,J) ;  H = H(J,J) ;  F = F(:,J) ;
        csH = csH(J) ;  csA = csA(J) ;  end, end %  unsort

%  Loop through a sequence of consecutive off-diagonal elements:
for i = 1:n-1  % ...  Is row  #i  too small to be worth scanning?
if (n1*csH(i) > ssH)|(n1*csA(i) > ssA)  % ...  Apparently not.
for j = i+1:n ,  %  examine elements  (i,j) and (j,i)  of  A and H

% kc = kc+1 ;  C(i,j) = kc ;  %<<<<<<Check the order of scan<<<<<<<<

%  Is  A(i,j)  or  H(i,j)  big enough to be worth annihilating?
alpha = A(i,j) ;  sigma = H(i,j) ;  sa = abs(sigma) ;
if (sa >= 1),  ijNormalizedHij = [i,j,sigma] ,
    error('gnsymeig(A,H)''s  H  is not positive definite enough.')
  end
aan1 = alpha*alpha*n1 ;  hhn1 = sa*sa*n1 ;
if (aan1 > csA(i))|(aan1 > csA(j))|(hhn1 > csH(i))|(hhn1 > csH(j))
%   ...  Yes,  A(i,j)  or  H(i,j)  is big enough to consider:

% Compute rotation angles of  2-by-2  congruence  E :
  v1 = A(i,i) ;  v2 = A(j,j) ;  bigE = 1 ; %... if  E-I  will be big

  if  (sa < 0.75)  %  The usual case:  H  is not nearly singular:
    costheta2 = 1 - sa*sa ;  costheta = sqrt(costheta2) ;
    theta = asin(sigma) ;  phi = 2*alpha - (v1+v2)*sigma ;
    aphi = ( 2*abs(alpha) + abs((v1+v2)*sigma) )*eps2 ;
    dE = (v1-v2)*costheta ;
    if (abs(phi) < aphi),  phi = 0 ; % else avoid division by 0
       elseif (dE == 0),  phi = -sign(phi)*piby2 ;
          else  phi = atan(phi/dE) ;  end
    phth = (phi - theta)*0.5 ;  thph = (theta + phi)*0.5 ;
    ephth = exp(im*phth) ;  ethph = exp(-im*thph) ;
    E = [real(ethph), imag(ethph);  imag(ephth), real(ephth)]/costheta ;
    dE = sum(abs( E(:) - [1; 0; 0; 1] )) ;  % = || E - I ||
    bigE = (dE > eps2) ;  %  Is  ||E - I||  big enough to matter?
    if bigE,  %  Yes;  ||E - I||  is big enough!
%      Select columns that  E  will affect:
        hij = H(:,[i,j]) ;  aij = A(:,[i,j]) ;
      end % of computing congruence  E  when  H  isn't nearly singular



File:  GnSymEig                              WORK  IN  PROGRESS                     version dated  September 6, 2011 3:37 am

Prof. W. Kahan                                                  Math. 221 and 128 B                                                         Page 25/27

   else   %  Cope with rare near-singular  H  ( 0.75 <= sa < 1 ) :
    costheta2 = (1 - sa)*(1 + sa) ;  s = sign(sigma) ;
%  Select columns that  E  will affect:
    hij = H(:,[i,j]) ;  aij = A(:,[i,j]) ;
%  Apply congruence  X  that will cancel critical data exactly:
    X = [1, s; s, -1] ;  F(:,[i,j]) = F(:,[i,j])*X ;
    hij = hij*X ;  hij([i,j],:) = X*hij([i,j],:) ;
    aij = aij*X ;  aij([i,j],:) = X*aij([i,j],:) ;
%  Scale  Diag(H)  back to  I :
    dii = hij(i,1) ;  djj = hij(j,2) ;
    aii = aij(i,1)/dii ;  ajj = aij(j,2)/djj ;
    dii = sqrt(dii) ;  djj = sqrt(djj) ;
    hij(:,1) = hij(:,1)/dii ;  hij(:,2) = hij(:,2)/djj ;
    hij([i,j],:) = eye(2) ;  t = aij(i,2)/(dii*djj) ;
    aij(:,1) = aij(:,1)/dii ;  aij(:,2) = aij(:,2)/djj ;
    aij([i,j],:) = [aii,t; t,ajj] ;  psi = (aii - ajj)*0.5 ;
    F(:,i) = F(:,i)/dii ;  F(:,j) = F(:,j)/djj ;
%  Compute angle for diagonalizing congruence by reflection  E :
    if (t == 0),  psi = 0 ;
       elseif (psi == 0),  psi = 0.5*piby2 ;
         else  psi = atan(t/psi)*0.5 ;  end
    t = sign(t) ;  t = (t*s - 1)*t*0.5 ;
    if (t == 0),  t = 1 ;  else  t = t*im ;  end
    t = t*exp(im*psi) ;  co = real(t) ;  si = imag(t) ;
    E = [co, si; si, -co] ;  kbigH = kbigH + 1 ;
   end  %  of computing congruence  E  when  H  is nearly singular.

  if bigE  %  Perform a substantial  2-by-2  congruence  E'*(__)*E :
      kstp = kstp + 1 ;
      hij = hij*E ;  hij([i,j],:) = eye(2) ;
      aij = aij*E ;  aij([i,j],:) = E'*aij([i,j],:) ;
      aij(i,2) = 0 ;  aij(j,1) = 0 ;  %... clear out rounding errors
%    Mitigate rounding errors in tinier eigenvalue:
      if (abs(aij(i,1)) < 0.125*abs(aij(j,2)))
          t = [v1, -alpha]*[v2; alpha] ;
          aij(i,1) = t/(aij(j,2)*costheta2) ;
        elseif (abs(aij(j,2)) < 0.125*abs(aij(i,1)))
          t = [v1, -alpha]*[v2; alpha] ;
          aij(j,2) = t/(aij(i,1)*costheta2) ;
        end %  of adjusting tinier eigenvalue
%    Undo occasional disorder between new diagonal entries of  A :
      if (aij(i,1) > aij(j,2)) % happens only if old entries were ==
          aij = fliplr(aij) ;  hij = fliplr(hij) ;  E = fliplr(E) ;
          aij([i,j],:) = aij([j,i],:) ;  hij([i,j],:) = hij([j,i],:) ;
        end
%    Update rows and columns of  A  and  H ,  and columns of  F :
      Aij = A(:,[i,j]) ;  A(:,[i,j]) = aij ;  A([i,j],:) = aij' ;
      Hij = H(:,[i,j]) ;  H(:,[i,j]) = hij ;  H([i,j],:) = hij' ;
      F(:,[i,j]) = F(:,[i,j])*E ; % to record congruence in  F .
%    Has new  diag(A)  become unsorted?
      im1 = i - (i>1) ;  ip1 = i + (i<n) ;  aii = A(i,i) ;
      unsort = unsort|(aii < A(im1,im1))|(aii > A(ip1,ip1)) ;
      im1 = j - (j>1) ;  jp1 = j + (j<n) ;  ajj = A(j,j) ;
      unsort = unsort|(ajj < A(im1,im1))|(ajj > A(ip1,ip1)) ;
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%    Update column-sums of off-diagonal squares:
      hij([i,j],:) = zeros(2) ;  csH([i,j]) = sum(hij.*hij) ;
      Hij([i,j],:) = zeros(2) ;
      csH = csH + sum(((hij-Hij).*(hij+Hij))') ;
      ssH = sum(csH) ;
      aij([i,j],:) = zeros(2) ;  csA([i,j]) = sum(aij.*aij) ;
      Aij([i,j],:) = zeros(2) ;
      csA = csA + sum(((aij-Hij).*(aij+Aij))') ;
      ssA = sum(csA) ;
   end %  of substantial congruence  bigE
 end,  end %  if ...(i,j) is big,  and  for j ___
 end,  end %  if ...(i) is big,  and  for i ___
% C = C,  C = 0*C ; %>>>>>>>>To display the order of scan<<<<<<<<<<<
ksteps = ksteps + kstp ;
end % while (kstp > 0)
K = [ksteps, ksweeps, ksorts, kbigH] ;  v = diag(A) ;

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function  [eHe, eAe, cEHE, cEAE, de, De] = rsdls(A,H,E,e)
%  [eHe, eAe, cEHE, cEAE, de, De] = rsdls(A,H,E,e)  gets residuals
%  given  n-by-n symmetric  A  and  H  with positive definite  H ,
%  approximate eigenvector matrix  E  and eigenvalue column  e :
%     eHe = E'*H*E - I ,        eAe = E'*A*E - Diag(v) .
%  If the columns of  E  have not already been scaled to ensure
%  diag(eHe) = o ,  compensatory scale factors are applied first.
%  Uncertainty depends on dimension  n  and a roundoff threshold:
%       c = ( 1 + ceil(log2(n)) )*eps .
%  Residuals' uncertainties inherited from their roundoff are
%    cEHE = |E|'*|H|*|E|*c ,   cEAE = |E|'*|A|*|E|*c .
%  But if matrix multiplication is accumulated extra-precisely,
%  the formulas for  cEAE  and  cEHE  become more complicated
%  in ways that have been worked out here only for  MATLABs v.
%  3.5 - 5.3,  and  v. 6.5  with small  n .   NOT FOR v. 7+ !
%  Computed  "first-order"  eigenvalue corrections are
%        de = diag(eAe) - e.*diag(eHe) = diag(eAe) ,
%  and their additional uncertainties due to roundoff are
%        De = diag(cEAE) + |e|.*diag(cEHE) .
%  If neither  |eHe|./cEHE  nor  |eAe|./cEAE  has any enormous
%  elements,  e+de  should approximate the eigenvalues of  H\A
%  better than  e  does only where  |de|  is small enough and
%  yet not smaller than  De  lest  de  drown in rounding errors
%  accumulated during the residuals' computation.
%                                         W. Kahan  3 June 2008

n = length(e) ;  log2n = ceil(log(n)/log(2)) ;
HE = H*E ;  AE = A*E ;
aE = abs(E) ;  aHE = abs(HE) ;  aAE = abs(AE) ;
eHe1 = E'*HE ;  %...  but  E  might not have been scaled yet ...
dh = diag(eHe1) ;  sdh = sqrt(dh) ;  Sdh = sdh*sdh' ;
Sdh = (Sdh - diag(diag(Sdh))) + diag(dh) ;  %... scale factors
%  Now scaled(E'*X*E) = E'*X*E./Sdh  for any  X  ...

eHe = eHe1./Sdh - eye(n) ;  eAee = E'*AE ;
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eAe = eAee./Sdh - diag(e) ;
de = diag(eAe) ; % ... = diag(eAe) - e.*diag(eHe)

%  What are the roundoff thresholds?  First for scalars:
eeps = ((n+4)-n)/3 ;  %...  to defeat compiler "optimization"
eeps = abs((eeps - 1)*3 - 1) ; %... == eps ?
eeps = max(eeps, eps) ;  %...  MATLAB 7+'s  eeps  can be weird.
%  Next for matrix multiplication:
eta = 0.5^32 ;  lreta = [-1, eta, 1]*[1; eta; 1] ;  %... == 0 ?
%  Most versions of MATLAB accumulate left-to-right,  but ...
eta = [1, eta, -1]*[1; eta; 1] ;  %... == lreta ?
if (eta ~= lreta),  eta = max(lreta, eta) ;  end  %... eta ~= 0 .

if (eta == 0)|(eeps > eps)  %... eeps is THE roundoff threshold
    c = ( 1 + log2n )*eeps*0.5 ;
    cEHE = aE'*(abs(H)*aE + aHE)*c ;
    cEAE = aE'*(abs(A)*aE + aAE)*c ;
  else  %...  eps  for scalars,  eta  for matrix multiplication:
    c = ( 1 + log2n )*eta ;
    cEHE = aE'*(abs(H)*aE+aHE)*c + (aE'*aHE+abs(eHe1))*eps*0.5 ;
    cEAE = aE'*(abs(A)*aE+aAE)*c + (aE'*aAE+abs(eAee))*eps*0.5 ;
  end
cEHE = cEHE./Sdh ;  cEAE = cEAE./Sdh ;
De = diag(cEAE) + abs(e).*diag(cEHE) ;

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =


