

File: GnSymEig

WORK IN PROGRESS

 version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 1/27

Refining the General Symmetric Definite Eigenproblem

§0: Introduction

Given are two symmetric n-by-n matrices A = A

T

 and H = H

T

; and H is

Positive Definite

.
The

Eigenproblem

 “

A·

e

 = H·

e

·

λ

” has n real eigenvalues

λ

 and eigenvectors

e

≠

o

. Each
eigenvalue is a zero of the

Characteristic Polynomial

 det(

λ

·H

–

A) and also a

Stationary Value

of the

Rayleigh Quotient

ρ

(

x

) :=

x

T

·A·

x

/

x

T

·H·

x

 for

x

≠

o

 since only if

x

 is an eigenvector can

the derivative

ρ

'

(

x

) = 2(A·

x

 – H·

x

·

ρ

(

x

))

T

/

x

T

·H·

x

 vanish, and then

ρ

(

x

) is

x

’s eigenvalue.

Consequently

ρ

(

e

+

∆

e

) =

λ

 +

O

(

∆

e

)

2

 as

e

+

∆

e

 approaches an eigenvector

e

 whose eigenvalue
is

λ

. This facilitates the refinement of approximate eigenvalues given approximate eigenvectors.
Approximate eigenvectors are harder to refine.

A well-known way to refine an estimated eigenvector is

Inverse Rayleigh Quotient Iteration

:
Choose an eigenvector estimate

f

0

≠

o

 ;
For k = 0, 1, 2, 3, … in turn do …

{

u

k

 :=

(

A –

ρ

(

f

k

)·H

)

–1

·H·

f

k

 ;

f

k+1

 :=

u

k

/

√

(

u

k
T

·H·

u

k

) }.
In the late 1950s Alexandre Ostrowski proved that a sequence

±

f

k

 converges

Cubically

 to an
eigenvector

e

 if

f

0

 is close enough to it. In the late 1960s I proved that convergence to some
eigenvector occurs from every choice of

f

0

 except those in a repulsive set of measure zero; see

§§4

.

6

-

4

.

9 of B.N. Parlett’s (1998) book. But Rayleigh quotient iteration takes too long,

O

(n

4

),
to refine all n eigenvectors. There seems to be a faster way; it is the main subject of this paper.

The faster way is an iteration analogous to Jacobi’s iteration used when the eigenproblem’s H is
the identity matrix I

; see Ch. 9 of Parlett’s book. When H ≠ I analogous iterations have been
used for about four decades by structural engineers to compute vibrational modes and frequencies
of undamped elastic structures; see Ch. 15 of Parlett’s book, and Slapnicar & Hari (1991).
Engineers have used similar iterations despite that their convergence had not been proved unless
started close enough. A proof that this paper’s iteration converges globally is outlined in §6.

This paper’s and other analogous iterations are algorithms that admit several implementations as
computer programs not all of which are numerically stable in the face of rounding errors. The
instability of the most obvious implementations was diagnosed with the aid of a debugging tool
unavailable to almost all other programmers. This tool’s prowess is displayed in §3. A stable
reformulation derived in §2 is embodied in a MATLAB program gnsymeig.m listed in §11.

MATLAB ’s own eig(A, H) , like every other program intended to solve the general symmetric
definite eigenproblem, is susceptible to a rarely occurring failure mode induced by roundoff and
difficult to detect. The failure can occur only when vectors exist that are too nearly annihilated by
both A and H . When this failure occurs, albeit very rarely, current computing practice most
likely lets it pass unnoticed; we cannot know how often. How to detect such a failure and how to
remedy it aided by iterative refinement of eigenvectors is discussed with an example in §8. Of
course, iterative refinement’s intricacies would have little value if fast floating-point hardware of
extravagantly high precision were commonplace, but that might not come about anytime soon.

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 2/27

§1: A Characterization of Eigenvectors and their Pathologies
Let E be a matrix whose columns are the n eigenvectors e of the eigenproblem “ A·e = H·e·λ ”,

and let Λ be the corresponding diagonal matrix of n eigenvalues λ , so that A·E = H·E·Λ . E–1
exists because the eigenvectors are linearly independent; and we can normalize them so that

ET·H·E = I . This last equation is not obvious; to simplify its proof assume temporarily that the n

eigenvalues λ are distinct. Then the equation ET·H·E·Λ = ET·A·E = (ET·A·E)T = Λ·ET·H·E

implies that ET·H·E is diagonal. We make ET·H·E = I by scaling the columns of E ; then

ET·A·E = Λ exhibits eigenvalues in the same order as the columns of E exhibit eigenvectors.

Conversely, if ET·H·E = I and diagonal Λ = ET·A·E for a square E-1 then A·E = H·E·Λ , so
E ’s columns are a full set of eigenvectors regardless of whether eigenvalues in Λ are distinct.
Consequently, the eigenproblem “ A·e = H·e·λ ” is best solved by computing a Simultaneous

Congruence E that renders ET·H·E = I while simultaneously rendering Λ := ET·A·E diagonal.
If the eigenvalues in Λ are sorted, these equations determine each column of E uniquely within
a sign-reversal except for columns belonging to repeated eigenvalues.

This eigenproblem has three pathologies:

• If some eigenvalues in Λ are repeated, their columns in E must be partially indeterminate.
• If H is merely semidefinite, some eigenvalues in Λ and their columns in E may be infinite.
• If H and A share a nullspace, some eigenvalue(s) and all eigenvectors are partially arbitrary.

Rounding errors threaten to degrade results computed from data too nearly pathological. “Too
nearly …” must be gauged in terms of the floating-point arithmetic’s precision. As engineering
computations migrate onto relatively inexpensive and very fast graphics boards optimized for 4-
byte wide arithmetic adequate for computer games, pathologies judged too rare to care about
when arithmetic was predominantly 8-bytes wide come to pose palpable threats.

Data too near the first pathology, repeated eigenvalues, can lead to eigenvectors some of which
are too nearly linearly dependent. This is very unlikely but, if it occurs, it can be detected and
remedied by means illustrated in §8 below. More likely, should eigenvalues be repeated, some
formulas for the computation of eigenvectors will be derailed when floating-point arithmetic turns
0/0 into unpredictable roundoff/roundoff . The way this contingency is treated in §2 and then in
§11’s program gnsymeig renders (near-)repeated eigenvalues innocuous.

Data too near the second pathology, a semidefinite H , can lead to eigenvectors and eigenvalues
with such huge magnitudes that their rounding errors spill over into the rest of the eigensystem’s
computation, spoiling its accuracy. This situation calls for iterative refinement.

Data too near the third pathology, a nonzero intersection of the nullspaces of A and H , can turn
roundoff into unnecessarily huge eigenvectors too nearly linearly dependent, and thereby incur
excessive inaccuracies whose detection and remedy require costly supererogatory computation,
including iterative refinement. An example is scrutinized in §8. Although this pathology occurs
extremely rarely, it can occur; and then it is most likely to be overlooked, with consequences
currently incalculable.

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 3/27

§2: Formulas for a 2-by-2 Example
We rely heavily upon this example later. Let A := and H := , and assume –1 < σ < 1

to ensures that H is positive definite. Later we shall also assume that σ and α are relatively
tiny. The characteristic polynomial of the eigenproblem is

 L(λ) := det(λ·H – A) = (1 – σ2)·λ2 – (v1 + v2 – 2σ·α)·λ + v1·v2 – α2 .
Its discriminant’s nonnegative square root is

 δ := √((1 – σ2)·(v1 – v2)
2 + (σ·(v1 + v2) – 2α)2) ;

temporarily assume it strictly positive. Then the eigenproblem’s eigenvalues λ1 and λ2 are the

distinct values (v1 + v2 – 2σ·α ± δ)/(1 – σ2) . They straddle both v1 and v2 between them since

L(v2) = –(σ·v2 – α)2 ≤ 0 and L(v1) = –(σ·v1 – α)2 ≤ 0 . Moreover λ1 and λ2 can be so ordered

that (λ1 – λ2)/(v1 – v2) ≥ 1/√(1 – σ2) ; then the eigenproblem’s eigenvectors are the columns of

 E := /√(δ·sgn(λ1 – λ2)) , (sgn(x) := x/|x| = ±1)

and are normalized to satisfy ET·H·E = I and ET·A·E = Λ := Diag([λ1, λ2]) . Consequently
A·E = H·E·Λ . These equations are not so simple as they seem; although MAPLE 11 confirmed
them almost instantly, DERIVE 4.11 could confirm them only indirectly.

Worse, this formula for E, though derived from Λ in the usual way, is Numerically Unstable.

This formula loses its accuracy to roundoff for otherwise innocuous data A and H , namely
when eigenvalues are too nearly equal. Only when the example’s A = λ·H does δ = 0 , and then
λ1 = λ2 = λ and E becomes indeterminate; any 2-by-2 E can satisfy A·E = H·E·λ without

satisfying ET·H·E = I nor ET·A·E = λ·I . Consequently, when A ≈ λ·H too closely, the
example’s formulas above produce an E that may well satisfy A·E ≈ H·E·λ but severely violate

ET·H·E ≈ I and ET·A·E ≈ λ·I because of roundoff in the formulas. Try them! Roundoff afflicts
similarly many other procedures that purport to solve the eigenproblem “ A·e = H·e·λ ”. For
instance, MATLAB ’s [E, V] = eig(A, H) used to satisfy A·E ≈ H·E·V very closely, though

ET·H·E and ET·A·E could depart substantially from diagonal, until MATLAB 6+, which now
malfunctions only at data deemed to “deserve” it for H too nearly singular (σ too near ±1).

The simplest presentation of better formulas for E uses trigonometric expressions starting with
θ := arcsin(σ) and φ := arctan((2·α – (v1 + v2)·σ)/((v1 – v2)·cos(θ))) between ±π/2 . Then

 E := E(φ, θ) := /cos(θ) = /cos(θ)

satisfies ET·H·E = I and ET·H·E = Λ = Diag([λ1, λ2]) within roundoff no matter what angle
between ±π/2 replaces φ if arctan(0/0) is encountered, in which case reset φ := 0 to minimize

||E–I||F
2 := Trace((E–I)T(E–I)) . Again, E has a positive diagonal and can be shown to so order Λ

that (λ1 – λ2)/(v1 – v2) ≥ 1/√(1 – σ2) > 1 if v1 ≠ v2 . These properties will be exploited later.

v1 α

α v2

1 σ
σ 1

1
2

λ1 v2–
σ λ2 α–⋅

v1 λ2–

α σ– λ1⋅

λ1 v2–
----------------------- v1 λ2–

φ θ+
2

------------cos φ θ+
2

------------sin–

φ θ–
2

------------sin φ θ–
2

------------cos

θ
2
---cos θ

2
---sin–

θ
2
---sin– θ

2
---cos

φ
2
---cos φ

2
---sin–

φ
2
---sin φ

2
---cos

⋅

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 4/27

If the eigenvalues in Λ differ too widely in magnitude the smaller may be obscured too badly by
roundoff that is attenuated somewhat when the bigger eigenvalue, call it λ , is used to recompute

the smaller eigenvalue λ from the formula λ := (v1·v2 – α2)/(λ·cos2(θ)) .

Equivalent to the trigonometric formulas for E above are faster but more complicated purely
algebraic formulas that could be used instead to compute E :

 If |σ| < 0.75 then cos(θ) := √(1 – σ2) else cos(θ) := √(1 – σ)·(1 + σ) ;

 cos(θ/2) := ·(√1 – σ + √1 + σ) ; sin(θ/2) := ·σ/cos(θ/2) ;

 τ := (2·α – (v1 + v2)·σ)/((v1 – v2)·cos(θ)) = tan(φ) ; if τ is indeterminate reset τ := 0 ;

 ß := /√(1 + τ2) = ·cos(φ) ; cos(φ/2) := √ß + 1/2 ; sin(φ/2) := ß·τ/cos(φ/2) ; etc.

The foregoing formulas’ E → I as A and H approach diagonal matrices, i.e. as σ → 0 and
α/(v1 – v2) → 0 , except possibly if eigenvalues in Λ coincide. This behavior will figure later in
a criterion for stopping iterative refinement of nearly diagonal n-by-n matrices A and H .

On the other hand, when H is too nearly singular (when |σ| is too near 1), the foregoing
formulas for E and Λ suffer obscuration by roundoff amplified by a factor like 1/(1 – |σ|) .
Some such amplification is unavoidable because E·ET = H–1 so E has the biggest-singular-value

norm ||E|| = √(||H–1||) = 1/√1 – |σ| . Since at least one column of E must become almost as big as
||E|| , terms almost as big as 1/(1 – |σ|) must appear during the evaluation of the matrix product

ET·H·E before cancellation boils it down to I contaminated by amplified rounding errors. Also,
at least one eigenvalue λ must become huge unless A is very nearly a scalar multiple of H , in
which case E and an eigenvalue in Λ may become practically indeterminate as all coefficients of
L(λ) cancel. Consequently numerically bad things can happen when σ comes too near ±1 .

Only rarely is |sin(θ)| = |σ| so big, say |σ| ≥ 0.75 , that E and Λ are best computed from a
formula that mitigates most of roundoff’s ill effects by incurring critical cancellations before

intermediate results are rounded off. Such a formula makes E := X·V–1·Y and Λ := Y·T·Y for

 Y := , V := and X :=

in which sgn is the signum function (MATLAB ’s sign), so sgn(σ) = σ/|σ| except sgn(0) := 0 .

To compute ψ start with T := V–1·(X·(A·X))·V–1 and set τ := arctan(2·t12/(t11 – t22))/2 ;
DON’T DISREGARD PARENTHESES NOR SUBSTITUTE t21 FOR t12 , which gets computed more

accurately than t21 in critical cases. Then ψ := τ + (sgn(σ)·sgn(τ) – 1)·sgn(τ)·π/4 . The use of
sgn(…) is intended to make this formula for E match the previous ones except for roundoff and
the indeterminate case when τ encounters 0/0 , in which case resetting ψ := 0 is good enough.

Thus, if computed accurately enough, the columns of E are the normalized (ET·H·E = I)

eigenvectors of the example’s 2-by-2 eigenproblem, and diagonal Λ = ET·A·E exhibits the
corresponding eigenvalues except for roundoff’s interference, severe when ||E|| is huge.

1
2
--- 1

2

1
2
--- 1

2

ψ()cos ψ()sin

ψ()sin ψ()cos–

2 2 σ+ 0

0 2 2σ–

1 σ()sgn

σ()sgn 1–

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 5/27

§3: Two Numerical 2-by-2 Examples
The following tests were carried out upon 4-byte data in 4-byte floating-point carrying 24 sig.
bits. Three formulas above were tested: The first computes eigenvalues in Λ first and then, from
them, eigenvectors in E . The second formula computes E first and then, from it, Λ . The third
formula, intended to be used only when H is nearly singular, first applies a congruence X to

induce cancellation before roundoff and then applies congruences V–1 and Y to reveal E and
Λ . Strictly algebraic (using only +, –, ·, / and √, no trigonometry) versions of the second and
third formulas were used to insulate results from the vagaries of math. libraries, though the best
libraries nowadays produce slightly better results from the trigonometric versions. Enough digits
are displayed to let decimal-binary conversion reproduce all binary data and results perfectly.

Displayed also are Normalized Residuals to indicate how well or poorly computed results satisfy

the equations ET·H·E = I , ET·A·E = Λ and A·E = H·E·Λ compared with the uncertainty these
equations accrete when their constituents are computed in 24-sig.-bit arithmetic whose roundoff

bound here is ε/2 := 2–24
 . Residual eHe is the biggest element of |ET·H·E – I|./(ε·|ET|·|H|·|E|)

in which the absolute values |…| and division ./ apply elementwise to their respective arrays,
but · is matrix multiplication as usual. Similarly, residual eAe is the biggest element of

|ET·A·E – Λ|./(ε·|ET|·|A|·|E|) , and the biggest element of |A·E – H·E·Λ|./(ε·(|A|·|E| + |H|·|E|·|Λ|)) is
aeher . A residual so normalized gets much bigger than 3 only when its equation is dissatisfied
much worse by computed results E and Λ than by the ideal E and Λ and data A and H after
all four have been muddied by roundoff-like perturbations in their last digits stored.

1st Data: v1 := 13981013/223
 ; v2 := 13981011/223

 ; α := 13981012/226
 ; σ := (223

 – 125)/226

 A = [1.666666627 0.208333313] H = [1 0.124998137]
[0.208333313 1.666666388] [0.124998137 1]

Accurate E = [0.680938538 -0.743098407] diag(Λ) = [1.666669269]
[0.652154220 0.768483837] [1.666662958]

Note that eigenvalues are nearly equal.

1st Formula’s E = [0.664820254 -0.740706980] diag(Λ) =[1.666669130]
[0.672046542 0.771829128] [1.666662931]

 Normalized Residuals eHe = 2.08e5 eAe = 2.08e5 aeher = 0.68
Unacceptable eigenvectors produced for near-equal eigenvalues.

2nd Formula’s E = [0.680961311 -0.743077636] diag(Λ) = [1.666669607]
[0.652130783 0.768503785] [1.666663170]

 Normalized Residuals eHe = 1.41 eAe = 0.35 aeher = 0.85
Acceptable eigenvectors considering their hypersensitivity to roundoff.

3rd Formula’s E = [0.680401206 -0.743590474] diag(Λ) = [1.666669369]
[0.652709603 0.768012285] [1.666662812]

 Normalized Residuals eHe = 0.89 eAe = 1.48 aeher = 0.29
Eigenvectors somewhat worse than the second formula’s.

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 6/27

2nd Data: v1 := v2 := 13981013/223
 ; α := 13981012/223

 ; σ := 1 – 5/224

 A = [1.666666627 1.666666508] H = [1 0.999999702]
[1.666666508 1.666666627] [0.999999702 1]

Accurate E = [1295.268930 0.500000037] diag(Λ) = [0.400000000]
[-1295.268930 0.500000037] [1.666666816]

Note the huge eigenvector and that H is very nearly singular.

1st Formula’s E = [1330.762329 305.2990417] diag(Λ) = [0.400000036]
[-1330.762329 305.2973938] [1.600000143]

 Normalized Residuals eHe = 8.39e6 eAe = 8.39e6 aeher = 1.71e5
Unacceptable results produced because H is too nearly singular.

2nd Formula’s E = [1295.268921 0.499896228] diag(Λ) = [0.632455528]
[-1295.268921 0.499896228] [1.665974736]

 Normalized Residuals eHe = 3.48e3 eAe = 0.46 aeher = 1.74e3
Unacceptable results produced because H is too nearly singular.

3rd Formula’s E = [0.500000000 -1295.268921] diag(Λ) = [1.666666746]
[0.500000000 1295.268921] [0.400000006]

 Normalized Residuals eHe = 1.25 eAe = 0.90 aeher = 0.18
Exemplary results despite that H is nearly singular.

The foregoing results corroborate the error-analyses that preceded them:

• When eigenvalues are so nearly coincident that eigenvectors are partially indeterminate,
the first formula’s eigenvectors in E can be very wrong.

• When H is so nearly singular that at least one eigenvector in E is enormous, only the
third formula’s results can be expected to produce tolerable normalized residuals.

But the foregoing results are utterly unrealistic. They rely upon too many unlikely assumptions:
• An error-analysis has been performed. Error-analyses are attempted only rarely.
• Accurate results are known for comparison. Accurate results are knowable only rarely.
• Residuals were computed to help assess accuracy. Residuals get computed only rarely.
• Three numerical methods were compared. More than one are available only rarely.

What can be done when a numerical program is problematical because its results’ consequences
(perhaps remote) for one data-set have aroused suspicion? What can be done to assuage, deflect
or focus suspicion? If part of the program deserves closer scrutiny, how can it be localized?

By using techniques described in §14 of my web page’s <…/Mindless.pdf> , a formula above
for E and Λ has been excised from a lengthy program whose results aroused suspicion one day.
Suppose one of that lengthy program’s big data-sets produced intermediate results from which,
after arduous labor, one of the two numerical 4-tuples called “Data” above was extracted. How
did this 4-tuple attract attention to itself? Its four results from the formula in question dispersed
too widely when re-evaluated with arithmetic’s rounding altered in each of four ways:

• Rounded to Nearest (as usual) • Rounded Down toward –∞
• Roundes Up toward +∞ • Rounded toward Zero

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 7/27

The results are displayed below with x’s in place of divagated digits:

1st Data: v1 := 13981013/223
 ; v2 := 13981011/223

 ; α := 13981012/226
 ; σ := (223

 – 125)/226

 A = [1.666666627 0.208333313] H = [1 0.124998137]
[0.208333313 1.666666388] [0.124998137 1]

1st Formula’s E = [0.7x -0.7x] diag(Λ) = [1.666669x]
[0.7x 0.8x] [1.666663x]
Unacceptable eigenvectors produced for near-equal eigenvalues.

2nd Formula’s E = [0.6809x -0.7431x] diag(Λ) = [1.66667x]
[0.652x 0.768x] [1.66666x]
Acceptable eigenvectors considering their hypersensitivity to roundoff.

3rd Formula’s E = [0.680x -0.743x] diag(Λ) = [1.666669x]
[0.652x 0.768x] [1.66666x]
Eigenvectors somewhat worse than the second formula’s.

2nd Data: v1 := v2 := 13981013/223
 ; α := 13981012/223

 ; σ := 1 – 5/224

 A = [1.666666627 1.666666508] H = [1 0.999999702]
[1.666666508 1.666666627] [0.999999702 1]

1st Formula’s E = [1xxx.x ±xxx.x] diag(Λ) = [0.4000000x]
[-1xxx.x xxx.x] [2.x]
Unacceptable results produced because H is too nearly singular.

2nd Formula’s E = [1295.269x 0.500x] diag(Λ) = [0.x]
[-1295.269x 0.500x] [1.66x]
Unacceptable results produced because H is too nearly singular.

3rd Formula’s E = [1295.269x 0.5000000x] diag(Λ) = [0.4000000x]
[-1295.269x 0.5000000x] [1.666667x]
Exemplary results despite that H is nearly singular.

Thus, recomputation with redirected roundings has helped focus suspicion upon a short stretch of
a long program using the first or second formula. Suspicion is not conviction; no formula can be
condemned until after an error-analysis without which, for all we know, the formula might have
been designed to work correctly only when arithmetic is rounded to Nearest as usual. Some math.
libraries’ divide, sqrt, elementary transcendental functions and Binary ↔ Decimal conversions
are like that. Neither can a formula be exonerated until after an error-analysis without which, for
all we know, the formula might deliver very nearly the same wrong result regardless of roundoff’s
redirection, though such a formula is probably (not surely) wrong algebraically absent roundoff.

Think of recomputation with redirected roundings as a way to prioritize the search for aberrant
constituents of a numerical program. We put subprograms or formulas that seem excessively
sensitive to roundoff at the head of the list of candidates for more intensive scrutiny.

Results from the foregoing sets of data and others, many generated randomly, support these …

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 8/27

§4: Conclusions Drawn from an Error-Analysis of the 2-by-2 Example:

• A relatively small residual R := A·E – H·E·Λ testifies to the accuracy of Λ but maybe not E .

• All three residuals R, ET·H·E – I and ET·A·E – Λ are relatively small when E is accurate,
 but also if it has lost accuracy because eigenvalues nearly coincide or H is nearly singular.

• Eigenvectors E from the first formula above can be quite wrong if eigenvalues are too close.

• Accuracies of the first and second formulas above deteriorate when H is too nearly singular.

• The third formula’s accuracy tends to improve as H becomes more nearly singular.

Consonant with these conclusions is a policy that employs the second formula when |σ| < 3/4 ,
and the third formula when 3/4 ≤ |σ| < 1 , to get results E and Λ at least about as accurate as
the data’s and arithmetic’s precisions deserve in so far as all three of these results’ residuals are
relatively tiny. (Cf. §8.) This policy’s computational cost barely exceeds the cost of a policy that
would employ any one of those three formulas above for all data.

§5: Iterative Refinement of All n Eigenvectors
Now let F be any matrix that approximates the desired matrix E of n eigenvectors well enough

that FT·H·F and FT·A·F are nearly diagonal. Moreover we normalize the columns of F to make

FT·H·F ≈ Diag(FT·H·F) = I and FT·A·F ≈ V := Diag(FT·A·F) so that the n diagonal elements
of V exhibit our currently best estimates of the desired eigenvalues. To refine the accuracy of F
we shall generate a sequence of improved approximations F1, F2, F3, … converging rapidly to
E by using a process analogous to Jacobi’s iteration for the eigensystem of a symmetric matrix:

Starting from F0 := F , each Fk+1 := Fk·Ek wherein Ek differs from the n-by-n identity I in
the four elements of a 2-by-2 principal submatrix. This submatrix of Ek is the normalized
eigenvector matrix of the 2-by-2 example’s eigenproblem taken from the corresponding 2-by-2

principal submatrices of Ak := Fk
T·A·Fk in place of the example’s A , and of Hk := Fk

T·H·Fk in
place of its H . In the locations where Ek has nonzero off-diagonal elements, corresponding off-
diagonal elements of Ak+1 and Hk+1 are annihilated, while Diag(Hk+1) = I is preserved. But
doing so puts small nonzero elements back into some locations where Ak and Hk had zeros.

As iteration converges, Ak → Λ and Hk → I ; and Ek → I since diag(Ek) > o . Convergence is

obviously quadratic if all eigenvalues λ are distinct and F0
T·H·F0 and F0

T·A·F0 start near
enough to diagonal. The iteration always converges regardless of the initial normalized F ; this is
proved in §6. The speed of convergence is a very interesting question whose answer seems to
depend upon how some further questions are answered. …

In what order should off-diagonal elements be annihilated? The first, if not the best, order that
comes to mind is Lexicographic : (1, 2), (1, 3), (1, 4), …, (1, n), (2, 3), (2, 4), …, (2, n), (3, 4),
(3, 5), …, …, (n–2, n–1), (n–2, n), (n–1, n) constitutes one pass over all off-diagonal elements.

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 9/27

Repeated passes drive all off-diagonal elements towards zero provided the diagonal elements of
Ak are kept sorted. Whether keeping them sorted is necessary or advantageous for convergence is
an interesting question for research. Another is whether an order better than Lexicographic
exists. These questions bear upon the practicality of iterative refinement of sparse or banded
systems of huge dimensions. Currently only systems of modest dimensions get refined quickly by
the iteration’s experimental MATLAB implementation in §11. To refine huge systems quickly
will require the incorporation of perhaps tricky task-switching to perform anticipatory fetches
from DRAM to fill cache lines just in time for arithmetic consumption. To keep concurrent
processors busy will require programs like those in §§8.4.6-7 of Golub & Van Loan (1996).

Regardless of the order chosen for annihilation, matrices Ek that would annihilate elements of
Ak and Hk already tinier than some suitably declining threshold should be skipped to save time.
What is a “suitable” sequence of thresholds? They cannot apply solely to differences ||Ek – I||F
since some of these can be almost arbitrarily big for arbitrarily tiny off-diagonal elements when
eigenvalues are repeated. Suitable thresholds may depend upon the order chosen for off-diagonal
annihilations. If the order is Lexicographic, for instance, an off-diagonal element already rather
tinier than average in its row and column might not be worth annihilating yet; and a row whose
elements are all too much tinier than other rows’ averages might not yet be worth scanning for
elements worth annihilating. “Average” implies that a running sum of each row’s off-diagonal
magnitudes or their squares must be updated after each annihilation, which is feasible though it
adds noticeably to the cost of each annihilation. This cost, significantly greater than the cost of
simpler threshold schemes explored by D. Corneil (1965), J.H. Wilkinson (1965) and others
mentioned in ch. 9 of Parlett (1998) and ch. 8.4 of Golub & Van Loan (1996), was incurred to
cope with occasional concentrations of huge elements in a few rows and columns of some Ak
after their growth revealed H to be nearly singular. Choices of “suitable” thresholds and how
best to exploit them remain questions for research even though some rather different choices have
worked about equally well.

The iteration is incremental. Each application of an Ek alters two columns of Fk+1 := Fk·Ek and

two rows and two columns of Ak+1 := Ek
T·Ak·Ek and of Hk+1 := Ek

T·Hk·Ek , so one pass over all

off-diagonal elements costs time proportional to n3
 . Quadratic convergence entails so few passes

that adequate accuracy for all eigenvectors should cost time proportional to n3
 . Whether this cost

estimate is valid in all cases is an interesting question for research. In particular, …

Test matrices of the contrived form A = and H = have every eigenvalue repeated.

Consequently the iteration described above converges slowly at first, the more so if the matrices’
dimension is large or H is nearly singular, and yet the iteration terminates after few if any more
annihilations than if eigenvalues were well separated. Why?

Another question for research is …
• What should be done if A and H are complex Hermitian instead of real symmetric?

2X X

X X

2Y Y

Y Y

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 10/27

§6: Why Does the Iteration Converge?
For about forty years structural engineers have run iterations like the one described above, whose

2-by-2 congruences Ek annihilate two off-diagonal elements of Ak+1 := Ek
T·Ak·Ek and two of

Hk+1 := Ek
T·Hk·Ek , to find vibrational modes and frequencies of undamped elastic structures,

but with no proof that iteration always converges. Ch. 15 of Parlett’s (1998) book has accounts
and citations. I believe the first proof that such an iteration’s sequence Fk+1 := Fk·Ek converges
from every invertible F0 is outlined hereunder. The outline begins with a nearly obvious …

Lemma: If h is the biggest magnitude of the off-diagonal elements of a positive definite n-by-n

matrix H whose diagonal Diag(H) = I , then 0 < det(H) ≤ 1 – h2 . And if also 0 < h·(n–1) < 1

then det(H) > (1 – (n–1)·h)n
 .

Proof: Since det(H) = det(P·H·PT) for every permutation matrix P , choose it to put a biggest off-diagonal element

±h into the first row and second column. The Choleski factorization P·H·PT = UT·U exhibits P·H·PT as a product

of a real upper-triangular matrix U and its transpose UT . Each diagonal element 1 of P·H·PT is the sum of the
squares of all elements in a corresponding column of U , so none of its elements can exceed 1 in magnitude. This
holds particularly for U ’s diagonal elements, whose product is det(U) ; and the second diagonal element is

√(1 – h2) . Therefore det(H) = det(U)2 ≤ 1 – h2 as claimed.

Next suppose 0 < h·(n–1) < 1 , and set n-by-1 column u := [1, 1, …, 1]T
 . Then in magnitude | H – I | ≤ h·(u·uT – I)

elementwise. Apply Gershgorin’s Circle Theorem to infer that all n eigenvalues of H lie between 1 ± (n–1)·h .

The eigenvalues’ product is det(H) , so it cannot be less than (1 – (n–1)·h)n
 , and it cannot be that small since the

eigenvalues’ sum is Trace(H) = n . Thus the Lemma’s lower bound for det(H) is proved. It will be adequate for

our purposes though much smaller than a lower bound (1 – (n–1)2·h2)n/2 that takes rather longer to prove.

Each iteration Hk+1 := Ek
T·Hk·Ek annihilates some off-diagonal element — call it hk — of Hk

while preserving Diag(Hk+1) = Diag(Hk) = I . The congruence Ek has det(Ek) = 1/√(1 – hk
2)

according to all the formulas for E in §2, so det(Hk+1) = det(Hk)/(1 – hk
2) . Since the iteration

visits every super-diagonal location infinitely often to annihilate any bigger-than-average element
of Ak or Hk found there, the sequence {det(Hk)} is monotone non-decreasing and converges

up to a limit; call it 1 – Θ2 where 0 ≤ Θ < 1 . Later we shall find Θ = 0 , but now we assume
for the sake of an argument by contradiction that Θ > 0 . Let h be the greatest lower bound of
the biggest magnitudes of off-diagonal elements of all positive definite n-by-n matrices H with

Diag(H) = I and det(H) = 1 – Θ2
 ; the Lemma implies that Θ ≥ h > 0 if Θ > 0 .

The convergence of {det(Hk)} to a positive limit implies that det(Ek) → 1 , which implies that
the previous paragraph’s hk → 0 despite that every Hk had at least two elements no smaller than
h in magnitude. Therefore all but finitely many congruences Ek = E(φk, θk) are determined by
the second formula, not the third in §2, and their θk → 0 so that all but finitely many of the
congruences Ek come arbitrarily close to rotations E(φk, 0) through angles φk between ±π/4
calculated to annihilate bigger-than-average off-diagonal elements of Ak regardless of hk .

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 11/27

Were h > 0 , the rotations would somehow circulate the biggest elements of Hk , at least two no
smaller than h , to evade annihilation. Our iteration would ultimately approximate arbitrarily
closely a classical Jacobi iteration whose rotations diagonalize any given real symmetric matrix.
Its rotations are known to converge to I quadratically even if eigenvalues are repeated; see ch. 9
of Parlett (1998) or ch. 8.4 of Golub & Van Loan (1996) and the references they cite. But then
the matrices Hk would converge to a limit with at least two off-diagonal elements no smaller in
magnitude than h and eligible for annihilation because they are bigger than average. This would
contradict the convergence of det(Ek) to 1 . Instead h = Θ = 0 , so Hk → I and Ak → Λ
quadratically, as claimed. End of Proof’s Outline

This proof is a lucky consequence of a decision to force every Diag(Hk) = Diag(H0) = I by diagonal scaling instead
of leaving the diagonals unconstrained. Leaving them unconstrained would not change the eigenvalues: If the 2-by-

2 congruences Ek drove Hk → Y2 = ET·H·E and Ak → W = ET·A·E , both limits being diagonal, then the

eigenvalues in Λ = W·Y–2 would be the same as before except for their order, and the reordered eigenvectors in
E = E·Y would be the same as before except for column-scaling. But different criteria for choosing elements big
enough to be worth annihilating would alter the order of annihilations of off-diagonal elements of Ak and Hk . Can
“Big” be distinguished from “Small” in a way independent of diagonal scaling?

“Big” and “Small” should be gauged relative to the size of the data and its nearness to whatever pathologies may
undermine accuracy. Singular matrices H would cause the worst damage. These form a cone through O in the
space of n-by-n symmetric matrices. One plausible measure of the nearness of the given matrix H to that cone is

the angle between them subtended at O ; this angle is arcsin(1/κ(H)) wherein κ(H) := ||H||·||H–1|| is the Condition

Number of H , a frequently cited measure of the sensitivity of H–1 to perturbations of H . But κ(H) can differ
drastically from κ(D·H·D) if the elements of the diagonal matrix D vary too wildly, whereas changing data from

{A, H} to {D·A·D, D·H·D} changes eigenvalues in Λ not at all, and changes eigenvectors in E trivially to D–1·E .

Perhaps κ(H) is not so appropriate a measure of the sensitivity of H–1 to perturbations of H that matter as its
frequency of citation suggests. For further exploration of this issue see my web page’s <…/Math128/FailMode.pdf> .

To immunize the congruences Ek against an accident of diagonal scaling, one must be applied initially so that given
data {D·A·D, D·H·D} will get scaled back to distinguished data {A, H} independent of D . The diagonal scaling
that makes Diag(H0) = I was chosen because of a theorem of A. van der Sluis (1969) that says then κ(H0) cannot
exceed n·minD κ(D·H·D) . Besides, this roughly minimized condition number has never been enormously big for
any mechanical vibration problem that I have seen. These thoughts motivated forcing Diag(Hk) = I ; the consequent
proof of convergence was a serendipitous byproduct.

When should iteration stop? Hard to know for sure. Small residuals can mislead. Suppose v
approximates an eigenvector. Then the Rayleigh Quotient ω := v'·A·v/v'·H·v approximates an
eigenvalue better. How well? The residual r := A·v – ω·H·v figures in an eigenvalue estimate

ω ± √(r' ·H-1·r /v'·H·v) that is costly to compute and can be wide, though r is tiny, when H is
too nearly singular.

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 12/27

§7: Extra-Precise Accumulation of Residuals
The obvious residual A·F – H·F·V reveals too little. Better, after F has been scaled to make

Diag(FT·H·F) = I , is to compute two residuals ∆V := FT·A·F – V and ∆I := FT·H·F – I each
with diag(∆V) = diag(∆I) = o . If the cost is tolerable, these residuals should be accumulated
extra-precisely before cancellation; all additions/subtractions should be extra-precise, and then
multiplications will involve at most one extra-precise factor. Then apply iterative refinement to
annihilate the off-diagonal elements of V + ∆V and I + ∆I . Then the algebraic formulas for the
2-by-2 matrices Ek should be altered to compute each small ∆Ek := Ek – I relatively accurately,
and likewise alter Fk+1 := Fk·Ek = Fk + Fk·∆Ek to accumulate a lengthy sequence of successive
matrices Fk a little extra-precisely with the aid of Compensated Summation described in ch. 4
of N.J. Higham’s (2002) book. The same goes for

 ∆Ik+1 := Hk+1 – I = ∆Ik + (∆Ek
T·Ηk + (∆Ek

T·Ηk)
T

 + (∆Ek
T·Hk)·∆Ek)

and similarly for ∆Vk and Vk+1 – Vk ; the intricate details are a story for another day.

Especially when some roughly computed eigenvalues in V and their normalized eigenvectors
among the columns of F are rather bigger than the others, most of the benefit of extra-precise
accumulation of matrix products accrues during the very first matrix multiplications that produce

A0 := FT·(A·F) and H0 := FT·(H·F) for subsequent refinement with none of the intricacies of the
previous paragraph. Old versions of MATLAB running on old 68040-based Macintoshes and
Wintel PCs accumulated matrix products by default in registers with 64 sig. bits before storing
each accumulation’s leading 53 sig. bits into the matrix product in memory. That way was the
most convenient way to use the hardware. Then old versions of the MATLAB program gnsymeig
listed in §11, invoked to refine initial results obtained from [F, V] = eig(A, H) , routinely
improved the less accurate among these initial results by two or three sig. dec., often far more.

Extra-precise arithmetic is available in the hardware of most computers on which MATLAB runs,
but inaccessible at a bearable cost. Consequently gnsymeig , an experimental MATLAB program
in §11 that implements the Jacobi-like iteration discussed above, does not accumulate residuals
extra-precisely. It was motivated by MATLAB 5’s results from [F, V] = eig(A, H) , which can
be complex if H is too nearly semi-definite, and otherwise F’*A*F and F’*H*F can be far from
diagonal. The program [E, v] = gnsymeig(F’*A*F, F’*H*F) has cleaned up MATLAB 5’s
results by overwriting real F = F*E (or better F = F+F*(E-I) if E ≈ I) and then replacing
diag(V) by v . Similarly cleaned up results from MATLAB 6.5 have improved substantially,
mostly when dimensions were big and/or H was not far from singular, provided the invocation

 system_dependent(‘setprecision’, 64)
on PCs preceded gnsymeig(…) to enhance the accuracy of some critical matrix multiplications
like the initial H*E and A*E . But that invocation seems ineffective in MATLAB 7.4, whose
misbehavior I do not yet understand.

How does MATLAB 6.5 compute [F, V] = eig(A, H) ? According to its documentation, after U = chol(H)

produces an upper-triangular factor of H = UT·U , the equation UT·W·U = A is solved for the symmetric W with
less work than W = U’\A/U . Then [Q, V] = eig(W) computes the sorted diagonal V of eigenvalues and an

orthogonal Q = Q–T of eigenvectors, and then F = U\Q . I have failed to confirm this description by experiments.

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 13/27

§8: How Well at Best Can gnsymeig Work?
Ideally, two numbers, Speed and Accuracy, should answer this question about the experimental
program presented in §11. Actually, complications obstruct every approach to the ideal.

A hardware-independent assessment of speed can no longer be inferred from a count of floating-
point arithmetic operations now that most of them, all but perhaps divisions and square roots,
cost so much less time than out-of-cache memory accesses. So, instead of arithmetic operations,
gnsymeig counts four kinds of operations:

• ksteps := how many Jacobi-like congruences Ek were executed each to annihilate two
pairs of off-diagonal elements of Ak and Hk of which at least one pair was bigger
than average. Each such congruence costs time proportional to n , so ksteps has

been expected not to exceed a modest multiple (like 4) of n2 .
• ksweeps := how many sweeps, each visiting all n·(n–1)/2 superdiagonal locations to

see whether they hold any bigger-than-average off-diagonal elements, have been

executed. Each such sweep costs time proportional to n2 plus time spent on the
sweep’s annihilations counted separately by ksteps , so ksweeps has been
expected not to exceed a modest fraction (like 1/2) of n .

• ksorts := the number of times when a sweep had to be preceded by a rearrangement
of the rows and columns of Ak and Hk to impose or restore the increasing order
of the diagonal elements of Ak . This was expected to occur infrequently, but it
has occurred several times when many eigenvalues were nearly repeated, and each

occasion cost time proportional to n2 , so perhaps a cheaper but more complicated
way (suggested by B.N. Parlett) to preserve order should be reconsidered.

• kbigH := the number of congruences Ek determined by §2’s third formula whenever
hk ≥ 3/4 . This cannot happen often unless initially H0 is practically singular.

All four counts were expected to be relatively small for nearly diagonal initial data A and H of
a kind gnsymeig was intended to handle well. But “the best laid schemes of mice and men … .”

The iteration’s stopping criterion influences counts ksteps and ksweeps , inflating them greatly
if accuracy is sought beyond what the computer’s arithmetic can achieve economically. Thus do
we become entangled in complicated questions that beset assessments of accuracy:

 • How should we measure (absolute? relative? …?) accuracy?
 • How much accuracy do the data deserve?
 • How much accuracy can be achieved economically with the computing resources available?
 • How close will a chosen program come to achieving whatever accuracy is deserved and/or

achievable economically?

At first sight the accuracy deserved by the data is determinable from the computed results thus:

Suppose the given data {A, H} is augmented by given arrays {∂A, ∂H} of tiny positive numbers
representing the uncertainty tolerable in the given data in so far as A is deemed indistinguishable
from A + ∂A for practical purposes whenever |∂A| ≤ ∂A elementwise, and likewise for H + ∂H .

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 14/27

Normally {∂A, ∂H} are somewhat bigger than roundoff in {A, H} but far tinier than the uncertainties that data
inherit from the physical and geometrical uncertainties in parameters (like strength and length) that determine the
elements of {A, H} . These are usually rather more numerous than the parameters whose physical and geometrical
variations induce variations in {A, H} that are correlated in ways mere numerical analysts cannot know. Therefore
perturbations induced by the finite precisions of memory and arithmetic must be kept far tinier than these variations
lest computational artifacts blight computed results beyond the bounds of physics or geometry. For some simpler
geometrical examples of that kind of blight see §§11 & 17 of my web page’s <…/MathH110/Cross.pdf> .

Perturbations ∂A and ∂H perturb eigenvalues in ways predictable with the aid of eigenvectors:

If A·e = λ·H·e and eT·H·e = 1 then changing A to A + ∂A and H to H + ∂H changes λ to

λ + ∂λ with ∂λ ≈ eT·(∂A – λ·∂H)·e if terms (∂…)2 are ignored. This simple approximation to
∂λ obtained by differentiation holds for simple eigenvalues, and for repeated eigenvalues λ too

provided e is forced to range over all normalized (eT·H·e = 1) eigenvectors belonging to λ .

Roughly, then, |∂λ| ≤ ∂λ := |e|T·(∂A + |λ|·∂H)·|e| elementwise, which reveals the uncertainty ∂λ
that an eigenvalue λ inherits from the uncertainties {∂A, ∂H} in the given data {A, H} .

This inheritance ∂λ from data’s uncertainty also indicates how much accuracy the data deserve in
an eigenvalue estimate v : If its eigenvector estimate f is accurate enough and normalized to

make fT·H·f ≈ 1 , we should not complain about an error |λ – v| not much bigger than

 ∂λ = |e|T·(∂A + |λ|·∂H)·|e| ≈ |f|T·(∂A + |v|·∂H)·|f| elementwise.
Of course, this is not worth computing unless either …
 • λ is known and the accuracy of the program that computed v and f is being tested, or else
 • λ is unknown but the estimates v and f are thought to be about as accurate as data deserve.

Even with no estimated eigenvalues nor eigenvectors the formula for ∂λ exposes something well
worth knowing:

 At least one eigenvalue is threatened by extreme uncertainty whenever H is too nearly singular.

Why? The normalization eT·H·e = 1 implies ||e||2 ≤ ||H–1|| , which overestimate supplies an
upper bound for uncertainty, namely

 ∂λ = |e|T·(∂A + |λ|·∂H)·|e| ≤ ||e||2·(||∂A|| + |λ|·||∂H||) ≤ ||H–1||·(||∂A|| + |λ|·||∂H||) ,
that can exceed ||∂A|| + |λ|·||∂H|| enormously whenever H is too nearly singular. This upper

bound is not excessively pessimistic; the eigenvectors’ normalization ET·H·E = I compels at

least one eigenvector e to have a huge ||e||2 ≥ ||E||2/n = ||H–1||/n . Therefore the threat is real.

Rarely is enough information available to compute ∂λ and apply it, yet a notion like inherited
uncertainty remains pertinent to an assessment of a program’s accuracy. This notion concerns the

uncertainty added to computed residuals ∆I := FT·H·F – I and ∆V := FT·A·F – V by roundoff’s

accumulation during their computation from the program’s output V ≈ Diag(FT·A·F) and F . If
the residuals could be computed accurately enough they would provide rough estimates for the
errors in computed eigenvalues V , namely Λ – V ≈ Diag(∆V – V·∆I) , as follows:

Let ∂H := F–T·∆I·F–1 and ∂A := F–T·∆V·F–1 though neither is likely to be computed. Since

FT·(H – ∂H)·F = I and FT·(A – ∂A)·F = V , the eigenvalues v in V and eigenvectors f in F
belong to perturbed matrices H – ∂H and A – ∂A , so the same derivation as produced estimates

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 15/27

for ∂λ ≈ eT·(∂A – λ·∂H)·e on the previous page now produces a column of first-order estimates:

 diag(Λ – V) ≈ diag(FT·∂A·F – V·FT·∂H·F) = ∆v := diag(∆V – V·∆I) ignoring (∆…)2 terms.

Alas, eigenvalues repeated or clustered too closely invalidate the foregoing estimate’s derivation.
Then complicated estimates like those in ch. VI §3 of the book by Stewart & Sun (1990) are
afflicted by “difficult and unresolved problems”. Their complications will be left unexplored
here because, among other things, without extra-precise arithmetic the residuals ∆I and ∆V can
rarely be computed accurately enough to provide reliable estimates ∆v of diag(Λ – V) .

Though roundoff contaminates the residuals, some of them badly, they remain worth computing
to assess the adequacy of a program’s computed eigenvectors F . In so far as these are usually
computed only to provide a new coordinate system that uncouples the natural modes of an elastic
structure’s vibrations, usually almost all that matters is how nearly F diagonalizes A and H .

Tiny residuals ∆I := FT·H·F – I and ∆V := FT·A·F – V , where V ≈ Diag(FT·A·F) , are about as
tiny as we can reasonably expect from the program if the computed residuals are not much bigger
than the uncertainties they acquire from roundoff when computed with the same arithmetic as the
program’s. (We also expect no column of F to be unnecessarily big; more about this shortly.)

How much uncertainty must these residuals inherit from the act of computing them? Let’s see …

The product P := B·C of two n-by-n matrices is obscured by roundoff from floating-point scalar
multiplications and additions. The multiplications’ rounding errors are easiest to over-estimate:

Were only additions performed exactly (not rounded off), the computed P would satisfy simply
|P – B·C| ≤ |B|·|C|·ε/2 elementwise, where ε is a roundoff threshold like MATLAB ’s eps .

Rounded additions contribute additional uncertainty dependent upon the order in which additions
are performed. For large n the simplest bound that is not outrageously pessimistic (but not
necessarily the smallest uncertainty) is obtained from a divide-and-conquer order of additions
that form a binary tree; see (4.6) on p. 83 of N. Higham’s (2002) book. The resulting estimate is

 |P – B·C| ≤ |B|·|C|·(1 +)·ε/2 elementwise

if terms of order ε2 are ignored. Judicious applications of this inequality define rough estimates
of the intrinsic uncertainty each residual will be deemed to inherit from the act of computing it:

Here diagonal matrix V ≈ Diag(FT·A·F) is stored typically as a column v := diag(V) intended to
approximate the desired eigenvalues’ diag(Λ) . Its first-order error-estimate ∆v inherits from the
residuals its uncertainty ∆v , both computed elementwise from the formulas tabulated above.
Given A, H, F and v , a MATLAB program rsdls.m listed in §11 automatically determines an
appropriate ε and computes ∆I, ∆V, ∆I, ∆V, ∆v and ∆v from formulas like those tabulated.

Computed Residual Its Approximated Uncertainty

∆I := FT·(H·F) – I ∆I := |F|T·(|H|·|F| + |H·F|)·(1 +)·ε/2

∆V := FT·(A·F) – V ∆V := |F|T·(|A|·|F| + |A·F|)·(1 +)·ε/2

R := A·F – H·(F·V) R := (|A|·|F| + |H|·|F·V|)·(2 +)·ε/2

∆v := diag(∆V) – v·diag(∆I) ∆v := diag(∆V) + |v|·diag(∆I)

log2 n()

log2 n()

log2 n()

log2 n()

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 16/27

Those uncertainties ∆… tend to over-estimate the contributions of roundoff very pessimistically,
as if the rounding errors had conspired to achieve their worst imaginable effect. Rounding errors
usually seem random and uncorrelated (though actually they are not); and if rounding conforms
to the default specifications of IEEE Standards 754 & 854 then rounding errors seem unbiased
too, which inclines the Law of Averages more towards cancellation than reinforcement of errors.
Consequently those approximated uncertainties ∆… tend usually to be too big by factors roughly
as big as √12·n for a product of two n-by-n matrices, and √24·n for a product of three, unless
some small minority of the intermediate terms in those products are much bigger than the rest.

Comparisons of computed residuals each with its intrinsic uncertainty, despite their pessimism,
seem at least plausibly to indicate how adequately a program has performed its intended task:—
computation of eigenvector estimates F that make all three residuals negligible. Therefore …

Each computed residual will be divided by its overestimated uncertainty elementwise, and
a large quotient shall be deemed a sure signal of inadequate accuracy in computed results.

“Inadequate Accuracy” will be signaled too frequently if our definition of intrinsic uncertainty is
too small, and too infrequently if too big. Alas, this signal can get muffled, misleading us to
accept results far worse than the data deserve, by a rare phenomenon that generates excessively
big residuals and their alleged uncertainties:

The computed F can have some unnecessarily big column(s).

Any program intended to solve the general eigenproblem can be undermined by this phenomenon.
It can happen only when A and H , though scaled to make Diag(H) ≈ I , share a near nullspace.
Then accurate eigenvectors may appear to be inaccessible because, if a vector z ≠ o in that near
nullspace satisfies both A·z ≈ o and H·z ≈ o , almost arbitrary multiples of z can be added to all

different approximate eigenvectors in F without much altering FT·H·F nor FT·A·F . If this
phenomenon is detected, some of the contamination by z of a computed eigenvector f can be

removed from f by replacing it by g := f – z·(zT·H·f)/(zT·H·z) provided doing so does not shrink

gT·H·g = fT·H·f – (zT·H·f)2/(zT·H·z) too much below fT·H·f . Then the new matrix G of near-
eigenvectors g must be iteratively refined by a program like gnsymeig unlikely to resurrect the
contamination.

How can this misleading phenomenon be detected? First it must be suspected. First suspicion is
aroused by exceptionally big computed eigenvectors f associated with intolerably big computed
uncertainties among the elements of ∆v compared with the corresponding eigenvalues in v .
Among these big eigenvectors f the ones belonging to comparatively small eigenvalues in v
seem most likely to serve as the previous paragraph’s z . Weasel-words like “exceptionally big”,
“comparatively small” and “most likely” fail to define the phenomenon sharply. It hardly ever
happens sharply, but it does happen.

For example, suppose the first three true eigenvalues in Λ are repeated but otherwise separated
well from the rest. Then the first three columns of E must be partially indeterminate in so far as

they can be postmultiplied by any 3-by-3 orthogonal matrix Q = Q–T and still serve no less well

than before as eigenvectors satisfying Diagonal Λ = ET·A·E , ET·H·E = I , and A·E = H·E·Λ .
In a world without perturbations, Q would not matter. It can matter a lot in our perturbed world.

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 17/27

No matter what program computes them, if computed well the first three computed eigenvalues in
V will be clustered closely and separated well from the others. The first three columns [f1, f2, f3]
of the computed F , though accidents of roundoff, will approximate three eigenvectors well.
How nearly linearly dependent are they? Maybe too nearly if H is too nearly singular, in which
case at least one of these columns will be bigger than necessary. The remedy is to replace these
columns by [f1, f2, f3]·Q with an aptly chosen 3-by-3 orthogonal Q . Apt choices will yield
three columns [f1, f2, f3]·Q of which about as few as necessary are extraordinarily big. The
Singular-Value Decomposition [f1, f2, f3] = P·Φ·QT, wherein PT·P = I and Φ are 3-by-3
diagonal matrices, offers an apt choice for Q . This replacement of unnecessarily big columns of
F by smaller ones should precede both iterative refinement and the subsequent computations of
residuals and alleged intrinsic uncertainties. Note that iterative refinement can order the cluster’s
eigenvalues and their eigenvectors differently than before, which can complicate comparisons of
residuals and error estimates after refinement against before.

The remedy just proposed falls short of a prescription if close clusters of eigenvalues separated
well enough from the rest are unobvious. Fortunately the remedy is needed extremely rarely. If
the need is obvious the proposed remedy can reduce by orders of magnitude the norms of some
computed eigenvectors and the the errors and alleged uncertainties in their computed eigenvalues.

The following 6-by-6 example was run under MATLAB 6.5 on IBM T21 and Dell OptiPlex
GX400 Wintel computers to illustrate that …

• The need for the foregoing remedy is an unlikely accident of roundoff that cannot occur
 unless H is very nearly singular and shares a near nullspace with A .

• If suspected, the need can be confirmed most quickly by applying the remedy.
• If needed, the remedy attenuates some errors enormously, and all the more so

 when matrix multiplications are accumulated extra-precisely.

The example’s A := GT·Diag(a)·G and H := GT·Diag(h)·G are generated exactly as matrices of big integers from
this given data:

Each element of A and H is an accumulation of 14-digit integers; no element exceeds 1043661783423569 < 250
in magnitude. Therefore no rounding errors occurred during their computation in MATLAB ’s arithmetic carrying 53
sig. bits, so all six true eigenvalues can be computed as ê := sort(a/h elementwise) accurate to fully 53 sig. bits:

The three repeated eigenvalues chosen to be zeros were so chosen to make their errors easier to appreciate. At least
one of their errors must be big because H so nearly annihilates at least one of their three eigenvectors. H has a huge

condition number ||H||·||H–1|| = 8.49e14 ; after H is diagonally scaled to make its diagonal I its condition number
drops slightly to 6.74e14 . This compels at least one eigenvector to be relatively huge; just one is. All eigenvectors

Matrix G Column a Column h

2 3 9 5 -16 17 1436714424605 1041044474703

-9 -3 18 16 14 -12 0 1502331013996

-10 -11 14 -17 0 -13 1527439170635 293126770298

-18 0 -1 -8 14 9 0 1020518759025

-4 8 15 7 10 -7 0 1

10 14 -18 3 6 -1 -1694061335945 1278112860186

 êT : -1.3254395513229311 0 0 0 1.3800701694467767 5.2108484294428896

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 18/27

are hypersensitive to roundoff-like perturbations because A and H so nearly share a nullspace. Eigenvectors were

computed in extra-wide arithmetic from the formula Ë := G–1·Diag(1/√h elementwise) , and then the columns of Ë
were reordered to match the sorted eigenvalues, rounded off, and stored. These eigenvector columns are accurate to
the last (53rd) sig. bit or two. Their squared norms turned out to be respectively …

… which indicate that the fourth eigenvalue ê(4) may be hypersensitive to roundoff-like perturbations. To check
this out, MATLAB program rsdls.m employing the formulas for “Computed Residual” and “Its Approximated
Uncertainty” tabulated above (this program is listed in §11) computed residuals ∆I and ∆Ê and first-order error-
estimate ∆ê along with respective uncertainties ∆I , ∆Ê and ∆ê inherited from matrix multiplications’ roundoff,
but using Ë and Ê := Diag(ê) in place of the tabulated formulas’ F and V = Diag(v) . By default MATLAB 6.5’s
arithmetic is rounded to 53 sig. bits; this arithmetic produced |∆I| ≤ 0.0791·∆I and |∆Ê| < 0.135·∆Ê elementwise.
Residuals that much tinier than their uncertainties were likely to be drowned in their own rounding errors. The same
went for the utterly wrong first-order correction ∆ê and its uncertainty ∆ê inherited from roundoff:

MATLAB 6.5’s system_dependent(‘setprecision’, 64) accumulated every subsequent matrix multiplication to
64 sig. bits before rounding it back to 53 to get residuals and a first-order correction more nearly deserved by data
Ë and ê . Their elementwise max |∆I|/∆I ≈ 29.05 and max |∆Ê|/∆Ê ≈ 11.0 . Consequently the first several binary
digits of some residuals became worth having; and the same went for some much-improved first-order corrections:

Now we shall not be surprised by huge errors and/or uncertainties afflicting at least one of the three computed values
of tiny eigenvalues ê(2:4) because now we know how big are an eigenvector and its contribution to uncertainty.

Rarely would the foregoing facts about the eigensystem and H ’s condition numbers be known in advance. They
have been exposed here to help readers decide what to scrutinize among the following voluminous computations.

MATLAB 6.5’s default mode, system_dependent(‘setprecision’, 53) that rounds all arithmetic to 53 sig.
bits, was in force for all results below until declared otherwise. MATLAB commands [F, V] = eig(A, H) and
v = diag(V) computed approximate eigenvectors F and a column of eigenvalues v whose errors are displayed
here above the squared norms of respective eigenvectors:

Two of the computed eigenvalues appear to be about eighteen sig. bits less accurate than the others; they correspond
to two computed eigenvectors enormously bigger than the others, which are all a little too big. How can anyone
assess whether both of the two enormous vectors deserve to be so much bigger than the others? It’s not obvious.

Residuals ∆I and ∆V seem appropriately small compared with their uncertainties ∆I and ∆V computed from the
aforementioned tabulated formulas: |∆I| ≤ 0.086·∆I and |∆V| ≤ 0.31·∆V elementwise. These inequalities arouse no
suspicions that parts of eig ’s results F and V are far worse than they have to be. On the contrary, the residuals are
sufficiently smaller than their uncertainties that we might reasonably expect many of eig ’s eigenvalues’ errors ê – v
and their first-order error estimates ∆v (almost all blighted by roundoff during their computation) to be at least an
order of magnitude tinier than their crude uncertainties ∆v . Most are much tinier:

sum(Ë.*Ë) : 3.1418e-13 1.4043e-13 6.6622e-15 0.2246 1.8611e-13 6.4182e-13

∆êT : 3.9968e-15 -1.4178e-15 -5.2676e-17 -3.4787e-3 1.1102e-15 4.0856e-14

∆êT : 4.6432e-13 6.5457e-14 1.0436e-15 9.6749e-2 2.7184e-13 2.702e-12

∆êT : 6.6613e-16 -3.1656e-19 6.4748e-21 3.7334e-7 0 -1.7764e-15

∆êT : 4.2633e-15 3.1962e-17 5.0958e-19 4.7629e-5 3.0039e-15 1.2736e-14

(ê – v)T : 3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

sum(F.*F) : 3.1629e-13 0.11447 1.9608e-14 0.11135 1.8699e-13 6.4444e-13

(ê – v)T: 3.1086e-15 6.9111e-10 2.165e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

∆vT : 1.0214e-14 1.5868e-3 2.3777e-15 -1.716e-3 -1.3545e-14 8.1712e-14

∆vT : 4.6744e-13 4.9713e-2 7.7406e-15 4.8362e-2 2.7316e-13 2.7134e-12

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 19/27

Rarely would we know that. Instead we might reasonably infer that two eigenvalues are extremely hypersensitive to
roundoff-like perturbations. Can iterative refinement improve their accuracy? New eigenvalue estimates w obtained
from [Z, w] = gnsymeig(F’*A*F, F’*H*F) have errors ê – w compared here with the old errors ê – v :

Most of the “refined” estimates w are worse than the old because 53 sig. bit roundoff has contaminated FT·H·F

and FT·A·F badly, and more so since one column of F is unnecessarily big. The remedy described above is needed:

Three computed eigenvalues v(2:4) constitute a tight cluster separated well from the others. MATLAB ’s compact
singular value decomposition [P, Phi, Q] = svd(F(:,2:4), 0) supplied a 3-by-3 orthogonal matrix Q which
was used to replace the cluster’s three computed eigenvectors F(:, 2:4) by F(:, 2:4)·Q to obtain the remedied matrix
Fr = [F(:,1), F(:, 2:4)*Q, F(:, 5:6)] of eigenvectors. Comparing the old squared norms with the new …

… suggests that only one of the three eigenvectors has to be big. Cancellation has left few of the other two’s leading.
digits uncorrupted by roundoff. Consequently some residuals in ∆I and ∆V recomputed using Fr in place of F are
now huge compared with their recomputed uncertainties ∆I and ∆V ; the biggest of the ratios |∆I|/∆I elementwise

has grown to 8.02e5 , and of |∆V|/∆V to 9.93e5 . Thus has remediation reduced two eigenvectors’ magnitudes and
also their amplification of roundoff in the residuals, some of which now rise high enough above their noise to justify
recomputation of the first-order correction ∆v , especially ∆v(3:4) :

Now ∆v(3:4) are so much smaller than ∆v(3:4) that v(3:4) + ∆v(3:4) are almost surely more accurate than v(3:4) .
To improve the accuracies also of the remedied eigenvectors in Fr we must invoke iterative refinement:

[Z, w] = gnsymeig(Fr’*A*Fr, Fr’*H*Fr) has errors ê – w compared here with the old errors ê – v :

Again “refinement” has slightly worsened most of the eigenvalues; but besides reordering the three tiny eigenvalues
it has improved two of them by orders of magnitude. The third tiny eigenvalue seems not so tiny any more; it has

been inflated by rounding errors in FrT·H·Fr and FrT·A·Fr amplified by Fr ’s one big column. Refined remedied
eigenvector matrix Frz := Fr·Z was substituted for F , and W := Diag(w) for V , in the tabulated formulas above to
recompute Frz ’s squared norms, residuals ∆I and ∆W , first-order eigenvalue error-estimates ∆w , and their
uncertainties ∆I , ∆W and ∆w resp. to get |∆I| ≤ 0.21·∆I , |∆W| ≤ 0.62·∆W and …

Again, the residuals are sufficiently smaller than their uncertainties to be mostly overwhelmed by roundoff, so their
derived estimate ∆w of the eigenvalues’ error ê – w is far tinier than its crude uncertainty ∆w and hence almost all
wrong, submerged in roundoff. ê – w is wrong mainly because gnsymeig(Fr’*A*Fr, Fr’*H*Fr) got the wrong

matrices to refine; roundoff accumulating during the matrix multiplications FrT·A·Fr and FrT·H·Fr vitiated the
processes of remediation and refinement. 53 sig. bits are too few to compute all residuals reliably enough.

new (ê – w)T: -7.1054e-15 1.718e-3 -7.9518e-17 -1.5893e-3 1.3323e-14 -6.1284e-14

old (ê – v)T: 3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

old sum(F.*F) : 3.1629e-13 0.11447 1.9608e-14 0.11135 1.8699e-13 6.4444e-13

new sum(Fr.*Fr) : 3.1629e-13 0.22582 1.8248e-15 1.2781e-15 1.8699e-13 6.4444e-13

(ê – v)T : 3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

∆vT : 1.0214e-14 1.4499e-3 2.1339e-15 -6.7233e-10 -1.3545e-14 8.1712e-14

∆vT : 4.6744e-13 9.6958e-2 7.8532e-16 6.7731e-16 2.7316e-13 2.7134e-12

old (ê – v)T: 3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

new (ê – w)T: -6.6613e-15 6.4616e-17 2.0476e-17 -1.4499e-3 1.2879e-14 -6.1284e-14

sum(Frz.*Frz) : 3.1073e-13 1.5264e-15 4.2094e-15 0.22325 1.8333e-13 6.4133e-13

 actual (ê – w)T : -6.6613e-15 6.4616e-17 2.0476e-17 -1.4499e-3 1.2879e-14 -6.1284e-14

computed ∆wT : -2.3315e-14 6.0208e-18 -6.7974e-18 3.1025e-3 1.5099e-14 -1.8741e-13

its uncertainty ∆wT : 4.5921e-13 8.8346e-16 1.4754e-15 9.7605e-2 2.6769e-13 2.6998e-12

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 20/27

· ·
The invocation system_dependent(‘setprecision’, 64) makes MATLAB 6.5 accumulate each matrix product
to 64 sig. bits, before storing it rounded back to 53, provided the product and factors fit in the processor’s cache.
When that invocation preceded the application of rsdls to compute residuals and first-order corrections etc. for the
eigenvectors F and eigenvalues v that eig computed before that invocation, rsdls ’s results had elementwise
max |∆I|/∆I ≈ 65.7 , max |∆V|/∆V ≈ 573. , and first-order correction ∆v and its uncertainty ∆v tabulated here:

Whichever element of uncertainty ∆v is smaller than the magnitude of the corresponding element of correction ∆v ,
adding this to the corresponding element of v reduces its error well below its uncertainty. Thus has extra-precise
accumulation of matrix products during residual computation improved three of the eigenvalues; but two others seem
excessively uncertain again. To reduce their uncertainties as much as possible, three of the computed eigenvectors in
F had already been replaced to get Fr = [F(:,1), F(:, 2:4)*Q, F(:, 5:6)] . This remedied Fr already in
hand was iteratively refined via [S, u] = gnsymeig(Fr’*A*Fr, Fr’*H*Fr) with 64 sig. bit accumulation of each
matrix product. Then Frs = Fr·S replaced F and U := Diag(u) replaced V for recomputation of Frs ‘s squared
norms, residuals ∆I and ∆U , first-order eigenvalue error-estimate ∆u , and their respective uncertainties ∆I , ∆U
and ∆u . Rsdls ’s results had elementwise max |∆I|/∆I ≈ 59.6 , max |∆V|/∆V ≈ 6.99 and … <<<<<<<<<

The first-order error-estimate ∆u provides a rough indication smaller than ∆u of the errors in the eigenvalues u , all
of which are now at least about as accurate as can reasonably be demanded after taking their different sensitivities to
perturbations into account. That is how remediation and refinement have repaid the efforts invested in them.

This example’s phenomemon,— computed eigenvectors unnecessarily big causing unnecessary inaccuracy to part of
a computed eigensystem,— is a rare accident of roundoff. It would not have happened if some of eig ’s rounding
errors had fallen differently. Some do fall differently when matrix multiplications are accumulated with 11 extra sig.
bits; then [Fx, Vx] = eig(A, H) and vx = diag(Vx) compute approximate eigenvectors Fx and a column of
eigenvalues vx whose errors are displayed here above the squared norms of respective eigenvectors:

Compare these with eig ’s eigenvectors F and eigenvalues v computed earlier entirely in 53 sig. bit arithmetic:

Neither vx nor v appears entirely better than the other. Differences between F and Fx showed up when rsdls
computed extra-precisely accumulated residuals ∆I and ∆Vx and their uncertainties ∆I and ∆Vx from Fx and
Vx := Diag(vx) instead of F and V . Now their elementwise max |∆I|/∆I ≈ 75.7 and max |∆Vx|/∆Vx ≈ 63.7 were
smaller than before but ample enough to make first-order correction ∆vx and its crude uncertainty ∆vx worth
computing to bring the error in vx + ∆vx well below ∆vx :

(ê – v)T: 3.1086e-15 6.9111e-10 2.1650e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

∆vT : 4.2188e-15 -6.1121e-8 2.1651e-15 3.4782e-7 2.2204e-16 2.0428e-14

∆vT : 4.277e-15 2.4207e-5 3.7796e-18 2.3551e-5 3.011e-15 1.2764e-14

sum(Frs..*Frs) : 3.1399e-13 1.5681e-13 1.5105e-15 0.2246 1.8618e-13 6.4182e-13

 error (ê – u)T : -1.1102e-15 1.079e-19 -6.1794e-21 -1.4808e-7 -4.4409e-16 0

estimate ∆uT : -1.9984e-15 1.8283e-18 -8.0573e-21 -1.4946e-6 -6.6613e-16 -1.7764e-15

its uncertainty ∆uT : 4.262e-15 3.1928e-17 4.7711e-19 4.7629e-5 3.0045e-15 1.2736e-14

(ê – vx)T: 4.4409e-15 1.0794e-15 -3.3461e-17 -6.9733e-4 -1.5543e-15 -4.1744e-14

sum(Fx..*Fx) : 3.1558e-13 2.8959e-13 2.0168e-15 0.22513 1.8696e-13 6.4513e-13

(ê – v)T: 3.1086e-15 6.9111e-10 2.165e-15 -6.7233e-10 -2.2204e-16 2.0428e-14

sum(F.*F) : 3.1629e-13 0.11447 1.9608e-14 0.11135 1.8699e-13 6.4444e-13

 error (ê – vx)T : 4.4409e-15 1.0794e-15 -3.3461e-17 -6.9733e-4 -1.5543e-15 -4.1744e-14

estimate ∆vxT : 4.2188e-15 1.0806e-15 -3.3469e-17 -6.9667e-4 -2.4425e-15 -3.9968e-14

its uncertainty ∆vxT : 4.2724e-15 6.636e-17 5.2549e-19 4.7686e-5 3.0108e-15 1.2772e-14

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 21/27

No remediation but iterative refinement was performed to improve the accuracies of the eigenvector matrix Fx ; the
results from [Zx, wx] = gnsymeig(Fx’*A*Fx, Fx’*H*Fx) , and rsdls applied to Fx·Zx and Wx := Diag(wx)
instead of F and V , benefited from matrix multiplication’s 11 extra sig. bits. Now elementwise max |∆I|/∆I ≈ 53.7
and max |∆Vx|/∆Wx ≈ 21.2 and the other results …

… have roughly the same accuracies as the results u , ∆u and ∆u obtained after remediation.

Thus the foregoing example supports the conclusion that, after the unlikely need for a remedy has
been detected, our remedy for unnecessarily big computed eigenvectors undoes their ill effects.
Another conclusion is that 11 extra sig. bits carried during matrix multiplication sufficiently
suppress the noises that beset numerical signals to ease greatly the task of delivering at least about
as much accuracy as the data deserve, but we all already knew that; see my web page’s posting at
<.../MxMulEps.pdf> .

What we do not know is how often, in practice, results from programs like eig(A, H) need
remediation nor, without it, how often and how badly those results mislead their consumers.
Nobody is keeping score; to do so would require at least the computation of residuals and their
uncertainties by a program like rsdls , and possibly refinement by a program like gnsymeig .
We could regard these supererogatory computations’ costs as premiums paid for insurance against
dire consequences of being misled by misleading results, but only if the risks were quantified.
Usually they aren’t. Instead, in the current climate, programs like rsdls and gnsymeig will be
employed occasionally to evince the exercise of Due Diligence, or to diagnose suspicious results.
Suspicions might be aroused by a computed eigenvector matrix more ill-conditioned (closer to
singular) than expected, or by a symmetry (repeated eigenvalues) unexpectedly broken, or by
an unexpected bump in computed results’ variation as a parameter changes, or by a buzz (high-
frequency vibration) of a structural component whose secure attachment had been overlooked, if
anyone is looking now.

§9: How Well Does gnsymeig Work?
How do gnsymeig ’s residuals compare with their inherited uncertainties? This question is being
explored for a wide range of input data {A, H} .

TO BE CONTINUED.

 error (ê – wx)T : 2.2204e-16 1.4385e-19 -2.8943e-19 -6.6453e-7 8.8818e-16 -1.7764e-15

estimate ∆wxT : 4.4409e-16 9.8384e-20 -3.139e-19 1.742e-6 1.3323e-15 -2.6645e-15

its uncertainty ∆wxT : 4.2635e-15 1.0788e-18 3.2414e-19 4.7629e-5 3.0027e-15 1.2737e-14

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 22/27

§10: References:

D. Corneil (1965) Eigenvalues and Orthogonal Eigenvectors of Real Symmetric Matrices, MSc.
Thesis, Computer Science Dept., University of Toronto, Canada.

G.H. Golub & C.F. Van Loan (1996) Matrix Computations 3d. ed.: Johns Hopkins Univ. Press.

N.J. Higham (2002) Accuracy & Stability of Numerical Algorithms 2nd ed.: Soc. for Indust. &
Appl. Math., Philadelphia (esp. ch. 4 for Pairwise Summation and Compensated Summation)

W. Kahan (2004) MATLAB’s Loss is Nobody’s Gain
<www.cs.berkeley.edu/~wkahan/MxMulEps.pdf> esp. pp. 16 - 27.

———— (2006) How Futile are Mindless Assessments of Roundoff in Floating-Point
Computation ? <www.cs.berkeley.edu/~wkahan/Mindless.pdf> esp. §§14 - 15.

———— (2008) Computing Cross-Products and Rotations in 2- and 3-Dimensional Euclidean
Spaces <www.cs.berkeley.edu/~wkahan/MathH110/Cross.pdf >

———— (2008) Do MATLAB ’s lu(…) , inv(…) , / and \ have Failure Modes ?
<www.cs.berkeley.edu/~wkahan/Math128/FailMode.pdf>

B.N. Parlett (1998) The Symmetric Eigenvalue Problem (Classics in Applied Mathematics #20):
Soc. for Indust. & Appl. Math., Philadelphia (esp. ch. 15 for the general symmetric eigenproblem)

I. Slapnicar & V. Hari (1991) “On the Quadratic Convergence of the Falk-Langemeyer Method”
pp. 84-114 of SIAM Jl. of Matrix Anal. & Appl. 12. A method very similar to ours treated by them
is traced back to publications in 1960 and 1965; none proved global convergence.

A. van der Sluis (1969) “Condition Numbers and Equilibration of Matrices” pp. 14 - 23 of
Numerische Mathematik 14. Proved also in §7.3 of Higham’s (2002) book.

G.W. Stewart & J-g. Sun (1990) Matrix Perturbation Theory: Academic Press, San Diego. Many
of its errors are corrected at <ftp://ftp.cs.umd.edu/pub/stewart/errata/pert.ps> .

J.H. Wilkinson (1965) The Algebraic Eigenvalue Problem, Oxford University Press (pp. 265-282)

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 23/27

§11: gnsymeig.m , an Experimental MATLAB Program, and rsdls.m

function [F,v,K] = gnsymeig(A, H)
% F = gnsymeig(A, H) is the matrix of a Congruence that
% simultaneously diagonalizes given symmetric A = A' and
% positive definite H = H' to F'*H*F = I , the identity,
% and F'*A*F = V , a diagonal matrix of eigenvalues whose
% respective eigenvectors are the columns of F . Optionally
% [F,v] = gnsymeig(A, H) yields a v better than diag(V).
% Gnsymeig is intended for data A and H that are already
% nearly diagonal, as happens when [E, V] = eig(A, H) but
% roundoff degrades eigenvectors E and eigenvalues V too
% severely, so that F = gnsymeig(E'*A*E, E'*H*E) provides
% refined eigenvectors E*F . The method used in gnsymeig
% is a Jacobi-like iteration whose convergence has now been
% proved. Optionally [F,v,K] = gnsymeig(A,H) counts actual
% Jacobi-steps, scan-sweeps, sorts and instances when
% |H(i,j)| >= 3/4 in K = [ksteps, ksweeps, ksorts, kbigH] .
% Sweeps go through successive rows in lexicographic order.
% Intended for MATLAB 5+ . (C) W. Kahan 23 May 2008

% Check the data's dimension(s) n :
[n,m] = size(A) ; [i,j] = size(H) ;
if ((n~=m)|(m~=i)|(i~=j)), sizeA = [n,m] , sizeH = [i,j],
 error('gnsymeig(A, H) needs square arrays of equal dimensions')
 end

% Symmetrize the data, which should be real:
A = (A + A')*0.5 ; H = (H + H')*0.5 ;
if ~(isreal(A)&isreal(H))
 error('gnsymeig(A, H) needs real symmetric A and H.')
 end

disp('Sweeps go through successive rows in lexicographic order.')
%<<<<<<<<<<<<<<<<<<<<<<<<<for debugging<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
% C = zeros(n) ; kc = 0 ; %<<<< to check the order of scan <<<<<<<

% Scale diag(H) to 1 :
csH = diag(H) ; if ~all(csH > 0), diagH = csH'
 error('gnsymeig(A, H) needs positive definite H .'), end
csA = sqrt(csH) ; G = csA(:, ones(1,n)) ; G = G.*G' ;
G = G + diag(csH - diag(G)) ; %... so diag(G) == diag(H) exactly
A = A./G ; H = H./G ; F = diag(1.0./csA) ; % H = F'*H*F , etc.

% Miscellaneous constants:
im = sqrt(-1) ; eps2 = eps*2 ; piby2 = atan(inf) - eps ;
n1 = n*1.0625 ;

% Initializations:
ksteps = 0 ; ksweeps = 0 ; ksorts = 0 ; kbigH = 0 ;
kstp = 1 ; unsort = 1 ;

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 24/27

% Initialize column-sums of off-diagonal squares:
G = H - eye(n) ; csH = sum(G.*G) ;
G = A - diag(diag(A)) ; csA = sum(G.*G) ;
ssH = sum(csH) ; ssA = sum(csA) ;
clear G ; % ... to leave space for permutations

% Perform successive sweeps of Jacobi-like iteration:
while kstp , ksweeps = ksweeps + 1 ; kstp = 0 ;

% May diag(A) have to be (re)sorted?
if unsort, unsort = 0 ; % ... perhaps diag(A) is unsorted
 v = diag(A) ; [v, J] = sort(v) ; % ... Is diag(A) unsorted?
 if any(J' - [1:n]), ksorts = ksorts + 1 ; % ... Yes, alas.
% Permute rows and columns to get diag(A) sorted (again):
 A = A(J,J) ; H = H(J,J) ; F = F(:,J) ;
 csH = csH(J) ; csA = csA(J) ; end, end % unsort

% Loop through a sequence of consecutive off-diagonal elements:
for i = 1:n-1 % ... Is row #i too small to be worth scanning?
if (n1*csH(i) > ssH)|(n1*csA(i) > ssA) % ... Apparently not.
for j = i+1:n , % examine elements (i,j) and (j,i) of A and H

% kc = kc+1 ; C(i,j) = kc ; %<<<<<<Check the order of scan<<<<<<<<

% Is A(i,j) or H(i,j) big enough to be worth annihilating?
alpha = A(i,j) ; sigma = H(i,j) ; sa = abs(sigma) ;
if (sa >= 1), ijNormalizedHij = [i,j,sigma] ,
 error('gnsymeig(A,H)''s H is not positive definite enough.')
 end
aan1 = alpha*alpha*n1 ; hhn1 = sa*sa*n1 ;
if (aan1 > csA(i))|(aan1 > csA(j))|(hhn1 > csH(i))|(hhn1 > csH(j))
% ... Yes, A(i,j) or H(i,j) is big enough to consider:

% Compute rotation angles of 2-by-2 congruence E :
 v1 = A(i,i) ; v2 = A(j,j) ; bigE = 1 ; %... if E-I will be big

 if (sa < 0.75) % The usual case: H is not nearly singular:
 costheta2 = 1 - sa*sa ; costheta = sqrt(costheta2) ;
 theta = asin(sigma) ; phi = 2*alpha - (v1+v2)*sigma ;
 aphi = (2*abs(alpha) + abs((v1+v2)*sigma))*eps2 ;
 dE = (v1-v2)*costheta ;
 if (abs(phi) < aphi), phi = 0 ; % else avoid division by 0
 elseif (dE == 0), phi = -sign(phi)*piby2 ;
 else phi = atan(phi/dE) ; end
 phth = (phi - theta)*0.5 ; thph = (theta + phi)*0.5 ;
 ephth = exp(im*phth) ; ethph = exp(-im*thph) ;
 E = [real(ethph), imag(ethph); imag(ephth), real(ephth)]/costheta ;
 dE = sum(abs(E(:) - [1; 0; 0; 1])) ; % = || E - I ||
 bigE = (dE > eps2) ; % Is ||E - I|| big enough to matter?
 if bigE, % Yes; ||E - I|| is big enough!
% Select columns that E will affect:
 hij = H(:,[i,j]) ; aij = A(:,[i,j]) ;
 end % of computing congruence E when H isn't nearly singular

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 25/27

 else % Cope with rare near-singular H (0.75 <= sa < 1) :
 costheta2 = (1 - sa)*(1 + sa) ; s = sign(sigma) ;
% Select columns that E will affect:
 hij = H(:,[i,j]) ; aij = A(:,[i,j]) ;
% Apply congruence X that will cancel critical data exactly:
 X = [1, s; s, -1] ; F(:,[i,j]) = F(:,[i,j])*X ;
 hij = hij*X ; hij([i,j],:) = X*hij([i,j],:) ;
 aij = aij*X ; aij([i,j],:) = X*aij([i,j],:) ;
% Scale Diag(H) back to I :
 dii = hij(i,1) ; djj = hij(j,2) ;
 aii = aij(i,1)/dii ; ajj = aij(j,2)/djj ;
 dii = sqrt(dii) ; djj = sqrt(djj) ;
 hij(:,1) = hij(:,1)/dii ; hij(:,2) = hij(:,2)/djj ;
 hij([i,j],:) = eye(2) ; t = aij(i,2)/(dii*djj) ;
 aij(:,1) = aij(:,1)/dii ; aij(:,2) = aij(:,2)/djj ;
 aij([i,j],:) = [aii,t; t,ajj] ; psi = (aii - ajj)*0.5 ;
 F(:,i) = F(:,i)/dii ; F(:,j) = F(:,j)/djj ;
% Compute angle for diagonalizing congruence by reflection E :
 if (t == 0), psi = 0 ;
 elseif (psi == 0), psi = 0.5*piby2 ;
 else psi = atan(t/psi)*0.5 ; end
 t = sign(t) ; t = (t*s - 1)*t*0.5 ;
 if (t == 0), t = 1 ; else t = t*im ; end
 t = t*exp(im*psi) ; co = real(t) ; si = imag(t) ;
 E = [co, si; si, -co] ; kbigH = kbigH + 1 ;
 end % of computing congruence E when H is nearly singular.

 if bigE % Perform a substantial 2-by-2 congruence E'*(__)*E :
 kstp = kstp + 1 ;
 hij = hij*E ; hij([i,j],:) = eye(2) ;
 aij = aij*E ; aij([i,j],:) = E'*aij([i,j],:) ;
 aij(i,2) = 0 ; aij(j,1) = 0 ; %... clear out rounding errors
% Mitigate rounding errors in tinier eigenvalue:
 if (abs(aij(i,1)) < 0.125*abs(aij(j,2)))
 t = [v1, -alpha]*[v2; alpha] ;
 aij(i,1) = t/(aij(j,2)*costheta2) ;
 elseif (abs(aij(j,2)) < 0.125*abs(aij(i,1)))
 t = [v1, -alpha]*[v2; alpha] ;
 aij(j,2) = t/(aij(i,1)*costheta2) ;
 end % of adjusting tinier eigenvalue
% Undo occasional disorder between new diagonal entries of A :
 if (aij(i,1) > aij(j,2)) % happens only if old entries were ==
 aij = fliplr(aij) ; hij = fliplr(hij) ; E = fliplr(E) ;
 aij([i,j],:) = aij([j,i],:) ; hij([i,j],:) = hij([j,i],:) ;
 end
% Update rows and columns of A and H , and columns of F :
 Aij = A(:,[i,j]) ; A(:,[i,j]) = aij ; A([i,j],:) = aij' ;
 Hij = H(:,[i,j]) ; H(:,[i,j]) = hij ; H([i,j],:) = hij' ;
 F(:,[i,j]) = F(:,[i,j])*E ; % to record congruence in F .
% Has new diag(A) become unsorted?
 im1 = i - (i>1) ; ip1 = i + (i<n) ; aii = A(i,i) ;
 unsort = unsort|(aii < A(im1,im1))|(aii > A(ip1,ip1)) ;
 im1 = j - (j>1) ; jp1 = j + (j<n) ; ajj = A(j,j) ;
 unsort = unsort|(ajj < A(im1,im1))|(ajj > A(ip1,ip1)) ;

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 26/27

% Update column-sums of off-diagonal squares:
 hij([i,j],:) = zeros(2) ; csH([i,j]) = sum(hij.*hij) ;
 Hij([i,j],:) = zeros(2) ;
 csH = csH + sum(((hij-Hij).*(hij+Hij))') ;
 ssH = sum(csH) ;
 aij([i,j],:) = zeros(2) ; csA([i,j]) = sum(aij.*aij) ;
 Aij([i,j],:) = zeros(2) ;
 csA = csA + sum(((aij-Hij).*(aij+Aij))') ;
 ssA = sum(csA) ;
 end % of substantial congruence bigE
 end, end % if ...(i,j) is big, and for j ___
 end, end % if ...(i) is big, and for i ___
% C = C, C = 0*C ; %>>>>>>>>To display the order of scan<<<<<<<<<<<
ksteps = ksteps + kstp ;
end % while (kstp > 0)
K = [ksteps, ksweeps, ksorts, kbigH] ; v = diag(A) ;

% =

function [eHe, eAe, cEHE, cEAE, de, De] = rsdls(A,H,E,e)
% [eHe, eAe, cEHE, cEAE, de, De] = rsdls(A,H,E,e) gets residuals
% given n-by-n symmetric A and H with positive definite H ,
% approximate eigenvector matrix E and eigenvalue column e :
% eHe = E'*H*E - I , eAe = E'*A*E - Diag(v) .
% If the columns of E have not already been scaled to ensure
% diag(eHe) = o , compensatory scale factors are applied first.
% Uncertainty depends on dimension n and a roundoff threshold:
% c = (1 + ceil(log2(n)))*eps .
% Residuals' uncertainties inherited from their roundoff are
% cEHE = |E|'*|H|*|E|*c , cEAE = |E|'*|A|*|E|*c .
% But if matrix multiplication is accumulated extra-precisely,
% the formulas for cEAE and cEHE become more complicated
% in ways that have been worked out here only for MATLABs v.
% 3.5 - 5.3, and v. 6.5 with small n . NOT FOR v. 7+ !
% Computed "first-order" eigenvalue corrections are
% de = diag(eAe) - e.*diag(eHe) = diag(eAe) ,
% and their additional uncertainties due to roundoff are
% De = diag(cEAE) + |e|.*diag(cEHE) .
% If neither |eHe|./cEHE nor |eAe|./cEAE has any enormous
% elements, e+de should approximate the eigenvalues of H\A
% better than e does only where |de| is small enough and
% yet not smaller than De lest de drown in rounding errors
% accumulated during the residuals' computation.
% W. Kahan 3 June 2008

n = length(e) ; log2n = ceil(log(n)/log(2)) ;
HE = H*E ; AE = A*E ;
aE = abs(E) ; aHE = abs(HE) ; aAE = abs(AE) ;
eHe1 = E'*HE ; %... but E might not have been scaled yet ...
dh = diag(eHe1) ; sdh = sqrt(dh) ; Sdh = sdh*sdh' ;
Sdh = (Sdh - diag(diag(Sdh))) + diag(dh) ; %... scale factors
% Now scaled(E'*X*E) = E'*X*E./Sdh for any X ...

eHe = eHe1./Sdh - eye(n) ; eAee = E'*AE ;

File: GnSymEig WORK IN PROGRESS version dated September 6, 2011 3:37 am

Prof. W. Kahan Math. 221 and 128 B Page 27/27

eAe = eAee./Sdh - diag(e) ;
de = diag(eAe) ; % ... = diag(eAe) - e.*diag(eHe)

% What are the roundoff thresholds? First for scalars:
eeps = ((n+4)-n)/3 ; %... to defeat compiler "optimization"
eeps = abs((eeps - 1)*3 - 1) ; %... == eps ?
eeps = max(eeps, eps) ; %... MATLAB 7+'s eeps can be weird.
% Next for matrix multiplication:
eta = 0.5^32 ; lreta = [-1, eta, 1]*[1; eta; 1] ; %... == 0 ?
% Most versions of MATLAB accumulate left-to-right, but ...
eta = [1, eta, -1]*[1; eta; 1] ; %... == lreta ?
if (eta ~= lreta), eta = max(lreta, eta) ; end %... eta ~= 0 .

if (eta == 0)|(eeps > eps) %... eeps is THE roundoff threshold
 c = (1 + log2n)*eeps*0.5 ;
 cEHE = aE'*(abs(H)*aE + aHE)*c ;
 cEAE = aE'*(abs(A)*aE + aAE)*c ;
 else %... eps for scalars, eta for matrix multiplication:
 c = (1 + log2n)*eta ;
 cEHE = aE'*(abs(H)*aE+aHE)*c + (aE'*aHE+abs(eHe1))*eps*0.5 ;
 cEAE = aE'*(abs(A)*aE+aAE)*c + (aE'*aAE+abs(eAee))*eps*0.5 ;
 end
cEHE = cEHE./Sdh ; cEAE = cEAE./Sdh ;
De = diag(cEAE) + abs(e).*diag(cEHE) ;

% =

