

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 1/17

Accuracy Tests for Polynomials’ Zero-Finders

W. Kahan, Prof. Emeritus
Math. Dept., and E.E. & Computer Sci. Dept.

University of California
Berkeley CA 94720-1776

§0: Abstract

Test data is supplied to help assess the accuracies of zero-finders for real polynomials of degrees
2 to 6 . The data consist of polynomials, with integer coefficients constructed from Fibonacci
numbers F

(

n

)

, and formulas for computing all their zeros fairly accurately. A computerized
algebra system can verify all the many formulas. As n increases, the zeros cluster together
more tightly, thus becoming harder for numerical zero-finders to compute accurately; and their
computed zeros can be surprisingly inaccurate.

This document is posted on my web page at www.eecs.berkeley.edu/~wkahan/Math128/Fibs_2_6.pdf .

§1: Introduction

Assessments of a numerical program’s accuracy can be time-consuming and tricky. Time
consuming because accidents of roundoff can produce misleading assessments from too few
tests, especially if they are randomly generated samples that miss difficult cases. Tricky
because under-appreciated rounding errors in the tests’ inputs can interfere with the accuracies
of the expected outputs, thus undermining the assessments. The test data supplied hereunder
consist of amply many polynomials, parameterized by a positive integer n

, whose zeros get
harder to compute accurately as n increases. The polynomials’ coefficients, all floating-point
integers constructed from Fibonacci numbers F

(

n

)

, are verifiably computed exactly until n
gets too big, depending upon the arithmetic’s precision. Formulas are supplied from which the
polynomials’ true zeros, real and complex, can be computed within a unit or two in the last sig.
digit carried by the arithmetic.

These formulas’ derivations are too tedious to reproduce here. Instead the formulas are devised

to be confirmed by a computerized algebra system like

Maple

®

,

Mathematica

®

 or

Derive

®

.
For instance, the Fibonacci numbers F

(

n

)

 are best computed numerically from a

Recurrence

F

(

n+1

)

 := F

(

n

)

 + F

(

n–1

)

 starting from F

(

0

)

 := 0 and F

(

±

1

)

 :=

±

1 ;
but a computerized algebra system might turn this definition into a

Recursion

 from which F

(

n

)

cannot be represented economically for a symbolic rather than numerical value of n during the
confirmations of the formulas for the zeros. Instead, the prior symbolic definitions

 τ

 := (1 +

√

5)

/

2 ; F

(

n

)

 := (

τ

2n

 – (–1)

n

)

/

(

√

5·

τ

n

) ;
let the algebra system confirm easily the recurrence from which will be computed an array of as
many floating-point values F

(

n

)

 as can be computed exactly without rounding errors. The array
ends at the first n for which the expression (F

(

n+1

)

 – F

(

n

)

) – F

(

n–1

)

 becomes nonzero. This
happens at n = 36 carrying 24 sig.bits, n = 49 for 10 sig.dec., n = 73 for 15 sig.dec.,
n = 78 for 53 sig.bits, n = 93 for 64 sig.bits, and n = 165 for 113 sig.bits correctly rounded.

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 2/17

The test data supplied hereunder do not exhaust the tests of zero-finders; conscientious tests
will include much more. Tests for accuracy will include a larger range of problems some of
them chosen with wide-ranging coefficients to kindle premature over/underflows. For instance,
the zeros x of polynomial P

(

n, x/

λ

)

 and those of P

(

n, x

)

 multiplied by

λ

 should match

closely, exactly if

λ

 =

±

2

k

 in binary arithmetic unless integer |k| is too big. Speed and ease of
use need tests too, including the handling of special cases of coefficients that are zero or infinite
or

NaN

 (

N

ot

A

N

umber). Some applications demand greater fidelity from a zero-finder; it may,
for instance, be expected not to miscompute neighboring real zeros as slightly complex nor

vice
versa

. A miscomputation like that would be exposed by our formulas. These do expose larger
errors than might reasonably be expected in §11 below; but they cannot expose inaccuracies
some zero-finders suffer when a polynomial’s zeros divagate very widely in magnitude.

§2: Stretching Small Integers

Roundoff is accidental, ragged but not random. This is why a realistic assessment of roundoff’s
impact upon a program can require that its accuracy be sampled at numerous sets of input data.
Among these, small integers are best avoided because they often incur atypical roundings.

For instance, if the two assignments
 y := w/x ; z := x·y ;

are rounded in accordance with IEEE Standard 754 (1985) for Binary Floating-Point Arithmetic,
we would expect the relation “

z = w

” to be violated at least occasionally by their two rounding
errors. In fact, when w and x are independent random floating-point numbers then z

≠

 w
about 11% of the time. But for

all

 small integers |w|

≤

 8000000, say, and for

every

 integer
x drawn from {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, … } we

always

 get z = w . This
cancellation of rounding error is explained in “A Computation with Almost No Significance”
posted on my web page at www.eecs.berkeley.edu/~wkahan/CS279/Div754.pdf .

A zero-finder may subject a polynomial

∑

j

a

j

x

n–j

 with small integer coefficients a

j

 to exact

Preconditioning

 transformations that enhance the accuracy of computed zeros in tight clusters.
An example is in §7 of “To Solve a Real Cubic Equation” posted at .../Math128/Cubic.pdf.
To test such a zero-finder’s accuracy without preconditioning, those small integer coefficients
a

j

 must first be

Stretched

 by multiplications by an integer M that are performed exactly to
turn each a

j

 into a sufficiently bigger integer M·a

j

 without changing the polynomial’s zeros.
The scheme on p. 13 of “On the Cost of Floating-Point Computation Without Extra-Precise
Arithmetic” posted at .../Qdrtcs.pdf gets a suitable multiplier M := floor

(

R

/

max

j

|

a

j

|

)

 wherein

R is a random integer between 2

p–1

 and 2

p

–

1 for binary floating-point with p sig.bits. If
M = 0 the coefficients a

j

 cannot all be deemed “small integers”.

The coefficients constructed from Fibonacci numbers F

(

n

)

 hereunder will, for small integers
n

, be integers small enough that they should be stretched to generate (in)accuracies more nearly
typical of any zero-finder under test.

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 3/17

§3: Avoiding Roundoff

Some polynomial zero-finders, deemed

Backward Stable

, can compute a given polynomial’s
zeros badly and yet almost as accurately as if each were a zero exactly of a polynomial whose
coefficients differ by at most one rounding error from each given coefficient. This is why a fair
assessment of a zero-finder’s accuracy begins with coefficients stored unblemished by roundoff.

The coefficients constructed hereunder from Fibonacci numbers
 F

(n) will be unblemished by roundoff unless integer n is too big.
How big is “too big” ?

The simplest way to decide whether any chosen n is too big uses the INEXACT flag mandated
by IEEE Standard 754 and provided by conforming hardware. This flag is raised just when a
rounding error or over/underflow produces an arithmetic result different from what would have
been produced if the arithmetic’s precision and range were unlimited. To use this flag, …

Choose n ;
Put the INEXACT flag down ;
Compute all the desired polynomial’s coefficients ;
Test the INEXACT flag ;

If the flag is still down, all the computed coefficients are exact — unblemished by roundoff. If
the flag has been raised, rounding errors have contaminated some coefficient(s) unless they all
have cancelled like the errors described earlier in §2 . However, for none of the four binary
arithmetics mentioned in §1 will rounding errors cancel if any occur during the calculations of
our coefficients, in which case the raised flag will indicate correctly that n is too big,

Alas, most programming languages deny programmers access to the hardware’s flags. In these
benighted languages a programmer must resort to tricks to discover whether a rounding error has
occurred. For correctly rounded arithmetic conforming to IEEE Standard 754 (1985) for Binary
Floating-Point, all tricks that will be necessary are listed below. In each trick w is the result of
operating upon floating-point numbers f and g , and z ≠ 0 just when w is blemished.

When |f| ≥ |g| , w := f + g ; z := (f – w) + g ; (DON’T IGNORE PARENTHESES!)
 w := 3.0·f ; z := (w – 2.0·f) – f ;
 w := 6.0·f ; z := (w – 4.0·f) – 2.0·f ;
 w := 15.0·f ; z := (w – 16.0·f) + f ;

If z ≠ 0 the chosen n is too big; a computed coefficient is unavoidably blemished by roundoff.

§4: Attenuating Roundoff
When n is big, but not too big, every constructed polynomial’s zeros ZJ(n) will cluster tightly
enough that most numerical zero-finders will compute them too inaccurately to determine their
differences ZJ(n) – ZK(n) reliably. An adequate assessment of the inaccuracies of the zero-
finder’s computed zeros zj(n) requires errors ZJ(n) – zj(n) to be computed as accurately as
differences ZJ(n) – ZK(n) . This task entails two sub-tasks:

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 4/17

•1: Which true zero ZJ(n) is rightly approximated by a zero-finder’s computed zero zj(n) ?

•2: How can rounding errors in ZJ(n) – zj(n) be kept tinier than differences ZJ(n) – ZK(n) ?

Task •1 amounts to finding a permutation π of {1, 2, …, m} to match pairs drawn from
 { zπ(1), zπ(2), zπ(3) , … zπ(m) } and { Z1, Z2, Z3, …, Zm }

in a way that minimizes maxJ |ZJ – zπ(J)| . Here m is the polynomial’s degree. The number of
complex (non real) zeros in {ZJ} may differ from that number in {zj} , but they should all
come in complex conjugate pairs. More than one permutation π may minimize the max, no π
a mere complex conjugation of another. Figures on the next page exhibit three examples. Each
ZJ appears as a “•” , each zj as a “+” ; thick dashed lines connect pairs in a minimized max.

(ı := √–1)
Consequently no algorithm so simple as sorting, which minimizes the max when all zeros are
real, can always succeed when complex zeros are present. Perhaps the simplest algorithm, and
easiest to prove correct, examines all m! permutations; our m! ≤ 6! = 720 . A function perms

in MATLAB ® generates all permutations of a complex row. However, sorting on the real parts
and then ordering the imaginary parts has minimized the max for all our smaller values of n .

Task •2 is aided by the way our formulas for the true zeros present them. Let’s drop subscripts
for the moment and let Z be a true zero and z the tested zero-finder’s computed zero. Each
true zero is presented as Z = 13/8 + x + y in which x and y are small addenda computable
accurately enough from their formulas. As n increases, x and y get smaller. Then difference
Z – z = (13/8 – z) + x + y is computed more accurately from this equation’s right-hand side than
from its left because (13/8 – z) shrinks with no rounding error unless z is very inaccurate. To
attenuate the rounding error in Z it is never computed explicitly. (13/8 = 1.625)

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 5/17

Figures: Two Permutations that Minimize the Max

•

•

•

+

+

+

•

•

•

+

+

+

• {Zj} := {20+3ı, 20–3ı, 21} • {Zj} := {20+3ı, 20–3ı, 21}

+ {zπ(j)} := {25+3ı, 25–3ı, 24} + {zπ(j)} := {24, 25–3ı, 25+3ı}

•

•

•

•

•

•

+

+

+
+ +

+

+

+

•

•

•
•

•

+ +++

+ {zπ(j)} := {16, 24, 23, 17}

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı} •

•

•
•

•

+ +++

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı}

+ {zπ(j)} := {24, 16, 23, 17}

•

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++ •

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++

+ {zπ(j)} := {20+3ı, 19, 25, 21, 20–3ı} + {zπ(j)} := {20+3ı, 19, 21, 25, 20–3ı}

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 6/17

§5: Formulas Involving Fibonacci Numbers F(n)
These come in three flavors. “ A = B ” says A and B are the same values or functions, which
may be useful later to compute A or help in other equations. “ A := C ” says expression C is a
good way to evaluate A in floating-point. “ A ≡ E ” is the symbolic definition of A in terms
of previously defined entities appearing in symbolic expression E ; this formula may also serve
to evaluate A in floating-point if no formula like “ A ≡ E := C ” is available.

Symbolic variable n is a positive integer; k is an arbitrary integer.

τ ≡ (1 + √5)/2 = 1 + 1/τ ; (1 – √5)/2 = –1/τ . All subsequent functions F… below are integers.

F(k) ≡ (τ2k – (–1)k)/(τk·√5) := F(k–1) + F(k–2) = –F(–k)·(–1)k ; F(0) = 0 ; F(±1) = 1 .
 F(k) = 3F(k–2) – F(k–4) = 4F(k–3) + F(k–6) = 7F(k–4) – F(k–8) = 11F(k–5) + F(k–10) .

F2(k) ≡ F(k–1) + F(k+1) = F2(k–1) + F2(k–2) = F2(–k)·(–1)k ; F2(0) = 2 ; F2(±1) = ±1 .

 F2(k) = 3F2(k–2) – F2(k–4) = τk + (–1/τ)k ; ((1 ± √5)/2)k = (F2(k) ± F(k)·√5)/2 .

 F(2k) = F2(k)·F(k) ; F(2k±1) = F(k)·F2(k±1) + (-1)k ; F2(2k) = 5F(k)2 + 2·(–1)k .

F3(k) ≡ 5F(k)2 + 3·(–1)k ; F(3k) = F3(k)·F(k) ; F(3k±1) = ±(±F(3k±3) – F(3k))/2 .

F4(k) ≡ (5F(k)2 + 2·(–1)k)·F2(k) = F2(2k)·F2(k) ; F(4k) = F4(k)·F(k) .

F5(k) ≡ 5·(F(k)2 + (–1)k)·F(k)2 + 1 ; F(5k) = 5·F5(k)·F(k) .

X(n) ≡ F(n+1)/F(n) := 13/8 – F(n–6)/(8·F(n)) .

X2(k) ≡ F2(k+1)/F2(k) := 13/8 – F2(k–6)/(8·F2(k)) .

After all definitions “ A ≡ E ” have been fed to a computerized algebra system, it can confirm
quickly though laboriously all the other equations “ A := C ” and “ A = B ” as well as all the
formulas below for the polynomial’s zeros. The user of these formulas should confirm them if
only to guard against transcription errors.

§6: Quadratic Polynomials’ Zeros
Q(n, x) ≡ F(n)·x2 – 2F(n+1)·x + F(n+2) has two zeros { X(n) ± ın/F(n) } .

Q2(k, x) ≡ F2(k)·x2 – 2F2(k+1)·x + F2(k+2) has two zeros { X2(k) ± ık+1·√5/F2(k) } .

Xe(n) ≡ F(n+2)/F(n) := 21/8 – F(n–6)/(8F(n)) .

X2e(k) ≡ F2(k+2)/F2(k) := 21/8 – F2(k–6)/(8F2(k))

Qe(n, x) ≡ F(n)·x2 – 2F(n+2)·x + F(n+4) has two zeros { Xe(n) ± ın/F(n) } .

Q2e(k, x) ≡ F2(k)·x2 – 2F2(k+2)·x + F2(k+4) has two zeros { X2e(k) ± ık+1·√5/F2(k) } .

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 7/17

§7: Cubic Polynomials’ Zeros
The first six cubics descend from the foregoing four quadratics:

Ç(n, x) ≡ (x + 1)·Q(n, x) := F(n)·x3 – F2(n)·x2 – F(n–1)·x + F(n+2) has three zeros

{ –1, X(n) ± ın/F(n) } .

Ç2(k, x) ≡ (x + 1)·Q2(k, x) := F2(k)·x3 – 5F(k)·x2 – F2(k–1)·x + F2(k+2) has three zeros

{–1, X2(k) ± ık+1·√5/F2(k) } .

Çe(n, x) ≡ (x + 1)·Qe(n, x) := F(n)·x3 – F(n+3)·x2 + F(n+1)·x + F(n+4) has three zeros

{ –1, Xe(n) ± ın/F(n) } .

Ç2e(k, x) ≡ (x + 1)·Q2e(k, x) := F2(k)·x3 – F2(k+3)·x2 + F2(k+1)·x + F2(k+4) has three zeros

{ –1, X2e(k) ± ık+1·√5/F2(k) } .

Ç(n, x) ≡ (x – 1)·Q(n, x) := F(n)·x3 – F(n+3)·x2 + F2(n+2)·x – F(n+2) has three zeros

{ +1, X(n) ± ın/F(n) } .

Ç2(k, x) ≡ (x – 1)·Q2(k, x) := F2(k)·x3 – F2(k+3)·x2 + 5F(k+2)·x – F2(k+2) has three zeros

{+1, X2(k) ± ık+1·√5/F2(k) } .

C(n, x) ≡ F(n)·x3 – 3F(n+1)·x2 + 3F(n+2)·x – F(n+3) has a special case worth handling first:
C(3n, x) has integer factors and consequently has three comparatively uncomplicated zeros:

{ X (n), X(n) – 3F2(n)·(–1)n/(2F(3n)) ± ı·√15/(2F3(n)) } .

To cope with C(n, x) more generally, a cube root must be computed:

b ≡ 3√τ , the positive cube root; p ≡ 1/b .

Φ(n) ≡ pn + (–b)n ; ƒ(n) ≡ bn – (–p)n .

Then C(n, x) has three zeros
{ X (n) + Φ(n)/F(n), X(n) – (Φ(n) ± ı·ƒ(n)·√3)/(2F(n)) } .

§8: Quartic Polynomials’ Zeros
H(n, x) ≡ F(n)·x4 – 4F(n+1)·x3 + 6F(n+2)·x2 – 4F(n+3)·x + F(n+4) comes in two flavors:
H(2n, x) = Q(n, x)·Q2(n, x) has four comparatively uncomplicated zeros, two of them real:

{ X (n) ± ın/F(n), X2(n) ± ın+1·√5/F2(n) } .

Because they entail complex square roots, the four zeros of H(2n–1, x) are complicated:
{ X (2n–1) – (ı ± √–2 – ı·F2(2n–1))/F(2n–1) } and their complex conjugates.

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 8/17

§9: Quintic Polynomials’ Zeros
K5(n, x) ≡ F5(n)·F(n)·x5

 – F(5n+1)·x4
 + 2F(5n+2)·x3

 – 2F(5n+3)·x2
 + F(5n+4)·x – F5(n+1)·F(n+1)

 := F(5n)/5·x5 – F(5n+1)·x4 + 2F(5n+2)·x3 – 2F(5n+3)·x2 + F(5n+4)·x – F(5n+5)/5 .
The integer factors of K5(n, x) account for the simplicity of its one real zero X(n) . But four
complex zeros of K5(n, x) are complicated expressions, starting with the auxiliary function(s)

 ∆5(n, ±√5) ≡ ±√5·2·(F5(n)·(–1)n + F3(n)) + 10F5(n) + 2F3(n)·(–1)n + 4 .
Then, besides its real zero X(n) , the four complex zeros of K5(n, x) are

 { X (n) + (±√5·F(2n) – (F2(3n)·(–1)n + F2(n))/F(n) + ı·√∆5(n, ±√5))/(4F5(n)) }
and their complex conjugates.

§10: Sixth Degree Polynomials’ Zeros
These come in two flavors, V6 and W6 . The simpler one is
V6(n, x) ≡ …

 F(6n)·x6
 – 6F(6n+1)·x5

 + 15F(6n+2)·x4
 – 20F(6n+3)·x3

 + 15F(6n+4)·x2
 – 6F(6n+5)·x + F(6n+6)

because it has two real zeros, namely { X(n), X2(n) }, and four complex, namely
{ X2 (2n) + (±(1 – 2X2(2n)) + ı·√15)/(2F2(2n) ± 2) } and their complex conjugates.

W6(n, x) ≡ V6(n+ , x) := …

 F(6n+3)·x6
 – 6F(6n+4)·x5

 + 15F(6n+5)·x4
 – 20F(6n+6)·x3

 + 15F(6n+7)·x2
 – 6F(6n+8)·x + F(6n+9)

has six complex zeros. Two of them are { X(2n+1) ± ı/F(2n+1) } . The other four are
 { X2(2n+1) + (±√15 + ı – 2ı·X2(2n+1))/(2F2(2n+1) + 2ı) } and their complex conjugates.

§11: Numerical Examples
After the foregoing formulas were confirmed by Derive® they were translated into programs for
MATLAB , whose function roots(C) treats the row C as the coefficients of a polynomial whose
zeros are computed as the eigenvalues of the polynomial’s Companion matrix. The first thing
roots(C) does is divide C by the polynomial’s leading coefficient, thereby incurring rounding
errors that often do almost as much damage to the zeros as do the rest of roots’ rounding errors.
(Perhaps less damage might be done to zeros by dividing eigenvalues instead of C by that leading coefficient.)
Consequently roots should be expected to lose all but a fraction 1/m of the 53 sig.bits (like
15 - 16 sig.dec.) carried by MATLAB ’s arithmetic when computing m zeros clustered closely,
as our formulas reveal at larger values of n . They do not reveal how inaccurately roots finds
smaller zeros when they are too much smaller than the others, but that is a story for another day.

Displayed below are the results from tests of roots(…). They show the polynomial’s name, the
value of parameter n , and the MinMax|Error| , followed by two columns, first the true zeros
Zj computed from the foregoing formulas, and then the corresponding errors ZJ – zπ(J) . Some
of these are surprisingly big even for moderate values of n ; digits of Zj jeopardized by these
errors are italicized. Then the displayed results are assessed in §12.

1
2

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 9/17

Results computed for tests of roots(…) by MATLAB 5.2 on an ancient µ68040-based Apple Quadra 950
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Quadratic polynomials
 ~~~~~~~~~~~~~~~~~~~~~
 Q(n,x): n = 3 MinMaxErr = 0
TrueZ__rootsErr =
 1.50000000000000 - 0.50000000000000i 0
 1.50000000000000 + 0.50000000000000i 0

 Q2(n,x): n = 3 MinMaxErr = 0
TrueZ__rootsErr =
 2.30901699437495 0
 1.19098300562505 0

 Q(n,x): n = 36 MinMaxErr = 2.39181e-09
TrueZ__rootsErr =
 1.61803405572755 -0.00000000239181
 1.61803392177224 0.00000000239181

 Q2(n,x): n = 36 MinMaxErr = 2.75184e-09
TrueZ__rootsErr =
 1.61803398874989 + 0.00000006697766i -0.00000000000000 + 0.00000000275184i
 1.61803398874989 - 0.00000006697766i -0.00000000000000 - 0.00000000275184i

 Q(n,x): n = 75 MinMaxErr = 1.10196e-08
TrueZ__rootsErr =
 1.61803398874989 -0.00000001101956
 1.61803398874989 0.00000001101956

 Q2(n,x): n = 75 MinMaxErr = 1.10196e-08
TrueZ__rootsErr =
 1.61803398874990 -0.00000001101956
 1.61803398874989 0.00000001101956

 Cubic polynomials
 ~~~~~~~~~~~~~~~~~
 C(n,x):  n = 3     MinMaxErr = 1.25607e-15 
TrueZ__rootsErr =
  1.75000000000000 + 0.96824583655185i          0.00000000000000 - 0.00000000000000i        
  1.75000000000000 - 0.96824583655185i          0.00000000000000 + 0.00000000000000i        
  1.00000000000000                                              0                    
   
 C(3*n,x):  n = 3     MinMaxErr = 3.01981e-14 
TrueZ__rootsErr =
  1.67647058823529 + 0.11391127488845i          0.00000000000001 + 0.00000000000003i        
  1.67647058823529 - 0.11391127488845i          0.00000000000001 - 0.00000000000003i        
  1.50000000000000                                           -0.00000000000003                    
   



File:  Fibs_2_6                                                                                           Version Date:  September 13, 2015 5:41 pm

Prof. W. Kahan                                                                                                                                         page 10/17

 C(n,x):  n = 36     MinMaxErr = 1.40799e-06 
TrueZ__rootsErr =
  1.61805555555556                                             0.00000140796202                    
  1.61802320534707 + 0.00001867704130i         -0.00000070398101 + 0.00000121935939i        
  1.61802320534707 - 0.00001867704130i          -0.00000070398101 - 0.00000121935939i        
   
 C(3*n,x):  n = 12     MinMaxErr = 1.40799e-06 
TrueZ__rootsErr =
  1.61805555555556                                             0.00000140796202                    
  1.61802320534707 + 0.00001867704130i         -0.00000070398101 + 0.00000121935939i        
  1.61802320534707 - 0.00001867704130i         -0.00000070398101 - 0.00000121935939i        
   
 C(n,x):  n = 71     MinMaxErr = 1.4186e-05 
TrueZ__rootsErr =
  1.61803398889324 + 0.00000000024828i         -0.00001418596060 + 0.00000000024828i        
  1.61803398889324 - 0.00000000024828i          0.00000709319531 + 0.00001228515113i        
  1.61803398846321                                             0.00000709276528 - 0.00001228539941i        
   
 C(3*n,x):  n = 24     MinMaxErr = 1.41859e-05 
TrueZ__rootsErr =
  1.61803398895790                                            -0.00001418589593                    
  1.61803398864589 + 0.00000000018014i          0.00000709294796 - 0.00001228521927i        
  1.61803398864589 - 0.00000000018014i          0.00000709294796 + 0.00001228521927i        
   
      
 Quartic polynomials
 ~~~~~~~~~~~~~~~~~~~
 H(n,x): n = 3 MinMaxErr = 3.12642e-15
TrueZ__rootsErr =
 2.05589297025142 - 1.39945371997393i -0.00000000000000 - 0.00000000000000i
 2.05589297025142 + 1.39945371997393i -0.00000000000000 + 0.00000000000000i
 0.94410702974858 + 0.39945371997393i 0.00000000000000 + 0.00000000000000i
 0.94410702974858 - 0.39945371997393i 0.00000000000000 - 0.00000000000000i

 H(n,x): n = 4 MinMaxErr = 4.88498e-15
TrueZ__rootsErr =
 3.00000000000000 0.00000000000000
 1.33333333333333 + 0.74535599249993i 0.00000000000000 + 0.00000000000000i
 1.33333333333333 - 0.74535599249993i 0.00000000000000 - 0.00000000000000i
 1.00000000000000 -0.00000000000000

 H(n,x): n = 21 MinMaxErr = 1.16025e-09
TrueZ__rootsErr =
 1.62814004884777 - 0.01019824723144i -0.00000000081705 + 0.00000000082377i
 1.62814004884777 + 0.01019824723144i -0.00000000081705 - 0.00000000082377i
 1.60792792118695 + 0.01001553208435i 0.00000000081705 - 0.00000000081044i
 1.60792792118695 - 0.01001553208435i 0.00000000081705 + 0.00000000081044i

 H(n,x): n = 22 MinMaxErr = 1.54012e-11
TrueZ__rootsErr =
 1.62932697476131 0.00000000001540
 1.61797752808989 + 0.01123595505618i -0.00000000000173 + 0.00000000001382i
 1.61797752808989 - 0.01123595505618i -0.00000000000173 - 0.00000000001382i
 1.60685392976131 -0.00000000001195

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 11/17

 H(n,x): n = 69 MinMaxErr = 0.00017734
TrueZ__rootsErr =
 1.61803408622561 - 0.00000009747572i -0.00012538326364 + 0.00012535252315i
 1.61803408622561 + 0.00000009747572i -0.00012538326364 - 0.00012535252315i
 1.61803389127418 + 0.00000009747572i 0.00012538326364 - 0.00012541397166i
 1.61803389127418 - 0.00000009747572i 0.00012538326364 + 0.00012541397166i

 H(n,x): n = 70 MinMaxErr = 0.000177402
TrueZ__rootsErr =
 1.61803409712203 -0.00012537236722 - 0.00012544999887i
 1.61803398874989 + 0.00000010837213i 0.00012548073935 - 0.00012540307524i
 1.61803398874989 - 0.00000010837213i -0.00012548073936 + 0.00012534162674i
 1.61803388037777 0.00012537236723 + 0.00012551144737i

 Quintic polynomials
 ~~~~~~~~~~~~~~~~~~~
 K5(n,x):  n = 3     MinMaxErr = 2.93274e-11 
TrueZ__rootsErr =
  1.72085468778688 + 0.08023016159326i          0.00000000002181 + 0.00000000001448i        
  1.72085468778688 - 0.08023016159326i          0.00000000002181 - 0.00000000001448i        
  1.57422727942624 + 0.11422403794972i         -0.00000000000714 + 0.00000000002733i        
  1.57422727942624 - 0.11422403794972i         -0.00000000000714 - 0.00000000002733i        
  1.50000000000000                                            -0.00000000002933                    
   
 K5(n,x):  n = 4     MinMaxErr = 6.19257e-10 
TrueZ__rootsErr =
  1.66666666666667                                             0.00000000058950                    
  1.63190544763165 + 0.04585029923838i          0.00000000020018 + 0.00000000056588i        
  1.63190544763165 - 0.04585029923838i          0.00000000020018 - 0.00000000056588i        
  1.57984621533953 + 0.02703375008134i         -0.00000000049492 + 0.00000000037220i        
  1.57984621533953 - 0.02703375008134i         -0.00000000049492 - 0.00000000037220i        
   
 K5(n,x):  n = 7     MinMaxErr = 0.000135072 
TrueZ__rootsErr =
  1.62018089057473 + 0.00156210595591i         -0.00010924050028 - 0.00007944088592i        
  1.62018089057473 - 0.00156210595591i         -0.00010924050028 + 0.00007944088592i        
  1.61721177360769 + 0.00252084110960i          0.00004179526439 - 0.00012832457469i        
  1.61721177360769 - 0.00252084110960i          0.00004179526439 + 0.00012832457469i        
  1.61538461538462                                             0.00013489047179                    
   
 K5(n,x):  n = 8     MinMaxErr = 0.000641489 
TrueZ__rootsErr =
  1.61904761904762                                            -0.00064148897910                    
  1.61834670424759 + 0.00096385261194i         -0.00019796615204 - 0.00061000765474i        
  1.61834670424759 - 0.00096385261194i         -0.00019796615204 + 0.00061000765474i        
  1.61721445810334 + 0.00059509057704i          0.00051871064160 - 0.00037669091927i        
  1.61721445810334 - 0.00059509057704i          0.00051871064160 + 0.00037669091927i        
   



File:  Fibs_2_6                                                                                           Version Date:  September 13, 2015 5:41 pm

Prof. W. Kahan                                                                                                                                         page 12/17

 K5(n,x):  n = 11     MinMaxErr = 0.00160978 
TrueZ__rootsErr =
  1.61807966797730 + 0.00003318893723i         -0.00160944004942 + 0.00003318893723i        
  1.61807966797730 - 0.00003318893723i         -0.00046500242233 + 0.00154067132945i        
  1.61801653985250 + 0.00005369779648i         -0.00052813054714 - 0.00152016247020i        
  1.61801653985250 - 0.00005369779648i          0.00132079239075 + 0.00091808369983i        
  1.61797752808989                                             0.00128178062815 - 0.00097178149630i        
   
 K5(n,x):  n = 12     MinMaxErr = 0.00163355 
TrueZ__rootsErr =
  1.61805555555556                                            -0.00163355247117                    
  1.61804065302680 + 0.00002051117549i         -0.00050401737284 - 0.00155334909119i        
  1.61804065302680 - 0.00002051117549i         -0.00050401737284 + 0.00155334909119i        
  1.61801654107016 + 0.00001267633022i          0.00132079360842 - 0.00095910516609i        
  1.61801654107016 - 0.00001267633022i          0.00132079360842 + 0.00095910516609i        
   
      
 6th degree polynomials 
 ~~~~~~~~~~~~~~~~~~~~~~ 
 V6(n,x): n = 2 MinMaxErr = 3.52379e-12
TrueZ__rootsErr =
 2.00000000000000 0.00000000000248
 1.75000000000000 + 0.32274861218395i 0.00000000000193 + 0.00000000000230i
 1.75000000000000 - 0.32274861218395i 0.00000000000193 - 0.00000000000230i
 1.43750000000000 + 0.24206145913796i -0.00000000000141 + 0.00000000000311i
 1.43750000000000 - 0.24206145913796i -0.00000000000141 - 0.00000000000311i
 1.33333333333333 -0.00000000000352

 W6(n,x): n = 2 MinMaxErr = 2.77226e-11
TrueZ__rootsErr =
 1.80165088855853 - 0.11833189895987i -0.00000000001385 + 0.00000000000343i
 1.80165088855853 + 0.11833189895987i -0.00000000001385 - 0.00000000000343i
 1.60000000000000 - 0.20000000000000i -0.00000000000792 + 0.00000000002056i
 1.60000000000000 + 0.20000000000000i -0.00000000000792 - 0.00000000002056i
 1.45244747209721 - 0.08658613382702i 0.00000000002177 + 0.00000000001716i
 1.45244747209721 + 0.08658613382702i 0.00000000002177 - 0.00000000001716i

 V6(n,x): n = 3 MinMaxErr = 4.99161e-11
TrueZ__rootsErr =
 1.75000000000000 -0.00000000004806
 1.67647058823529 + 0.11391127488845i -0.00000000002427 - 0.00000000004362i
 1.67647058823529 - 0.11391127488845i -0.00000000002427 + 0.00000000004362i
 1.55263157894737 + 0.10192061437388i 0.00000000002697 - 0.00000000003840i
 1.55263157894737 - 0.10192061437388i 0.00000000002697 + 0.00000000003840i
 1.50000000000000 0.00000000004268

 W6(n,x): n = 3 MinMaxErr = 3.32769e-09
TrueZ__rootsErr =
 1.68605493885987 - 0.04089844616758i 0.00000000254323 - 0.00000000131123i
 1.68605493885987 + 0.04089844616758i 0.00000000254323 + 0.00000000131123i
 1.61538461538462 - 0.07692307692308i 0.00000000026943 - 0.00000000309353i
 1.61538461538462 + 0.07692307692308i 0.00000000026943 + 0.00000000309353i
 1.55266240080759 - 0.03629870347612i -0.00000000281266 - 0.00000000177834i
 1.55266240080759 + 0.03629870347612i -0.00000000281266 + 0.00000000177834i

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 13/17

 V6(n,x): n = 6 MinMaxErr = 0.00372244
TrueZ__rootsErr =
 1.62500000000000 0.00347658051384
 1.62149532710280 + 0.00603268433989i 0.00184877715014 + 0.00300463362453i
 1.62149532710280 - 0.00603268433989i 0.00184877715014 - 0.00300463362453i
 1.61455108359133 + 0.00599533025729i -0.00172584597386 + 0.00321540684212i
 1.61455108359133 - 0.00599533025729i -0.00172584597386 - 0.00321540684212i
 1.61111111111111 -0.00372244286640

 W6(n,x): n = 6 MinMaxErr = 0.00100037
TrueZ__rootsErr =
 1.62175496850777 - 0.00215308055376i 0.00083769049481 - 0.00054682821446i
 1.62175496850777 + 0.00215308055376i 0.00083769049481 + 0.00054682821446i
 1.61802575107296 - 0.00429184549356i -0.00010145449730 - 0.00090448297626i
 1.61802575107296 + 0.00429184549356i -0.00010145449730 + 0.00090448297626i
 1.61432124666895 - 0.00213881237364i -0.00073623599751 - 0.00037037707007i
 1.61432124666895 + 0.00213881237364i -0.00073623599751 + 0.00037037707007i

 V6(n,x): n = 7 MinMaxErr = 0.00429552
TrueZ__rootsErr =
 1.62068965517241 -0.00429552281864
 1.61935866983373 + 0.00229987134573i -0.00214011690911 - 0.00372002341476i
 1.61935866983373 - 0.00229987134573i -0.00214011690911 + 0.00372002341476i
 1.61670616113744 + 0.00229442141363i 0.00214774684872 - 0.00370680809504i
 1.61670616113744 - 0.00229442141363i 0.00214774684872 + 0.00370680809504i
 1.61538461538462 0.00428026293943

 W6(n,x): n = 7 MinMaxErr = 0.00559143
TrueZ__rootsErr =
 1.61945430422200 - 0.00082071429928i -0.00553087376906 - 0.00082071429928i
 1.61945430422200 + 0.00082071429928i -0.00204448252085 - 0.00519918046120i
 1.61803278688525 - 0.00163934426230i -0.00346599985760 + 0.00438055049819i
 1.61803278688525 + 0.00163934426230i 0.00347437259652 - 0.00436188524637i
 1.61661487514244 - 0.00081863260641i 0.00205646085372 + 0.00518259690226i
 1.61661487514244 + 0.00081863260641i 0.00551052269726 + 0.00081863260641i

 V6(n,x): n = 10 MinMaxErr = 0.00680336
TrueZ__rootsErr =
 1.61818181818182 -0.00680335980924
 1.61810789369298 + 0.00012802404291i -0.00339089304986 - 0.00589187071757i
 1.61810789369298 - 0.00012802404291i -0.00339089304986 + 0.00589187071757i
 1.61796007403490 + 0.00012800711747i 0.00340165974618 - 0.00587322239119i
 1.61796007403490 - 0.00012800711747i 0.00340165974618 + 0.00587322239119i
 1.61788617886179 0.00678182641660

 W6(n,x): n = 10 MinMaxErr = 0.00687222
TrueZ__rootsErr =
 1.61811310859581 - 0.00004568201947i -0.00687206939524 - 0.00004568201947i
 1.61811310859581 + 0.00004568201947i -0.00338567814703 - 0.00597421274101i
 1.61803398501736 - 0.00009135757354i -0.00346480172549 + 0.00592853718694i
 1.61803398501736 + 0.00009135757354i 0.00347557072864 - 0.00590987193512i
 1.61795487263651 - 0.00004567555453i 0.00339645834779 + 0.00595555395414i
 1.61795487263651 + 0.00004567555453i 0.00685052019133 + 0.00004567555453i

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 14/17

 V6(n,x): n = 11 MinMaxErr = 0.00689473
TrueZ__rootsErr =
 1.61809045226131 -0.00689472572975
 1.61806221907984 + 0.00004889883524i -0.00343656766300 - 0.00597099592525i
 1.61806221907984 - 0.00004889883524i -0.00343656766300 + 0.00597099592525i
 1.61800575699424 + 0.00004889636585i 0.00344734270552 - 0.00595233314282i
 1.61800575699424 - 0.00004889636585i 0.00344734270552 + 0.00595233314282i
 1.61797752808989 0.00687317564470

§12: Assessment
The errors in zeros computed by roots(…) can be surprisingly big. Different generations of

MATLAB run on diverse computer arithmetics, including Intel’s in Windows® machines and

old PowerPC®-based Macintoshes®, produced results different than displayed above, but the
MinMax|Errors| almost never differed by factors bigger than 2 . Similar results were obtained
when the Companion matrix in roots(…) was replaced by M. Fiedler’s Companion matrix as
described on pp. 7 - 8 of my posting …/5Mar14.pdf . Even if differences between computed
zeros lose relatively few of their leading digits to cancellation, the remaining digits can be quite
wrong. Why are they so wrong?

The variations in computed zeros cannot be blamed entirely upon initial roundings of quotients
when coefficients were divided by the leading coefficient. Neither should variations be blamed
entirely upon roundoff inside program roots, which rarely does more damage than perturbations
in the coefficients’ last few bits. Zeros of some polynomials expressed as sums of monomials
are hypersensitive to small perturbations of coefficients. Our surprise comes from seeing that
hypersensitivity in polynomials of such low degrees.

When might errors like the worst ones seen above be troublesome? That can happen during the
numerical optimization of coefficients’ parameters according to criteria imposed upon the zeros
of a polynomial. Often they are repeated or clustered closely when the optimum is achieved, but
then numerical errors may obscure it. Here is an example contrived for didactic effect:

Given a positive value θ < 1 but near 1 , we seek the best value of parameter β to minimize
the maximum of the magnitudes of the zeros x of the quartic polynomial

 H(x, θ, β) := x4 – (β+1)(θ2+θ)·x3 + (θ3·(β+1)2+2β)·x2 – (θ2+θ)(β2+β)·x + β2 .

We shall pretend not to know a formula X(θ, β, ±) := ((β+1)θ ± √((β+1)2·θ2 – 4β)) for the

four zeros of H , namely {X(θ, β, ±), X(θ2, β, ±)} , and the minimum Ξ of their maximum

magnitude, namely Ξ(θ) := θ/(1 + √((1-θ)(1+θ))) , achieved at the optimal value of β = Ξ2 .
Instead we shall plot graphs, as functions of β , of the maximum magnitude of the zeros of H
computed three ways: in green from roots, in blue from ro0ts, and in red from formula X .
Here ro0ts is my program adapted from MATLAB ’s roots by replacing its Companion matrix
by Fiedler’s as described in …/5Mar14.pdf . To obtain readable numbers at tick-marks on the
axes, we actually plot max|X| – 1 against β – 1 .

1
2

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 15/17

 θ = 1 – 1/224 = 0.99999994039536

When β takes its sharply determined optimum value β = Ξ2 = 0.9993097043806 , all four true
zeros X(…) have the same minimized magnitude Ξ and two of them coincide at Ξ :

 True zeros X(É) Errors in roots(É) Errors in ro0ts(É)
 0.99965479260621 0.00008875 0.00013494
 0.99965479260621 -0.00008875 -0.00013496
 0.99965473302214 + 0.00034514778902i -0.00000000 - 0.00001123i 0.00000001 - 0.00002544i
 0.99965473302214 - 0.00034514778902i -0.00000000 + 0.00001123i 0.00000001 + 0.00002544i

Though MATLAB ’s arithmetic carries over 15 sig.dec., at most the leading four decimal digits
of the computed roots(…) and ro0ts(…) can be trusted, and these determine at most the three
leading decimal digits of β .

-11 -10 -9 -8 -7 -6 -5 -4 -3

x 10
-4

-4

-3.5

-3

-2.5

-2

-1.5

-1
x 10

-4

 ß – 1

 m
ax

 |
X

 |
 –

 1

 THETA = 1 – 1/224

max|roots|
max|ro0ts|
max|X|

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 16/17

 θ = 1 – 1/225 = 0.99999997019768

When β takes its sharply determined optimum value β = Ξ2 = 0.99951183793383 , all four
true zeros X(…) have the same minimized magnitude Ξ and two of them coincide at Ξ :

 True zeros X(É) Errors in roots(É) Errors in ro0ts(É)
 0.99975588917187 0.00012230 0.00014906
 0.99975588917187 -0.00012232 -0.00014909
 0.99975585937682 + 0.00024408102581i 0.00000001 - 0.00002893i 0.00000002 - 0.00004192i
 0.99975585937682 - 0.00024408102581i 0.00000001 + 0.00002893i 0.00000002 + 0.00004192i

Though MATLAB ’s arithmetic carries over 15 sig.dec., at most the leading three decimal
digits of the computed roots(…) and ro0ts(…) can be trusted, and these determine at most the
three leading decimal digits of β . However, that may be more than can reasonably be expected
from a program that searches numerically for an optimum after rounding off the coefficients.

Now that the foregoing numerical results are visible, they imply that better numerical results can
be obtained by replacing variables x by y := 1–x , θ by t := 1–θ and β by b := 1–β to get

 H(1–y, 1–t, 1–b) = y4 + (2(t–3)t – (t–1)(t–2)b)·y3 –

 – (b2·(t–1)3 – (4t2 – 9t + 3)bt + (4t2 – 6t – 6)t)·y2 + ((3b + (8–5b)t + 2(b–2)t2)(b–2)t)·y +

 + (2–t)(b–2)2·t2 .
Then solve H = 0 numerically for roots Y to get X := 1–Y much more accurately than before.
Note that the change of variables was carried out exactly, i.e. with infinite precision.

-8 -7 -6 -5 -4 -3 -2

x 10
-4

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

-4

 ß – 1

 m
ax

 |
X

 |
 –

 1

 THETA = 1 – 1/225

max|roots|
max|ro0ts|
max|X|

File: Fibs_2_6 Version Date: September 13, 2015 5:41 pm

Prof. W. Kahan page 17/17

§13: Conclusion
Inaccuracies exposed by the tests above reinforce the demands of Prudence: that our numerical
root-finder’s accuracy be tested before we rely upon it. If then we desire numerically computed
zeros more nearly faithful than roots(…) to a polynomial’s coefficients stored in a computer’s
memory, we shall have to employ extra-precise arithmetic. The preparation of coefficients may
entail extra-precise arithmetic too. How shall we discover whether extra-precise arithmetic is
necessary to cope with polynomials that differ greatly from the ones tested here? This question
may be answered afterwards by easily computed error-bounds, for which see

 www.eecs.berkeley.edu/~wkahan/Math128/PolyZbnd.pdf

