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Accuracy Tests for Polynomials’ Zero-Finders

 

W. Kahan,  Prof. Emeritus
Math. Dept.,  and  E.E. & Computer Sci. Dept.

University of California
Berkeley  CA  94720-1776

 

§0: Abstract

 

Test data is supplied to help assess the accuracies of zero-finders for real polynomials of degrees  
2  to 6 .  The data consist of polynomials,  with integer coefficients constructed from  Fibonacci  
numbers  F

 

(

 

n

 

)

 

 

 

,  and formulas for computing all their zeros fairly accurately.  A computerized 
algebra system can verify all the many formulas.  As  n  increases,  the zeros cluster together 
more tightly,  thus becoming harder for numerical zero-finders to compute accurately;  and their 
computed zeros can be surprisingly inaccurate.

 

This document is posted on my web page at  www.eecs.berkeley.edu/~wkahan/Math128/Fibs_2_6.pdf .

 

§1:  Introduction

 

Assessments of a numerical program’s accuracy can be time-consuming and tricky.  Time 
consuming because accidents of roundoff can produce misleading assessments from too few 
tests,  especially if they are randomly generated samples that miss difficult cases.  Tricky 
because under-appreciated rounding errors in the tests’ inputs can interfere with the accuracies 
of the expected outputs,  thus undermining the assessments.  The test data supplied hereunder 
consist of amply many polynomials,  parameterized by a positive integer  n

 

 

 

,  whose zeros get 
harder to compute accurately as  n  increases.  The polynomials’ coefficients,  all floating-point 
integers constructed from  Fibonacci  numbers  F

 

(

 

n

 

)

 

 

 

,  are verifiably computed exactly until  n  
gets too big,  depending upon the arithmetic’s precision.  Formulas are supplied from which the 
polynomials’ true zeros,  real and complex,  can be computed within a unit or two in the last sig. 
digit carried by the arithmetic.

These formulas’ derivations are too tedious to reproduce here.  Instead the formulas are devised 

to be confirmed by a computerized algebra system like  

 

Maple

 

®

 

,  

 

Mathematica

 

®

 

  or  

 

Derive

 

®

 

.  
For instance,  the  Fibonacci  numbers  F

 

(

 

n

 

)

 

  are best computed numerically from a  

 

Recurrence

 

 
F

 

(

 

n+1

 

)

 

 := F

 

(

 

n

 

)

 

 + F

 

(

 

n–1

 

)

 

    starting from    F

 

(

 

0

 

)

 

 := 0  and  F

 

(

 

±

 

1

 

)

 

 := 

 

±

 

1 ;
but a computerized algebra system might turn this definition into a  

 

Recursion

 

  from which  F

 

(

 

n

 

)

 

  
cannot be represented economically for a symbolic rather than numerical value of  n  during the 
confirmations of the formulas for the zeros.  Instead,  the prior symbolic definitions 

 

 τ

 

 := (1 + 

 

√

 

5)

 

/

 

2 ;    F

 

(

 

n

 

)

 

 := ( 

 

τ

 

2n

 

 – (–1)

 

n

 

 )

 

/

 

( 

 

√

 

5·

 

τ

 

n

 

 ) ;
let the algebra system confirm easily the recurrence from which will be computed an array of as 
many floating-point values  F

 

(

 

n

 

)

 

  as can be computed exactly without rounding errors.  The array 
ends at the first  n  for which the expression  (F

 

(

 

n+1

 

)

 

 – F

 

(

 

n

 

)

 

) – F

 

(

 

n–1

 

)

 

  becomes nonzero.  This 
happens at  n = 36  carrying  24  sig.bits,  n = 49  for  10 sig.dec.,  n = 73  for  15 sig.dec.,  
n = 78  for  53 sig.bits,  n = 93  for  64 sig.bits,  and  n = 165  for  113 sig.bits  correctly rounded.
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The test data supplied hereunder do not exhaust the tests of zero-finders;  conscientious tests 
will include much more.  Tests for accuracy will include a larger range of problems some of 
them chosen with wide-ranging coefficients to kindle premature over/underflows.  For instance,  
the zeros  x  of  polynomial  P

 

(

 

n, x/

 

λ

 

)

 

  and those of  P

 

(

 

n, x

 

)

 

  multiplied by  

 

λ

 

  should match 

closely,  exactly if  

 

λ

 

 = 

 

±

 

2

 

k

 

  in binary arithmetic unless integer  |k|  is too big.  Speed and ease of 
use need tests too,  including the handling of special cases of coefficients that are zero or infinite 
or  

 

NaN

 

 (

 

N

 

ot 

 

A

 

 

 

N

 

umber).  Some applications demand greater fidelity from a zero-finder;  it may,  
for instance,  be expected not to miscompute neighboring real zeros as slightly complex nor  

 

vice
versa

 

.  A miscomputation like that would be exposed by our formulas.  These do expose larger 
errors than might reasonably be expected in  §11  below;  but they cannot expose inaccuracies 
some zero-finders suffer when a polynomial’s zeros divagate very widely in magnitude.

 

§2:  Stretching Small Integers

 

Roundoff is accidental,  ragged but not random.  This is why a realistic assessment of roundoff’s 
impact upon a program can require that its accuracy be sampled at numerous sets of input data.  
Among these,  small integers are best avoided because they often incur atypical roundings.

For instance,  if the two assignments
 y := w/x ;     z := x·y ;

are rounded in accordance with  IEEE Standard 754 (1985) for Binary Floating-Point Arithmetic,  
we would expect the relation  “

 

 

 

z = w

 

 

 

”  to be violated at least occasionally by their two rounding 
errors.  In fact,  when  w  and  x  are independent random floating-point numbers then  z 

 

≠

 

 w  
about  11%  of the time.  But for  

 

all

 

  small integers  |w| 

 

≤

 

 8000000,  say,  and for  

 

every

 

  integer  
x drawn from  {1, 2, 3, 4, 5, 6,  8, 9, 10,  12,  16, 17, 18,  20, … }  we  

 

always

 

  get  z = w .  This 
cancellation of rounding error is explained in  “A Computation with Almost No Significance”  
posted on my web page at  www.eecs.berkeley.edu/~wkahan/CS279/Div754.pdf .

A zero-finder may subject a polynomial   

 

∑

 

j

 

 

 

a

 

j

 

x

 

n–j

 

   with small integer coefficients  a

 

j

 

  to exact  

 

Preconditioning

 

  transformations that enhance the accuracy of computed zeros in tight clusters.  
An example is in  §7  of  “To Solve a Real Cubic Equation”  posted at  .../Math128/Cubic.pdf.  
To test such a zero-finder’s accuracy without preconditioning,  those small integer coefficients  
a

 

j

 

  must first be  

 

Stretched

 

  by multiplications by an integer  M  that are performed exactly to 
turn each  a

 

j

 

  into a sufficiently bigger integer  M·a

 

j

 

  without changing the polynomial’s zeros.  
The scheme on  p. 13  of  “On the Cost of Floating-Point Computation Without Extra-Precise 
Arithmetic”  posted at  .../Qdrtcs.pdf  gets a suitable multiplier  M := floor

 

(

 

R

 

/

 

max

 

j

 

 

 

|

 

a

 

j

 

|

 

)

 

  wherein  

R  is a random integer between  2

 

p–1

 

  and  2

 

p

 

 

 

–

 

 

 

1  for binary floating-point with  p  sig.bits.  If  
M = 0  the coefficients  a

 

j

 

  cannot all be deemed  “small integers”.

The coefficients constructed from  Fibonacci  numbers  F

 

(

 

n

 

)

 

  hereunder will,  for small integers  
n

 

 

 

,  be integers small enough that they should be stretched to generate (in)accuracies more nearly 
typical of any zero-finder under test.
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§3:  Avoiding Roundoff

 

Some polynomial zero-finders,  deemed  

 

Backward Stable

 

,  can compute a given polynomial’s 
zeros badly and yet almost as accurately as if each were a zero exactly of a polynomial whose 
coefficients differ by at most one rounding error from each given coefficient.  This is why a fair 
assessment of a zero-finder’s accuracy begins with coefficients stored unblemished by roundoff.

The coefficients constructed hereunder from  Fibonacci  numbers
  F

 

(n)  will be unblemished by roundoff unless integer  n  is too big. 
How big is  “too big” ?

The simplest way to decide whether any chosen  n  is too big uses the  INEXACT  flag mandated 
by  IEEE Standard 754  and provided by conforming hardware.  This flag is raised just when a 
rounding error or over/underflow produces an arithmetic result different from what would have 
been produced if the arithmetic’s precision and range were unlimited.  To use this flag,  …

Choose  n ;
Put the  INEXACT  flag down ;
Compute all the desired polynomial’s coefficients ;
Test the  INEXACT  flag ;

If the flag is still down,  all the computed coefficients are exact —  unblemished by roundoff.  If 
the flag has been raised,  rounding errors have contaminated some coefficient(s) unless they all 
have cancelled like the errors described earlier in  §2 .  However,  for none of the four binary 
arithmetics mentioned in  §1  will rounding errors cancel if any occur during the calculations of 
our coefficients,  in which case the raised flag will indicate correctly that  n  is too big,

Alas,  most programming languages deny programmers access to the hardware’s flags.  In these 
benighted languages a programmer must resort to tricks to discover whether a rounding error has 
occurred.  For correctly rounded arithmetic conforming to  IEEE Standard 754 (1985) for Binary 
Floating-Point,  all tricks that will be necessary are listed below.  In each trick  w  is the result of 
operating upon floating-point numbers  f  and  g ,  and  z ≠ 0  just when  w  is blemished.

When  |f| ≥ |g| ,   w := f + g ;    z := (f – w) + g ;         (DON’T IGNORE PARENTHESES!) 
   w := 3.0·f ;    z := (w – 2.0·f) – f ;
   w := 6.0·f ;    z := (w – 4.0·f) – 2.0·f ;
   w := 15.0·f ;    z := (w – 16.0·f) + f ;

If  z ≠ 0  the chosen  n  is too big;  a computed coefficient is unavoidably blemished by roundoff.

§4:  Attenuating Roundoff
When  n  is big,  but not too big,  every constructed polynomial’s zeros  ZJ(n) will cluster tightly 
enough that most numerical zero-finders will compute them too inaccurately to determine their 
differences  ZJ(n) – ZK(n)  reliably.  An adequate assessment of the inaccuracies of the zero-
finder’s computed zeros  zj(n)  requires errors  ZJ(n) – zj(n)  to be computed as accurately as 
differences  ZJ(n) – ZK(n) .  This task entails two sub-tasks:
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•1:  Which true zero  ZJ(n)  is rightly approximated by a zero-finder’s computed zero  zj(n) ?

•2:  How can rounding errors in  ZJ(n) – zj(n)  be kept tinier than differences  ZJ(n) – ZK(n) ?

Task  •1  amounts to finding a permutation  π  of  {1, 2, …, m} to match pairs drawn from
 { zπ(1), zπ(2), zπ(3) , … zπ(m) }   and   { Z1,  Z2,  Z3,  …,  Zm }

in a way that minimizes  maxJ |ZJ – zπ(J)| .  Here  m  is the polynomial’s degree.  The number of 
complex  (non real)  zeros in  {ZJ}  may differ from that number in  {zj}  ,  but they should all 
come in complex conjugate pairs.  More than one permutation  π  may minimize the  max,  no  π  
a mere complex conjugation of another.  Figures  on the next page exhibit three examples.  Each  
ZJ  appears as a  “•” ,  each  zj  as a  “+” ;  thick dashed lines connect pairs in a minimized  max.

( ı := √–1 )
Consequently no algorithm so simple as sorting,  which minimizes the  max  when all zeros are 
real,  can always succeed when complex zeros are present.  Perhaps the simplest algorithm,  and 
easiest to prove correct,  examines all  m!  permutations;  our  m! ≤ 6! = 720 .  A function  perms  

in  MATLAB ®  generates all permutations of a complex row.  However,  sorting on the real parts 
and then ordering the imaginary parts has minimized the  max  for all our smaller values of  n .

Task  •2  is aided by the way our formulas for the true zeros present them.  Let’s drop subscripts 
for the moment and let  Z  be a true zero and  z  the tested zero-finder’s computed zero.  Each 
true zero is presented as  Z = 13/8 + x + y  in which  x  and  y  are small addenda computable 
accurately enough from their formulas.  As  n  increases,  x  and  y  get smaller.  Then difference  
Z – z = (13/8 – z) + x + y  is computed more accurately from this equation’s right-hand side than 
from its left because  (13/8 – z)  shrinks with no rounding error unless  z  is very inaccurate.  To 
attenuate the rounding error in  Z  it is never computed explicitly.                          ( 13/8 = 1.625 )
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Figures:  Two Permutations  that  Minimize the  Max

•

•

•

+

+

+

•

•

•

+

+

+

•  {Zj} := {20+3ı, 20–3ı, 21} •  {Zj} := {20+3ı, 20–3ı, 21}

+  {zπ(j)} := {25+3ı, 25–3ı, 24} +  {zπ(j)} := {24, 25–3ı, 25+3ı}

•

•

•

•

•

•

+

+

+
+ +

+

+

+

•

•

•
•

•

+ +++

+ {zπ(j)} := {16, 24, 23, 17} 

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı} •

•

•
•

•

+ +++

{Z j} := {20+3ı, 20–3ı, 20+4ı, 20–4ı}

+ {zπ(j)} := {24, 16, 23, 17}

•

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++ •

•

•

•

•

• {Z j} := {19+3ı, 19–3ı, 20, 21+3ı, 21–3ı}
+

+

+ ++

+ {zπ(j)} := {20+3ı, 19, 25, 21, 20–3ı} + {zπ(j)} := {20+3ı, 19, 21, 25, 20–3ı}
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§5:  Formulas Involving  Fibonacci  Numbers  F(n) 
These come in three flavors.  “ A = B ”  says  A  and  B  are the same values or functions,  which 
may be useful later to compute  A  or help in other equations.  “ A := C ”  says expression  C  is a 
good way to evaluate  A  in floating-point.  “ A ≡ E ”  is the symbolic definition of  A  in terms 
of previously defined entities appearing in symbolic expression  E ;   this formula may also serve 
to evaluate  A  in floating-point if no formula like  “ A ≡ E := C ”  is available.

Symbolic variable  n  is a positive integer;  k  is an arbitrary integer.

τ ≡ (1 + √5)/2 = 1 + 1/τ ;   (1 – √5)/2 = –1/τ .  All subsequent functions  F…  below are integers.

F(k) ≡ ( τ2k – (–1)k )/( τk·√5 ) := F(k–1) + F(k–2) = –F(–k)·(–1)k ;   F(0) = 0 ;   F(±1) = 1 .
     F(k) = 3F(k–2) – F(k–4) = 4F(k–3) + F(k–6) = 7F(k–4) – F(k–8) = 11F(k–5) + F(k–10) .

F2(k) ≡ F(k–1) + F(k+1) = F2(k–1) + F2(k–2) = F2(–k)·(–1)k ;   F2(0) = 2 ;   F2(±1) = ±1 .

     F2(k) = 3F2(k–2) – F2(k–4) = τk + (–1/τ)k ;     ((1 ± √5)/2)k = ( F2(k) ± F(k)·√5 )/2 .   

     F(2k) = F2(k)·F(k) ;    F(2k±1) = F(k)·F2(k±1) + (-1)k ;     F2(2k) = 5F(k)2 + 2·(–1)k .

F3(k) ≡ 5F(k)2 + 3·(–1)k ;     F(3k) = F3(k)·F(k) ;    F(3k±1) = ±( ±F(3k±3) – F(3k) )/2 .

F4(k) ≡ ( 5F(k)2 + 2·(–1)k )·F2(k) = F2(2k)·F2(k) ;    F(4k) = F4(k)·F(k) .

F5(k) ≡ 5·( F(k)2 + (–1)k )·F(k)2 + 1 ;    F(5k) = 5·F5(k)·F(k) .

X(n) ≡ F(n+1)/F(n) := 13/8 – F(n–6)/(8·F(n)) .

X2(k) ≡ F2(k+1)/F2(k) := 13/8 – F2(k–6)/(8·F2(k)) .

After all definitions  “ A ≡ E ”  have been fed to a computerized algebra system,  it can confirm 
quickly though laboriously all the other equations  “ A := C ”  and  “ A = B ”  as well as all the 
formulas below for the polynomial’s zeros.  The user of these formulas should confirm them if 
only to guard against transcription errors.

§6:  Quadratic Polynomials’ Zeros
Q(n, x) ≡ F(n)·x2 – 2F(n+1)·x + F(n+2)  has two zeros  { X(n) ± ın/F(n) } .

Q2(k, x) ≡ F2(k)·x2 – 2F2(k+1)·x + F2(k+2)  has two zeros  { X2(k) ± ık+1·√5/F2(k) } .

Xe(n) ≡ F(n+2)/F(n) := 21/8 – F(n–6)/(8F(n)) .

X2e(k) ≡ F2(k+2)/F2(k) := 21/8 – F2(k–6)/(8F2(k)) 

Qe(n, x) ≡ F(n)·x2 – 2F(n+2)·x + F(n+4)  has two zeros  { Xe(n) ± ın/F(n) } .

Q2e(k, x) ≡ F2(k)·x2 – 2F2(k+2)·x + F2(k+4)  has two zeros  { X2e(k) ± ık+1·√5/F2(k) } .
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§7:  Cubic Polynomials’ Zeros
The first six cubics descend from the foregoing four quadratics:

Ç(n, x) ≡ (x + 1)·Q(n, x) := F(n)·x3 – F2(n)·x2 – F(n–1)·x + F(n+2)    has three zeros

{ –1,   X(n) ± ın/F(n) } .

Ç2(k, x) ≡ (x + 1)·Q2(k, x) := F2(k)·x3 – 5F(k)·x2 – F2(k–1)·x + F2(k+2)    has three zeros

{–1,   X2(k) ± ık+1·√5/F2(k) } .

Çe(n, x) ≡ (x + 1)·Qe(n, x) := F(n)·x3 – F(n+3)·x2 + F(n+1)·x + F(n+4)    has three zeros

{ –1,   Xe(n) ± ın/F(n) } .

Ç2e(k, x) ≡ (x + 1)·Q2e(k, x) := F2(k)·x3 – F2(k+3)·x2 + F2(k+1)·x + F2(k+4)    has three zeros

{ –1,   X2e(k) ± ık+1·√5/F2(k) } .

Ç(n, x) ≡ (x – 1)·Q(n, x) := F(n)·x3 – F(n+3)·x2 + F2(n+2)·x – F(n+2)    has three zeros 

{ +1,   X(n) ± ın/F(n) } .

Ç2(k, x) ≡ (x – 1)·Q2(k, x) := F2(k)·x3 – F2(k+3)·x2 + 5F(k+2)·x – F2(k+2)     has three zeros

{+1,   X2(k) ± ık+1·√5/F2(k) } .

C(n, x) ≡ F(n)·x3 – 3F(n+1)·x2 + 3F(n+2)·x – F(n+3)    has a special case worth handling first:
C(3n, x)  has integer factors and consequently has three comparatively uncomplicated zeros:

{ X (n),    X(n) – 3F2(n)·(–1)n/(2F(3n)) ± ı·√15/(2F3(n)) } .

To cope with  C(n, x)  more generally,  a cube root must be computed:

b ≡ 3√τ ,  the positive cube root;   p ≡ 1/b .

Φ(n) ≡ pn + (–b)n ;    ƒ(n) ≡ bn – (–p)n .

Then  C(n, x)   has three zeros 
{ X (n) + Φ(n)/F(n),    X(n) – ( Φ(n) ± ı·ƒ(n)·√3 )/(2F(n)) } .

§8:  Quartic Polynomials’ Zeros
H(n, x) ≡ F(n)·x4 – 4F(n+1)·x3 + 6F(n+2)·x2 – 4F(n+3)·x + F(n+4)    comes in two flavors:
H(2n, x) = Q(n, x)·Q2(n, x)  has four comparatively uncomplicated zeros,  two of them real:

{ X (n) ± ın/F(n),    X2(n) ± ın+1·√5/F2(n) } .

Because they entail complex square roots,  the four zeros of  H(2n–1, x)  are complicated:
{ X (2n–1) – ( ı ± √–2 – ı·F2(2n–1) )/F(2n–1) }   and their complex conjugates.
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§9:  Quintic Polynomials’ Zeros
K5(n, x) ≡ F5(n)·F(n)·x5

 – F(5n+1)·x4
 + 2F(5n+2)·x3

 – 2F(5n+3)·x2
 + F(5n+4)·x – F5(n+1)·F(n+1)

               := F(5n)/5·x5 – F(5n+1)·x4 + 2F(5n+2)·x3 – 2F(5n+3)·x2 + F(5n+4)·x – F(5n+5)/5 .
The integer factors of  K5(n, x)  account for the simplicity of its one real zero  X(n) .  But four 
complex zeros of  K5(n, x)  are complicated expressions,  starting with the auxiliary function(s)

 ∆5(n, ±√5) ≡ ±√5·2·( F5(n)·(–1)n + F3(n) )  +  10F5(n) + 2F3(n)·(–1)n + 4 .
Then,  besides its real zero  X(n) ,  the four complex zeros of  K5(n, x)  are

  { X (n)  +  ( ±√5·F(2n) – (F2(3n)·(–1)n + F2(n))/F(n) + ı·√∆5(n, ±√5) )/(4F5(n)) }  
and their complex conjugates.

§10:  Sixth Degree Polynomials’ Zeros
These come in two flavors,  V6  and  W6 .  The simpler one is
V6(n, x) ≡ …

      F(6n)·x6
 – 6F(6n+1)·x5

 + 15F(6n+2)·x4
 – 20F(6n+3)·x3

 + 15F(6n+4)·x2
 – 6F(6n+5)·x + F(6n+6) 

because it has two real zeros,  namely  { X(n),    X2(n) },  and four complex,  namely
{ X2 (2n)  +  ( ±(1 – 2X2(2n)) + ı·√15 )/(2F2(2n) ± 2) }   and their complex conjugates.

W6(n, x) ≡ V6(n+ , x) := …

  F(6n+3)·x6
 – 6F(6n+4)·x5

 + 15F(6n+5)·x4
 – 20F(6n+6)·x3

 + 15F(6n+7)·x2
 – 6F(6n+8)·x + F(6n+9) 

has six complex zeros.  Two of them are  { X(2n+1) ± ı/F(2n+1) } .  The other four are 
     { X2(2n+1)  +  ( ±√15 + ı – 2ı·X2(2n+1) )/(2F2(2n+1) + 2ı) }  and their complex conjugates.

§11:  Numerical Examples
After the foregoing formulas were confirmed by  Derive®  they were translated into programs for  
MATLAB ,  whose function  roots(C)  treats the row  C  as the coefficients of a polynomial whose 
zeros are computed as the eigenvalues of the polynomial’s  Companion  matrix.  The first thing  
roots(C)  does is divide  C  by the polynomial’s leading coefficient,  thereby incurring rounding 
errors that often do almost as much damage to the zeros as do the rest of  roots’  rounding errors.
( Perhaps less damage might be done to zeros by dividing eigenvalues instead of  C  by that leading coefficient.)
Consequently  roots  should be expected to lose all but a fraction  1/m  of the  53  sig.bits  (like  
15 - 16 sig.dec.)  carried by  MATLAB ’s  arithmetic when computing  m  zeros clustered closely,  
as our formulas reveal at larger values of  n .  They do not reveal how inaccurately  roots  finds 
smaller zeros when they are too much smaller than the others,  but that is a story for another day.

Displayed below are the results from tests of  roots(…).  They show the polynomial’s name,  the 
value of parameter  n ,  and the  MinMax|Error| ,  followed by two columns,  first the true zeros  
Zj  computed from the foregoing formulas,  and then the corresponding errors  ZJ – zπ(J) .  Some 
of these are surprisingly big even for moderate values of  n ;  digits of  Zj  jeopardized by these 
errors are  italicized.  Then the displayed results are assessed in  §12.

1
2
---
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Results computed for tests of  roots(…)  by  MATLAB  5.2  on an ancient  µ68040-based  Apple Quadra 950   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Quadratic polynomials
 ~~~~~~~~~~~~~~~~~~~~~
 Q(n,x):  n = 3     MinMaxErr = 0 
TrueZ__rootsErr =
  1.50000000000000 - 0.50000000000000i                         0                    
  1.50000000000000 + 0.50000000000000i                         0                    
   
 Q2(n,x):  n = 3     MinMaxErr = 0 
TrueZ__rootsErr =
   2.30901699437495                                                             0
   1.19098300562505                                                             0
   
 Q(n,x):  n = 36     MinMaxErr = 2.39181e-09 
TrueZ__rootsErr =
   1.61803405572755                                                -0.00000000239181
   1.61803392177224                                                 0.00000000239181
   
 Q2(n,x):  n = 36     MinMaxErr = 2.75184e-09 
TrueZ__rootsErr =
  1.61803398874989 + 0.00000006697766i         -0.00000000000000 + 0.00000000275184i        
  1.61803398874989 - 0.00000006697766i         -0.00000000000000 - 0.00000000275184i        
   
 Q(n,x):  n = 75     MinMaxErr = 1.10196e-08 
TrueZ__rootsErr =
  1.61803398874989                                              -0.00000001101956  
  1.61803398874989                                               0.00000001101956    
   
 Q2(n,x):  n = 75     MinMaxErr = 1.10196e-08 
TrueZ__rootsErr =
   1.61803398874990                                           -0.00000001101956
   1.61803398874989                                            0.00000001101956
   
   

   
 Cubic polynomials
 ~~~~~~~~~~~~~~~~~
 C(n,x):  n = 3     MinMaxErr = 1.25607e-15 
TrueZ__rootsErr =
  1.75000000000000 + 0.96824583655185i          0.00000000000000 - 0.00000000000000i        
  1.75000000000000 - 0.96824583655185i          0.00000000000000 + 0.00000000000000i        
  1.00000000000000                                              0                    
   
 C(3*n,x):  n = 3     MinMaxErr = 3.01981e-14 
TrueZ__rootsErr =
  1.67647058823529 + 0.11391127488845i          0.00000000000001 + 0.00000000000003i        
  1.67647058823529 - 0.11391127488845i          0.00000000000001 - 0.00000000000003i        
  1.50000000000000                                           -0.00000000000003                    
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 C(n,x):  n = 36     MinMaxErr = 1.40799e-06 
TrueZ__rootsErr =
  1.61805555555556                                             0.00000140796202                    
  1.61802320534707 + 0.00001867704130i         -0.00000070398101 + 0.00000121935939i        
  1.61802320534707 - 0.00001867704130i          -0.00000070398101 - 0.00000121935939i        
   
 C(3*n,x):  n = 12     MinMaxErr = 1.40799e-06 
TrueZ__rootsErr =
  1.61805555555556                                             0.00000140796202                    
  1.61802320534707 + 0.00001867704130i         -0.00000070398101 + 0.00000121935939i        
  1.61802320534707 - 0.00001867704130i         -0.00000070398101 - 0.00000121935939i        
   
 C(n,x):  n = 71     MinMaxErr = 1.4186e-05 
TrueZ__rootsErr =
  1.61803398889324 + 0.00000000024828i         -0.00001418596060 + 0.00000000024828i        
  1.61803398889324 - 0.00000000024828i          0.00000709319531 + 0.00001228515113i        
  1.61803398846321                                             0.00000709276528 - 0.00001228539941i        
   
 C(3*n,x):  n = 24     MinMaxErr = 1.41859e-05 
TrueZ__rootsErr =
  1.61803398895790                                            -0.00001418589593                    
  1.61803398864589 + 0.00000000018014i          0.00000709294796 - 0.00001228521927i        
  1.61803398864589 - 0.00000000018014i          0.00000709294796 + 0.00001228521927i        
   
      
 Quartic polynomials
 ~~~~~~~~~~~~~~~~~~~
 H(n,x):  n = 3     MinMaxErr = 3.12642e-15 
TrueZ__rootsErr =
  2.05589297025142 - 1.39945371997393i         -0.00000000000000 - 0.00000000000000i        
  2.05589297025142 + 1.39945371997393i         -0.00000000000000 + 0.00000000000000i        
  0.94410702974858 + 0.39945371997393i          0.00000000000000 + 0.00000000000000i        
  0.94410702974858 - 0.39945371997393i          0.00000000000000 - 0.00000000000000i        
   
 H(n,x):  n = 4     MinMaxErr = 4.88498e-15 
TrueZ__rootsErr =
  3.00000000000000                                             0.00000000000000                    
  1.33333333333333 + 0.74535599249993i          0.00000000000000 + 0.00000000000000i        
  1.33333333333333 - 0.74535599249993i          0.00000000000000 - 0.00000000000000i        
  1.00000000000000                                            -0.00000000000000                    
   
 H(n,x):  n = 21     MinMaxErr = 1.16025e-09 
TrueZ__rootsErr =
  1.62814004884777 - 0.01019824723144i         -0.00000000081705 + 0.00000000082377i        
  1.62814004884777 + 0.01019824723144i         -0.00000000081705 - 0.00000000082377i        
  1.60792792118695 + 0.01001553208435i          0.00000000081705 - 0.00000000081044i        
  1.60792792118695 - 0.01001553208435i          0.00000000081705 + 0.00000000081044i        
   
 H(n,x):  n = 22     MinMaxErr = 1.54012e-11 
TrueZ__rootsErr =
  1.62932697476131                                             0.00000000001540                    
  1.61797752808989 + 0.01123595505618i         -0.00000000000173 + 0.00000000001382i        
  1.61797752808989 - 0.01123595505618i         -0.00000000000173 - 0.00000000001382i        
  1.60685392976131                                            -0.00000000001195                    
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 H(n,x):  n = 69     MinMaxErr = 0.00017734 
TrueZ__rootsErr =
  1.61803408622561 - 0.00000009747572i         -0.00012538326364 + 0.00012535252315i        
  1.61803408622561 + 0.00000009747572i         -0.00012538326364 - 0.00012535252315i        
  1.61803389127418 + 0.00000009747572i          0.00012538326364 - 0.00012541397166i        
  1.61803389127418 - 0.00000009747572i          0.00012538326364 + 0.00012541397166i        
   
 H(n,x):  n = 70     MinMaxErr = 0.000177402 
TrueZ__rootsErr =
  1.61803409712203                                            -0.00012537236722 - 0.00012544999887i        
  1.61803398874989 + 0.00000010837213i          0.00012548073935 - 0.00012540307524i        
  1.61803398874989 - 0.00000010837213i         -0.00012548073936 + 0.00012534162674i        
  1.61803388037777                                             0.00012537236723 + 0.00012551144737i        
   

   
   
 Quintic polynomials
 ~~~~~~~~~~~~~~~~~~~
 K5(n,x):  n = 3     MinMaxErr = 2.93274e-11 
TrueZ__rootsErr =
  1.72085468778688 + 0.08023016159326i          0.00000000002181 + 0.00000000001448i        
  1.72085468778688 - 0.08023016159326i          0.00000000002181 - 0.00000000001448i        
  1.57422727942624 + 0.11422403794972i         -0.00000000000714 + 0.00000000002733i        
  1.57422727942624 - 0.11422403794972i         -0.00000000000714 - 0.00000000002733i        
  1.50000000000000                                            -0.00000000002933                    
   
 K5(n,x):  n = 4     MinMaxErr = 6.19257e-10 
TrueZ__rootsErr =
  1.66666666666667                                             0.00000000058950                    
  1.63190544763165 + 0.04585029923838i          0.00000000020018 + 0.00000000056588i        
  1.63190544763165 - 0.04585029923838i          0.00000000020018 - 0.00000000056588i        
  1.57984621533953 + 0.02703375008134i         -0.00000000049492 + 0.00000000037220i        
  1.57984621533953 - 0.02703375008134i         -0.00000000049492 - 0.00000000037220i        
   
 K5(n,x):  n = 7     MinMaxErr = 0.000135072 
TrueZ__rootsErr =
  1.62018089057473 + 0.00156210595591i         -0.00010924050028 - 0.00007944088592i        
  1.62018089057473 - 0.00156210595591i         -0.00010924050028 + 0.00007944088592i        
  1.61721177360769 + 0.00252084110960i          0.00004179526439 - 0.00012832457469i        
  1.61721177360769 - 0.00252084110960i          0.00004179526439 + 0.00012832457469i        
  1.61538461538462                                             0.00013489047179                    
   
 K5(n,x):  n = 8     MinMaxErr = 0.000641489 
TrueZ__rootsErr =
  1.61904761904762                                            -0.00064148897910                    
  1.61834670424759 + 0.00096385261194i         -0.00019796615204 - 0.00061000765474i        
  1.61834670424759 - 0.00096385261194i         -0.00019796615204 + 0.00061000765474i        
  1.61721445810334 + 0.00059509057704i          0.00051871064160 - 0.00037669091927i        
  1.61721445810334 - 0.00059509057704i          0.00051871064160 + 0.00037669091927i        
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 K5(n,x):  n = 11     MinMaxErr = 0.00160978 
TrueZ__rootsErr =
  1.61807966797730 + 0.00003318893723i         -0.00160944004942 + 0.00003318893723i        
  1.61807966797730 - 0.00003318893723i         -0.00046500242233 + 0.00154067132945i        
  1.61801653985250 + 0.00005369779648i         -0.00052813054714 - 0.00152016247020i        
  1.61801653985250 - 0.00005369779648i          0.00132079239075 + 0.00091808369983i        
  1.61797752808989                                             0.00128178062815 - 0.00097178149630i        
   
 K5(n,x):  n = 12     MinMaxErr = 0.00163355 
TrueZ__rootsErr =
  1.61805555555556                                            -0.00163355247117                    
  1.61804065302680 + 0.00002051117549i         -0.00050401737284 - 0.00155334909119i        
  1.61804065302680 - 0.00002051117549i         -0.00050401737284 + 0.00155334909119i        
  1.61801654107016 + 0.00001267633022i          0.00132079360842 - 0.00095910516609i        
  1.61801654107016 - 0.00001267633022i          0.00132079360842 + 0.00095910516609i        
   
      
 6th degree polynomials 
 ~~~~~~~~~~~~~~~~~~~~~~ 
 V6(n,x):  n = 2     MinMaxErr = 3.52379e-12 
TrueZ__rootsErr =
  2.00000000000000                                             0.00000000000248                    
  1.75000000000000 + 0.32274861218395i          0.00000000000193 + 0.00000000000230i        
  1.75000000000000 - 0.32274861218395i          0.00000000000193 - 0.00000000000230i        
  1.43750000000000 + 0.24206145913796i         -0.00000000000141 + 0.00000000000311i        
  1.43750000000000 - 0.24206145913796i         -0.00000000000141 - 0.00000000000311i        
  1.33333333333333                                            -0.00000000000352                    
   
 W6(n,x):  n = 2     MinMaxErr = 2.77226e-11 
TrueZ__rootsErr =
  1.80165088855853 - 0.11833189895987i         -0.00000000001385 + 0.00000000000343i        
  1.80165088855853 + 0.11833189895987i         -0.00000000001385 - 0.00000000000343i        
  1.60000000000000 - 0.20000000000000i         -0.00000000000792 + 0.00000000002056i        
  1.60000000000000 + 0.20000000000000i         -0.00000000000792 - 0.00000000002056i        
  1.45244747209721 - 0.08658613382702i          0.00000000002177 + 0.00000000001716i        
  1.45244747209721 + 0.08658613382702i          0.00000000002177 - 0.00000000001716i        
   
 V6(n,x):  n = 3     MinMaxErr = 4.99161e-11 
TrueZ__rootsErr =
  1.75000000000000                                            -0.00000000004806                    
  1.67647058823529 + 0.11391127488845i         -0.00000000002427 - 0.00000000004362i        
  1.67647058823529 - 0.11391127488845i         -0.00000000002427 + 0.00000000004362i        
  1.55263157894737 + 0.10192061437388i          0.00000000002697 - 0.00000000003840i        
  1.55263157894737 - 0.10192061437388i          0.00000000002697 + 0.00000000003840i        
  1.50000000000000                                             0.00000000004268                    
   
 W6(n,x):  n = 3     MinMaxErr = 3.32769e-09 
TrueZ__rootsErr =
  1.68605493885987 - 0.04089844616758i          0.00000000254323 - 0.00000000131123i        
  1.68605493885987 + 0.04089844616758i          0.00000000254323 + 0.00000000131123i        
  1.61538461538462 - 0.07692307692308i          0.00000000026943 - 0.00000000309353i        
  1.61538461538462 + 0.07692307692308i          0.00000000026943 + 0.00000000309353i        
  1.55266240080759 - 0.03629870347612i         -0.00000000281266 - 0.00000000177834i        
  1.55266240080759 + 0.03629870347612i         -0.00000000281266 + 0.00000000177834i        
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 V6(n,x):  n = 6     MinMaxErr = 0.00372244 
TrueZ__rootsErr =
  1.62500000000000                                             0.00347658051384                    
  1.62149532710280 + 0.00603268433989i          0.00184877715014 + 0.00300463362453i        
  1.62149532710280 - 0.00603268433989i          0.00184877715014 - 0.00300463362453i        
  1.61455108359133 + 0.00599533025729i         -0.00172584597386 + 0.00321540684212i        
  1.61455108359133 - 0.00599533025729i         -0.00172584597386 - 0.00321540684212i        
  1.61111111111111                                              -0.00372244286640                    
   
 W6(n,x):  n = 6     MinMaxErr = 0.00100037 
TrueZ__rootsErr =
  1.62175496850777 - 0.00215308055376i          0.00083769049481 - 0.00054682821446i        
  1.62175496850777 + 0.00215308055376i          0.00083769049481 + 0.00054682821446i        
  1.61802575107296 - 0.00429184549356i         -0.00010145449730 - 0.00090448297626i        
  1.61802575107296 + 0.00429184549356i         -0.00010145449730 + 0.00090448297626i        
  1.61432124666895 - 0.00213881237364i         -0.00073623599751 - 0.00037037707007i        
  1.61432124666895 + 0.00213881237364i         -0.00073623599751 + 0.00037037707007i        
   
 V6(n,x):  n = 7     MinMaxErr = 0.00429552 
TrueZ__rootsErr =
  1.62068965517241                                            -0.00429552281864                    
  1.61935866983373 + 0.00229987134573i         -0.00214011690911 - 0.00372002341476i        
  1.61935866983373 - 0.00229987134573i         -0.00214011690911 + 0.00372002341476i        
  1.61670616113744 + 0.00229442141363i          0.00214774684872 - 0.00370680809504i        
  1.61670616113744 - 0.00229442141363i          0.00214774684872 + 0.00370680809504i        
  1.61538461538462                                             0.00428026293943                    
   
 W6(n,x):  n = 7     MinMaxErr = 0.00559143 
TrueZ__rootsErr =
  1.61945430422200 - 0.00082071429928i         -0.00553087376906 - 0.00082071429928i        
  1.61945430422200 + 0.00082071429928i         -0.00204448252085 - 0.00519918046120i        
  1.61803278688525 - 0.00163934426230i         -0.00346599985760 + 0.00438055049819i        
  1.61803278688525 + 0.00163934426230i          0.00347437259652 - 0.00436188524637i        
  1.61661487514244 - 0.00081863260641i          0.00205646085372 + 0.00518259690226i        
  1.61661487514244 + 0.00081863260641i          0.00551052269726 + 0.00081863260641i        
   
 V6(n,x):  n = 10     MinMaxErr = 0.00680336 
TrueZ__rootsErr =
  1.61818181818182                                            -0.00680335980924                    
  1.61810789369298 + 0.00012802404291i         -0.00339089304986 - 0.00589187071757i        
  1.61810789369298 - 0.00012802404291i         -0.00339089304986 + 0.00589187071757i        
  1.61796007403490 + 0.00012800711747i          0.00340165974618 - 0.00587322239119i        
  1.61796007403490 - 0.00012800711747i          0.00340165974618 + 0.00587322239119i        
  1.61788617886179                                             0.00678182641660                    
   
 W6(n,x):  n = 10     MinMaxErr = 0.00687222 
TrueZ__rootsErr =
  1.61811310859581 - 0.00004568201947i         -0.00687206939524 - 0.00004568201947i        
  1.61811310859581 + 0.00004568201947i         -0.00338567814703 - 0.00597421274101i        
  1.61803398501736 - 0.00009135757354i         -0.00346480172549 + 0.00592853718694i        
  1.61803398501736 + 0.00009135757354i          0.00347557072864 - 0.00590987193512i        
  1.61795487263651 - 0.00004567555453i          0.00339645834779 + 0.00595555395414i        
  1.61795487263651 + 0.00004567555453i          0.00685052019133 + 0.00004567555453i        
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 V6(n,x):  n = 11     MinMaxErr = 0.00689473 
TrueZ__rootsErr =
  1.61809045226131                                             -0.00689472572975                    
  1.61806221907984 + 0.00004889883524i         -0.00343656766300 - 0.00597099592525i        
  1.61806221907984 - 0.00004889883524i         -0.00343656766300 + 0.00597099592525i        
  1.61800575699424 + 0.00004889636585i          0.00344734270552 - 0.00595233314282i        
  1.61800575699424 - 0.00004889636585i          0.00344734270552 + 0.00595233314282i        
  1.61797752808989                                             0.00687317564470                    
   

§12:  Assessment
The errors in zeros computed by  roots(…)  can be surprisingly big.  Different generations of  

MATLAB   run on diverse computer arithmetics,  including  Intel’s  in  Windows®  machines and 

old  PowerPC®-based  Macintoshes®,  produced results different than displayed above,  but the  
MinMax|Errors|  almost never differed by factors bigger than  2 .  Similar results were obtained 
when the  Companion  matrix in  roots(…)  was replaced by  M. Fiedler’s  Companion matrix as 
described on  pp. 7 - 8  of my posting  …/5Mar14.pdf .  Even if differences between computed 
zeros lose relatively few of their leading digits to cancellation,  the remaining digits can be quite 
wrong.  Why are they so wrong?

The variations in computed zeros cannot be blamed entirely upon initial roundings of quotients 
when coefficients were divided by the leading coefficient.  Neither should variations be blamed 
entirely upon roundoff inside program  roots,  which rarely does more damage than perturbations 
in the coefficients’ last few bits.  Zeros of some polynomials expressed as sums of monomials 
are hypersensitive to small perturbations of coefficients.  Our surprise comes from seeing that 
hypersensitivity in polynomials of such low degrees.

When might errors like the worst ones seen above be troublesome?  That can happen during the 
numerical optimization of coefficients’ parameters according to criteria imposed upon the zeros 
of a polynomial.  Often they are repeated or clustered closely when the optimum is achieved,  but 
then numerical errors may obscure it.  Here is an example contrived for didactic effect:

Given a positive value  θ < 1  but near  1 ,  we seek the best value of parameter  β  to minimize 
the maximum of the magnitudes of the zeros  x  of the quartic polynomial

 H(x, θ, β) := x4 – (β+1)(θ2+θ)·x3 + (θ3·(β+1)2+2β)·x2 – (θ2+θ)(β2+β)·x + β2 .

We shall pretend not to know a formula  X(θ, β, ±) := ( (β+1)θ ± √((β+1)2·θ2 – 4β) )  for the 

four zeros of  H ,  namely  {X(θ, β, ±),  X(θ2, β, ±)} ,  and the minimum  Ξ  of their maximum 

magnitude,  namely  Ξ(θ) := θ/( 1 + √((1-θ)(1+θ)) ) ,  achieved at the optimal value of  β = Ξ2 .  
Instead we shall plot graphs,  as functions of  β ,  of the maximum magnitude of the zeros of  H  
computed three ways:  in green from  roots,  in blue from  ro0ts,  and in red from formula  X .  
Here  ro0ts  is my program adapted from  MATLAB ’s  roots  by replacing its  Companion matrix 
by  Fiedler’s  as described in  …/5Mar14.pdf .  To obtain readable numbers at tick-marks on the 
axes,  we actually plot  max|X| – 1  against  β – 1 .

1
2
---
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                                         θ = 1 – 1/224 = 0.99999994039536  

When  β  takes its sharply determined optimum value  β = Ξ2 = 0.9993097043806 ,  all four true 
zeros  X(…)  have the same minimized magnitude  Ξ  and two of them coincide at  Ξ :

      True zeros  X(É)                     Errors in  roots(É)          Errors in  ro0ts(É)  
  0.99965479260621                          0.00008875                   0.00013494 
  0.99965479260621                         -0.00008875                  -0.00013496 
  0.99965473302214 + 0.00034514778902i     -0.00000000 - 0.00001123i     0.00000001 - 0.00002544i 
  0.99965473302214 - 0.00034514778902i     -0.00000000 + 0.00001123i     0.00000001 + 0.00002544i 

Though  MATLAB ’s  arithmetic carries over  15 sig.dec.,  at most the leading four decimal digits 
of the computed  roots(…)  and  ro0ts(…)  can be trusted,  and these determine at most the three 
leading decimal digits of  β .
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                                        θ = 1 – 1/225 = 0.99999997019768  

When  β  takes its sharply determined optimum value  β = Ξ2 = 0.99951183793383 ,  all four 
true zeros  X(…)  have the same minimized magnitude  Ξ  and two of them coincide at  Ξ :

      True zeros  X(É)                    Errors in  roots(É)          Errors in  ro0ts(É)  
  0.99975588917187                         0.00012230                   0.00014906   
  0.99975588917187                        -0.00012232                  -0.00014909 
  0.99975585937682 + 0.00024408102581i     0.00000001 - 0.00002893i     0.00000002 - 0.00004192i 
  0.99975585937682 - 0.00024408102581i     0.00000001 + 0.00002893i     0.00000002 + 0.00004192i 

Though  MATLAB ’s  arithmetic carries over  15 sig.dec.,  at most the leading three decimal 
digits of the computed  roots(…)  and  ro0ts(…)  can be trusted,  and these determine at most the 
three leading decimal digits of  β .  However,  that may be more than can reasonably be expected 
from a program that searches numerically for an optimum after rounding off the coefficients.

Now that the foregoing numerical results are visible,  they imply that better numerical results can 
be obtained by replacing variables  x  by  y := 1–x ,  θ  by  t := 1–θ  and  β  by  b := 1–β  to get

    H(1–y, 1–t, 1–b)  =  y4 + (2(t–3)t – (t–1)(t–2)b)·y3 – 

         – (b2·(t–1)3 – (4t2 – 9t + 3)bt + (4t2 – 6t – 6)t)·y2 + ((3b + (8–5b)t + 2(b–2)t2)(b–2)t)·y + 

            + (2–t)(b–2)2·t2 .
Then solve  H = 0  numerically for roots  Y  to get  X := 1–Y  much more accurately than before.  
Note that the change of variables was carried out  exactly,  i.e.  with infinite precision.
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§13:  Conclusion
Inaccuracies exposed by the tests above reinforce the demands of  Prudence:  that our numerical 
root-finder’s accuracy be tested before we rely upon it.  If then we desire numerically computed 
zeros more nearly faithful than  roots(…)  to a polynomial’s coefficients stored in a computer’s 
memory,  we shall have to employ extra-precise arithmetic.  The preparation of coefficients may 
entail extra-precise arithmetic too.  How shall we discover whether extra-precise arithmetic is 
necessary to cope with polynomials that differ greatly from the ones tested here?  This question 
may be answered afterwards by easily computed error-bounds,  for which see

  www.eecs.berkeley.edu/~wkahan/Math128/PolyZbnd.pdf


