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Do  MATLAB’s  lu(…),  inv(…),  /  and  \  have  Failure Modes ?

These exercises are designed to exhibit and explain the perverse behavior of  MATLAB’s  inverse-
related operations  lu(…), inv(…), /  and  \  upon certain matrices.  This perverse behavior occurs 
only very rarely and afflicts other matrix-handling software like  LINPACK  and  LAPACK  too.  As 
three examples will illustrate,  the behavior is perverse for three reasons:

•  It causes gross inaccuracy which could often be avoided by altering algorithms slightly.
•  It can happen to otherwise unexceptionable matrices  about which nothing is wrong.
•  The gross inaccuracy may be merely an artifact of the norm by which it is assessed.

The last point means that gross inaccuracy may go away,  often with no change to computed 
results,  when the norm,  by which variations are deemed  “negligible”  or not,  is replaced by 
another equally plausible norm.  This compounds perversity with perplexity.

A First Example of Failure
A parameter  h  is given accurate to at least ten sig. dec.;  say  h := 1000000.0000 .  Then matrices

 A :=       and   b :=      and later   Y :=  

are constructed,  and the linear system  A·z = b  is to be solved for  z  at least about as accurately 
as it is determined by the given data.  One approximation to  z  is  MATLAB’s  x = A\b :  we may 
expect it to be accurate enough since  MATLAB  carries  53  sig. bits,  worth more than fifteen sig. 
dec.,  and we need only ten.  However,  just to check up on the computation’s accuracy,  we also 
compute matrices  YAY := Y·A·Y  and  Yb := Y·b  and then solve  YAY·vx = Yb  for  vx  by 
computing  MATLAB’s  vx = YAY\Yb ,  from which  Yvx := Y·vx  is obtained.  Ideally we expect  
Yvx ≈ x ≈ z  to within a few rounding errors,  but something else happened on my  Macintosh:

 x =    differs from   Yvx =     in the worst way,

by too little to be obvious but by too much to tolerate.  What results do you get?  Which,  if either,  
is correct?  You can solve  A·z = b  in your head.  Why did  MATLAB  get it wrong?

Iterative Refinement  is a way to improve  (usually)  the computed solution  x  of an equation.  
First compute a residual  r := b – A·x  as accurately as you can at a tolerable price;  then re-use the 
triangular factorization of  A  that occurred during the solution of  A·x = b  to solve  A·∆x = r  for  
∆x ,  though this too will be computed only approximately.  Finally replace  x  by  x + ∆x  to 
enhance its accuracy.  The process may be  iterated  (repeated)  until the  Law of Diminishing 
Returns  renders further iteration futile.  Yvx  did not change,  but  MATLAB  changed  x  to first

 x =    and subsequently   x =  .

What results do you get on your computer?  How do you explain them?  What if  h = 100000000 ?

Hereunder is the script that delivered the foregoing results in  MATLAB 5.2  on my old  Macintosh:
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%  Matlab Script  badscale.m  demonstrates how much
%  scaling a linear system can affect computed results.
h = 1000000.0000  % ...  the parameter,
A = [-2,1,1; 1, h^-2, h^-2; 1, h^-2, 0]
b = [0; 0; 1/h]  % ...  b = A*z ;  solve for  z .
x = A\b  % ...  approximates the solution  z .
Y = diag([1/h, h, h])
YAY = Y*A*Y
Yb = Y*b  % ...  scaled system  Yb = YAY*vz .
vx = YAY\Yb  % ...  approximates scaled solution  vz .
x_Yvx = [x, Y*vx]  % ...  compare solutions.
%  Iterative refinement to improve accuracies:
r = [b, A]*[1; -x]  % ...  r = b - A*x  but computed
%   more accurately on a  Mac Quadra 950 in Matlab 5.2.
dx = A\r  % ...  correction to  x .
Yr = [Yb, YAY]*[1; -vx]
dvx = YAY\Yr
x = x+dx  % ...  updated  x .
vx = vx + dvx  % ...  updated scaled  x .
x_Yvx = [x, Y*vx]  % ...  compare solutions again.
r = [b, A]*[1; -x]  % ...  iterate refinement.
dx = A\r
x = x + dx
x_Yvx = [x, Y*vx]  % ...  compare solutions again.

This script doesn’t mention  MATLAB’s  norm(..., p)  for  p = 1, 2  or  ∞.  Denote one by  ||…|| .

Diagonal scaling that changes  A  to  YAY  can be interpreted as a change of norm from  ||x||  to  

[[x]]  := ||Y–1·x||  for vectors  x  in the domain of  A  which,  since both  A  and  YAY  are symmetric,  
is best regarded as the matrix of a linear map from  column vectors  x  to the  Dual-space  of rows  
w' = (A·x)' .  Dual-spaces and norms are explained at length in course notes posted at

   <www.cs.berkeley.edu/~wkahan/MathH110/NORMlite.pdf> . 

The dual of column-norm  ||x||  is row-norm  ||w'|| := maxx≠o |w'·x|/||x|| ;  the dual of  [[x]]   is  

[[w']]  := maxx≠o |w'·x|/[[x]]  = ||w'·Y|| .  The  Operator Norm  ||A|| := maxx≠o ||(A·x)'||/||x||  is induced 

by  ||x|| ;  and similarly  [[A]]  := maxx≠o [[(A·x)']]/[[x]]  = maxx≠o ||(A·x)'·Y||/||Y–1·x|| = ||YAY|| .  Now 
observe that  A  is far farther from singular when perturbations are gauged by  [[…]]   than by  ||…|| .

Is  [[…]]    more appropriate than  ||…||  to gauge perturbations in our data?  If so,  our data  [A, b] 
will be misconstrued as  Ill-Conditioned  by  MATLAB,  whose programmers had  ||…||  in mind.  
One way to diminish the necessity for mind-reading is to employ iterative refinement routinely.

In general,  the numerical solution of a system  B·z = c  of linear equations is influenced implicitly 
by the choices of three norms:  one for matrices like  B ,  one for columns like  c  in the target 
space of  B ,  and one for columns like  z  in the domain of  B .  All are denoted by the overloaded 

symbol  ||…||  though they may be very different.  Scaling that replaces  B  by,  say,  T–1·B·Y  can 

be reinterpreted as changing those norms to  ||T–1·B·Y|| ,  ||T–1·c||  and  ||Y–1·z||  respectively.  
Iterative refinement is a way to diminish the generally unknown influences of the norms’ choices.   
Sometimes they affect a computed result a lot.  We wish they wouldn’t.  Sometimes they don’t.
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A Second Example of Failure
Perversity is elicited next by two families of  n-by-n  matrices  Bx  and  Cx  dependent upon a real 

parameter  x  restricted henceforth to two values  x = 0  and  x = 1 .  Inverses  Bx
–1  and  Cx

–1  can 
be computed directly,  quickly and accurately from short formulas without invoking  inv(…) .  Its 
perverse behavior will become apparent as  n  grows past the number of significant bits carried by 
the matrix operations’ binary floating-point arithmetic.  53 sig. bits are carried by  MATLAB  on 
practically all commercially significant computers nowadays,  so we shall let  n  grow past  53 .

When  n = 6 ,    Bx :=  .   In general,  Bx  has  –1  below its diagonal,  1  

on its diagonal,  0  above the diagonal,  except for  1  in the last column whose bottom-right-most 
element  Bx(n,n) = 1–x .  Other matrices needed below will be constructed with the aid of two  n-

rows    t' := [ 2, 4, 8, …. 2n–2, 2n–1, 2n–1 ]    and    y' := [ 1, 2, 4, 8, …, 2n–3, 2n–2, 1 ]   (here the 
prime  '  in  y'  denotes an array’s transpose)  and their associated diagonal matrices  T := Diag(t)  
and  Y := Diag(y) ,  plus one more  n-row  e' := [ 0, 0, 0, …. 0, 1 ] .  Now it turns out  (and you 

should confirm)  that   B0
–1 = Y·B0'·T–1   and   Bx

–1 = B0
–1 + x·B0

–1·e·e'·B0
–1/(1 – x/2n–1) .

The sensitivity of  B–1  to infinitesimal perturbations  dB  in  B  can be inferred from the derivative  

d(B–1) = –B–1·dB·B–1  and is customarily gauged by a  Condition Number  κ(B) := ||B–1||·||B||  

because  ||d(B–1)||/||B–1|| ≤ κ(B)·||dB||/||B||  with equality possible for some aptly chosen  dB ≠ O .  
Thus  κ(B)  is a kind of relative magnification factor for the worst perturbations.  The choice of 
norm  ||…||  appears at first not to matter much unless dimension  n  gets huge,  far bigger than any 
value  n  that will be used in this exercise.  We shall use  ||…|| := ||…||∞ ,  which is …

||x||∞ := ( the largest magnitude among the elements of column  x ) = maxy'≠o' y'·x/||y'||∞ ;

||y'||∞ := maxx≠o y'·x/||x||∞ = ( the sum of the magnitudes of the elements of row  y' ) ;

||B||∞ := maxx≠o ||Bx||∞/||x||∞ = maxy'≠o' ||y'B||∞/||y'||∞ = max ||b'||∞  over rows  b'  of  B .

Were a real  n-by-n  matrix  B  chosen at random the expected value of its condition number  κ(B)  
would be not very different from  n .  In this respect our matrices  Bx  are not far from average:

||B0|| = n ;    ||B0
–1|| = 1 ; κ(B0) = n ;

||B1|| = n ;    ||B1
–1|| = 3/2 – 1/(2n–2) ; κ(B1) = 3n/2 – n/(2n–2) .

With these moderate condition numbers neither  B0  nor  B1  can be considered ill-conditioned.  In 

consequence we might expect both  B0
–1  and  B1

–1  to be computed with satisfactory accuracy by  
MATLAB’s  inv(…) .  This is so because,  in general,  we expect  inv(B)  to differ in norm from  

B–1  by not much more than could  (B + ∆B)–1  for some roundoff-induced perturbation  ∆B  no 

worse in norm than   ||∆B|| ≤ eps·g·n5/2·||B||   and almost always very much smaller.  Here  eps  is 

a roundoff threshold like  eps := 1.000…001 – 1 ;   MATLAB’s  eps = 2–52 ≈ 2.22/1016 .  And  g  
is a  “pivot growth factor”  rarely bigger than  8  and almost never bigger than  8n .

1 0 0 0 0 1
1– 1 0 0 0 1

1– 1– 1 0 0 1

1– 1– 1– 1 0 1

1– 1– 1– 1– 1 1

1– 1– 1– 1– 1– 1 x–
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In short,  we might reasonably expect   || inv(Bx) – Bx
–1 ||   to be almost always far smaller than  

18·eps·n7/2  and never to exceed it.  But something else happens.  Shown below are plots of …

       log2|| inv(B1) – B1
–1 || : ––––         log2|| inv(B0) – B0

–1 || : -·-·-·        log2(18·eps·n3) : · · ·  

These results were obtained from  MATLAB 5.2  on a  68040-based  Apple Quadra 950.

Why do the errors in  inv(Bx)  grow far bigger than might reasonably be expected as  n  increases 
towards  53  and beyond?  Why is  inv(B1)  so much worse than  inv(B0) ?

Here is an observation that hints at what is going wrong:   ||B1
–1 – B0

–1|| = 1/2 + 1/(2n–2)   and  
||B1 – B0|| = 1  but   ||inv(B1) – inv(B0)|| = 0   just for  n > 53 .   Why ?  What about  lu(Bx) ?

Now,  to compound the foregoing perversity with perplexity,  let  Cx := T–1·Bx·Y .  It is computed 
exactly because multiplications by  T  and  Y  merely shift binary points  (by adding integers to 
floating-point exponents)  without altering binary floating-point numbers’ sig. bits.  For example,

if  n = 6 ,   Cx = /32 .

Now  Cx
–1 = Y–1·Bx

–1·T =  B0' + x·B0'·e·e'·B0'/(2n–1 – x)    and consequently …
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||C0|| = 1 ;    ||C0
–1|| = n ; κ(C0) = n ;

||C1|| = 1 ;    ||C1
–1|| = n/(1 – 21–n) ; κ(C1) = n/(1 – 21–n) :

||C1 – C0|| = 21–n  ; ||C1
–1 – C0

–1|| = n/(2n–1 – 1) .

Like  Bx ,  matrices  Cx  have condition numbers near the average,  n .  Consequently when  n  gets 

so big that  C1  barely differs from  C0  in norm,  so does  C1
–1  differ little from  C0

–1  in norm.  

And roundoff conforms to expectations in so far as  inv(Cx)  differs little from  Cx
–1  in norm:

     log2|| inv(C1) – C1
–1 || : ––––         log2|| inv(C0) – C0

–1 || : -·-·-·        log2(18·eps·n3) : · · ·  

But,  just as   Cx
–1 = Y–1·Bx

–1·T ,  so does  inv(Cx) = Y–1·inv(Bx)·T  exactly  including all 
rounding errors.  In other words,  every element of  inv(Cx)  has exactly the same sig. bits as has 
the corresponding element of   inv(Bx) ;  only their exponents differ,  so one is as accurate as the 
other so far as  sig. bits go.  Why is  inv(Cx)  so much more accurate than inv(Bx)  in norm?

Iterative Refinement  often improves the accuracy of computed inverses,  though at a cost far from 

negligible.  If an approximation  E  to  B–1  is obtained from triangular factors,  they can be reused 
to enhance accuracy by solving  B·∆E := (I – B·E)  for  ∆E  (approximately)  and then updating  E  
to  E + ∆E .  What does this iterative refinement do for computed inverses above,  and why?

Hereunder are six  MATLAB  programs used to get the foregoing results:
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Y = diag(oy(n)) :
function  y = oy(n)
%  oy(n) = [1, 2, 4, 8, ..., 2^(n-3), 2^(n-2), 1 ]
if  (n < 2),  y = ones(1,n) ;  return,  end
y = [ cumprod([1, 2*ones(1,n-2)]), 1 ] ;

T–1 = diag(oti(n)) :
function  t = oti(n)
%  oti(n) = [ 1/2, 1/4, 1/8, ..., 2^(2-n), 2^(1-n), 2^(1-n) ]
t = cumprod( [ ones(1, n-1)*0.5, 1 ] ) ;

Bx = ob(x, n) :
function  B = ob(x, n)
%             [ +1   0   0   0   1 ]
%             [ -1  +1   0   0   1 ]
%  ob(x, 5) = [ -1  -1  +1   0   1 ] ,  for example.
%             [ -1  -1  -1  +1   1 ]
%             [ -1  -1  -1  -1  1-x]
B = eye(n) - tril(ones(n), -1) ;
B(:,n) = ones(n, 1) ;
B(n,n) = 1-x ;

Bx
–1 = obi(x, n) :

function  Z = obi(x, n)
%  obi(x, n) = inv( ob(x, n) )  accurately without using  inv(...) 
%  but using  ob.m,  oy.m  and  oti.m,  q.v.
B = ob(0, n)' ;
t = oti(n) ;  y = oy(n) ;
Z = (y'*t).*B ;  % = inv(b(0,n))
Z = Z + ((x/(1-x*t(n)))*Z(:,n))*Z(n,:) ;

Cx = oc(x, n) :
function  C = oc(x, n)
%  oc(x, n) = diag(oti(n))*ob(x, n)*diag(oy(n))
C = (oti(n)'*oy(n)).*ob(x,n) ;

Cx
–1 = oci(x, n) :

function  Z = oci(x, n)
%  oci(x, n) = inv(oc(x, n))  accurately without
%  using  inv(...)  but using  ob.m,  q.v.
B = ob(0,n)' ;
Z = B + ((x/(2^(n-1) - x))*B(:,n))*B(n,:) ;

It is tempting to explain the drastically different appraisals of what are essentially the same errors 
in these programs as mere consequences of the uses of drastically different norms to gauge error.  
This explanation’s relativism is mistaken.  Instead,  indications that the triangular factors of  Bx  of 
large dimension  n  would be corrupted by roundoff could and should have been noticed by  lu(…)  
and  inv(…) ,  and should have elicited a warning message and advice to  Change Column Order.  
The next example will help to explain why column order is relevant.
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A Third Example of Failure
The previous examples’ matrices all had inverses that could be computed accurately enough from 
relatively simple formulas.  Next suppose a numerically computed  G  approximates the inverse of 
a given matrix  F  whose inverse is unknown or  (for this example)  determinable from a formula 
too complicated to be worth computing accurately.  How can the accuracy of  G  be gauged?  In 
general,  so far as is known nowadays,  estimating the accuracy of  G  reliably costs at least about 
as much  (time)  again as was spent to compute  G .

For instance,  if we obtained  G  from  MATLAB,  say from  G = inv(F) ,  we could compare it 
with  G1 = inv(G')'  and with  G2 = flipud(inv(fliplr(G))) ,  say.  Agreement proves 
nothing.  Substantial differences would indicate that at least one is wrong,  but which?  Maybe all?

Better information may come from residuals  R := G·F – I  and  L := F·G – I .  Both should vanish 
if  G  is exactly right,  but that hardly ever happens.  Usually at least one of  ||L||  and  ||R||  is tiny.  
Only in very ill-conditioned cases can  ||L||  and  ||R||  differ by many orders of magnitude:

Exercise:  Show that  1/κ(F) ≤ ||L||/||R|| ≤ κ(F) ,  and either bound can achieved.

Our third example will be well-conditioned with condition number  κ(…) < 22 ,  so little will be 
lost by computing only  ||R|| .  It provides upper bounds for the relative error in  G  thus:

Exercise:  Show that  ||G–F–1||/||F–1|| ≤ ||R|| ,  and this bound is achievable.  Show too that  

||G–F–1||/||G|| ≤ ||R||/(1 – ||R||)  provided  ||R|| < 1 .

This exercise’s error bound will be used to assess the inaccuracy of an inverse computed one way,  
and to confirm its accuracy computed another way.

Our third example is a  k·n-by-k·n matrix exemplified for  n = 6   thus:   H :=    in 

which  I  is a  k-by-k  identity  and  M  is a  k-by-k  matrix whose every element is a fraction  ƒ .  

Particular values  k := 4  and  ƒ := 1 – eps = 1 – 1/252 ≈ 0.9999999999999998  were used to 
obtain the numerical results plotted below.  After  iH = inv(H)  was computed,  it was compared 
with  Hi  computed by applying  inv(…)  to  the result of moving the last  k  columns of  H  to its 
front,  and then moving the first  k  rows of this’  inverse to its bottom.  Nearly the same results 
were obtained by using instead   Hi = inv(H')'   or   Hi = flipud(inv(fliplr(H))) .

The point is that  MATLAB  seems to dislike inverting  H  unless its columns are rearranged first.

In the plot below,  the numbers of correct sig. bits are plotted against  n .  (The dimension of  H  is  
4n .)  The graph  —+—  shows the lower bound upon accuracy inferred from the residual of  iH .
The graph  - - * - -  shows the accuracy of  iH  compared with  Hi ,  whose accuracy inferred from 
its residual is plotted in graph  —<>— .  Remember,  the only difference between computed 
inverses  iH  and  Hi  is that  Hi  was computed by swapping rows after inverting the result of 
swapping columns of  H .  If no rounding errors occurred we would have  Hi = iH .

I O O O O I
M– I O O O I
O M– I O O I
O O M– I O I
O O O M– I I

O O O O M– I
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Here is the  MATLAB  program used to generate   H = ok(n, 1-eps, 4) :

function  H = ok(n, f, k)
%  ok(n, f, k)  is  nk-by-nk  with the form shown here for  n = 6 :
%      [ I                   I ]
%      [-M   I               I ]
%      [    -M   I           I ]  in which  I = eye(k)  and
%      [        -M   I       I ]       and  M = ones(k)*f .  
%      [            -M   I   I ]
%      [                -M   I ]
%  If omitted,  k  defaults to  4  and  f  defaults to  1/2 .

if ( nargin < 3 ),  k = 4 ;  end
if ( nargin < 2 ),  f = 0.5 ;  end
u = ones(n-1,1) ;  I = eye(k) ;  M = ones(k)*f ;
J = diag(u, -1) ;  K = eye(n) ;  K(:,n) = [u; 1] ;
H = kron(K, I) - kron(J, M) ;

Why does  MATLAB  so dislike inverting  H  though its condition number never exceeds  22 ?  At  
n = 29  MATLAB  claimed that  H  was practically singular,  but it is nowhere near singular.  How 
well does  Iterative Refinement  overcome  MATLAB’s  peculiar misbehavior?

How does the order of columns affect  MATLAB’s  treatment of all the foregoing examples?  Why?
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