
          ErrBnd                   Math. 128 B                 28 Jan. 1997

                   Error Bounds Associated with Newton’s Iteration
          
                                      W. Kahan
                                     Math. Dept.
                                   Univ. of Calif.
                               Berkeley  CA 94720-3840
          
          
          Suppose we seek a root  z  of the equation  f(z) = o  where  f(x)  
          is a continuously differentiable vector-valued function of the
          vector  x  in a normed space.  Newton’s iteration replaces a guess 
          x  by  x - f’(x)-1f(x)  repeatedly in the hope of convergence to
          z .  Is there some neighborhood around  z  within which iteration
          must converge to  z ?  And if convergence is assured,  yet we
          cannot iterate forever;  at some point we shall accept an
          approximate  z0  despite  f(z0) /= o .  How close is  z0  to  z ?
          
          
          Claim 1:  If  f  is twice differentiable about  z ,  and if for
          ~~~~~~~~  some positive  δ  we find that  || f’(x)-1f"(y) || < 2/δ
                    as  x  and  y  range independently throughout a ball 
                    || x - z || < δ ,  then  Newton’s iteration will converge
                    to the root  z  from every starting point  x  in that
                    ball.  Moreover,  convergence is at least quadratic.
          
          This claim merely reassures us that,  under normal circumstances,
          Newton’s iteration will converge rapidly to a root  z  from any
          starting point close enough to  z ;  under normal circumstances
          f’(z)-1  does exist and  f"(x)  does stay bounded at all  x  near
          z ,  so a positive radius  δ  has to exist.
          
          Proof of Claim 1:  According to Newton’s divided difference
          formula,  f(z) = f(x) + f’(x)(z-x) +  ∆|2f((z,x,x))(z-x)(z-x)  where
          |∆2f  is the second divided difference of  f  and,  according to
          Hermite’s integral representation for divided differences,
          |∆2f((a,b,c)) = The uniformly weighted average of  f"(y)/2  as  y
                         runs over the triangle whose vertices are  a, b, c .
          If  x  lies in the ball  ||x-z|| < δ ,  so does the degenerate
          triangle whose vertices are  z, x, x ,  and therefore so does  y ,
          and therefore  ||f’(x)-1f"(y)/2|| < 1/δ ,  and therefore
            ||f’(x)-1|∆2f((z,x,x))||  =  || Average of  f’(x)-1f"(y)/2 ...||
                                   _<   Average of  ||f’(x)-1f"(y)/2|| ...
                                  <  1/δ .
          Newton’s iteration replaces  x  by  New(x) = x - f’(x)-1f(x) ;  by
          using Newton’s divided difference formula with  f(z) = o  we find
          New(x) - z  =  f’(x)-1|∆2f((z,x,x))(x-z)(x-z) ,  whence follows that
          ||New(x) - z||/δ  _<  ||f’(x)-1|∆2f((z,x,x))|| ||x-z||2/δ  <  (||x-z||/δ)2 .
          Therefore,  starting the iteration  xn+1 := New(xn)  at any  x0
          in the ball leads to a sequence  {xn}  that stays in the ball and
          log(||xn+1-z||/δ)  <  2 log(||xn-z||/δ)  < ... <  2n+1 log(||x0-z||/δ)
                           -->  -∞   as   n --> ∞ ,   as claimed.
          
          Who can wait until  n --> ∞ ?  Instead we shall accept some  xn  as
          good enough;  call it  z0 .  How close is it to a desired root  z ?
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          Claim 2:  If we can find some positive   δ  >  || f’(x)-1f(z0) ||
          ~~~~~~~~  throughout the ball   || x - z0 ||  < δ ,  then at least
                    one root  z   lies in that ball.
          
          Proof:  Define a trajectory  x = y(τ)  by solving the initial
          value problem
                       y(0) = z0 ,
                 d y(τ)/dτ  =  -f’(y(τ))-1f(y(τ))  for all  τ _> 0 .
          Our first task is to discover for how large an interval  0 _< τ < T
          the trajectory stays inside the ball  || y(τ) - z0 || < δ .  We know
          that the trajectory exists inside the ball for some sufficiently
          small  T > 0 ;  let  T  be the largest value for which the
          trajectory stays inside the ball throughout  0 _< τ < T .  Along
          the trajectory we find that  d f(y(τ))/dτ = f’(y(τ)) dy(τ)/dτ =
          = f’(y(τ)) (-f’(y(τ))-1f(y(τ)) ) = -f(y(τ)) ,  whence follows that
          f(y(τ)) = e-τf(z0) .  Therefore the length of the trajectory from 
          τ = 0  up to  τ = T  is
               ∫oT || dy(τ)/dτ || dτ  =   ∫oT || f’(y(τ))-1f(y(τ)) || dτ 
                                 =   ∫oT || f’(y(τ))-1f(z0) || e-τ dτ
                                 <   ∫oT δ e-τ dτ = (1 - e-T) δ
                                 <  δ .
          If  T  were finite we would observe that  || y(T) - z0 ||  could not
          exceed the length of the trajectory from  τ = 0  to  τ = T ,  so 
          y(T)  would have to lie strictly inside the ball,  so  T  could
          not be the largest such value.  Therefore the trajectory  y(τ)
          lies in the ball for all  τ _> 0   and has finite length less than
          the radius  δ  of the ball.  Therefore a limit  z  exists inside
          the ball such that  y(τ) --> z  and  f(y(τ)) = e-τf(z0) --> f(z) = o
          as  τ --> ∞ .  Thus is claim 2 proved.
          
          Comment 1 :  The same conclusion could be drawn from a different
          hypothesis   δ  >  ||f’(x)-1|| ||f(z0)|| .  Besides being stronger
          (harder to satisfy),  this hypothesis is affected by scaling; 
          replacing  f(x)  by  Lf(x)  for any invertible linear operator  L
          alters the stronger hypothesis but does not affect the root  z , 
          nor Newton’s iteration,  nor the  Claims  proved above.  And yet
          the stronger hypothesis is the one more often applied:  Given a
          constant  σ > ||f’(x)-1||  throughout a region known to be farther 
          than  δ  from all roots other than  z ,  we infer that  ||z0-z|| < δ 
          wherever  ||f(z0)|| < δ/σ .
          
          Comment 2 :  Claim 2  concerns  "at least one root"  instead of 
          "just one root"  because the ball may contain more than one root.
          For example,  let  x  be a complex variable,  so that  ||x|| = |x| ; 
          and let  f(x) = 1 + exp(x) ,  so that  z = _+ιπ .  Choose  δ = 2π
          and  z0 = 3.13ι .  Then  f’(x)-1f(z0) = exp(-x)(1 + exp(3.13ι)) ,
          so  |f’(x)-1f(z0)| = 2 exp(-Re(x)) cos(1.565) .  Inside the ball
          |x - z0| < δ ,  we find  -Re(x) < δ = 2π ,  whence follows that
          |f’(x)-1f(z0)| < 2 exp(2π) cos(1.565) = 6.2077... < δ  too.  Two
          roots  z = _+ιπ  lie in the ball.
          
          
          Claim 3:  If  f’  varies so slowly that   ||I - f’(zo)-1f’(x)|| < 1
          ~~~~~~~~  for all  x  in some convex region  R  that includes  zo ,
                    then  f(x)  can vanish at most once in  R .
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          Proof:  We shall find that  F(x) := x - f’(zo)-1 f(x)  "contracts"
          R  in the sense that  ||F(x) - F(y)|| < ||x - y||  for all distinct  x
          and  y  in  R ,  and consequently that  f  can take no value,  o 
          or not,  more than once in  R .  This last inequality follows from
           ||F(x) - F(y)||  =  || x - y - ∫o1 f’(zo)-1 f’(y + τ(x-y))dτ (x-y) || 
                          <_  ∫o1 || I - f’(zo)-1 f’(y + τ(x-y)) ||dτ  ||x - y|| 
                          <  ||x - y|| ,   as claimed.
          
          
          Here’s an example more typical than before.  Let’s apply  Newton’s
          iteration to solve   (λ-υ)(λ+υ) + 2λ = 0  and  2υ(λ-3) = 0  for
          roots  (λ, υ)  =  (0, 0),  (-2, 0)  or  (3, _+√15) .  Knowing the
          roots makes error bounds easier to compare with errors.  Now
          x = (λυ) ,  f(x) = ((λ-υ)(λ+υ)+2λ2υ(λ-3)  ) ,  f’(x) = 2(λ+1  -υυ   λ-3) ,  and
          det(f’(x)) = 4( (λ-1)2+υ2-22 ) ,  so  f’(x)-1  exists everywhere 
          except on the boundary of a circle of radius  2  around  x = (1o) .
          Indeed,  f’(x)-1  = 2(λ-3   υ-υ   λ+1)/det(f’(x)) .
          
          Starting the iteration with  υ = 0  keeps  υ = 0  in all iterates, 
          so the iteration behaves just like Newton’s iteration applied to
          solve  λ2 + 2λ = 0 ,  except possibly at  λ = 3  where  0/0  may
          occur.  Convergence to  λ = 0 or λ = -2  is rapid from any initial
          λ  not too big nor too near  -1 .  Suppose iteration is stopped at
          λ = 0.001 ,  so  z0 = (0.001o  )  and  f(z0) = (0.002001o    ) ,  and then  
          f’(x)-1f(z0) = 0.0010005(3-λυ )/(4 - υ2 - (1-λ)2) .  Using the norm
          ||(λυ)|| = max{|λ|, |υ|} ,  we find throughout a ball  ||x-z0|| < 0.005
          that  ||f’(x)-1f(z0)|| < δ = 0.00101 < 0.005 .  Hence  ||z-z0|| < δ .  
          With a litle work we may infer from  Claim 3  that no other root 
          x  can satisfy  ||x - zo|| < 0.9  roughly.
          
          Starting the iteration with  λ = 3  keeps  λ = 3  in all iterates, 
          so the iteration behaves just like Newton’s iteration applied to
          solve  15 - υ2 = 0 ,  except possibly at  υ = 0  where  0/0  may 
          occur.  Other starting points lead to more complicated behaviour.
          
          Suppose iteration is stopped at  λ = 3.001,  υ = 3.87 ,  so
          z0 = (3.0013.87 )  and  f(z0) = (0.0311010.00774 ) ;  then
             f’(x)-1f(z0)  =  (  0.0155505(λ-3) + 0.00387υ  ) /
                              ( -0.0155505υ + 0.00387(λ-3)  )/ ((λ-3)(λ+1)+υ2)
          Throughout  ||x-z0|| < 0.005 ,  we find  ||f’(x)-1f(z0)|| < δ = 0.0033 .  
          After some work,  we may infer from  Claim 3  that no other root 
          x  can satisfy  ||x - zo|| < 1.8  roughly.
          
          After four roots  z  have been found,  how can we be sure that
          there are no more?  That is an algebraic problem for which,  in
          general,  no simple numerical solution exists.
          
          
          The foregoing examples were comparatively easy to handle because
          the derivative  f’  was not too complicated.  In general,  the
          derivative can be far too complicated to manipulate symbolically by 
          hand;  then different approaches are needed:
             See  Grcar’s  books and papers on  Automated Differentiation;
             and see books on  Interval Arithmetic.
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