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Abstract:

 

A practical way is outlined to bound error accrued during numerical calculations of trajectories.  
The algorithm accommodates uncertainties in the governing differential equation as well as 
error due to the numerical process.  The accrued error is constrained to lie within an ellipsoid 
that can be proved to grow,  as time  

 

τ

 

  increases to  +

 

∞

 

 ,  bigger than the worst possible accrual 
by a factor no worse than  1 + ß

 

√τ

 

  for some constant  ß ,  rather than exponentially bigger,  until 
nonlinearity in the differential equation forces a singularity to manifest itself.
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Here  y

 

0

 

  is a given vector and  f  a given vector-valued function of its vector argument.  
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Given only some kind of bound for  

 

δ

 

y

 

0

 

  and  

 

δ

 

f ,  how can we infer a bound upon  

 

δ

 

y ?

Actually,  in practice we know  y + 

 

δ

 

y  but not  y ;  this will be overlooked now to simplify the 
exposition.  To the same end,  we shall not discuss how the truncation and rounding errors 
incurred by the numerical process that solves the  AIVP  can be incorporated into  

 

δ

 

f  along with 
errors due to idealizations that model a complex physical situation by a simplified expression  f .

Were all perturbations  

 

δ

 

…  infinitesimal,  the accrued error  

 

δ

 

y  would satisfy the  

 

Adjoint

 

  or  

 

Variational Initial Value Problem

 

  associated with the given  AIVP :
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Here  
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  is the matrix of first 
partial derivatives of  f  evaluated at  y
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 ,  the presumed-to-be-known trajectory.  Perturbation  
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f = 
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 ;  however,  whereas  J
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  can be computed from  f

 

'

 

  and  y

 

(
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)

 

 ,  all we know about  

 

δ

 

f  is an upper bound.  Likewise for  δy0 .  Presumably computable,  perhaps functions of  y(τ) ,  
these bounds upon  δf  and  δy0  are the data from which we wish to infer a bound upon  δy(τ) .  
Computing this bound for accrued error along with  y(τ)  is the problem addressed in these notes.

In practice the perturbations  δ…  are not infinitesimal.  The effect in practice of their finiteness 
is to increase the bound upon  δf  by an amount roughly proportional to the product of the square 
of the computed bound upon  δy(τ)  and a bound upon the second derivative of  f .  This increase 
turns the linear  VIVP  into something nonlinear like a  Riccati  equation,  whose solution may 
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become infinite at a finite time  τ  even in some cases when  δy(τ)  is known to stay bounded for 
all finite  τ .  Despite its importance,  this nonlinear contribution is not discussed in these notes.  
Instead,  to simplify the exposition of a subject that is already complicated enough,  δy  is 
assumed to stay so small that its second-order contributions may safely be neglected.

We assume  J(τ)  and  δf  to be continuous for all  τ ;  in practice  δf  may be only piecewise 
continuous.  This is a technicality we could dispatch by converting differential equations into 
equivalent  Volterra  integral equations.  For simplicity’s sake we won’t do that either.

Despite all our simplifications,  the computation of a bound upon  δy  remains so challenging 
that every previously published scheme I know about is prone to producing bounds too big by a 
factor that grows like an exponential function of  τ  when  J(τ)  behaves in a way that the scheme 
dislikes.  The algorithm described here is far less pessimistic;  its bound cannot grow too big by 
a factor bigger than   1 + ß√τ   for some constant  ß  that depends upon moduli of continuity of  
J(τ)  and of the bound for  δf .  The proof of this claim is too long to fit here.  Space and time 
barely suffice for an outline of my algorithm.

My algorithm adjoins to the given  AIVP  another differential equation whose solution,  
intended to be computed simultaneously with  y(τ) ,  is a symmetric matrix  A(τ)  that describes 
an ellipsoid centered at  y(τ)  and surely big enough to enclose  δy(τ) ,  but not too much bigger.  
The adjoined differential equation’s dimension is about half the square of  y ’s  dimension,  so  
A(τ)  may well cost enormously more to compute than  y(τ) .  Since previously published 
schemes typically cost twice as much as mine,  I need not apologize for it.

The Reachable Set:
Let us now write  z  in place of  δy  and  u  in place of  δf  in the  VIVP  above;  it becomes

z'(τ) =  J(τ)·z(τ) + u(τ)    for  τ ≥ 0 ,    z(0) = z0 . (VIVP)
The matrix  J(τ)  is assumed computable;  but for  u(τ)  and  z0  only bounds are available.  We 
construe these bounds as constraints that restrict  u(τ)  and  z0  to certain small regions;  say

u(τ) ∈  ÛÛ(τ)   and   z0 ∈  ÅÅ 
for given centrally symmetric convex bodies  ÛÛ(τ)  and  ÅÅ  characterized by parameters to be 
discussed later.  For instance these bodies could be spheres characterized by their radii,  which 
are then upper bounds for the lengths of  u(τ)  and  z0 .  Parallelepipeds have been used too,  
characterized by the matrices that map a unit hypercube onto them. But we use ellipsoids for 
reasons to be discussed later.

The  Reachable Set  ÔÔ(τ)  consists of all values that  z(τ)  can take compatible with the given 
constraints imposed by  ÛÛ(τ)  and  ÅÅ  upon  u  and  z0  in the  VIVP.  (“Reachable Set”  is a 
term coined by  Control  theorists.)  From the given hypotheses about  ÛÛ(τ)  and  ÅÅ ,  it follows 
that  ÔÔ(τ)  must be a centrally symmetric convex body too.   But generally the shape of  ÔÔ(τ)  is 
not so simple as the shapes of  ÛÛ(τ)  and  ÅÅ .  Regardless of whether the latter are ellipsoids or 
parallelepipeds,  ÔÔ(τ)  need not be any of those.  The best we can expect to do computationally 
is to approximate  ÔÔ(τ)  by one of those simpler figures.  Thus,  our task is to compute whatever 
parameters characterize a simpler centrally symmetric convex body,  ellipsoid or parallelepiped,  
that circumscribes reachable set  ÔÔ(τ)  as tightly as is possible at a tolerable cost.
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Ellipsoidal Bounds:
Any  (open)  ellipsoid  AA  centered at the origin  o  is characterized by an appropriate symmetric 
positive definite matrix  A  as follows:

AA  consists of all vectors  x  that satisfy  xTA–1x < 1 .
The eigenvectors of  A  point in the directions of principal semi-axes of  AA ,  and the 
eigenvalues of  A  are the squared lengths of those semi-axes.  Flattened ellipsoids,  those with 
some semi-axes of zero length,  are represented by singular positive semi-definite matrices  A ,  

for which we must understand the expression  xTA–1x  to require that  x  be confined to the 
range of  A .

A theorem of  Fritz John  (1948)  asserts that any centrally symmetric convex body  ÛÛ  in an  N-
dimensional  space can be circumscribed by an ellipsoid  ŸŸ  tightly enough that the boundary of  
ÛÛ  lies inside  ŸŸ  but outside  ŸŸ/√N .  A short proof of his theorem is posted in lecture notes at  
<http://www.cs.berkeley.edu/~wkahan/MathH110/NORMlite.pdf>.  His chosen candidate  
ŸŸ  is the circumscribing ellipsoid of minimum volume;  its characterizing matrix  Y  minimizes  
det(Y) .  Thus,  little can be lost in spaces of modest dimension if the bounding bodies  ÛÛ(τ)  
and  ÅÅ  containing respectively  u(τ)  and  z0  above are taken to be ellipsoids;  otherwise they 
can be circumscribed by ellipsoids at the cost of worsening our bound  AA(τ)  upon the reachable 
set  ÔÔ(τ)  by at worst a factor  √N .  As error bounds go,  this degree of exacerbated pessimism 
will go unremarked.

Thus we may assume that,  along with the  Jacobian  matrix  J(τ)  of partial derivatives,  we are 
supplied with symmetric positive (semi-)definite matrices  U(τ)  and  A0  whose ellipsoids  
ÛÛ(τ)  and  ÅÅ ,  we are told,  contain  u(τ)  and  z0 .  Often  U(τ)  and  A0  will be diagonal.  Our 
task is to compute a symmetric positive definite matrix  A(τ)  whose ellipsoid  AA(τ)  
circumscribes the reachable set  ÔÔ(τ)  as tightly as possible at a tolerable cost.

The Auxiliary Differential Equation:
First let’s summarize the situation as it stands now.  The given  AIVP
 y'(τ) = f(y(τ))   for   τ ≥ 0 ,   and   y(0) = y0 (AIVP)
is being solved numerically for  y ,  but unknown perturbations  δy(0) = z0  and  δf = u(τ)  
induce in  y  an accrued perturbation  δy = z  that satisfies

z'(τ) =  J(τ)·z(τ) + u(τ)    for  τ ≥ 0 ,    and    z(0) = z0 . (VIVP)
Here  J(τ) = f'(y(τ))  is known,  and so are symmetric positive definite matrices  U(τ)  and  
A(0) = A0  for which

uTU–1u < 1  for  τ ≥ 0 ,   and  z0
TA0

–1z0 < 1  at  τ = 0 .
By constraining  u  and  z0 ,  these inequalities compel the accrual  z  to lie in a  Reachable Set  
ÔÔ(τ)  about which we wish to circumscribe an ellipsoid  AA(τ)  by computing its symmetric 
positive definite matrix  A(τ)  such that

zTA–1z < 1  for every  z  in  ÔÔ ,   for every  τ ≥ 0 .
( Here all matrices except  A0  are functions of  τ .)  Infinitely many matrices  A  fulfill these 
requirements;  we seek one of the smaller ones.
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Here is how to construct one.  First let  α  be any strictly positive  (piecewise-) continuous scalar 
function of  τ ;  later we shall exhibit a good choice for  α .  Then compute  A(τ)  as the solution 
of the following  Auxiliary Differential Equation:

A' =  J·A + A·JT + α·U + A/α   for  τ ≥ 0 ,   and   A(0) = A0 . (ADE)
The solution  A(τ)  of this  ADE  is intended to be computed numerically and simultaneously 
with the solution  y(τ)  of the  AIVP .

Theorem:   zTA–1z < 1  for every  z  in the reachable set  ÔÔ .

Proof of the Theorem:
The theorem’s inequality starts true at  τ = 0 ,  so if increasing  τ  ever makes it false it must do 

so for the first time at some  τ > 0  at which both  zTA–1z = 1  and  (zTA–1z)' ≥ 0 .  To show that 

the last inequality is incompatible with the previous equality we need only expand  (zTA–1z)' :
       (zTA–1z)'  =  (Jz + u)TA–1z – zTA–1(JA + AJT + αU + A/α)A–1z + zTA–1(Jz + u)

 =  uTA–1z + zTA–1u – αzTA–1UA–1z – zTA–1z/α
 =  –(αA–1z – U–1u)TU(αA–1z – U–1u)/α – (1 – uTU–1u)/α
 <  0 ,  as claimed,  so the theorem is true for all  τ > 0 .

How to Choose  α :
Having just proved that ellipsoid  AA  encloses reachable set  ÔÔ ,  we are dismayed to observe 
from the  ADE  that  AA  may well enclose a great deal more than  ÔÔ  if  α  is either too big or 
too small.  Can  α  be so chosen that  AA  is not much bigger than  ÔÔ ?  In fact there is a way,  
albeit impractical,  so to choose  α  that  AA  and  ÔÔ  will share a common support plane  
(tangent)  for all  τ ≥ 0  provided the normal to that plane is fixed in advance.  Even so,  AA  may 
still exceed the size of  ÔÔ  enormously in directions parallel to that plane.  Apparently,  
choosing  α  well is a subtle problem.  All the more surprising,  then,  is the existence of a 
computationally simple choice that always turns out to be adequate:

Choose    α :=  √( trace(A) / trace(U) ) .
For this choice and some others,  I have proved that the diameter of  AA  cannot exceed that of  
ÔÔ  by a factor bigger than  1 + ß√τ ,  where  ß  is a constant that depends upon various attributes 
of  J  and  U .  My proof is still so long that I am too embarrassed to publish it.

Computational Experience:
My earliest experiments with ellipsoidal bounds are still the most satisfying.  The  AIVP  was 
the equations of motion of one of the moons of  Jupiter,  and the  ADE  included crude bounds 
for the gravitational influences of the rest of the solar system plus the contributions of all 
numerical errors.  The computation ran for hundreds of orbits during which the bounding 

ellipsoid  AA  became ever more needle-shaped,  growing roughly like  (1 + τ)2 .  Computation 
was halted only because I wished not to hog the  University of Toronto's  IBM 7094  in  1968 .  
The results confirmed that,  in a situation where coffin-shaped or more general parallepiped-
shaped bounds became infinite after a few orbits,  ellipsoidal bounds did not.
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