Estimated Error Bounds from Cauchy's Iterating Function

Absent an explicit formula for the desired real root z of a given equation f(z) = 0, the equation is transformed into the form of a fixed-point problem: "Find z = U(z)", and then an iteration $x_{n+1} := U(x_n)$ starts from some x_0 close enough to z that $x_n \to z$ as $n \to +\infty$, we hope. A typical example is *Newton's Iterating Function*: $\ddot{U}(x) := x - f(x)/f'(x)$. Its iteration converges *Quadratically* to a simple zero z of f, but only *Linearly* to a multiple zero; in particular, when converging to a double zero z each iteration roughly halves the error $x_n - z$.

At the cost of computing the second derivative f''(x) too, faster convergence is provided by

Cauchy's iterating function $\hat{U}(x) := x - 2(f(x)/f'(x))/(1 + \sqrt{(1 - 2f''(x)f(x)/f'(x)^2)})$. Its iteration converges *Cubically* to a simple zero, and to a double zero with order at least 3/2. Indeed, if f and the desired zero are both real, substituting zero for any imaginary $\sqrt{...}$ that occurs during the computation of Cauchy's iterating function, thus evading complex arithmetic, can only hasten convergence towards a double zero, raising the order to quadratic. Normally, when z is a simple zero, Cauchy's cubic convergenge is computationally faster than Newton's quadratic when, as is usually the case, the computation of f'' adds less than 58% more time to the computation of f and f'. Verification of the foregoing assertions is left to diligent readers.

When f and its first two derivatives take a long time to compute, stopping the iteration as soon as possible becomes urgent. To this end a modest over-estimate of the current iterate's error will play an indispensable role in the stopping criterion. Such an over-estimate is the goal of this note.

Suppose a program intended to solve f(z) = 0 actually computes $f(x) := f(x) - \delta f$ because of roundoff's intervention. Then, instead of z, the best we can expect from the program is a zero $z + \delta z$ of f(x). If z is a simple zero far from every other zero and singularity of f, Newton's iteration supplies a fair estimate for δz , namely $\delta z \approx \delta f/f'(z)$. But when f has two zeros z and $z - \Delta z$ close to each other but far from every other zero and singularity, so that f''(x) varies relatively slowly for x near z and $z - \Delta z$, Cauchy's iterating function offers a better estimate $\delta z \approx 2 (\delta f/f'(z))/(1 + \sqrt{(1 + 2 f''(z) \delta f/f'(z)^2}))$

though it may become complex. Normally we cannot know f's error δf ; if we knew it we'd get rid of it. Instead, our error-analyses estimate the computed f's *Uncertainty*, which is how big $|\delta f|$ cannot be;— it is a rough *Error Bound*. Combine this with an application of the inequality $|h/(1 + \sqrt{1-h})| \le |h|/|1 + \sqrt{1-|h|}|$

 $= \{ \text{ if } |h| \ge 1 \text{ then } \sqrt{|h|} \text{ else } |h|/(1 + \sqrt{1-|h|}) \}$ (even if h is complex) to the last estimate of δz above to deduce that, roughly,

when $2 |\delta f| \ge |f'(z)^2 / f''(z)|$ then $|\delta z| \le \sqrt{(2 |\delta f/f''(z)|)}$; otherwise (and usually) when $2 |\delta f| \le |f'(z)^2 / f''(z)|$ then $|\delta z| \le 2 |\delta f/f'(z)| / (1 + \sqrt{(1 - 2 |f''(z) \delta f/f'(z)^2|)})$.

Digression to prove the alleged inequality

 $|h/(1 + \sqrt{1-h})| \leq |h|/|1 + \sqrt{1-|h|}|$ = { if $|h| \geq 1$ then $\sqrt{|h|}$ else $|h|/(1 + \sqrt{1-|h|})$ even if h is complex. Our task will be done if we can demonstrate why $|1 + \sqrt{1-|h|}| \le |1 + \sqrt{1-h}|$. Squaring both sides reduces our task to proving that $2 \cdot \text{Re}\{\sqrt{1-|h|}\} + |1 - |h|| \le 2 \cdot \text{Re}\{\sqrt{1-h}\} + |1-h|$. Because $|1 - |h|| \le |1-h|$, our task will be done if we prove $\text{Re}\{\sqrt{1-|h|}\} \le \text{Re}\{\sqrt{1-h}\}$. Both sides of this inequality are nonnegative because $\sqrt{\dots}$ is the *Principal* square root, so squaring both sides reduces our task to proving that $1 - |h| + |1 - |h|| \le 1 - \text{Re}\{h\} + |1-h|$. This inequality follows from $|1 - |h|| \le |1-h|$ and $\text{Re}\{h\} \le |h|$. End of proof.

The two sides of the inequality just proved can never be extremely different. We have just proved that their ratio RHS/LHS = $r(h) := |1 + \sqrt{1-h}|/|1 + \sqrt{1-|h|}| \ge 1$ for all complex h. Actually the inequalities $1 \le r(h) \le r(-1) = 1 + \sqrt{2} \approx 2.41421356...$ can be proved by treating the cases $|h| \le 1$ and $|h| \ge 1$ separately.

To see what happens to our overestimates of $|\delta z|$ when the gap Δz between two zeros of f becomes tiny, substitute the approximation $f'(z) \approx f''(z) \Delta z/2$ (do you see how to justify it?) to get two expressions

 $\begin{aligned} \text{if } |\Delta z| &\leq 2\sqrt{2 \cdot |\delta f/f''(z)|} \quad \text{then} \quad |\delta z| &\leq \sqrt{2 \cdot |\delta f/f''(z)|}; \quad \text{otherwise} \\ \text{if } |\Delta z| &\geq 2\sqrt{2 \cdot |\delta f/f''(z)|} \quad \text{then} \quad |\delta z| &\leq 4 \left|\delta f/f''(z)\right| / \left(|\Delta z| + \sqrt{\left(|\Delta z|^2 - 8 \left|\delta f/f''(z)\right| \right)} \right). \end{aligned}$

Since $|\delta f/f''(z)|$ is normally of the order of the arithmetic's roundoff threshold, we see that the computed z 's uncertainty can grow as Δz shrinks until the computed z loses about half the figures carried during computation *unless* f is computed so accurately that $|\delta f/f''(z)|$ shrinks toward zero like Δz .

End of Digression.

Our bounds upon $|\delta z|$ are needed to stop an iteration only if it converges to z from just one side. Otherwise simpler error-bounds for a real zero z could be obtained from *Straddles* as follows:

Suppose two iterates \hat{u} and \hat{u} satisfy $|f(\hat{u})| \ge |\delta f(\hat{u})|$, $|f(\hat{u})| \ge |\delta f(\hat{u})|$ and $f(\hat{u}) \cdot f(\hat{u}) \le 0$; then surely f(x) changes sign at some x between \hat{u} and \hat{u} . Thus, \hat{u} and \hat{u} straddle a zero z (or a pole) of f.

Therefore iteration should stop as soon as either ...

- a sufficiently tight straddle has turned up, or
- |f(x)| is not much bigger than a realistic bound upon $|\delta f(x)|$.

In the latter eventuality, our bounds upon $|\delta z|$ above roughly bound the computed zero's error.