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Estimated Error Bounds  from  Cauchy’s Iterating Function

 

Absent an explicit formula for the desired real root  z  of a given equation  ƒ(z) = 0 ,  the equation 
is transformed into the form of a fixed-point problem:  “ Find  z = U(z) ”,  and then an iteration  
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  to a simple zero  z  of  ƒ ,  but only  

 

Linearly

 

  to a multiple zero;  in particular,  
when converging to a double zero  z  each iteration roughly halves the error  x
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Its iteration converges  

 

Cubically

 

  to a simple zero,  and to a double zero with order at least  3/2 .  
Indeed,  if  ƒ  and the desired zero are both real,  substituting zero for any imaginary  

 

√

 

…  that 
occurs during the computation of  Cauchy’s  iterating function,  thus evading complex arithmetic,  
can only hasten convergence towards a double zero,  raising the order to quadratic.  Normally,  
when  z  is a simple zero,  Cauchy’s  cubic convergenge is computationally faster than  Newton’s  
quadratic when,  as is usually the case,  the computation of  ƒ

 

"

 

  adds less than  58%  more time to 
the computation of  ƒ  and  ƒ

 

'

 

 .   Verification of the foregoing assertions is left to diligent readers.

When  ƒ  and its first two derivatives take a long time to compute,  stopping the iteration as soon 
as possible becomes urgent.  To this end a modest over-estimate of the current iterate’s error will 
play an indispensable role in the stopping criterion.  Such an over-estimate is the goal of this note.

Suppose a program intended to solve  ƒ(z) = 0  actually computes  f(x) := ƒ(x)
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roundoff’s intervention.  Then,  instead of  z ,  the best we can expect from the program is a zero  
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z  of  f(x) .  If  z  is a simple zero far from every other zero and singularity of  ƒ ,  Newton’s  
iteration supplies a fair estimate for  
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z  close to each other but far from every other zero and singularity,  so that  ƒ
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(x)  varies 
relatively slowly for  x  near  z  and  z
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z ,   Cauchy’s  iterating function offers a better estimate
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though it may become complex.  Normally we cannot know  f
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f ;  if we knew it we’d get 
rid of it.  Instead,  our error-analyses estimate the computed  f
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.  Combine this with an application of the inequality
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) }         (even if  h  is complex)

to the last estimate of  δz  above to deduce that,  roughly,

when   2 |δf| ≥ | ƒ'(z)2/ƒ" (z) |   then |δz| ≤ √( 2 | δf/ƒ" (z) | ) ;    otherwise  (and usually)

when   2 |δf| ≤ | ƒ'(z)2/ƒ" (z) |   then |δz| ≤ 2 |δf/ƒ'(z)| /( 1 + √( 1 – 2 | ƒ" (z) δf/ƒ'(z)2 | ) ) .
…

Digression  to prove the alleged inequality
| h/( 1 + √1–h ) |  ≤  |h|/| 1 + √1–|h| | 

    =  { if  |h| ≥ 1  then  √|h|  else  |h|/( 1 + √1–|h| ) }   even if  h  is complex.
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Our task will be done if we can demonstrate why  | 1 + √1–|h| |  ≤  | 1 + √1–h | .  Squaring both 
sides reduces our task to proving that   2·Re{√1–|h|} + |1 – |h||  ≤  2·Re{√1–h} + |1–h| .  Because  
|1 – |h|| ≤ |1–h| ,  our task will be done if we prove  Re{√1–|h|} ≤ Re{√1–h} .  Both sides of this 
inequality are nonnegative because  √…  is the  Principal  square root,  so squaring both sides 
reduces our task to proving that   1 – |h| + |1 – |h||  ≤  1 – Re{h} + |1–h| .  This inequality follows 
from   |1 – |h|| ≤ |1–h|   and   Re{h} ≤ |h| .  End of proof.

The two sides of the inequality just proved can never be extremely different.  We have just proved 
that their ratio  RHS/LHS = r(h) := | 1 + √1–h |/| 1 + √1–|h| | ≥ 1  for all complex  h .  Actually  the 
inequalities  1 ≤ r(h) ≤ r(–1) = 1 + √2 ≈ 2.41421356…  can be proved by treating the cases  |h| ≤ 1  
and  |h| ≥ 1  separately.

To see what happens to our overestimates of  |δz|  when the gap  ∆z  between two zeros of  ƒ  becomes tiny,  substitute 
the approximation  ƒ'(z) ≈ ƒ" (z) ∆z/2  (do you see how to justify it?)  to  get two expressions

if  |∆z| ≤ 2√ 2·|δf/ƒ" (z)|    then   |δz| ≤ √ 2·|δf/ƒ" (z)| ;          otherwise

if  |∆z| ≥ 2√ 2·|δf/ƒ" (z)|    then   |δz| ≤ 4 |δf/ƒ" (z)|/( |∆z| + √( |∆z|2 – 8 |δf/ƒ" (z)| ) ) .
Since  |δf/ƒ" (z)|  is normally of the order of the arithmetic’s roundoff threshold,  we see that the computed  z ’s  
uncertainty can grow as  ∆z  shrinks until the computed  z  loses about half the figures carried during computation  
unless  f  is computed so accurately that  |δf/ƒ" (z)|  shrinks toward zero like  ∆z .

End of Digression.

Our bounds upon  |δz|  are needed to stop an iteration only if it converges to  z  from just one side.  
Otherwise simpler error-bounds for a real zero  z  could be obtained from  Straddles  as follows:

Suppose two iterates  ù  and  ú  satisfy  |f(ù)| ≥ |δf(ù)| ,  |f(ú)| ≥ |δf(ú)|  and  f(ù)·f(ú) ≤ 0 ;  then 
surely  ƒ(x)  changes sign at some  x  between  ù  and  ú .  Thus,  ù  and  ú  straddle a zero  z  (or a 
pole)  of  ƒ .

Therefore iteration should stop as soon as either …
•  a sufficiently tight straddle has turned up,    or
•  |f(x)|  is not much bigger than a realistic bound upon  |δf(x)| .

In the latter eventuality,  our bounds upon  |δz|  above roughly bound the computed zero’s error.


