Estimated Error Bounds from Cauchy's Iterating Function

Absent an explicit formula for the desired real root z of a given equation $f(\mathrm{z})=0$, the equation is transformed into the form of a fixed-point problem: " Find $z=U(z)$ ", and then an iteration $\mathrm{x}_{\mathrm{n}+1}:=\mathrm{U}\left(\mathrm{x}_{\mathrm{n}}\right)$ starts from some x_{0} close enough to z that $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{z}$ as $\mathrm{n} \rightarrow+\infty$, we hope. A typical example is Newton's Iterating Function: Ü $(\mathrm{x}):=\mathrm{x}-f(\mathrm{x}) / f^{\prime}(\mathrm{x})$. Its iteration converges Quadratically to a simple zero z of f, but only Linearly to a multiple zero; in particular, when converging to a double zero z each iteration roughly halves the error $\mathrm{x}_{\mathrm{n}}-\mathrm{z}$.

At the cost of computing the second derivative $f^{\prime \prime}(x)$ too, faster convergence is provided by
Cauchy's iterating function $\hat{\mathrm{U}}(\mathrm{x}):=\mathrm{x}-2\left(f(\mathrm{x}) / f^{\prime}(\mathrm{x})\right) /\left(1+\sqrt{ }\left(1-2 f^{\prime \prime}(\mathrm{x}) f(\mathrm{x}) / f^{\prime}(\mathrm{x})^{2}\right)\right)$. Its iteration converges Cubically to a simple zero, and to a double zero with order at least $3 / 2$. Indeed, if f and the desired zero are both real, substituting zero for any imaginary $\sqrt{\ldots}$ that occurs during the computation of Cauchy's iterating function, thus evading complex arithmetic, can only hasten convergence towards a double zero, raising the order to quadratic. Normally, when z is a simple zero, Cauchy's cubic convergenge is computationally faster than Newton's quadratic when, as is usually the case, the computation of $f^{\prime \prime}$ adds less than 58% more time to the computation of f and f^{\prime}. Verification of the foregoing assertions is left to diligent readers.

When f and its first two derivatives take a long time to compute, stopping the iteration as soon as possible becomes urgent. To this end a modest over-estimate of the current iterate's error will play an indispensable role in the stopping criterion. Such an over-estimate is the goal of this note.

Suppose a program intended to solve $f(\mathrm{z})=0$ actually computes $\mathrm{f}(\mathrm{x}):=f(\mathrm{x})-\delta \mathrm{f}$ because of roundoff's intervention. Then, instead of z, the best we can expect from the program is a zero $\mathrm{z}+\delta \mathrm{z}$ of $\mathrm{f}(\mathrm{x})$. If z is a simple zero far from every other zero and singularity of f, Newton's iteration supplies a fair estimate for $\delta \mathrm{z}$, namely $\delta \mathrm{z} \approx \delta \mathrm{f} / f^{\prime}(\mathrm{z})$. But when f has two zeros z and $\mathrm{z}-\Delta \mathrm{z}$ close to each other but far from every other zero and singularity, so that $f^{\prime \prime}(\mathrm{x})$ varies relatively slowly for x near z and $z-\Delta z$, Cauchy's iterating function offers a better estimate

$$
\delta z \approx 2\left(\delta \mathrm{f} / f^{\prime}(\mathrm{z})\right) /\left(1+\sqrt{ }\left(1+2 f^{\prime \prime}(\mathrm{z}) \delta \mathrm{f} / f^{\prime}(\mathrm{z})^{2}\right)\right)
$$

though it may become complex. Normally we cannot know f's error δf; if we knew it we'd get rid of it. Instead, our error-analyses estimate the computed f's Uncertainty, which is how big $|\delta f|$ cannot be; - it is a rough Error Bound. Combine this with an application of the inequality

$$
\begin{aligned}
& |\mathrm{h} /(1+\sqrt{1-\mathrm{h}})| \leq|\mathrm{h}| /|1+\sqrt{1-\mid \mathrm{h}}|
\end{aligned}
$$

to the last estimate of δz above to deduce that, roughly,
when $2|\delta f| \geq\left|f^{\prime}(z)^{2} / f^{\prime \prime}(z)\right|$ then $|\delta z| \leq \sqrt{ }\left(2\left|\delta f / f^{\prime \prime}(z)\right|\right) ; \quad$ otherwise (and usually)
when $2|\delta \mathrm{f}| \leq\left|f^{\prime}(\mathrm{z})^{2} / f^{\prime \prime}(\mathrm{z})\right|$ then $|\delta \mathrm{z}| \leq 2\left|\delta \mathrm{f} / f^{\prime}(\mathrm{z})\right| /\left(1+\sqrt{ }\left(1-2\left|f^{\prime \prime}(\mathrm{z}) \delta \mathrm{f} / f^{\prime}(\mathrm{z})^{2}\right|\right)\right)$.

Digression to prove the alleged inequality

$$
\begin{aligned}
& |\mathrm{h} /(1+\sqrt{1-\mathrm{h}})| \leq|\mathrm{h}| /|1+\sqrt{1-\mathrm{h}}| \\
& =\{\text { if }|\mathrm{h}| \geq 1 \text { then } \sqrt{|\mathrm{h}|} \text { else }|\mathrm{h}| /(1+\sqrt{1-|\mathrm{h}|})\} \text { even if } \mathrm{h} \text { is complex. }
\end{aligned}
$$

Our task will be done if we can demonstrate why $|1+\sqrt{1-|h|}| \leq|1+\sqrt{1-h}|$. Squaring both sides reduces our task to proving that $2 \cdot \operatorname{Re}\{\sqrt{1-\mid h}\}+|1-|h|| \leq 2 \cdot \operatorname{Re}\{\sqrt{1-h}\}+|1-h|$. Because $|1-|\mathrm{h}|| \leq|1-\mathrm{h}|$, our task will be done if we prove $\operatorname{Re}\{\sqrt{1-\mid \mathrm{h}}\} \leq \operatorname{Re}\{\sqrt{1-\mathrm{h}}\}$. Both sides of this inequality are nonnegative because $\sqrt{\ldots}$ is the Principal square root, so squaring both sides reduces our task to proving that $1-|\mathrm{h}|+|1-|\mathrm{h}|| \leq 1-\operatorname{Re}\{\mathrm{h}\}+|1-\mathrm{h}|$. This inequality follows from $|1-|h|| \leq|1-\mathrm{h}|$ and $\operatorname{Re}\{\mathrm{h}\} \leq|\mathrm{h}|$. End of proof.

The two sides of the inequality just proved can never be extremely different. We have just proved that their ratio RHS/LHS $=\mathrm{r}(\mathrm{h}):=|1+\sqrt{1-\mathrm{h}}| /|1+\sqrt{1-\mid \mathrm{h}}| \geq 1$ for all complex h . Actually the inequalities $1 \leq \mathrm{r}(\mathrm{h}) \leq \mathrm{r}(-1)=1+\sqrt{2} \approx 2.41421356 \ldots$ can be proved by treating the cases $|\mathrm{h}| \leq 1$ and $|\mathrm{h}| \geq 1$ separately.

To see what happens to our overestimates of $|\delta z|$ when the gap Δz between two zeros of f becomes tiny, substitute the approximation $f^{\prime}(z) \approx f^{\prime \prime}(z) \Delta z / 2$ (do you see how to justify it?) to get two expressions

$$
\begin{aligned}
& \text { if }|\Delta z| \leq 2 \sqrt{2 \cdot \mid \delta f / f^{\prime \prime}(\mathrm{z})} \quad \text { then } \quad|\delta z| \leq \sqrt{2 \cdot\left|\delta f / f^{\prime \prime}(\mathrm{z})\right| ; ~ o t h e r w i s e ~} \\
& \text { if }|\Delta z| \geq 2 \sqrt{2 \cdot\left|\delta f / f^{\prime \prime}(z)\right|} \text { then }|\delta z| \leq 4\left|\delta f / f^{\prime \prime}(z)\right| /\left(|\Delta z|+\sqrt{ }\left(|\Delta z|^{2}-8\left|\delta f / f^{\prime \prime}(z)\right|\right)\right) \text {. }
\end{aligned}
$$

Since $\left|\delta \mathrm{f} / \mathrm{f}^{\prime \prime}(\mathrm{z})\right|$ is normally of the order of the arithmetic's roundoff threshold, we see that the computed z 's uncertainty can grow as $\Delta \mathrm{z}$ shrinks until the computed z loses about half the figures carried during computation unless f is computed so accurately that $\left|\delta \mathrm{f} / \mathrm{f}^{\prime \prime}(\mathrm{z})\right|$ shrinks toward zero like $\Delta \mathrm{z}$.

End of Digression.

Our bounds upon $|\delta z|$ are needed to stop an iteration only if it converges to z from just one side. Otherwise simpler error-bounds for a real zero z could be obtained from Straddles as follows:

Suppose two iterates ù and ú satisfy $|f(\hat{u})| \geq|\delta f(\hat{u})|,|f(u ́)| \geq|\delta f(u ́)|$ and $f(u ̀) \cdot f(u ́) \leq 0$; then surely $f(\mathrm{x})$ changes sign at some x between ù and ú. Thus, ù and ú straddle a zero z (or a pole) of f.

Therefore iteration should stop as soon as either ...

- a sufficiently tight straddle has turned up, or
- $|\mathrm{f}(\mathrm{x})|$ is not much bigger than a realistic bound upon $|\delta \mathrm{f}(\mathrm{x})|$.

In the latter eventuality, our bounds upon $|\delta z|$ above roughly bound the computed zero's error.

