Idempotent Binary->Decimal->Binary Conversion

Suppose binary floating-point carries p sig. bits, and floating-point decimal strings are put out with P sig. dec. How big a value P suffices to ensure that correctly rounded conversion from binary to decimal and then from decimal back to binary recreates the original binary number?

Consider a real number x in a *Binade* $2^{B} \le x \le 2^{B+1}$ and in a *Decade* $10^{D} \le x \le 10^{D+1}$ where B and D are suitable integers; this implies that $2^{B} \le 10^{D+1}$ and $10^{D} \le 2^{B+1}$. The gap between adjacent binary floating-point numbers near x is 2^{B+1-p} ; the gap between adjacent floating-point decimal numbers near x is 10^{D+1-P} . Conversion from binary to decimal will incur a rounding error no bigger than $5 \cdot 10^{D-P}$, and then conversion back to binary will incur an additional rounding error no bigger than 2^{B-p} . So long as these two rounding errors add up to less than the gap between adjacent binary numbers, the original number must be recreated; this means that when P is so big that $5 \cdot 10^{D-P} + 2^{B-p} < 2^{B+1-p}$ then P is big enough. This last inequality requires $P > D+1 - (B+1-p) \cdot \log_{10}2$. It must be satisfied when $P > 1 + p \cdot \log_{10}2$ because, as we saw above, $D \le (B+1) \cdot \log_{10}2$. Therefore P is sufficiently big when $P \ge \overline{P} := \text{ceil}(1 + p \cdot \log_{10}2) = \text{ceil}(1 + p \cdot 0.30103...)$.

For instance, 8-byte wide double-precision floating-point numbers have precision p = 53, for which apparently a sufficiently big P = 17, barely bigger than $16.9... = 1 + p \cdot 0.30103...$. No smaller P suffices, as can be verified by converting binary numbers barely less than 1024.

The converse problem, so to speak, is to determine how *small* a value P suffices to ensure that correctly rounded conversion from decimal to binary and then from binary back to decimal recreates the original decimal number. Reasoning like that above implies that a sufficiently small $P \le \underline{P} := \text{floor}((p-1) \cdot \log_{10} 2) = \text{floor}((p-1) \cdot 0.3010299...)$. For instance, when p = 53 then P = 15 is small enough but 16 is not, as examples barely less

than 0.001 reveal. Thus, for p = 53 sig. bits, the idempotent (reproducing) conversions are Binary->Decimal->Binary when $P \ge \overline{P} := 17$ sig. dec., Decimal->Binary->Decimal when $P \le P := 15$ sig. dec.

The difference between $\underline{P} = 15$ and $\overline{P} = 17$ is unusually small. For different binary precisions the differences are bigger:

For single-precision binary	p = 24, the decimal precisions are	$\underline{\mathbf{P}} = 6 \text{ and } \overline{\mathbf{P}} = 9$.
double-extended	p = 64	$\underline{P} = 18$ and $\overline{P} = 21$.
quadruple-precision	p = 113	$\underline{P} = 33$ and $\overline{P} = 36$.
difference between P and \overline{P} ca	n be narrowed by sufficiently restrict	ing the range of

The difference between \underline{P} and \underline{P} can be narrowed by sufficiently restricting the numbers x being converted, but that is a story for another day.