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Suppose binary floating-point carries  p  sig. bits,  and floating-point decimal strings are put out 
with  P  sig. dec.  How big a value  P  suffices to ensure that correctly rounded conversion from 
binary to decimal and then from decimal back to binary recreates the original binary number?
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B  and  D  are suitable integers;  this implies that  2
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 .  The gap between 

adjacent binary floating-point numbers near  x  is  2

 

B+1–p

 

 ;  the gap between adjacent floating-

point decimal numbers near  x  is  10

 

D+1–P

 

 .  Conversion from binary to decimal will incur a 

rounding error no bigger than  5·10

 

D–P

 

 ,  and then conversion back to binary will incur an 

additional rounding error no bigger than  2

 

B–p

 

 .  So long as these two rounding errors add up to 
less than the gap between adjacent binary numbers,  the original number must be recreated;  this 

means that when  P  is so big that  5·10
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  then  P  is big enough.  This last 
inequality requires  P > D+1 – (B+1–p)·log
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2 .  It must be satisfied when  P > 1 + p·log
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because,  as we saw above,  D 
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2 .  Therefore  P  is sufficiently big when
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 P := ceil( 1 + p·log
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30103…) .

For instance,  8-byte  wide double-precision floating-point numbers have precision  p = 53 ,  for 
which apparently a sufficiently big  P = 17 ,  barely bigger than  16

 

.

 

9… = 1 + p·0

 

.

 

30103… .  No 
smaller  P  suffices,  as can be verified by converting binary numbers barely less than  1024 .

The converse problem,  so to speak,  is to determine how  

 

small

 

  a value  P  suffices to ensure that 
correctly rounded conversion from decimal to binary and then from binary back to decimal 
recreates the original decimal number.  Reasoning like that above implies that a sufficiently small
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 P := floor( (p–1)·log
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2 ) = floor( (p–1)·0.3010299… ) .
For instance,  when  p = 53  then  P = 15  is small enough but  16  is not,  as examples barely less 
than  0

 

.

 

001  reveal.  Thus,  for  p = 53  sig. bits,  the idempotent  (reproducing)  conversions are
Binary–>Decimal–>Binary     when  P 

 

≥

 

 P := 17  sig. dec.,
Decimal–>Binary–>Decimal  when  P 

 

≤

 

 P := 15  sig. dec.

The difference between  P = 15  and  P = 17  is unusually small.  For different binary precisions 
the differences are bigger:

For single-precision binary p = 24 ,  the decimal precisions are P = 6  and  P = 9 .
… double-extended p = 64  P = 18  and  P = 21 .
…  quadruple-precision p = 113 P = 33  and  P = 36 .

The difference between  P  and  P  can be narrowed by sufficiently restricting the range of 
numbers  x  being converted,  but that is a story for another day.
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