Idempotent Binary->Decimal->Binary Conversion

Suppose binary floating-point carries p sig. bits, and floating-point decimal strings are put out with P sig. dec. How big a value P suffices to ensure that correctly rounded conversion from binary to decimal and then from decimal back to binary recreates the original binary number?

Consider a real number x in a Binade $2^{\mathrm{B}} \leq \mathrm{x} \leq 2^{\mathrm{B}+1}$ and in a Decade $10^{\mathrm{D}} \leq \mathrm{x} \leq 10^{\mathrm{D}+1}$ where B and D are suitable integers; this implies that $2^{\mathrm{B}} \leq 10^{\mathrm{D}+1}$ and $10^{\mathrm{D}} \leq 2^{\mathrm{B}+1}$. The gap between adjacent binary floating-point numbers near x is $2^{\mathrm{B}+1-\mathrm{p}}$; the gap between adjacent floatingpoint decimal numbers near x is $10^{\mathrm{D}+1-\mathrm{P}}$. Conversion from binary to decimal will incur a rounding error no bigger than $5 \cdot 10^{\mathrm{D}-\mathrm{P}}$, and then conversion back to binary will incur an additional rounding error no bigger than $2^{\mathrm{B}-\mathrm{p}}$. So long as these two rounding errors add up to less than the gap between adjacent binary numbers, the original number must be recreated; this means that when P is so big that $5 \cdot 10^{\mathrm{D}-\mathrm{P}}+2^{\mathrm{B}-\mathrm{p}}<2^{\mathrm{B}+1-\mathrm{p}}$ then P is big enough. This last inequality requires $\mathrm{P}>\mathrm{D}+1-(\mathrm{B}+1-\mathrm{p}) \cdot \log _{10} 2$. It must be satisfied when $\mathrm{P}>1+\mathrm{p} \cdot \log _{10} 2$ because, as we saw above, $\mathrm{D} \leq(\mathrm{B}+1) \cdot \log _{10} 2$. Therefore P is sufficiently big when

$$
\mathrm{P} \geq \overline{\mathrm{P}}:=\operatorname{ceil}\left(1+\mathrm{p} \cdot \log _{10} 2\right)=\operatorname{ceil}(1+\mathrm{p} \cdot 0.30103 \ldots)
$$

For instance, 8-byte wide double-precision floating-point numbers have precision $\mathrm{p}=53$, for which apparently a sufficiently big $\mathrm{P}=17$, barely bigger than $16.9 \ldots=1+\mathrm{p} \cdot 0.30103 \ldots$. No smaller P suffices, as can be verified by converting binary numbers barely less than 1024.

The converse problem, so to speak, is to determine how small a value P suffices to ensure that correctly rounded conversion from decimal to binary and then from binary back to decimal recreates the original decimal number. Reasoning like that above implies that a sufficiently small $\mathrm{P} \leq \underline{\mathrm{P}}:=$ floor $(\mathrm{p}-1) \cdot \log _{10} 2$) = floor ($\left.\mathrm{p}-1\right) \cdot 0.3010299 \ldots$).
For instance, when $\mathrm{p}=53$ then $\mathrm{P}=15$ is small enough but 16 is not, as examples barely less than 0.001 reveal. Thus, for $\mathrm{p}=53 \mathrm{sig}$. bits, the idempotent (reproducing) conversions are Binary->Decimal->Binary when $\mathrm{P} \geq \overline{\mathrm{P}}:=17$ sig. dec., Decimal->Binary->Decimal when $\mathrm{P} \leq \underline{\mathrm{P}}:=15$ sig. dec.

The difference between $\underline{P}=15$ and $\overline{\mathrm{P}}=17$ is unusually small. For different binary precisions the differences are bigger:

For single-precision binary $p=24$, the decimal precisions are $\underline{P}=6$ and $\overline{\mathrm{P}}=9$.
... double-extended $\quad \mathrm{p}=64 \quad \underline{\mathrm{P}}=18$ and $\overline{\mathrm{P}}=21$.
\ldots quadruple-precision $\quad \mathrm{p}=113 \quad \underline{\mathrm{P}}=33$ and $\overline{\mathrm{P}}=36$.
The difference between $\underline{\mathrm{P}}$ and $\overline{\mathrm{P}}$ can be narrowed by sufficiently restricting the range of numbers x being converted, but that is a story for another day.

