Experimental Numerical Quadrature of Improper Integrals

Abstract: A powerful scheme for the numerical evaluation of $\int_{A}^{B} f(x) d x$ approximates it by

$$
\sum_{-\infty<\mathrm{n}<\infty} \mathrm{f}(\mathrm{X}(\mathrm{n} \cdot \Delta \mathrm{w})) \cdot \mathrm{X}^{\prime}(\mathrm{n} \cdot \Delta \mathrm{w}) \cdot \Delta \mathrm{w}
$$

as $\Delta \mathrm{w} \rightarrow 0$ for substitutions $\mathrm{x}:=\mathrm{X}(\mathrm{w})$ like $\mathrm{X}(\mathrm{w}):=(\mathrm{A}+\mathrm{B}) / 2+\tanh (\mu+\mathrm{U} \cdot \sinh (\mathrm{w})) \cdot(\mathrm{B}-\mathrm{A}) / 2$ that approach the integral's endpoints extremely quickly - doubly exponentially for this X . Such substitutions were introduced by Takahashi and Mori about four decades ago, and have been found to tolerate mild singularities of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{A}$ and/or $\mathrm{x}=\mathrm{B}$ by, among others,
D.H. Bailey et al. [2005] "A Comparison of Three High-Precision

Quadrature Schemes" pp. 317-329 of Experimental Math. 14:3 .
Convergence as $\Delta \mathrm{w} \rightarrow 0$ is ultimately astonishingly fast, usually like $\exp (-$ Const/ $\Delta \mathrm{w})$. Questions arise when the scheme is adapted to fixed-precision floating-point arithmetic in an environment like, say, MATLAB's, which is predisposed more to vectorized than to parallel computations:
<> How should $\mathrm{X}(\mathrm{w})$ be chosen; in this instance, the constants μ and U ?
<> How should the infinite sum on n be truncated to a finite sum?
<> To what extent can the sum be compensated for that truncation?
<> If $\Delta \mathrm{w}=\mathrm{w}_{\text {max }} \cdot 2^{-\mathrm{k}}$ for $0 \leq \mathrm{k} \leq<\mathrm{K}$, what are good choices for $\mathrm{w}_{\max }$ and K ?
<> How should a disgustingly parallel \sum_{n} be vectorized instead?
<> How reliably can the error $\left|\sum_{n}-\int\right|$ be estimated?
<> How do roundoff and over/underflow complicate these questions?
Only a few if these questions were answered for the [Integrate] key on the HP-34C and HP-15C calculators over three decades ago; see W. Kahan [1980] "Handheld Calculator Evaluates Integrals" pp. 23-32 of The Hewlett-Packard Journal Aug. 1980
also posted at www.eecs.berkeley.edu/~wkahan/Math128/INTGTkey.pdf .

Coping with Roundoff in $\mathrm{X}(\mathrm{w}):=(\mathrm{A}+\mathrm{B}) / 2+\tanh (\mu+\mathrm{U} \cdot \sinh (\mathrm{w})) \cdot(\mathrm{B}-\mathrm{A}) / 2$
As (vectorized) w runs from $-\infty$ to $+\infty$ we hope to compute $X(w)$ and its derivative

$$
X^{\prime}(\mathrm{w})=\operatorname{sech}^{2}(\mu+\mathrm{U} \cdot \sinh (\mathrm{w})) \cdot \cosh (\mathrm{w}) \cdot \mathrm{U} \cdot(\mathrm{~B}-\mathrm{A}) / 2
$$

about as accurately as roundoff allows, and with only two calls on the Math. library.
First compute $\mathrm{s}:=\sinh (\mathrm{w})$ and $\mathrm{c}:=\sqrt{ }\left(1+\mathrm{s}^{2}\right) \ldots=\cosh (\mathrm{w})$; and then compute

$$
\sigma(\mathrm{w}):=\mu+\mathrm{U} \cdot \mathrm{~s}, \quad \ldots=\text { the argument of } \tanh (\sigma(\mathrm{w})) .
$$

Where $|\sigma(\mathrm{w})|<\operatorname{arcsech}(1 / \sqrt{ } 2)=\operatorname{arctanh}(1 / \sqrt{ } 2) \approx 0.881373587 \ldots$ we compute

$$
\tau(\mathrm{w}):=\boldsymbol{\operatorname { t a n h }}(\sigma(\mathrm{w})) \text { and } \xi(\mathrm{w}):=\mathrm{c}-\tau(\mathrm{w}) \cdot \mathrm{c} \cdot \tau(\mathrm{w}) \ldots=\operatorname{sech}^{2} \cdot \cosh .
$$

Then $\mathrm{X}(\mathrm{w}):=(\mathrm{A}+\mathrm{B}) / 2+\tau(\mathrm{w}) \cdot(\mathrm{B}-\mathrm{A}) / 2$ and $\quad \mathrm{X}^{\prime}(\mathrm{w}):=\xi(\mathrm{w}) \cdot \mathrm{U} \cdot(\mathrm{B}-\mathrm{A}) / 2$.
Where $\sigma(\mathrm{w}) \leq-\operatorname{arcsech}(1 / \sqrt{ } 2)$ we compute
$\varepsilon(w):=\exp (\sigma(\mathrm{w})), \quad \rho(\mathrm{w}):=2 \cdot \varepsilon(w) /\left(1+\varepsilon(w)^{2}\right)$ and $\xi(\mathrm{w}):=\rho(\mathrm{w})^{2} \cdot \mathrm{c} \ldots=\operatorname{sech}^{2} \cdot \cosh$.
Then $\quad \mathrm{X}(\mathrm{w}):=\mathrm{A}+\varepsilon(w) \cdot \rho(\mathrm{w}) \cdot(\mathrm{B}-\mathrm{A}) / 2 \quad$ and $\quad \mathrm{X}^{\prime}(\mathrm{w}):=\xi(\mathrm{w}) \cdot \mathrm{U} \cdot(\mathrm{B}-\mathrm{A}) / 2$.
Similarly where $\sigma(\mathrm{w}) \geq+\operatorname{arcsech}(1 / \sqrt{ } 2), \quad \varepsilon(w):=\exp (-\sigma(\mathrm{w}))$ and $\mathrm{X}(\mathrm{w}):=\mathrm{B}-\ldots$.

