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Experimental Numerical Quadrature of Improper Integrals

 

Abstract:
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2            
that approach the integral’s endpoints extremely quickly —  doubly exponentially for this  X .  Such 
substitutions were introduced by  Takahashi and Mori  about four decades ago,  and have been found 
to tolerate mild singularities of  f

 

(

 

x

 

)

 

  at  x = A  and/or  x = B  by,  among others,
D.H. Bailey et al. [2005] “A Comparison of Three High-Precision 
Quadrature Schemes” pp. 317-329 of  

 

Experimental Math

 

. 

 

14

 

:3 .     
Convergence as  

 

∆

 

w 

 

→ 

 

0  is ultimately astonishingly fast,  usually like  exp(–Const

 

/

 

∆

 

w) .  Questions 
arise when the scheme is adapted to fixed-precision floating-point arithmetic in an environment like,  
say,  M

 

ATLAB

 

’s,  which is predisposed more to vectorized than to parallel computations:
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 How should  X
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w
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  be chosen;  in this instance,  the constants  

 

µ

 

 and U  ? 
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 How should the infinite sum on  n  be truncated to a finite sum? 
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 To what extent can the sum be compensated for that truncation? 
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∆

 

w = w
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-k

 

  for  0 
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 < K ,  what are good choices for  w

 

max

 

  and K  ? 
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 How should a disgustingly parallel  

 

∑

 

n

 

  be vectorized instead? 
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 How reliably can the error  

 

|
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∫

 

 

 

|

 

  be estimated? 
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 How do roundoff and over/underflow complicate these questions? 
Only a few if these questions were answered for the  [Integrate]  key on the  HP-34C and HP-15C  
calculators over three decades ago;  see    W. Kahan [1980] “Handheld Calculator Evaluates Integrals” 
 pp. 23-32 of  

 

The Hewlett-Packard Journal

 

   Aug. 1980          
 also posted at  www.eecs.berkeley.edu/~wkahan/Math128/INTGTkey.pdf .
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Coping with Roundoff 
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As (vectorized)  w  runs from  –
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2  
about as accurately as roundoff allows,  and with only two 

 

calls on the  Math. library.

First compute   s := sinh(w)  and   c := √(1 + s2) … = cosh(w) ;   and then compute  
σ(w) := µ + U·s ,   … = the argument of   tanh(σ(w)) .

Where  |σ(w)| < arcsech(1/√2) = arctanh(1/√2) ≈ 0.881373587…  we compute

 τ(w) := tanh(σ(w))   and   ξ(w) := c – τ(w)·c·τ(w)  … = sech2·cosh .
Then   X(w) := (A + B)/2 + τ(w)·(B – A)/2   and    X'(w) := ξ(w)·U·(B – A)/2 .  

Where  σ(w) ≤ –arcsech(1/√2)   we compute 

ε(w) := exp(σ(w)) ,    ρ(w) := 2·ε(w)/(1 + ε(w)2)   and   ξ(w) := ρ(w)2·c  … = sech2·cosh .
Then    X(w) := A + ε(w)·ρ(w)·(B – A)/2    and    X'(w) := ξ(w)·U·(B – A)/2 .  

Similarly where   σ(w) ≥ +arcsech(1/√2) ,    ε(w) := exp(–σ(w))  and  X(w) := B – … .


