Experimental Numerical Quadrature of Improper Integrals

Abstract: A powerful scheme for the numerical evaluation of $\int_A^B f(x) dx$ approximates it by $\sum_{-\infty < n < \infty} f(X(n \cdot \Delta w)) \cdot X'(n \cdot \Delta w) \cdot \Delta w$

as $\Delta w \rightarrow 0$ for substitutions x := X(w) like $X(w) := (A+B)/2 + tanh(\mu + U \cdot sinh(w)) \cdot (B-A)/2$ that approach the integral's endpoints extremely quickly — doubly exponentially for this X. Such substitutions were introduced by Takahashi and Mori about four decades ago, and have been found to tolerate mild singularities of f(x) at x = A and/or x = B by, among others,

D.H. Bailey et al. [2005] "A Comparison of Three High-Precision

Quadrature Schemes" pp. 317-329 of Experimental Math. 14:3.

Convergence as $\Delta w \rightarrow 0$ is ultimately astonishingly fast, usually like $exp(-Const/\Delta w)$. Questions arise when the scheme is adapted to fixed-precision floating-point arithmetic in an environment like, say, MATLAB's, which is predisposed more to vectorized than to parallel computations:

 \rightarrow How should X(w) be chosen; in this instance, the constants μ and U?

- <> How should the infinite sum on n be truncated to a finite sum?
- <> To what extent can the sum be compensated for that truncation?
- \ll If $\Delta w = w_{max} \cdot 2^{-k}$ for $0 \le k \le < K$, what are good choices for w_{max} and K?
- \rightarrow How should a disgustingly parallel \sum_{n} be vectorized instead?
- <> How reliably can the error $|\sum_{n} \int |$ be estimated?

<> How do roundoff and over/underflow complicate these questions?

Only a few if these questions were answered for the [Integrate] key on the HP-34C and HP-15C calculators over three decades ago; see W. Kahan [1980] "Handheld Calculator Evaluates Integrals" pp. 23-32 of *The Hewlett-Packard Journal* Aug. 1980

also posted at www.eecs.berkeley.edu/~wkahan/Math128/INTGTkey.pdf.

Coping with Roundoff in $X(w) := (A+B)/2 + tanh(\mu + U \cdot sinh(w)) \cdot (B-A)/2$

As (vectorized) w runs from $-\infty$ to $+\infty$ we hope to compute X(w) and its derivative X'(w) = sech²(μ + U·sinh(w))·cosh(w)·U·(B-A)/2 about as accurately as roundoff allows, and with only two **calls** on the Math. library.

First compute $s := \sinh(w)$ and $c := \sqrt{(1 + s^2)} \dots = \cosh(w)$; and then compute $\sigma(w) := \mu + U \cdot s$, $\dots = \text{the argument of } \tanh(\sigma(w))$.

Where $|\mathbf{\sigma}(w)| < \operatorname{arcsech}(1/\sqrt{2}) = \operatorname{arctanh}(1/\sqrt{2}) \approx 0.881373587...$ we compute $\tau(w) := \operatorname{tanh}(\mathbf{\sigma}(w))$ and $\xi(w) := c - \tau(w) \cdot c \cdot \tau(w) \dots = \operatorname{sech}^2 \cdot \cosh$. Then $X(w) := (A+B)/2 + \tau(w) \cdot (B-A)/2$ and $X'(w) := \xi(w) \cdot U \cdot (B-A)/2$.

Where $\sigma(w) \leq -\operatorname{arcsech}(1/\sqrt{2})$ we compute $\varepsilon(w) := \exp(\sigma(w))$, $\rho(w) := 2 \cdot \varepsilon(w)/(1 + \varepsilon(w)^2)$ and $\xi(w) := \rho(w)^2 \cdot c$... = $\operatorname{sech}^2 \cdot \cosh x$. Then $X(w) := A + \varepsilon(w) \cdot \rho(w) \cdot (B - A)/2$ and $X'(w) := \xi(w) \cdot U \cdot (B - A)/2$.

Similarly where $\sigma(w) \ge +\operatorname{arcsech}(1/\sqrt{2})$, $\varepsilon(w) := \exp(-\sigma(w))$ and $X(w) := B - \dots$.