

File: 5Mar14 How (Not) to Solve a Real Quartic

 Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.1/ 13

How (Not) to Solve a Real Quartic

W. Kahan, Prof. Emeritus
Math., and E.E.&C.S.

Univ. of Calif. @ Berkeley

For the Scientific & Engineering Computation Seminar at U.C. Berkeley.

Abstract:

A program that computes all four zeros of a real quartic polynomial,
and does so well enough to be included in a Math. library, has to
overcome failure modes that afflict all the obvious candidates, like
M

ATLAB

’s roots(C) and text-book formulas centuries old. Most of
those failure modes are due to roundoff. How can they be found and,
preferably, overcome without carrying extravagantly high precision?

This document is posted at www.eecs.berkeley.edu/~wkahan/Math128/5Mar14.pdf .

File: 5Mar14 How (Not) to Solve a Real Quartic

 Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.2/ 13

What use are all the zeros of a

Monic

Real

Quartic

 Q(x) := x

4

 + a·x

3

 + b·x

2

 + c·x + d

?

An Application:

They are needed to locate the intersections, if any, of uncentered conics like

 Ellipses, Hyperbolas, Parabolas .

File: 5Mar14 How (Not) to Solve a Real Quartic

 Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.3/ 13

Another Application: to a Computer-Controlled Milling Machine:

One of the machine’s cutting heads cuts a toroidal excavation. The machine must lower
the head to barely touch a support-plane of the work to be produced from a metal blank.
To position the head requires the solution of a quartic equation. According to p. 2 of

http://en.wikipedia.org/wiki/Quartic_function as of 12 June 2014, ...
“Over 10% of the computational time in a CAM system can be consumed

simply calculating the solution to millions of quartic equations.”

Other uses occur rarely so far as I know.

File: 5Mar14 How (Not) to Solve a Real Quartic

 Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.4/ 13

What must a floating-point program do to merit inclusion in a Math. library?

• Run at least about as fast as possible.

• Deliver at least about as much accuracy as the input data deserve, subject to
the limitations of the arithmetic available on the computing platform used.

How much accuracy do the zeros of a quartic polynomial deserve?

It depends upon how given data determines the polynomial. If given are floating-point

 values of the coefficients a, b, c, d of Q(x) := x

4

 + a·x

3

 + b·x

2

 + c·

x

 + d , …

 • Simple well-isolated zeros should lose only a few sig. bits to roundoff.

 • Nearly double zeros may lose roughly half of the arithmetic’s sig. bits.

 • Nearly triple zeros may lose roughly two thirds of the arithmetic’s sig. bits.

 • Nearly quadruple zeros may lose roughly three quarters of the arithmetic’s sig. bits.

 “ Nearly multiple” means that a tiny perturbation to the coefficients of Q suffices
to increase some zeros’ multiplicities. These zeros of polynomials of higher degree
need not look very close together; for a striking example easy to analyze see my
web page’s www.eecs.berkeley.edu/~wkahan/Math128/Poly.pdf , pp. 6-7.

File: 5Mar14 How (Not) to Solve a Real Quartic

 Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.5/ 13

The hypersensitivity of a polynomial’s zeros to perturbations is a
consequence of its representation as a weighted sum of monomials:

 Q(x) := x

4

 + a·x

3

 + b·x

2

 + c·x + d

The zeros of a polynomial generated differently may suffer far less from perturbations.

Example: Q(x) := Det(x·

I

 –

A

) for a real matrix

A

 may lose only a few sig. bits to
perturbations of the elements of

A

 , especially if

A

 remains symmetric.
See my …/MathH110/NormOvrv.pdf, Part V, about eigenvalues of

A

 .

Example: The zeros of Orthogonal Polynomials generated by a three-term recurrence
are well determined by the coefficients of the recurrence, not so well by the
monomials’ coefficients. See pp. 15-16 of my …/MathH110/HilbMats.pdf.
This phenomenon plays a crucial rôle in the computation of nodes

τ

j

 and

weights

w

j

 for Gaussian Quadrature formulas

∑

j

w

j

·ƒ(

τ

j

)

≈

∫

α
β

w

(

τ

)·ƒ(

τ

)·d

τ

 .

What follows concerns the accuracies of zeros when given the monomials’ coefficients
in Q(x) above. We wish not to lose more sig. bits than are warranted by the zeros’ near
multiplicities. Losses will be negligible in arithmetic carrying

 extravagant precision

,
say four to five times as many sig. bits as are trusted in the data and desired in results.

File: 5Mar14 How (Not) to Solve a Real Quartic

 Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.6/ 13

A Less Stringent Requirement for Accuracy:

“Backward” Error-Analysis

Each computed zero Z of Q(x) := x

4

 + a·x

3

 + b·x

2

 + c·x + d should, ideally, satisfy a

Nearby Equation

 Z

4

 + A·Z

3

 + B·Z

2

 + C·Z + D = 0

exactly

, wherein

hypothetical (not computed) array [A, B, C, D] is close enough to [a, b, c, d] that

||

 [

(A-a)·Z

3

, (B-b)·Z

2

, (C-c)·Z, D-d

]

||

 doesn’t much exceed roundoff in a computable

||

 [

a·Z

3

, b·Z

2

, c·Z, d

]

||

 . (Any familiar vector norm

||

…

||

 will do.)

Questions for Research

:

• Which numerical root-finders satisfy this less stringent requirement? (Not many)

• Can the same array [A, B, C, D] serve for every computed zero? (Probably)

• Can that array be constructed from all four computed zeros of Q ? For example,
M

ATLAB

’s poly([Z1, Z2, Z3, Z4]) offers a candidate [1, A, B, C, D] . But,
is poly([…]) accurate enough for all polynomials of large degree?

This less stringent requirement can be violated by M

ATLAB

’s roots([1, a, b, c, d]) …

 … despite published error-analyses.

File: 5Mar14 How (Not) to Solve a Real Quartic

 Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.7/ 13

M

ATLAB

’s roots([1, a, b, c, d]) computes all zeros of Q(x) := x

4 + a·x3 + b·x2 + c·x + d .

Try roots([1, -1, -S2, S2, -1]) for any big S ≥ 109 ;

get alleged “roots” ≈ [-S, 0, 1, S]' instead of ≈ [-S, 1/S2, 1, S]' , as if
 the input “ d := -1 ” had been degraded to “ d := 0 ” .

These input coefficients determine all 4 zeros within relative errors roughly like 1/S2
despite the zeros’ widely disparate magnitudes. MATLAB has crushed the tiniest zero.

 Why?

The computed zeros have been obtained from the eigenvalues of a Companion Matrix:

 C := ; Det(x·I – C) = Q(x) .

But MATALB ’s eig(C) crushed its tiniest eigenvalue because a stopping criterion used
by eig’s QR-iteration deemed that tiny eigenvalue negligible compared with ||C|| .

There is an alternative to C , a different kind of Companion Matrix …
See Miroslav Fiedler (2003) “A note on companion matrices” pp. 325-331 of Lin.Algebra & its Applications 372.

a– b– c– d–

1 0 0 0

0 1 0 0

0 0 1 0

File: 5Mar14 How (Not) to Solve a Real Quartic Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.8/ 13

In 2002 Miroslav Fiedler invented a different kind of Companion Matrix:

 F := ; DET(x·I - F) = Q(x) := x4 + a·x3 + b·x2 + c·x + d .

In MATLAB ’s roots.m replace C by F when its dimension is even (by F.' when its
dimension is odd) to get a revised program we shall call “ro0ts.m”. This is about as
accurate as roots.m, and more accurate when F has one extremely tiny eigenvalue:

 ro0ts([1, -1, -S2, S2, -1]) ≈ [-S, 1/S2, 1, S]' .

Alas, neither roots.m nor ro0ts.m copes well with two extremely tiny zeros:

roots([1, 0, -S2, 0, 1]) ≈ ro0ts([1, 0, -S2, 0, 1]) ≈ [-S, 0, 0, S]' if S ≥ 1012
instead of the correct ≈ [-S, -1/S, 1/S, S]' .

Research Project: When eig(F) is invoked in roots or ro0ts, can its stopping criteria
 be altered to achieve the desired accuracy for tiny zeros

 without much degrading speed for the other zeros?

a– b– 1 0

1 0 0 0

0 c– 0 d–

0 1 0 0

File: 5Mar14 How (Not) to Solve a Real Quartic Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.9/ 13

The Classical Algebraic Method finds Quadratic Factors, each of the form

 F(x, α, β) := x2 + α·x + β (for different coefficients α and β), of …

 Q(x) := x4 + a·x3 + b·x2 + c·x + d ≡ F(x, a/2 + Ψ, β)·F(x, a/2 – Ψ, τ)

in which β and τ are the larger and lesser roots z respectively of F(z, Φ, d) = 0 , so

the two unknowns Ψ and Φ must satisfy Ψ := √(Φ – b + a2/4)·sign(a·Φ – 2c) and

P(Φ) := Φ3 – b·Φ2 + (a·c – 4d)·Φ + d·(4b – a2) – c2 = 0 .

This P(x) is called a “Resolvent Cubic”, and its largest (rightmost) real zero Φ is

always at least as big as b – a2/4 (and 2√d too if d ≥ 0), whence we can deduce that
Ψ and β and τ are real. In short, we can always find two real factors F of Q .

What can go wrong?

There are formulas for the zeros of a cubic, but if all are real they require complex cube
roots involving trigonometric functions. See my web page’s …/Math128/Cubic.pdf ,
which offers an iterative method that loses less to roundoff than do those formulas.

If Q has a multiple zero, so has P , which can worsen roundoff’s injury to accuracy;
then the factors’ product can differ from Q by more than a few end-bits of coefficients.

File: 5Mar14 How (Not) to Solve a Real Quartic Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.10/ 13

Digression: Little-known relations between the Quartic

 Q(z) := z4 + a·z3 + b·z2 + c·z + d
and its Resolvent Cubic

P(ζ) := ζ3 – b·ζ2 + (a·c - 4d)·ζ + d·(4b - a2) - c2 .

• If the zeros of Q are { v , w , x , y }, then
the zeros of P are { v·w + x·y , v·x + w·y , v·y + w·x } .

Consequently Q and P have the same Discriminant

 ((v – w)·(w – x)·(x – y)·(y – v)·(v – x)·(y – w))2 .
This means that …

• Q has multiple zeros ↔ P has multiple zeros.

• Q has 4 distinct zeros, all real or all complex ↔ P has 3 distinct real zeros.

• Q has 4 distinct zeros, 2 real, 2 complex ↔ P has 3 distinct zeros, 1 real.

• Q has 2 zeros far tinier than the others ↔ P has 2 zeros far tinier than the other.

So, exclusively real arithmetic, without trig. functions, suffices to compute the one
needed zero of P and all four zeros of Q , real or complex. However, coincidences
between multiplicities can lose accuracy excessively among computed zeros of Q .

File: 5Mar14 How (Not) to Solve a Real Quartic Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.11/ 13

Iterative Refinement of Real Quadratic Factors of a Quartic:

Suppose two Quadratics’ coefficients α, β, σ, τ come close to satisfying
 F(x, α, β)·F(x, σ, τ) ≡ Q(x) .

By matching coefficients of powers of x we obtain four slightly nonlinear equations in
the four unknowns α, β, σ, τ . The 4-by-4 Jacobian matrix of first partial derivatives
has a simple form making Newton’s iteration an attractive way to solve the equations.

The determinant of that Jacobian matrix vanishes just when F(x, α, β) and F(x, σ, τ)
have a zero in common. This coincidence can be averted by making the zero in common
instead a double zero of only one of the factors, unless Q has worse than a double zero.

Research Project: What to do, when a too-near-vanishing Jacobian determinant
cannot be averted, has not been figured out yet.

Iterative refinement of zeros, either singly (Newton’s or Laguerre’s iteration) or all
together (Weierstrass’ iteration), is not recommended unless a way is found to prevent
some of the approximate zeros in a cluster from becoming refined onto the same true
zero in a way that loses track of a different true zero. And it needs complex arithmetic.

File: 5Mar14 How (Not) to Solve a Real Quartic Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.12/ 13

Iterative Methods that pick off the zeros one at a time work best:
Better than Newton’s or Halley’s iterations is Laguerre’s iteration, which replaces
x by the nearest x + ∆x satisfying

((3-m)·Q'(x)2 - (4-m)·Q(x)·Q" (x))·∆x2 – 2m·Q(x)·Q'(x)·∆x – 4m·Q(x)2 = 0

to head towards a zero of estimated multiplicity m . (m := 1 may go slow.) To assure
convergence, the formula for ∆x must be inhibited by D’Alembert’s principle:

A minimum of the magnitude of the quartic Q(x)
(or of any other analytic function of a complex variable)

can occur only at a zero.
Thus, ∆x should be inhibited (shortened) by the restriction |Q(x + ∆x)| < |Q(x)| .

When an approximate zero Z is found, it must be removed from Q by Deflation:

Replace Q(x) by a polynomial (Q(x) - Q(Z)·(x/Z)k)/(x - Z) in x with k chosen to

Maximize |(Coeff. of xk in Q)·Zk| to Minimize the relative perturbation of Q . This

amounts to running Horner’s Recurrence from both ends to meet at the kth coeff.

See Brian T. Smith’s ZERPOL on the IBM 7094, IMSL’s version, HP-71B version.
Research Project: Software-engineer a better version not hampered by copyrights.

File: 5Mar14 How (Not) to Solve a Real Quartic Version dated August 27, 2014 2:47 pm

Prof. W. Kahan p.13/ 13

Tests
Ideally, tests should be unnecessary for a program that has been proved mathematically
to deliver satisfactory results for all admissible input data. However …

• Many a valuable numerical program works better than has been (or can be?) proved.

• A “proof” can be wrong. Incorrect proofs have been published. Because the proof’s
length tends to far exceed the proved program’s length, the proof is more vulnerable
to error, especially in definitions of “satisfactory” and “admissible”. See p. 5 .

Test data generated randomly is necessary but generally incapable of exposing all of a
program’s failure modes. For example, the Intel Pentium’s Divide Bug of 1994 was
not exposed in advance by any of several billion pairs of test operands. See too my web
page’s …/FailMode.pdf. Designing efficient test data faces difficult challenges; good
tests explore all significant possibilities but not too redundantly lest tests run too long.

Efficient tests cluster about all of a program’s Singularities. These can be hard to find.
Not all are identifiable with mathematical pathologies of the given problem, here zeros
of Q of high multiplicity. For instance, p. 8’s largest real zero Φ of P can jump
discontinuously at certain admissible data; how soon can you locate such data?

