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How (Not) to Solve a Real Quartic

 

W. Kahan,  Prof. Emeritus
Math.,  and  E.E.&C.S.

Univ. of Calif. @ Berkeley

 

For the  Scientific & Engineering Computation Seminar  at  U.C. Berkeley.

 

Abstract:

 

A program that computes all four zeros of a real quartic polynomial,  
and does so well enough to be included in a  Math.  library,  has to 
overcome failure modes that afflict all the obvious candidates,  like  
M

 

ATLAB

 

’s  roots(C)  and text-book formulas centuries old.  Most of 
those failure modes are due to roundoff.  How can they be found and,  
preferably,  overcome without carrying extravagantly high precision?

This document is posted at  www.eecs.berkeley.edu/~wkahan/Math128/5Mar14.pdf .
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What use are all the zeros of a  

 

Monic

 

  

 

Real

 

  

 

Quartic

 

  

 

 Q(x) := x

 

4

 

 + a·x

 

3

 

 + b·x

 

2

 

 + c·x + d

 

  

 

?

 

 

 

An Application:

 

They are needed to locate the intersections,  if any,  of uncentered conics like

 

 Ellipses,  Hyperbolas,  Parabolas .



 
File:  5Mar14                                                        How (Not) to Solve a Real Quartic

 
                                      Version dated   August 27, 2014 2:47 pm

 

Prof. W. Kahan                                                                                                                                                                                                                                        p.3/ 13

 

Another Application:   to a  Computer-Controlled Milling Machine:

 

One of the machine’s cutting heads cuts a toroidal excavation.  The machine must lower 
the head to barely touch a support-plane of the work to be produced from a metal blank.  
To position the head requires the solution of a quartic equation.  According to  p. 2  of

http://en.wikipedia.org/wiki/Quartic_function  as of  12 June 2014,  ... 
“Over  10%  of the computational time in a  CAM  system can be consumed

simply calculating the solution to millions of quartic equations.”

Other uses occur rarely so far as I know.
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What must a floating-point program do to merit inclusion in a  Math. library?

 

•     Run at least about as fast as possible.

•     Deliver at least about as much accuracy as the input data deserve,  subject to 
the limitations of the arithmetic available on the computing platform used.

 

How much accuracy do the zeros of a quartic polynomial deserve?

 

It depends upon how given data determines the polynomial.  If given are floating-point 

     values of the coefficients  a, b, c, d  of   Q(x) := x

 

4

 

 + a·x

 

3

 

 + b·x

 

2

 

 + c·

 

x

 

 + d ,   …

           •   Simple well-isolated zeros should lose only a few sig. bits  to roundoff.

        •   Nearly double zeros may lose roughly half of the arithmetic’s  sig. bits.

     •   Nearly triple zeros may lose roughly two thirds of the arithmetic’s  sig. bits.

  •   Nearly quadruple zeros may lose roughly three quarters of the arithmetic’s  sig. bits.

   “ Nearly multiple”  means that a tiny perturbation to the coefficients of  Q  suffices 
to increase some zeros’ multiplicities.  These zeros of polynomials of higher degree 
need not look very close together;  for a striking example easy to analyze see my 
web page’s  www.eecs.berkeley.edu/~wkahan/Math128/Poly.pdf ,  pp. 6-7.
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The hypersensitivity of a polynomial’s zeros to perturbations is a 
consequence of its representation as a weighted sum of monomials:

 

 Q(x) := x

 

4

 

 + a·x

 

3

 

 + b·x

 

2

 

 + c·x + d

The zeros of a polynomial generated differently may suffer far less from perturbations.

Example:  Q(x) := Det(x·

 

I

 

 – 

 

A

 

)  for a real matrix  

 

A

 

  may lose only a few sig. bits to 
perturbations of the elements of  

 

A

 

 ,  especially if  

 

A

 

  remains symmetric. 
See my  …/MathH110/NormOvrv.pdf,  Part V,  about eigenvalues of  

 

A

 

 .

Example:  The zeros of  Orthogonal Polynomials  generated by a three-term recurrence 
are well determined by the coefficients of the recurrence,  not so well by the 
monomials’ coefficients.  See  pp. 15-16 of my  …/MathH110/HilbMats.pdf.
This phenomenon plays a crucial rôle in the computation of nodes  

 

τ

 

j

 

  and 

weights  

 

w

 

j

 

  for  Gaussian Quadrature  formulas   

 

∑

 

j

 

 

 

w

 

j

 

·ƒ(

 

τ

 

j

 

) 

 

≈

 

 

 

∫

 

α
β

 

 

 

w

 

(

 

τ

 

)·ƒ(

 

τ

 

)·d

 

τ

 

 .

What follows concerns the accuracies of zeros when given the monomials’ coefficients 
in  Q(x)  above.  We wish not to lose more sig. bits than are warranted by the zeros’ near 
multiplicities.  Losses will be negligible in arithmetic carrying 

 

 extravagant precision

 

,  
say four to five times as many sig. bits as are trusted in the data and desired in results. 
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A Less Stringent Requirement for Accuracy: 

 

 

 

“Backward”  Error-Analysis

 

Each computed zero  Z  of   Q(x) := x

 

4

 

 + a·x

 

3

 

 + b·x

 

2

 

 + c·x + d   should,  ideally,  satisfy a 

   

 

Nearby Equation

 

    Z

 

4

 

 + A·Z

 

3

 

 + B·Z

 

2

 

 + C·Z + D = 0   

 

exactly

 

,  wherein

hypothetical  (not computed)  array  [A, B, C, D]  is close enough to  [a, b, c, d]  that 

 

 

||

 

 [

 

 

 

(A-a)·Z

 

3

 

,  (B-b)·Z

 

2

 

,  (C-c)·Z,  D-d

 

 

 

] 

 

||

 

   doesn’t much exceed roundoff in a computable 

   

 

||

 

 [

 

 

 

a·Z

 

3

 

,   b·Z

 

2

 

,   c·Z,   d

 

 

 

] 

 

||

 

 .               (Any familiar vector norm  

 

||

 

…

 

||

 

  will do.)

 

Questions for Research

 

:

•  Which numerical root-finders satisfy this less stringent requirement?    (Not many)

•  Can the same array  [A, B, C, D]  serve for every computed zero?         (Probably)

•  Can that array be constructed from all four computed zeros of  Q ?  For example,
M

 

ATLAB

 

’s  poly([Z1, Z2, Z3, Z4])  offers a candidate  [1, A, B, C, D] .   But,
is  poly([…])  accurate enough for all polynomials of large degree?

This less stringent requirement can be violated by  M

 

ATLAB

 

’s  roots([1, a, b, c, d])  …

 

 … despite published error-analyses. 
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M

 

ATLAB

 

’s  roots([1, a, b, c, d])  computes all zeros of  Q(x) := x

 

4 + a·x3 + b·x2 + c·x + d .

Try  roots([1,  -1,  -S2,  S2,  -1])  for any big  S ≥ 109 ;

get alleged  “roots” ≈ [-S,  0,  1,  S]'   instead of   ≈ [-S,  1/S2,  1,  S]'  ,   as if 
                   the input   “ d := -1 ”   had been degraded to  “ d := 0 ” .  

These input coefficients determine all  4  zeros within relative errors roughly like  1/S2  
despite the zeros’ widely disparate magnitudes.  MATLAB   has crushed the tiniest zero.

 Why?

The computed zeros have been obtained from the eigenvalues of a  Companion Matrix:

 C :=  ;         Det(x·I  – C) = Q(x) .

But  MATALB ’s  eig(C)  crushed its tiniest eigenvalue because a stopping criterion used 
by  eig’s  QR-iteration  deemed that tiny eigenvalue negligible compared with  ||C|| .

There is an alternative to  C ,  a different kind of  Companion Matrix …
See  Miroslav Fiedler (2003) “A note on companion matrices” pp. 325-331 of Lin.Algebra & its Applications 372.

a– b– c– d–

1 0 0 0

0 1 0 0

0 0 1 0



File:  5Mar14                                                        How (Not) to Solve a Real Quartic                                      Version dated   August 27, 2014 2:47 pm

Prof. W. Kahan                                                                                                                                                                                                                                        p.8/ 13

In  2002  Miroslav Fiedler  invented a different kind of  Companion Matrix:

  F :=  ;       DET(x·I  - F) = Q(x) := x4 + a·x3 + b·x2 + c·x + d .

In  MATLAB ’s  roots.m  replace  C  by  F  when its dimension is even  (by  F.'  when its 
dimension is odd)  to get a revised program we shall call  “ro0ts.m”.  This is about as 
accurate as  roots.m,  and more accurate when  F  has one extremely tiny eigenvalue:

 ro0ts([1,  -1,  -S2,  S2,  -1]) ≈ [-S,  1/S2,  1,  S]' .

Alas,  neither  roots.m  nor  ro0ts.m  copes well with  two  extremely tiny zeros:

roots([1,  0,  -S2,  0,  1]) ≈ ro0ts([1,  0,  -S2,  0,  1]) ≈ [-S,  0,  0,  S]'    if  S ≥ 1012 
instead of the correct  ≈ [-S,  -1/S,  1/S,  S]'  .

Research Project:  When  eig(F)  is invoked in  roots  or  ro0ts,  can its stopping criteria 
  be altered to achieve the desired accuracy for tiny zeros 

 without much degrading speed for the other zeros?

a– b– 1 0

1 0 0 0

0 c– 0 d–

0 1 0 0
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The  Classical Algebraic Method  finds  Quadratic Factors,  each of the form 

  F(x,  α, β) := x2 + α·x + β   (for different coefficients  α  and  β ),   of …

 Q(x) := x4 + a·x3 + b·x2 + c·x + d  ≡  F(x,  a/2 + Ψ,  β)·F(x,  a/2 – Ψ,  τ) 

in which  β  and  τ  are the larger and lesser roots  z  respectively of  F(z,  Φ,  d) = 0 ,  so 

the two unknowns  Ψ  and  Φ  must satisfy  Ψ := √(Φ – b + a2/4)·sign(a·Φ – 2c)  and

P(Φ) :=  Φ3  –   b·Φ2  +   (a·c – 4d)·Φ  +   d·(4b – a2) – c2   =   0 . 

This  P(x)  is called a  “Resolvent Cubic”,  and its largest  (rightmost)  real zero  Φ  is 

always at least as big as  b – a2/4  (and  2√d  too if  d ≥ 0 ),  whence we can deduce that  
Ψ  and  β  and  τ  are real.  In short,  we can always find two  real  factors  F  of  Q .

What can go wrong?

There are formulas for the zeros of a cubic,  but if all are real they require complex cube 
roots involving trigonometric functions.  See my web page’s  …/Math128/Cubic.pdf ,  
which offers an  iterative  method that loses less to roundoff than do those formulas.

If  Q  has a multiple zero,  so has  P ,  which can worsen roundoff’s injury to accuracy;  
then the factors’ product can differ from  Q  by more than a few end-bits of coefficients.
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Digression:  Little-known relations between the  Quartic 

 Q(z) :=  z4 + a·z3 + b·z2 + c·z + d 
and its  Resolvent Cubic 

P(ζ) :=  ζ3 –  b·ζ2 +  (a·c - 4d)·ζ +  d·(4b - a2) - c2  . 

•  If the zeros of  Q  are  { v ,  w ,  x ,  y },  then
the zeros of  P  are  { v·w + x·y ,   v·x + w·y ,   v·y + w·x } .

Consequently  Q  and  P  have the same  Discriminant 

  ( (v – w)·(w – x)·(x – y)·(y – v)·(v – x)·(y – w) )2 .
This means that …

•   Q  has multiple zeros  ↔  P  has multiple zeros.

•   Q  has  4  distinct zeros,  all real or all complex  ↔  P  has  3  distinct real zeros.

•   Q  has  4  distinct zeros,  2  real,  2  complex  ↔  P  has  3  distinct zeros,  1  real.

•   Q  has  2  zeros far tinier than the others  ↔  P  has  2  zeros far tinier than the other.

So,  exclusively real arithmetic,  without trig. functions,  suffices to compute the one 
needed zero of  P  and all four zeros of  Q ,  real or complex.  However,  coincidences 
between multiplicities can lose accuracy excessively among computed zeros of  Q .
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Iterative Refinement  of  Real Quadratic Factors  of a  Quartic:

Suppose two  Quadratics’  coefficients  α, β, σ, τ  come close to satisfying
  F(x,  α, β)·F(x,  σ, τ)  ≡  Q(x) .

By matching coefficients of powers of  x  we obtain four slightly nonlinear equations in 
the four unknowns  α, β, σ, τ .  The  4-by-4  Jacobian  matrix of first partial derivatives 
has a simple form making  Newton’s  iteration an attractive way to solve the equations.

The determinant of that  Jacobian  matrix vanishes just when  F(x,  α, β)  and  F(x,  σ, τ)
have a zero in common.  This coincidence can be averted by making the zero in common 
instead a double zero of only one of the factors,  unless  Q  has worse than a double zero.

Research Project:   What to do,  when a  too-near-vanishing  Jacobian  determinant  
cannot be averted,  has not been figured out yet.

Iterative refinement of zeros,  either singly (Newton’s  or  Laguerre’s iteration)  or all 
together  (Weierstrass’ iteration),  is not recommended unless a way is found to prevent 
some of the approximate zeros in a cluster from becoming refined onto the same true 
zero in a way that loses track of a different true zero.  And it needs complex arithmetic.
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Iterative Methods that pick off the zeros one at a time work best:
Better than  Newton’s  or  Halley’s  iterations is  Laguerre’s  iteration,  which replaces  
x  by the nearest  x + ∆x  satisfying

((3-m)·Q'(x)2 - (4-m)·Q(x)·Q" (x))·∆x2  –   2m·Q(x)·Q'(x)·∆x  –   4m·Q(x)2  = 0

to head towards a zero of estimated multiplicity  m .  ( m := 1 may go slow.)  To assure 
convergence,  the formula for  ∆x  must be inhibited by  D’Alembert’s  principle:

A minimum of the magnitude of the quartic  Q(x)  
(or of any other analytic function of a complex variable) 

can occur only at a zero.
Thus,  ∆x  should be  inhibited  (shortened)  by the restriction  |Q(x + ∆x)| < |Q(x)| .

When an approximate zero  Z  is found,  it must be removed from  Q  by  Deflation:

Replace  Q(x)  by a polynomial  ( Q(x) - Q(Z)·(x/Z)k )/(x - Z)  in  x  with  k  chosen to  

Maximize  |(Coeff. of  xk  in  Q)·Zk|  to  Minimize the relative perturbation of  Q .  This 

amounts to running  Horner’s Recurrence  from both ends to meet at the  kth  coeff.

See  Brian T. Smith’s  ZERPOL  on the  IBM 7094,  IMSL’s  version,  HP-71B version.
Research Project:  Software-engineer a better version not hampered by copyrights.



File:  5Mar14                                                        How (Not) to Solve a Real Quartic                                      Version dated   August 27, 2014 2:47 pm

Prof. W. Kahan                                                                                                                                                                                                                                        p.13/ 13

Tests
Ideally,  tests should be unnecessary for a program that has been proved mathematically 
to deliver  satisfactory  results for all  admissible  input data.  However …

•  Many a valuable numerical program works better than has been  (or can be?)  proved.

•  A  “proof”  can be wrong.  Incorrect proofs have been published.  Because the proof’s 
length tends to far exceed the proved program’s length,  the proof is more vulnerable
to error,  especially in definitions of  “satisfactory”  and  “admissible”.  See  p. 5 .

Test data generated randomly is necessary but generally incapable of exposing  all  of a 
program’s failure modes.  For example,  the  Intel Pentium’s Divide Bug  of  1994  was 
not exposed in advance by any of several billion pairs of test operands.  See too my web 
page’s  …/FailMode.pdf.  Designing efficient test data faces difficult challenges;  good 
tests explore  all  significant possibilities but not too redundantly lest tests run too long.

Efficient tests cluster about  all  of a program’s  Singularities.  These can be hard to find.
Not all are identifiable with mathematical pathologies of the given problem,  here zeros 
of  Q  of high multiplicity.  For instance,  p. 8’s  largest real zero  Φ  of  P   can jump 
discontinuously at certain admissible data;  how soon can you locate such data?


