Graphical models, message-passing algorithms, and convex optimization

Martin Wainwright

Department of Statistics, and

Department of Electrical Engineering and Computer Science,

UC Berkeley, Berkeley, CA USA

Email: wainwrig@{stat,eecs}.berkeley.edu

Tutorial slides based on joint paper with Michael Jordan Paper at: www.eecs.berkeley.edu/~wainwrig/WaiJorVariational03.ps

Introduction

- graphical models are used and studied in various applied statistical and computational fields:
 - machine learning and artificial intelligence
 - computational biology
 - statistical signal/image processing
 - communication and information theory
 - statistical physics
 - **–**
- based on correspondences between graph theory and probability theory
- important but difficult problems:
 - computing likelihoods, marginal distributions, modes
 - estimating model parameters and structure from (noisy) data

Outline

- 1. Introduction and motivation
 - (a) Background on graphical models
 - (b) Some applications and challenging problems
 - (c) Illustrations of some message-passing algorithms
- 2. Exponential families and variational methods
 - (a) What is a variational method (and why should I care)?
 - (b) Graphical models as exponential families
 - (c) Variational representations from conjugate duality
- 3. Exact techniques as variational methods
 - (a) Gaussian inference on arbitrary graphs
 - (b) Belief-propagation/sum-product on trees (e.g., Kalman filter; α - β alg.)
 - (c) Max-product on trees (e.g., Viterbi)
- 4. Approximate techniques as variational methods
 - (a) Mean field and variants
 - (b) Belief propagation and extensions on graphs with cycles
 - (c) Semidefinite constraints and convex relaxations

Undirected graphical models

Based on correspondences between graphs and random variables.

- given an undirected graph G = (V, E), each node s has an associated random variable X_s
- for each subset $A \subseteq V$, define $X_A := \{X_s, s \in A\}$.

g replacements $\begin{pmatrix} 2 \\ 3 \\ 4 \\ \hline \end{pmatrix}$ PSfrag replacements $\begin{pmatrix} 2 \\ A \\ S \end{pmatrix}$

Maximal cliques (123), (345), (456), (47)

Vertex cutset S

- a clique $C \subseteq V$ is a subset of vertices all joined by edges
- a vertex cutset is a subset $S \subset V$ whose removal breaks the graph into two or more pieces

Factorization and Markov properties

The graph G can be used to impose constraints on the random vector $X = X_V$ (or on the distribution p) in different ways.

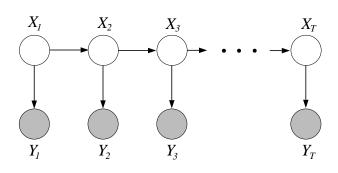
Markov property: X is $Markov \ w.r.t \ G$ if X_A and X_B are conditionally indpt. given X_S whenever S separates A and B.

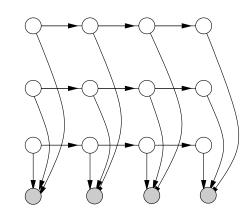
Factorization: The distribution p factorizes according to G if it can be expressed as a product over cliques:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C \in \mathcal{C}} \underbrace{\exp \{\theta_C(x_C)\}}_{\text{compatibility function on clique } C$$

Theorem: (Hammersley-Clifford) For strictly positive $p(\cdot)$, the Markov property and the Factorization property are equivalent.

Example: Hidden Markov models





(a) Hidden Markov model

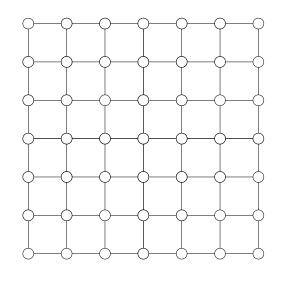
- (b) Coupled HMM
- HMMs are widely used in various applications

discrete X_t : computational biology, speech processing, etc.

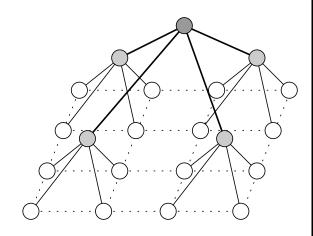
Gaussian X_t : control theory, signal processing, etc.

- frequently wish to solve *smoothing* problem of computing $p(x_t | y_1, \dots, y_T)$
- exact computation in HMMs is tractable, but coupled HMMs require algorithms for approximate computation (e.g., structured mean field)

Example: Statistical signal and image processing



(b) Lattice



(c) Multiscale quadtree

- frequently wish to compute log likelihoods (e.g., for classification), or marginals/modes (e.g., for denoising, deblurring, de-convolution, coding)
- exact algorithms available for tree-structured models; approximate techniques (e.g., belief propagation and variants) required for more complex models

Example: Graphical codes for communication

g replacements

Goal: Achieve reliable communication over a noisy channel.

- wide variety of applications: satellite communication, sensor networks, computer memory, neural communication
- error-control codes based on careful addition of redundancy, with their fundamental limits determined by Shannon theory
- key implementational issues: *efficient* construction, encoding and decoding
- very active area of current research: graphical codes (e.g., turbo codes, low-density parity check codes) and iterative message-passing algorithms (belief propagation; max-product)

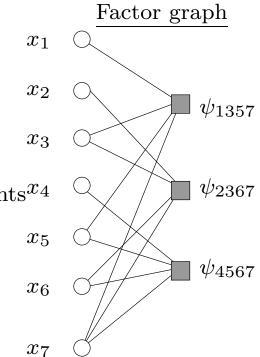
Graphical codes and decoding (continued)

Parity check matrix

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_5 \end{bmatrix}$$

Codeword: $[0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0]$

Non-codeword: $[0\ 0\ 0\ 0\ 1\ 1]$



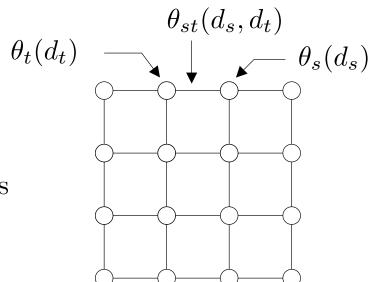
• Decoding: requires finding maximum likelihood codeword:

$$\widehat{\mathbf{x}}_{ML} = \arg \max_{\mathbf{x}} p(\mathbf{y} \mid \mathbf{x}) \text{ s.t. } H\mathbf{x} = 0 \text{ (mod 2)}.$$

• use of belief propagation as an approximate decoder has revolutionized the field of error-control coding

Example: Computer vision

- disparity for stereo vision: estimate depth in scenes based on two (or more) images taken from different positions
- global approaches: disparity map based on optimization in an MRF



- grid-structured graph G = (V, E)
- $d_s \equiv \text{disparity at grid position } s$
- $\theta_s(d_s) \equiv \text{image data fidelity term}$
- $\theta_{st}(d_s, d_t) \equiv \text{disparity coupling}$
- optimal disparity map $\widehat{\mathbf{d}}$ found by solving MAP estimation problem for this Markov random field
- computationally intractable (NP-hard) in general, but iterative message-passing algorithms (e.g., belief propagation) solve many practical instances

acements

Challenging computational problems

Frequently, it is of interest to compute various quantities associated with an undirected graphical model:

- (a) the log normalization constant $\log Z$
- (b) local marginal distributions or other local statistics
- (c) modes or most probable configurations

Relevant dimensions often grow rapidly in graph size \Longrightarrow major computational challenges.

Example: Consider a naive approach to computing the normalization constant for binary random variables:

$$Z = \sum_{\mathbf{x} \in \{0,1\}^n} \prod_{C \in \mathcal{C}} \exp \left\{ \theta_C(x_C) \right\}$$

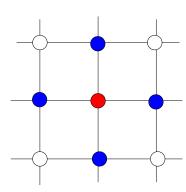
Complexity scales exponentially as 2^n .

Gibbs sampling in the Ising model

• binary variables on a graph G = (V, E) with pairwise interactions:

$$p(\mathbf{x}; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right\}$$

• Update $x_s^{(m+1)}$ stochastically based on values $x_{\mathcal{N}(s)}^{(m)}$ at neighbors:



- 1. Choose $s \in V$ at random.
- 2. Sample $u \sim \mathcal{U}(0,1)$ and update

$$\mathbf{x}_{s}^{(m+1)} = \begin{cases} 1 & \text{if } u \leq \{1 + \exp[-(\theta_{s} + \sum_{t \in \mathcal{N}(s)} \theta_{st} \mathbf{x}_{t}^{(m)})]\}^{-1} \\ 0 & \text{otherwise} \end{cases}$$

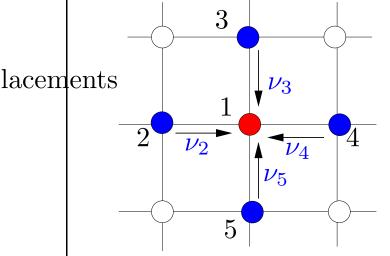
• sequence $\{\mathbf{x}^{(m)}\}$ converges (in a stochastic sense) to a sample from $p(\mathbf{x}; \theta)$

Mean field updates in the Ising model

• binary variables on a graph G = (V, E) with pairwise interactions:

$$p(\mathbf{x}; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right\}$$

• simple (deterministic) message-passing algorithm involving variational parameters $\nu_s \in (0,1)$ at each node



- 1. Choose $s \in V$ at random.
- 2. Update ν_s based on neighbors $\{\nu_t, t \in \mathcal{N}(s)\}$:

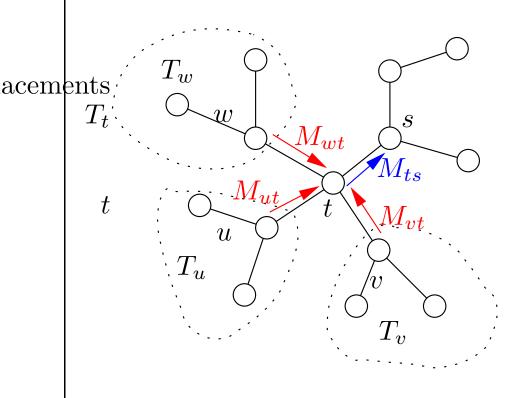
$$\underline{\nu_s} \leftarrow \left\{1 + \exp\left[-\left(\theta_s + \sum_{t \in \mathcal{N}(s)} \theta_{st} \underline{\nu_t}\right)\right]\right\}^{-1}$$

Questions:

- principled derivation?
- convergence and accuracy?

Sum and max-product algorithms: On trees

Exact for trees, but approximate for graphs with cycles.



$$M_{ts} \equiv \text{message from node } t \text{ to } s$$

$$\Gamma(t) \equiv \text{neighbors of node } t$$

Sum-product: for marginals

(generalizes $\alpha - \beta$ algorithm; Kalman filter)

 $\underline{\text{Max-product:}}$ for MAP configurations

(generalizes Viterbi algorithm)

$$\underline{\text{Update:}} \qquad \mathbf{M_{ts}(\mathbf{x_s})} \leftarrow \sum_{x_t' \in \mathcal{X}_t} \left\{ \exp \left[\theta_{st}(x_s, x_t') + \theta_t(x_t') \right] \prod_{v \in \Gamma(t) \setminus s} \mathbf{M_{vt}(\mathbf{x_t})} \right\}$$

Marginals:
$$p(x_s; \theta) \propto \exp\{\theta_t(x_t)\} \prod_{t \in \Gamma(s)} M_{ts}(x_s).$$

Sum and max-product: On graphs with cycles

- what about applying same updates on graph with cycles?
- updates need not converge (effect of cycles)
- seems naive, but remarkably successful in many applications

acements T_w M_{wt} M_{ts} T_v M_{vt} M_{vt}

 $M_{ts} \equiv \text{message from node } t \text{ to } s$

 $\Gamma(t) \equiv \text{neighbors of node } t$

Sum-product: for marginals

Max-product: for modes

Questions: • meaning of these updates for graphs with cycles?

• convergence? accuracy of resulting "marginals"?

Outline

- 1. Introduction and motivation
 - (a) Background on graphical models
 - (b) Some applications and challenging problems
 - (c) Illustrations of some message-passing algorithms
- 2. Exponential families and variational methods
 - (a) What is a variational method (and why should I care)?
 - (b) Graphical models as exponential families
 - (c) Variational representations from conjugate duality
- 3. Exact techniques as variational methods
 - (a) Gaussian inference on arbitrary graphs
 - (b) Belief-propagation/sum-product on trees (e.g., Kalman filter; α - β alg.)
 - (c) Max-product on trees (e.g., Viterbi)
- 4. Approximate techniques as variational methods
 - (a) Mean field and variants
 - (b) Belief propagation and extensions
 - (c) Semidefinite constraints and convex relaxations

Variational methods

- "variational": umbrella term for optimization-based formulation of problems, and methods for their solution
- historical roots in the calculus of variations
- modern variational methods encompass a wider class of methods (e.g., dynamic programming; finite-element methods)

Variational principle: Representation of a quantity of interest $\hat{\mathbf{u}}$ as the solution of an optimization problem.

- 1. allows the quantity $\hat{\mathbf{u}}$ to be studied through the lens of the optimization problem
- 2. approximations to $\hat{\mathbf{u}}$ can be obtained by approximating or relaxing the variational principle

Illustration: A simple variational principle

Goal: Given a vector $\mathbf{y} \in \mathbb{R}^n$ and a symmetric matrix $Q \succ 0$, solve the linear system $Q\mathbf{u} = \mathbf{y}$.

Unique solution $\widehat{\mathbf{u}}(\mathbf{y}) = Q^{-1}\mathbf{y}$ can be obtained by matrix inversion.

Variational formulation: Consider the function $J_{\mathbf{y}}: \mathbb{R}^n \to \mathbb{R}$ defined by

$$J_{\mathbf{y}}(\mathbf{u}) := \frac{1}{2}\mathbf{u}^T Q\mathbf{u} - \mathbf{y}^T \mathbf{u}.$$

It is strictly convex, and the minimum is uniquely attained:

$$\widehat{\mathbf{u}}(\mathbf{y}) = \arg\min_{\mathbf{u} \in \mathbb{R}^n} J_{\mathbf{y}}(\mathbf{u}) = Q^{-1}\mathbf{y}.$$

Various methods for solving linear systems (e.g., conjugate gradient) exploit this variational representation.

Useful variational principles for graphical models?

Consider an undirected graphical model:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C \in \mathbf{C}} \exp \{\theta_C(x_C)\}.$$

Core problems that arise in many applications:

- (a) computing the log normalization constant $\log Z$
- (b) computing local marginal distributions (e.g., $p(x_s) = \sum_{x_t, t \neq s} p(\mathbf{x})$)
- (c) computing modes or most likely configurations $\hat{\mathbf{x}} \in \arg\max_{\mathbf{x}} p(\mathbf{x})$

Approach: Develop variational representations of all of these problems by exploiting results from:

(a) exponential families

(e.g.,Brown, 1986)

(b) convex duality

(e.g., Rockafellar, 1973)

Maximum entropy formulation of graphical models

- suppose that we have measurements $\widehat{\mu}$ of the average values of some (local) functions $\phi_{\alpha}: \mathcal{X}^n \to \mathbb{R}$
- in general, will be many distributions p that satisfy the measurement constraints $\mathbb{E}_p[\phi_\alpha(\mathbf{x})] = \widehat{\mu}$
- will consider finding the p with maximum "uncertainty" subject to the observations, with uncertainty measured by entropy

$$H(p) = -\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x}).$$

Constrained maximum entropy problem: Find \widehat{p} to solve

$$\max_{p \in \mathcal{P}} H(p) \quad \text{such that} \quad \mathbb{E}_p[\phi_{\alpha}(\mathbf{x})] = \widehat{\mu}$$

• elementary argument with Lagrange multipliers shows that solution takes the exponential form

$$\widehat{p}(\mathbf{x}; \theta) \propto \exp \left\{ \sum_{\alpha \in \mathcal{I}} \theta_{\alpha} \phi_{\alpha}(\mathbf{x}) \right\}.$$

Exponential families

$$\phi_{\alpha}: \mathcal{X}^n \to \mathbb{R} \equiv \text{sufficient statistic}$$
 $\phi = \{\phi_{\alpha}, \alpha \in \mathcal{I}\} \equiv \text{vector of sufficient statistics}$
 $\theta = \{\theta_{\alpha}, \alpha \in \mathcal{I}\} \equiv \text{parameter vector}$
 $\boldsymbol{\nu} \equiv \text{base measure (e.g., Lebesgue, counting)}$

• parameterized family of densities (w.r.t. ν):

$$p(\mathbf{x}; \theta) = \exp \left\{ \sum_{\alpha} \frac{\theta_{\alpha} \phi_{\alpha}(\mathbf{x})}{-A(\theta)} \right\}$$

• cumulant generating function (log normalization constant):

$$A(\theta) = \log \left(\int \exp\{\langle \theta, \phi(\mathbf{x}) \rangle\} \nu(d\mathbf{x}) \right)$$

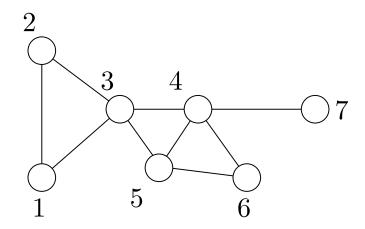
- set of valid parameters $\Theta := \{ \theta \in \mathbb{R}^d \mid A(\theta) < +\infty \}.$
- will focus on regular families for which Θ is open.

Examples: Scalar exponential families

Family	\mathcal{X}	ν	$\log p(\mathbf{x}; heta)$	A(heta)
Bernoulli	{0,1}	Counting	$\theta x - A(\theta)$	$\log[1 + \exp(\theta)]$
Gaussian	\mathbb{R}	Lebesgue	$\theta_1 x + \theta_2 x^2 - A(\theta)$	$\frac{1}{2}[\theta_1 + \log \frac{2\pi e}{-\theta_2}]$
Exponential	$(0,+\infty)$	Lebesgue	$\theta\left(-x\right) - A(\theta)$	$-\log \theta$
Poisson	$\{0,1,2\ldots\}$	Counting $h(x) = 1/x!$	$\theta x - A(\theta)$	$\exp(\theta)$

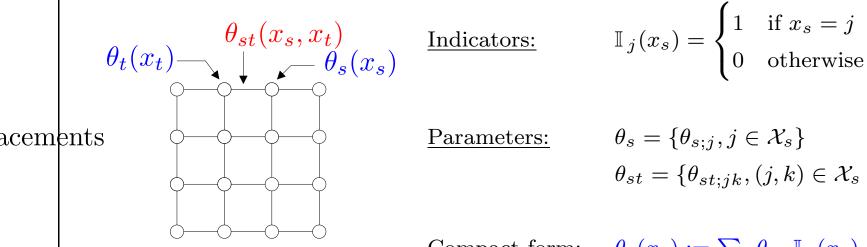
Graphical models as exponential families

- choose random variables X_s at each vertex $s \in V$ from an arbitrary exponential family (e.g., Bernoulli, Gaussian, Dirichlet etc.)
- Pstragoreptial family can be the same at each node (e.g., multivariate Gaussian), or different (e.g., mixture models).



Key requirement: The collection ϕ of sufficient statistics must respect the structure of G.

Example: Discrete Markov random field



$$\mathbb{I}_{j}(x_{s}) = \begin{cases} 1 & \text{if } x_{s} = j \\ 0 & \text{otherwise} \end{cases}$$

Parameters:
$$\theta_s = \{\theta_{s;j}, j \in \mathcal{X}_s\}$$

$$\theta_{st} = \{\theta_{st;jk}, (j,k) \in \mathcal{X}_s \times \mathcal{X}_t\}$$

Compact form:
$$\theta_s(x_s) := \sum_j \theta_{s,j} \mathbb{I}_j(x_s)$$

$$\theta_{st}(x_s, x_t) := \sum_{j,k} \theta_{st;jk} \mathbb{I}_j(x_s) \mathbb{I}_k(x_t)$$

Density (w.r.t. counting measure) of the form:

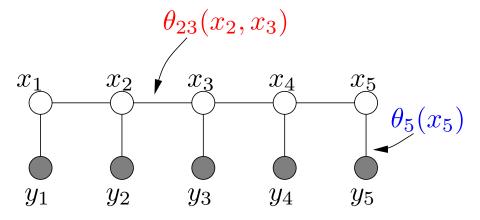
$$p(\mathbf{x}; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$

Cumulant generating function (log normalization constant):

$$A(\theta) = \log \sum_{\mathbf{x} \in \mathcal{X}^n} \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$

Special case: Hidden Markov model

• Markov chain $\{X_1, X_2, \ldots\}$ evolving in time, with noisy observation Y_t at each time t



- an HMM is a particular type of discrete MRF, representing the conditional $p(\mathbf{x} | \mathbf{y}; \theta)$
- exponential parameters have a concrete interpretation

$$\theta_{23}(x_2, x_3) = \log p(x_3 | x_2)$$
 $\theta_5(x_5) = \log p(y_5 | x_5)$

• the cumulant generating function $A(\theta)$ is equal to the log likelihood $\log p(\mathbf{y}; \theta)$

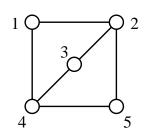
Example: Multivariate Gaussian

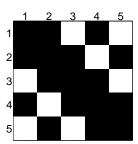
 $U(\theta)$: Matrix of natural parameters $\phi(\mathbf{x})$: Matrix of sufficient statistics

$$\begin{bmatrix} 0 & \theta_1 & \theta_2 & \dots & \theta_n \\ \theta_1 & \theta_{11} & \theta_{12} & \dots & \theta_{1n} \\ \theta_2 & \theta_{21} & \theta_{22} & \dots & \theta_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \theta_n & \theta_{n1} & \theta_{n2} & \dots & \theta_{nn} \end{bmatrix}$$

$$\begin{bmatrix} 0 & \theta_1 & \theta_2 & \dots & \theta_n \\ \theta_1 & \theta_{11} & \theta_{12} & \dots & \theta_{1n} \\ \theta_2 & \theta_{21} & \theta_{22} & \dots & \theta_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \theta_n & \theta_{n1} & \theta_{n2} & \dots & \theta_{nn} \end{bmatrix} \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_n \\ x_1 & (x_1)^2 & x_1 x_2 & \dots & x_1 x_n \\ x_2 & x_2 x_1 & (x_2)^2 & \dots & x_2 x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & x_n x_1 & x_n x_2 & \dots & (x_n)^2 \end{bmatrix}$$

Edgewise natural parameters $\theta_{st} = \theta_{ts}$ must respect graph structure:

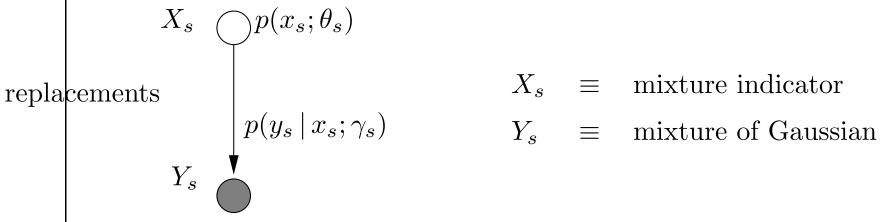




- (a) Graph structure (b) Structure of $[Z(\theta)]_{st} = \theta_{st}$.

Example: Mixture of Gaussians

- can form *mixture models* by combining different types of random variables
- let Y_s be conditionally Gaussian given the discrete variable X_s with parameters $\gamma_{s;j} = (\mu_{s;j}, \sigma_{s;j}^2)$:



- couple the mixture indicators $\mathbf{X} = \{X_s, s \in V\}$ using a discrete MRF
- overall model has the exponential form

$$p(\mathbf{y}, \mathbf{x}; \theta, \gamma) \propto \prod_{s \in V} p(y_s \mid x_s; \gamma_s) \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right] \right\}.$$

Conjugate dual functions

- conjugate duality is a fertile source of variational representations
- any function f can be used to define another function f^* as follows:

$$f^*(v) := \sup_{u \in \mathbb{R}^n} \{\langle v, u \rangle - f(u)\}.$$

- \bullet easy to show that f^* is always a convex function
- how about taking the "dual of the dual"? I.e., what is $(f^*)^*$?
- when f is well-behaved (convex and lower semi-continuous), we have $(f^*)^* = f$, or alternatively stated:

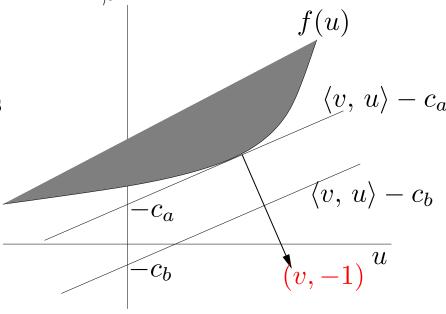
$$f(u) = \sup_{v \in \mathbb{R}^n} \{ \langle u, v \rangle - f^*(v) \}$$

Geometric view: Supporting hyperplanes

Question: Given all hyperplanes in $\mathbb{R}^n \times \mathbb{R}$ with normal (v, -1), what is the intercept of the one that supports $\operatorname{epi}(f)$?

Epigraph of f: PSfrag replacements

$$epi(f) := \{(u, \beta) \in \mathbb{R}^{n+1} \mid f(u) \le \beta\}.$$



Analytically, we require the smallest $c \in \mathbb{R}$ such that:

$$\langle v, u \rangle - c \leq f(u)$$
 for all $u \in \mathbb{R}^n$

By re-arranging, we find that this optimal c^* is the dual value:

$$c^* = \sup_{u \in \mathbb{R}^n} \{ \langle v, u \rangle - f(u) \}.$$

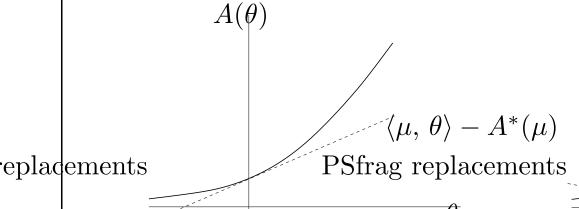
Example: Single Bernoulli

Random variable $X \in \{0,1\}$ yields exponential family of the form:

$$p(x;\theta) \propto \exp\{\theta x\}$$
 with $A(\theta) = \log[1 + \exp(\theta)]$.

Let's compute the dual $A^*(\mu) := \sup_{\theta \in \mathbb{R}} \{ \mu \theta - \log[1 + \exp(\theta)] \}.$

(Possible) stationary point: $\mu = \exp(\theta)/[1 + \exp(\theta)].$



(a) Epigraph supported

(b) Epigraph cannot be supported

We find that:
$$A^*(\mu) = \begin{cases} \mu \log \mu + (1-\mu) \log(1-\mu) & \text{if } \mu \in [0,1] \\ +\infty & \text{otherwise.} \end{cases}.$$

Leads to the variational representation: $A(\theta) = \max_{\mu \in [0,1]} \{ \mu \cdot \theta - A^*(\mu) \}.$

More general computation of the dual A^*

• consider the definition of the dual function:

$$A^*(\mu) = \sup_{\theta \in \mathbb{R}^d} \{ \langle \mu, \theta \rangle - A(\theta) \}.$$

• taking derivatives w.r.t θ to find a stationary point yields:

$$\mu - \nabla A(\theta) = 0.$$

• <u>Useful fact:</u> Derivatives of A yield mean parameters:

$$\frac{\partial A}{\partial \theta_{\alpha}}(\theta) = \mathbb{E}_{\theta}[\phi_{\alpha}(\mathbf{x})] := \int \phi_{\alpha}(\mathbf{x}) p(\mathbf{x}; \theta) \boldsymbol{\nu}(\mathbf{x}).$$

Thus, stationary points satisfy the equation:

$$\mu = \mathbb{E}_{\theta}[\phi(\mathbf{x})] \tag{1}$$

Computation of dual (continued)

- assume solution $\theta(\mu)$ to equation (1) exists
- strict concavity of objective guarantees that $\theta(\mu)$ attains global maximum with value

$$A^{*}(\mu) = \langle \mu, \theta(\mu) \rangle - A(\theta(\mu))$$

$$= \mathbb{E}_{\theta(\mu)} \Big[\langle \theta(\mu), \phi(\mathbf{x}) \rangle - A(\theta(\mu)) \Big]$$

$$= \mathbb{E}_{\theta(\mu)} [\log p(\mathbf{x}; \theta(\mu))]$$

• recall the definition of *entropy*:

$$H(p(\mathbf{x})) := -\int [\log p(\mathbf{x})] p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x})$$

• thus, we recognize that $A^*(\mu) = -H(p(\mathbf{x}; \theta(\mu)))$ when equation (1) has a solution

Question: For which $\mu \in \mathbb{R}^d$ does equation (1) have a solution $\theta(\mu)$?

Sets of realizable mean parameters

• for any distribution $p(\cdot)$, define a vector $\mu \in \mathbb{R}^d$ of mean parameters:

$$\mu_{\alpha} := \int \phi_{\alpha}(\mathbf{x}) p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x})$$

• now consider the set $\mathcal{M}(G; \phi)$ of all realizable mean parameters:

$$\mathcal{M}(G; \boldsymbol{\phi}) = \left\{ \mu \in \mathbb{R}^d \mid \mu_{\alpha} = \int \phi_{\alpha}(\mathbf{x}) p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x}) \quad \text{for some } p(\cdot) \right\}$$

• for discrete families, we refer to this set as a marginal polytope, denoted by $MARG(G; \phi)$

Examples of \mathcal{M} : Gaussian MRF

 $\phi(\mathbf{x})$ Matrix of sufficient statistics $U(\mu)$ Matrix of mean parameters

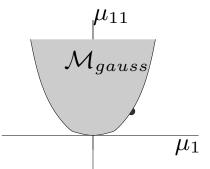
$$\begin{bmatrix} 1 & x_1 & x_2 & \dots & x_n \\ x_1 & (x_1)^2 & x_1 x_2 & \dots & x_1 x_n \\ x_2 & x_2 x_1 & (x_2)^2 & \dots & x_2 x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & x_n x_1 & x_n x_2 & \dots & (x_n)^2 \end{bmatrix} \begin{bmatrix} 1 & \mu_1 & \mu_2 & \dots & \mu_n \\ \mu_1 & \mu_{11} & \mu_{12} & \dots & \mu_{1n} \\ \mu_2 & \mu_{21} & \mu_{22} & \dots & \mu_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mu_n & \mu_{n1} & \mu_{n2} & \dots & \mu_{nn} \end{bmatrix}$$

$$\begin{bmatrix}
1 & \mu_1 & \mu_2 & \dots & \mu_n \\
\mu_1 & \mu_{11} & \mu_{12} & \dots & \mu_{1n} \\
\mu_2 & \mu_{21} & \mu_{22} & \dots & \mu_{2n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\mu_n & \mu_{n1} & \mu_{n2} & \dots & \mu_{nn}
\end{bmatrix}$$

• Gaussian mean parameters are specified by a single semidefinite constraint as $\mathcal{M}_{Gauss} = \{ \mu \in \mathbb{R}^{n + \binom{n}{2}} \mid U(\mu) \succeq 0 \}.$

Scalar case:

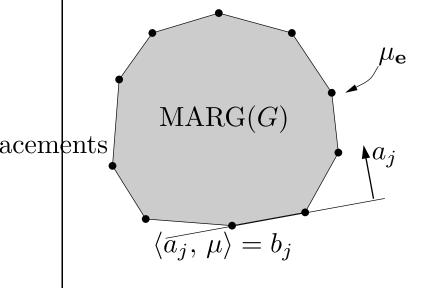
$$U(\mu) = \begin{bmatrix} 1 & \mu_1 \\ \mathbf{S} \text{frag} \mu \text{replacements} \end{bmatrix}$$



Examples of \mathcal{M} : Discrete MRF

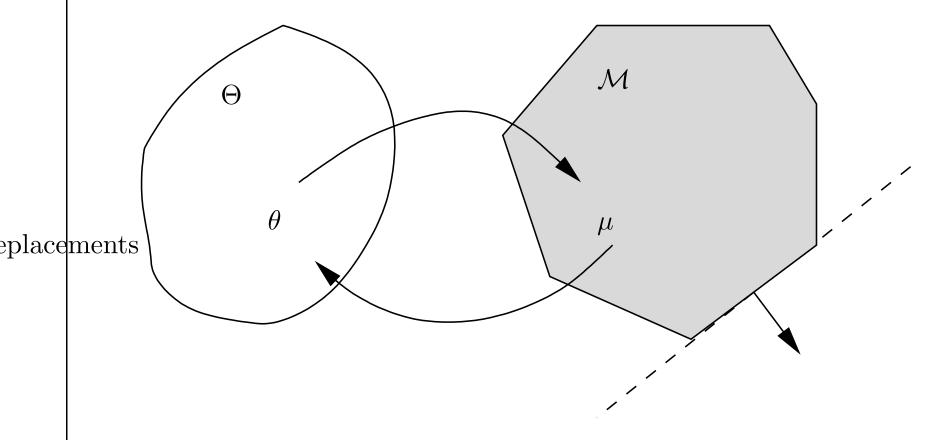
• mean parameters are simply marginal probabilities, represented as:

$$\mu_s(x_s) := \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{I}_j(x_s), \qquad \mu_{st}(x_s, x_t) := \sum_{(j,k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{I}_{jk}(x_s, x_t)$$



- denote the set of realizable μ_s and μ_{st} by MARG(G)
- refer to it as the marginal polytope
- extremely difficult to characterize for general graphs

Geometry and moment mapping



For suitable classes of graphical models in exponential form, the gradient map ∇A is a bijection between Θ and the interior of \mathcal{M} .

(e.g., Brown, 1986; Efron, 1978)

Variational principle in terms of mean parameters

• The conjugate dual of A takes the form:

$$A^{*}(\mu) = \begin{cases} -H(p(\mathbf{x}; \theta(\mu))) & \text{if } \mu \in \text{int } \mathcal{M}(G; \boldsymbol{\phi}) \\ +\infty & \text{if } \mu \notin \text{cl } \mathcal{M}(G; \boldsymbol{\phi}). \end{cases}$$

Interpretation:

- $A^*(\mu)$ is finite (and equal to a certain negative entropy) for any μ that is globally realizable
- if $\mu \notin \operatorname{cl} \mathcal{M}(G; \boldsymbol{\phi})$, then the max. entropy problem is *infeasible*
- The cumulant generating function A has the representation:

$$\underbrace{A(\theta)}_{\mu \in \mathcal{M}(G;\phi)} = \sup_{\mu \in \mathcal{M}(G;\phi)} \{ \langle \theta, \mu \rangle - A^*(\mu) \},$$
enerating func. max. ent. problem over \mathcal{M}

cumulant generating func.

• in contrast to the "free energy" approach, solving this problem provides both the value $A(\theta)$ and the exact mean parameters $\widehat{\mu}_{\alpha} = \mathbb{E}_{\theta}[\phi_{\alpha}(\mathbf{x})]$

Alternative view: Kullback-Leibler divergence

• Kullback-Leibler divergence defines "distance" between probability distributions:

$$D(p || q) := \int \left[\log \frac{p(\mathbf{x})}{q(\mathbf{x})}\right] p(\mathbf{x}) \boldsymbol{\nu}(d\mathbf{x})$$

• for two exponential family members $p(\mathbf{x}; \theta^1)$ and $p(\mathbf{x}; \theta^2)$, we have

$$D(p(\mathbf{x}; \theta^1) || p(\mathbf{x}; \theta^2)) = A(\theta^2) - A(\theta^1) - \langle \mu^1, \theta^2 - \theta^1 \rangle$$

• substituting $A(\theta^1) = \langle \theta^1, \mu^1 \rangle - A^*(\mu^1)$ yields a mixed form:

$$D(p(\mathbf{x}; \theta^1) || p(\mathbf{x}; \theta^2)) \equiv D(\mu^1 || \theta^2) = A(\theta^2) + A^*(\mu^1) - \langle \mu^1, \theta^2 \rangle$$

Hence, the following two assertions are equivalent:

$$A(\theta^{2}) = \sup_{\mu^{1} \in \mathcal{M}(G; \boldsymbol{\phi})} \{\langle \theta^{2}, \mu^{1} \rangle - A^{*}(\mu^{1}) \}$$

$$0 = \inf_{\mu^{1} \in \mathcal{M}(G; \boldsymbol{\phi})} D(\mu^{1} || \theta^{2})$$

Challenges

- 1. In general, mean parameter spaces \mathcal{M} can be very difficult to characterize (e.g., multidimensional moment problems).
- 2. Entropy $A^*(\mu)$ as a function of *only* the mean parameters μ typically lacks an explicit form.

Remarks:

- 1. Variational representation clarifies why certain models are tractable.
- 2. For intractable cases, one strategy is to solve an approximate form of the optimization problem.

Outline

- 1. Introduction and motivation
 - (a) Background on graphical models
 - (b) Some applications and challenging problems
 - (c) Illustrations of some message-passing algorithms
- 2. Exponential families and variational methods
 - (a) What is a variational method (and why should I care)?
 - (b) Graphical models as exponential families
 - (c) Variational representations from conjugate duality
- 3. Exact techniques as variational methods
 - (a) Gaussian inference on arbitrary graphs
 - (b) Belief-propagation/sum-product on trees (e.g., Kalman filter; α - β alg.)
 - (c) Max-product on trees (e.g., Viterbi)
- 4. Approximate techniques as variational methods
 - (a) Mean field and variants
 - (b) Belief propagation and extensions
 - (c) Semidefinite constraints and convex relaxations

A(i): Multivariate Gaussian (fixed covariance)

Consider the set of all Gaussians with fixed inverse covariance $Q \succ 0$.

- potentials $\phi(\mathbf{x}) = \{x_1, \dots, x_n\}$ and natural parameter $\theta \in \Theta = \mathbb{R}^n$.
- cumulant generating function:

$$A(\theta) = \log \int_{\mathbb{R}^n} \exp \left\{ \sum_{s=1}^n \theta_s x_s \right\} = \exp \left\{ -\frac{1}{2} \mathbf{x}^T Q \mathbf{x} \right\} d\mathbf{x}$$
 base measure

- completing the square yields $A(\theta) = \frac{1}{2}\theta^T Q^{-1}\theta + \text{constant}$
- straightforward computation leads to the dual $A^*(\mu) = \frac{1}{2}\mu^T Q\mu$ constant
- putting the pieces back together yields the variational principle

$$A(\theta) = \sup_{\mu \in \mathbb{R}^n} \left\{ \theta^T \mu - \frac{1}{2} \mu^T Q \mu \right\} + \text{constant}$$

• optimum is uniquely obtained at the familiar Gaussian mean $\widehat{\mu} = Q^{-1}\theta$.

A(ii): Multivariate Gaussian (arbitrary covariance)

• matrices of sufficient statistics, natural parameters, and mean parameters:

$$\phi(\mathbf{x}) = \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{x} \end{bmatrix}, \quad U(\theta) := \begin{bmatrix} 0 & [\theta_s] \\ [\theta_s] & [\theta_{st}] \end{bmatrix} \quad U(\mu) := \mathbb{E} \left\{ \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{x} \end{bmatrix} \right\}$$

• cumulant generating function:

$$A(\theta) = \log \int \exp \{\langle U(\theta), \phi(\mathbf{x}) \rangle\} d\mathbf{x}$$

• computing the dual function:

$$A^*(\mu) = -\frac{1}{2} \log \det U(\mu) - \frac{n}{2} \log 2\pi e,$$

• exact variational principle is a log-determinant problem:

$$A(\theta) = \sup_{U(\mu) \succ 0, \ [U(\mu)]_{11} = 1} \left\{ \langle U(\theta), \ U(\mu) \rangle + \frac{1}{2} \log \det U(\mu) \right\} + \frac{n}{2} \log 2\pi e$$

• solution yields the *normal equations* for Gaussian mean and covariance.

B: Belief propagation/sum-product on trees

- discrete variables $X_s \in \{0, 1, \dots, m_s 1\}$ on a tree T = (V, E)
- sufficient statistics: indicator functions for each node and edge

$$\mathbb{I}_{j}(x_s)$$
 for $s = 1, \dots, j \in \mathcal{X}_s$
 $\mathbb{I}_{jk}(x_s, x_t)$ for $(s, t) \in E, (j, k) \in \mathcal{X}_s \times \mathcal{X}_t.$

• exponential representation of distribution:

$$p(\mathbf{x}; \theta) \propto \exp \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$$

where
$$\theta_s(x_s) := \sum_{j \in \mathcal{X}_s} \theta_{s;j} \mathbb{I}_j(x_s)$$
 (and similarly for $\theta_{st}(x_s, x_t)$)

• mean parameters are simply marginal probabilities, represented as:

$$\mu_s(x_s) := \sum_{j \in \mathcal{X}_s} \mu_{s;j} \mathbb{I}_j(x_s), \qquad \mu_{st}(x_s, x_t) := \sum_{(j,k) \in \mathcal{X}_s \times \mathcal{X}_t} \mu_{st;jk} \mathbb{I}_{jk}(x_s, x_t)$$

• the marginals must belong to the following marginal polytope:

MARG(T) :=
$$\{ \mu \ge 0 \mid \sum_{x_s} \mu_s(x_s) = 1, \sum_{x_t} \mu_{st}(x_s, x_t) = \mu_s(x_s) \},$$

Decomposition of entropy for trees

• by the junction tree theorem, any tree can be factorized in terms of its marginals $\mu \equiv \mu(\theta)$ as follows:

$$p(\mathbf{x};\theta) = \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)}$$

• taking logs and expectations leads to an entropy decomposition

$$H(p(\mathbf{x};\theta)) = -A^*(\mu(\theta)) = \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st})$$

where

Single node entropy: $H_s(\mu_s) := -\sum_{x_s} \mu_s(x_s) \log \mu_s(x_s)$

Mutual information: $I_{st}(\mu_{st}) := \sum_{x_s, x_t} \mu_{st}(x_s, x_t) \log \frac{\mu_{st}(x_s, x_t)}{\mu_{s}(x_s)\mu_{t}(x_t)}$.

• thus, the dual function $A^*(\mu)$ has an explicit and easy form

Exact variational principle on trees

• putting the pieces back together yields:

$$A(\theta) = \max_{\mu \in \text{MARG}(T)} \left\{ \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E(T)} I_{st}(\mu_{st}) \right\}.$$

- let's try to solve this problem by a (partial) Lagrangian formulation
- assign a Lagrange multiplier $\lambda_{ts}(x_s)$ for each constraint $C_{ts}(x_s) := \mu_s(x_s) \sum_{x_t} \mu_{st}(x_s, x_t) = 0$
- will enforce the normalization $(\sum_{x_s} \mu_s(x_s) = 1)$ and non-negativity constraints explicitly
- the Lagrangian takes the form:

$$\mathcal{L}(\mu; \lambda) = \langle \theta, \mu \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E(T)} I_{st}(\mu_{st})$$

$$+ \sum_{(s,t) \in E} \left[\sum_{x_t} \lambda_{st}(x_t) C_{st}(x_t) + \sum_{x_s} \lambda_{ts}(x_s) C_{ts}(x_s) \right]$$

Lagrangian derivation (continued)

• taking derivatives of the Lagrangian w.r.t μ_s and μ_{st} yields

$$\frac{\partial \mathcal{L}}{\partial \mu_s(x_s)} = \theta_s(x_s) - \log \mu_s(x_s) + \sum_{t \in \mathcal{N}(s)} \lambda_{ts}(x_s) + C$$

$$\frac{\partial \mathcal{L}}{\partial \mu_{st}(x_s, x_t)} = \theta_{st}(x_s, x_t) - \log \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s)\mu_t(x_t)} - \lambda_{ts}(x_s) - \lambda_{st}(x_t) + C'$$

• setting these partial derivatives to zero and simplifying:

$$\mu_{s}(x_{s}) \propto \exp\left\{\theta_{s}(x_{s})\right\} \prod_{t \in \mathcal{N}(s)} \exp\left\{\lambda_{ts}(x_{s})\right\}$$

$$\mu_{s}(x_{s}, x_{t}) \propto \exp\left\{\theta_{s}(x_{s}) + \theta_{t}(x_{t}) + \theta_{st}(x_{s}, x_{t})\right\} \times$$

$$\prod_{u \in \mathcal{N}(s) \setminus t} \exp\left\{\lambda_{us}(x_{s})\right\} \prod_{v \in \mathcal{N}(t) \setminus s} \exp\left\{\lambda_{vt}(x_{t})\right\}$$

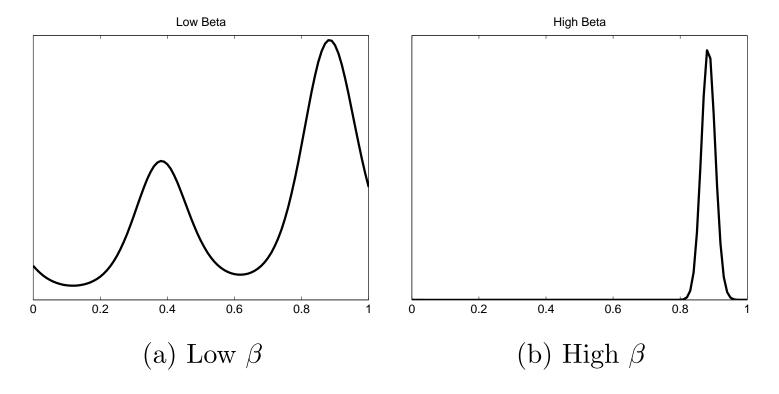
• enforcing the constraint $C_{ts}(x_s) = 0$ on these representations yields the familiar update rule for the messages $M_{ts}(x_s) = \exp(\lambda_{ts}(x_s))$:

$$M_{ts}(x_s) \leftarrow \sum_{x_t} \exp \left\{ \theta_t(x_t) + \theta_{st}(x_s, x_t) \right\} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t)$$

C: Max-product algorithm on trees

Question: What should be the form of a variational principle for computing modes?

Intuition: Consider behavior of the family $\{p(\mathbf{x}; \beta\theta) \mid \beta > 0\}$.



Conclusion: Problem of computing modes should be related to limiting form $(\beta \to +\infty)$ of computing marginals.

Limiting form of the variational principle

• consider the variational principle for a discrete MRF of the form $p(\mathbf{x}; \beta\theta)$:

$$\frac{1}{\beta}A(\beta\theta) = \frac{1}{\beta} \max_{\mu \in MARG} \{ \langle \beta\theta, \mu \rangle - A^*(\mu) \}.$$

• taking limits as $\beta \to +\infty$ yields:

$$\max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\} = \max_{\mu \in \mathsf{MARG}(G)} \left\{ \langle \theta, \mu \rangle \right\}.$$
computation of modes
$$\operatorname{linear program}$$

• thus, computing the mode in a discrete MRF is equivalent to a linear program over the marginal polytope

Max-product on tree-structured MRFs

• recall the max-product (belief revision) updates:

$$M_{ts}(x_s) \leftarrow \max_{x_t} \exp \left\{ \theta_t(x_t) + \theta_{st}(x_s, x_t) \right\} \prod_{u \in \mathcal{N}(t) \setminus s} M_{ut}(x_t)$$

• for trees, the variational principle (linear program) takes the especially simple form

$$\max_{\mu \in \text{MARG}(T)} \left\{ \sum_{s \in V} \theta_s(x_s) \mu_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \mu_{st}(x_s, x_t) \right\}$$

• constraint set is the marginal polytope for trees

MARG(T) :=
$$\{ \mu \ge 0 \mid \sum_{x_s} \mu_s(x_s) = 1, \sum_{x_t} \mu_{st}(x_s, x_t) = \mu_s(x_s) \},$$

• a similar Lagrangian formulation shows that max-product is an iterative method for solving this linear program (details in Wainwright & Jordan, 2003)

Outline

- 1. Introduction and motivation
 - (a) Background on graphical models
 - (b) Some applications and challenging problems
 - (c) Illustrations of some message-passing algorithms
- 2. Exponential families and variational methods
 - (a) What is a variational method (and why should I care)?
 - (b) Graphical models as exponential families
 - (c) Variational representations from conjugate duality
- 3. Exact techniques as variational methods
 - (a) Gaussian inference on arbitrary graphs
 - (b) Belief-propagation/sum-product on trees (e.g., Kalman filter; α - β alg.)
 - (c) Max-product on trees (e.g., Viterbi)
- 4. Approximate techniques as variational methods
 - (a) Mean field and variants
 - (b) Belief propagation and extensions
 - (c) Semidefinite constraints and convex relaxations

A: Mean field theory

Difficulty: (typically) no explicit form for $-A^*(\mu)$ (i.e., entropy as a function of mean parameters) \Longrightarrow exact variational principle is intractable.

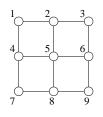
Idea: Restrict μ to a *subset* of distributions for which $-A^*(\mu)$ has a tractable form.

Examples:

- (a) For product distributions $p(\mathbf{x}) = \prod_{s \in V} \mu_s(x_s)$, entropy decomposes as $-A^*(\mu) = \sum_{s \in V} H_s(x_s)$.
- (b) Similarly, for trees (more generally, decomposable graphs), the junction tree theorem yields an explicit form for $-A^*(\mu)$.

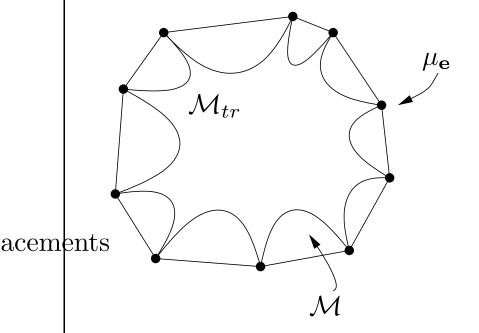
Definition: A subgraph H of G is tractable if the entropy has an explicit form for any distribution that respects H.

Geometry of mean field



• let H represent a $tractable \ subgraph$ (i.e., for which A^* has explicit form)

• let $\mathcal{M}_{tr}(G;H)$ represent tractable mean parameters: $\mathcal{M}_{tr}(G;H) := \{ \mu | \ \mu = \mathbb{E}_{\theta}[\phi(\mathbf{x})] \ \text{ s. t. } \theta \text{ respects } H \}.$ • 50 60



- under mild conditions, \mathcal{M}_{tr} is a nonconvex inner approximation to \mathcal{M}
- optimizing over \mathcal{M}_{tr} (as opposed to \mathcal{M}) yields lower bound:

$$A(\theta) \ge \sup_{\widetilde{\mu} \in \mathcal{M}_{tr}} \{ \langle \theta, \widetilde{\mu} \rangle - A^*(\widetilde{\mu}) \}.$$

Alternative view: Minimizing KL divergence

• recall the mixed form of the KL divergence between $p(\mathbf{x}; \theta)$ and $p(\mathbf{x}; \widetilde{\theta})$:

$$D(\widetilde{\mu} || \theta) = A(\theta) + A^*(\widetilde{\mu}) - \langle \widetilde{\mu}, \theta \rangle$$

- try to find the "best" approximation to $p(\mathbf{x}; \theta)$ in the sense of KL divergence
- in analytical terms, the problem of interest is

$$\inf_{\widetilde{\mu} \in \mathcal{M}_{tr}} D(\widetilde{\mu} || \theta) = A(\theta) + \inf_{\widetilde{\mu} \in \mathcal{M}_{tr}} \left\{ A^*(\widetilde{\mu}) - \langle \widetilde{\mu}, \theta \rangle \right\}$$

• hence, finding the tightest lower bound on $A(\theta)$ is equivalent to finding the best approximation to $p(\mathbf{x}; \theta)$ from distributions with $\widetilde{\mu} \in \mathcal{M}_{tr}$

Example: Naive mean field algorithm for Ising model

- consider completely disconnected subgraph $H = (V, \emptyset)$
- permissible exponential parameters belong to subspace

$$\mathcal{E}(H) = \{ \theta \in \mathbb{R}^d \mid \theta_{st} = 0 \ \forall \ (s, t) \in E \}$$

• allowed distributions take product form $p(\mathbf{x}; \theta) = \prod_{s \in V} p(x_s; \theta_s)$, and generate

$$\mathcal{M}_{tr}(G; H) = \{ \mu \mid \mu_{st} = \mu_s \mu_t, \ \mu_s \in [0, 1] \}.$$

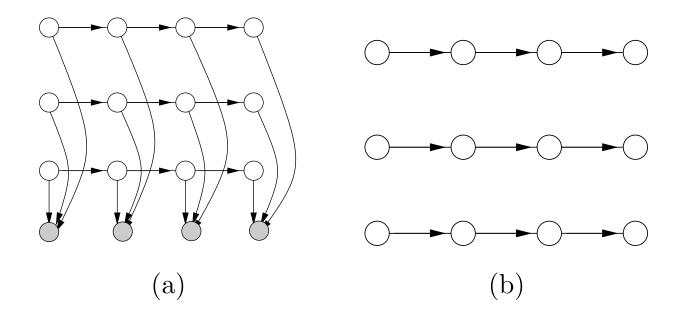
• approximate variational principle:

$$\max_{\mu_s \in [0,1]} \left\{ \sum_{s \in V} \theta_s \mu_s + \sum_{(s,t) \in E} \theta_{st} \mu_s \mu_t - \left[\sum_{s \in V} \mu_s \log \mu_s + (1 - \mu_s) \log (1 - \mu_s) \right] \right\}.$$

• Co-ordinate ascent: with all $\{\mu_t, t \neq s\}$ fixed, problem is strictly concave in μ_s and optimum is attained at

$$\mu_s \leftarrow \left\{1 + \exp\left[-\left(\theta_s + \sum_{t \in \mathcal{N}(s)} \theta_{st} \mu_t\right)\right]\right\}^{-1}$$

Example: Structured mean field for coupled HMM



- ullet entropy of distribution that respects H decouples into sum: one term for each chain.
- structured mean field updates are an iterative method for finding the tightest approximation (either in terms of KL or lower bound)

B: Belief propagation on arbitrary graphs

Two main ingredients:

1. Exact entropy $-A^*(\mu)$ is intractable, so let's approximate it. The Bethe approximation $A^*_{Bethe}(\mu) \approx A^*(\mu)$ is based on the exact expression for trees:

$$-A_{Bethe}^*(\mu) = \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\mu_{st}).$$

2. The marginal polytope MARG(G) is also difficult to characterize, so let's use the following (tree-based) outer bound:

LOCAL(G) :=
$$\{ \tau \ge 0 \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_t} \tau_{st}(x_s, x_t) = \tau_s(x_s) \},$$

Note: Use τ to distinguish these locally consistent *pseudomarginals* from globally consistent marginals.

Geometry of belief propagation

• combining these ingredients leads to the *Bethe variational principle:*

$$\max_{\tau \in \text{LOCAL}(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\mu_s) - \sum_{(s,t) \in E} I_{st}(\tau_{st}) \right\}$$

• belief propagation can be derived as an iterative method for solving a Lagrangian formulation of the BVP (Yedidia et al., 2002)

• belief propagation uses a polyhedral outer approximation to \mathcal{M}

• for any graph, $LOCAL(G) \supseteq MARG(G)$.

• equality holds \iff G is a tree.

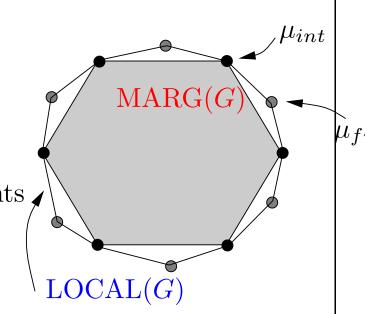
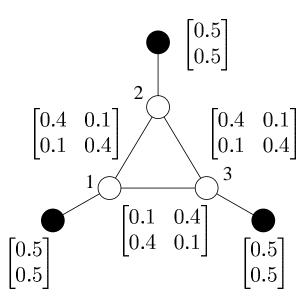


Illustration: Globally inconsistent BP fixed points

Consider the following assignment of pseudomarginals τ_s, τ_{st} :

Locally consistent (pseudo)marginals



- can verify that $\tau \in LOCAL(G)$, and that τ is a fixed point of belief propagation (with all constant messages)
- however, τ is globally inconsistent

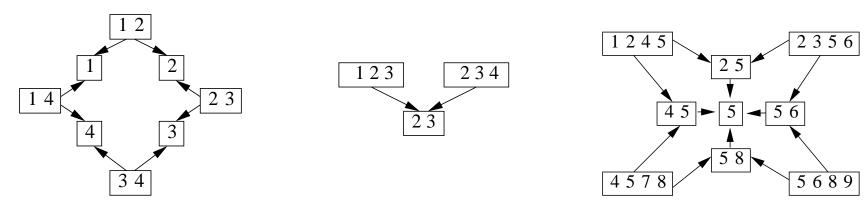
Note: More generally: for any τ in the interior of LOCAL(G), can construct a distribution with τ as a BP fixed point.

High-level perspective

- message-passing algorithms (e.g., mean field, belief propagation) are solving approximate versions of exact variational principle in exponential families
- there are two distinct components to approximations:
 - (a) can use either inner or outer bounds to \mathcal{M}
 - (b) various approximations to entropy function $-A^*(\mu)$
- mean field: non-convex inner bound and exact form of entropy
- BP: polyhedral outer bound and non-convex Bethe approximation
- <u>Kikuchi and variants:</u> tighter polyhedral outer bounds and better entropy approximations (Yedidia et al., 2001; Minka, 2001; Pakzad & Anantharam, 2002; Yildirim & McEliece, 2002)

Generalized belief propagation on hypergraphs

- a hypergraph is a natural generalization of a graph
- \bullet it consists of a set of vertices V and a set E of hyperedges, where each hyperedge is a subset of V
- convenient graphical representation in terms of poset diagrams



- (a) Ordinary graph (b) Hypertree (width 2) (c) Hypergraph
- \bullet descendants and ancestors of a hyperedge h:

$$\mathcal{D}^{+}(h) := \{ g \in E \mid g \subseteq h \}, \qquad \mathcal{A}^{+}(h) := \{ g \in E \mid g \supseteq h \}.$$

Hypertree factorization and entropy

- hypertrees are an alternative way to describe junction trees
- associated with any poset is a Möbius function $\omega: E \times E \to \mathbb{Z}$

$$\omega(g,g) = 1, \quad \omega(g,h) = -\sum_{\{f \mid g \subseteq f \subset h\}} \omega(g,f)$$

Example: For Boolean poset, $\omega(g,h) = (-1)^{|h| \setminus |g|}$.

• use the Möbius function to define a correspondence between the collection of marginals $\mu := \{\mu_h\}$ and new set of functions $\varphi := \{\varphi_h\}$:

$$\log \varphi_h(x_h) = \sum_{g \in \mathcal{D}^+(h)} \omega(g, h) \log \mu_g(x_g), \qquad \log \mu_h(x_h) = \sum_{g \in \mathcal{D}^+(h)} \log \varphi_g(x_g).$$

• any hypertree-structured distribution is guaranteed to factor as:

$$p(\mathbf{x}) = \prod_{h \in E} \varphi_h(x_h).$$

Examples: Hypertree factorization

1. Ordinary tree:

$$\varphi_s(x_s) = \mu_s(x_s) \text{ for any vertex } s$$

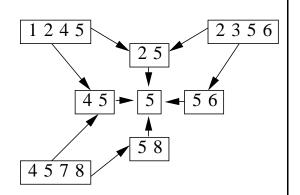
$$\varphi_{st}(x_s, x_t) = \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)} \text{ for any edge } (s, t)$$

2. Hypertree:

$$\varphi_{1245} = \frac{\mu_{1245}}{\frac{\mu_{25}}{\mu_5} \frac{\mu_{45}}{\mu_5} \mu_5} \mu_5$$

$$\varphi_{45} = \frac{\mu_{45}}{\mu_5}$$

$$\varphi_5 = \mu_5$$

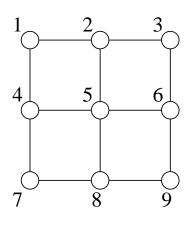


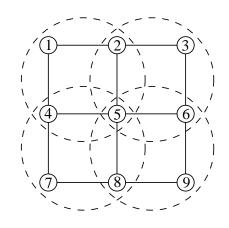
Combining the pieces:

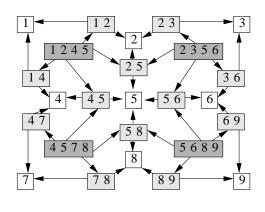
$$p = \frac{\mu_{1245}}{\frac{\mu_{25}}{\mu_5} \frac{\mu_{45}}{\mu_5} \mu_5} \frac{\mu_{2356}}{\frac{\mu_{25}}{\mu_5} \frac{\mu_{56}}{\mu_5} \mu_5} \frac{\mu_{4578}}{\frac{\mu_{45}}{\mu_5} \frac{\mu_{58}}{\mu_5} \mu_5} \frac{\mu_{25}}{\mu_5} \frac{\mu_{45}}{\mu_5} \frac{\mu_{56}}{\mu_5} \frac{\mu_{56}}{\mu_5} \frac{\mu_{56}}{\mu_5} \frac{\mu_{58}}{\mu_5} \mu_5} \mu_5 = \frac{\mu_{1245} \mu_{2356} \mu_{4578}}{\mu_{25} \mu_{45}}$$

Building augmented hypergraphs

Better entropy approximations via augmented hypergraphs.



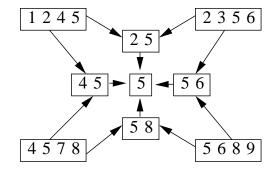


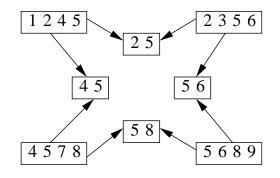


(a) Original

(b) Clustering

(c) Full covering





(e) Fails single counting

C. Convex relaxations

Possible concerns with the Bethe/Kikuchi problems and variations?

- (a) lack of convexity ⇒ multiple local optima, and substantial algorithmic complications
- (b) failure to bound the log partition function

Goal: Techniques for approximate computation of marginals and parameter estimation based on:

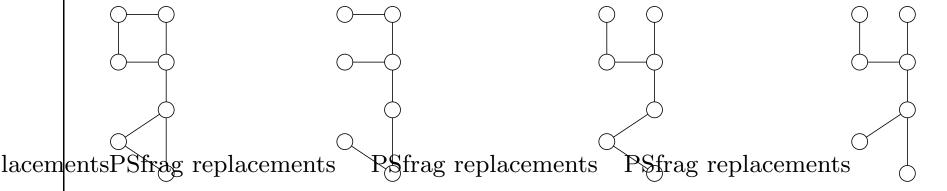
- (a) convex variational problems \Rightarrow unique global optimum
- (b) relaxations of exact problem \Rightarrow upper bounds on $A(\theta)$

Usefulness of bounds:

- (a) interval estimates for marginals
- (b) approximate parameter estimation
- (c) large deviations (prob. of rare events)

Bounds from "convexified" Bethe/Kikuchi problems

Idea: Upper bound $-A^*(\mu)$ by convex combination of tree-structured entropies.



$$-A^*(\mu) \qquad \leq \qquad -\rho(T^1)A^*(\mu(T^1)) \qquad - \qquad \rho(T^2)A^*(\mu(T^2)) \qquad - \qquad \rho(T^3)A^*(\mu(T^3))$$

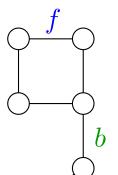
• given any spanning tree T, define the moment-matched tree distribution:

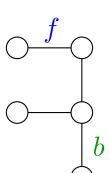
$$p(\mathbf{x}; \mu(T)) := \prod_{s \in V} \mu_s(x_s) \prod_{(s,t) \in E} \frac{\mu_{st}(x_s, x_t)}{\mu_s(x_s) \mu_t(x_t)}$$

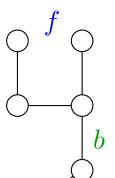
- use $-A^*(\mu(T))$ to denote the associated tree entropy
- let $\rho = {\rho(T)}$ be a probability distribution over spanning trees

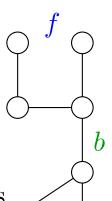
Edge appearance probabilities

Experiment: What is the probability ρ_e that a given edge $e \in E$ belongs to a tree T drawn randomly under ρ ?

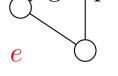


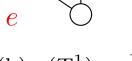






lacements frag replacements frag replacements frag replacements





(d)
$$\rho(T^3) = \frac{1}{3}$$

In this example: $\rho_b = 1;$ $\rho_e = \frac{2}{3};$ $\rho_f = \frac{1}{3}.$

$$\rho_b = 1;$$

$$\rho_e = \frac{2}{3};$$

$$\rho_f = \frac{1}{3}.$$

The vector $\rho_e = \{ \rho_e \mid e \in E \}$ must belong to the spanning tree polytope, denoted $\mathbb{T}(G)$. (Edmonds, 1971)

Optimal bounds by tree-reweighted message-passing

Recall the constraint set of locally consistent marginal distributions:

LOCAL(G) =
$$\{ \tau \geq 0 \mid \sum_{x_s} \tau_s(x_s) = 1, \sum_{x_s} \tau_{st}(x_s, x_t) = \tau_t(x_t) \}.$$
normalization marginalization

Theorem: (Wainwright, Jaakkola, & Willsky, 2002; To appear in IEEE-IT)

(a) For any given edge weights $\rho_e = \{\rho_e\}$ in the spanning tree polytope, the optimal upper bound over *all* tree parameters is given by:

$$A(\theta) \leq \max_{\tau \in LOCAL(G)} \left\{ \langle \theta, \tau \rangle + \sum_{s \in V} H_s(\tau_s) - \sum_{(s,t) \in E} \rho_{st} I_{st}(\tau_{st}) \right\}.$$

(b) This optimization problem is strictly convex, and its unique optimum is specified by the fixed point of ρ_e -reweighted message passing:

$$M_{ts}^*(x_s) = \kappa \sum_{x_t' \in \mathcal{X}_t} \left\{ \exp\left[\frac{\theta_{st}(x_s, x_t')}{\rho_{st}} + \theta_t(x_t')\right] \frac{\prod_{v \in \Gamma(t) \setminus s} \left[M_{vt}^*(x_t)\right]^{\rho_{vt}}}{\left[M_{st}^*(x_t)\right]^{(1-\rho_{ts})}} \right\}.$$

Semidefinite constraints in convex relaxations

Fact: Belief propagation and its hypergraph-based generalizations all involve polyhedral (i.e., *linear*) outer bounds on the marginal polytope.

Idea: Use *semidefinite* constraints to generate more global outer bounds.

Example: For the Ising model, relevant mean parameters are $\mu_s = p(X_s = 1)$ and $\mu_{st} = p(X_s = 1, X_t = 1)$.

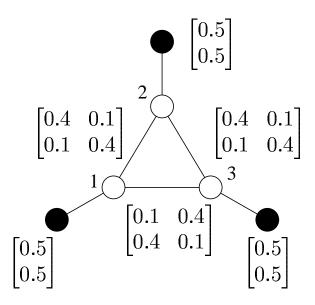
Define $\mathbf{y} = \begin{bmatrix} 1 & \mathbf{x} \end{bmatrix}^T$, and consider the second-order moment matrix:

$$\mathbb{E}[\mathbf{y}\mathbf{y}^{T}] = \begin{bmatrix} 1 & \mu_{1} & \mu_{2} & \dots & \mu_{n} \\ \mu_{1} & \mu_{1} & \mu_{12} & \dots & \mu_{1n} \\ \mu_{2} & \mu_{12} & \mu_{2} & \dots & \mu_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mu_{n} & \mu_{n1} & \mu_{n2} & \dots & \mu_{n} \end{bmatrix}$$

It must be positive semidefinite, which imposes (an infinite number of) linear constraints on μ_s , μ_{st} .

Illustrative example

Locally consistent (pseudo)marginals



Second-order moment matrix

$$\begin{bmatrix} \mu_1 & \mu_{12} & \mu_{13} \\ \mu_{21} & \mu_2 & \mu_{23} \\ \mu_{31} & \mu_{32} & \mu_3 \end{bmatrix} = \begin{bmatrix} 0.5 & 0.4 & 0.1 \\ 0.4 & 0.5 & 0.4 \\ 0.1 & 0.4 & 0.5 \end{bmatrix}$$

Not positive-semidefinite!

Log-determinant relaxation

• based on optimizing over covariance matrices $M_1(\mu) \in \text{SDEF}_1(K_n)$

Theorem: Consider an outer bound $OUT(K_n)$ that satisfies:

$$MARG(K_n) \subseteq OUT(K_n) \subseteq SDEF_1(K_n)$$

For any such outer bound, $A(\theta)$ is upper bounded by:

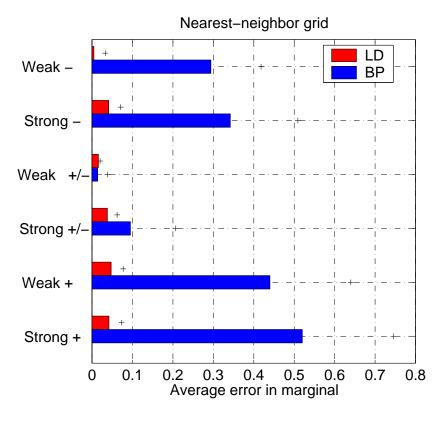
$$\max_{\mu \in \text{OUT}(K_n)} \left\{ \langle \theta, \mu \rangle + \frac{1}{2} \log \det \left[M_1(\mu) + \frac{1}{3} \text{ blkdiag}[0, I_n] \right] \right\} + \frac{n}{2} \log \left(\frac{\pi e}{2} \right)$$

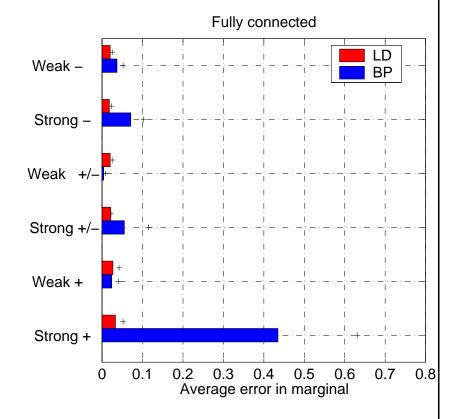
Remarks:

- 1. Log-det. problem can be solved efficiently by interior point methods.
- 2. Relevance for applications:
 - (a) Upper bound on $A(\theta)$.
 - (b) Method for computing approximate marginals.

(Wainwright & Jordan, 2003)

Results for approximating marginals





(a) Nearest-neighbor grid

- (b) Fully connected
- average ℓ_1 error in approximate marginals over 100 trials
- coupling types: repulsive (-), mixed (+/-), attractive (+)

Tree-based linear programming relaxations

• recall the equivalence between computing modes and solving an LP over the marginal polytope:

$$\max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\} = \max_{\mu \in \text{MARG}(G)} \left\{ \langle \theta, \mu \rangle \right\}.$$

• our development suggests a very natural tree-based LP relaxation:

$$\max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\} \leq \max_{\mu \in LOCAL(G)} \left\{ \langle \theta, \mu \rangle \right\}.$$

computation of modes

tree-relaxed LP

- this relaxation is always exact for trees
- its behavior for MRFs with cycles depends on the graph topology and strength of compatibility functions and observations

Geometry of LP relaxation

• two vertex types in relaxed polytope:

integral: optimal configurations $(e.g., \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix})$ fractional: locally consistent $(e.g., \begin{bmatrix} 1 & \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix})$ LOCAL(G)

- cost parameters θ_s and θ_{st} specify a particular direction in space
- if LP optimum for cost θ attained at an integral vertex \Longrightarrow LP relaxation is tight
- challenge: characterizing "good" directions in space

Link to message-passing algorithms

- tree-reweighted max-product algorithm linked to this tree-relaxed LP (analogous to Bethe and sum-product):
 - messages can be defined in terms of Lagrange multipliers
 - fixed point condition related to specification of dual optimum
- tree-reweighted form of max-product: (Wainwright e et al., 2003)

$$M_{ts}^*(x_s) = \kappa \max_{x_t' \in \mathcal{X}_t} \left\{ \exp\left[\frac{\theta_{st}(x_s, x_t')}{\rho_{st}} + \theta_t(x_t')\right] \frac{\prod_{v \in \Gamma(t) \setminus s} \left[M_{vt}^*(x_t)\right]^{\rho_{vt}}}{\left[M_{st}^*(x_t)\right]^{(1-\rho_{ts})}} \right\}.$$

- tree-relaxed LP and tree-reweighted max-product used in several applications
 - data association in sensor networks (Chen et al., 2003)
 - error-control decoding in communication (Feldman et al., 2005)
 - disparity computation in computer vision (Weiss et al., 2005;
 Kolmogorov, 2005)

Summary and future directions

- variational methods are based on converting statistical and computational problems to optimization:
 - (a) complementary to sampling-based methods (e.g., MCMC)
 - (b) a variety of new "relaxations" remain to be explored
- many open questions:
 - (a) prior error bounds available only in special cases
 - (b) extension to non-parametric settings?
 - (c) hybrid techniques (variational and MCMC)
 - (d) variational methods in parameter estimation
 - (e) fast techniques for solving large-scale relaxations (e.g., SDPs, other convex programs)