C280, Computer Vision

Prof. Trevor Darrell
trevor@eecs.berkeley.edu

Lecture 8: Alignment

Last time: Texture

- Texture is a useful property that is often indicative of materials, appearance cues
- Texture representations attempt to summarize repeating patterns of local structure
- Filter banks useful to measure redundant variety of structures in local neighborhood
- Feature spaces can be multi-dimensional
- Neighborhood statistics can be exploited to "sample" or synthesize new texture regions
- Example-based technique particularly good for synthesis

Problem Sets...

- PS 0/1 graded by end of week
- PS 1: stragglers by end of day today; solns released tomorrow morning
- PS 2: released yesterday
- More programming centric
- More open ended
- Shorter, choice of problems...
- Due two weeks from yesterday

Roadmap

- Previous: Image formation, filtering, local features, (Texture)...
- Today: Feature-based Alignment
- Stitching images together
- Homographies, RANSAC, Warping, Blending
- Global alignment of planar models
- Next lecture (Thu): Dense Motion Models
- Local motion / feature displacement
- Parametric optic flow
- No classes next week: ICCV conference
- Oct 6th: Stereo / 'Multi-view’: Estimating depth with known inter-camera pose
- Oct 8 ${ }^{\text {th }}$: 'Structure-from-motion': Estimation of pose and 3D structure
- Factorization approaches
- Global alignment with 3D point models

Today: Alignment

- Homographies
- Rotational Panoramas

(a)
(b)
- RANSAC
- Global alignment
- Warping
- Blending

Motivation: Recognition

Figures from David Lowe

Motivation: medical image registration

Motivation: Mosaics

- Getting the whole picture
- Consumer camera: $50^{\circ} \times 35^{\circ}$

Motivation: Mosaics

- Getting the whole picture
- Consumer camera: $50^{\circ} \times 35^{\circ}$
- Human Vision: $176^{\circ} \times 135^{\circ}$

Slide from Brown \& Lowe 2003

Motivation: Mosaics

- Getting the whole picture
- Consumer camera: $50^{\circ} \times 35^{\circ}$
- Human Vision: $176^{\circ} \times 135$

- Panoramic Mosaic $=$ up to $360 \times 180^{\circ}$

Slide from Brown \& Lowe 2003

Motion models

Motion models

- What happens when we take two images with a camera and try to align them?
- translation?
- rotation?
- scale?
- affine?
- perspective?
- ... see interactive demo (VideoMosaic)

Image Warping

Image Warping

- image filtering: change range of image
- $g(x)=h(f(x))$

- image warping: change domain of image
- $g(x)=f(h(x))$

Image Warping

- image filtering: change range of image
- $g(x)=h(f(x))$

g

- image warping: change domain of image

- $g(x)=f(h(x))$

Parametric (global) warping

- Examples of parametric warps:

Image Warping

- Given a coordinate transform $\boldsymbol{x}^{\boldsymbol{\prime}}=\boldsymbol{h}(\boldsymbol{x})$ and a source image $f(x)$, how do we compute a transformed image $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)=\boldsymbol{f}(\boldsymbol{h}(\boldsymbol{x}))$?

Forward Warping

- Send each pixel $f(x)$ to its corresponding location $\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{x})$ in $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)$
- What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel $f(x)$ to its corresponding location $\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{x})$ in $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)$
- What if pixel lands "between" two pixels?
- Answer: add "contribution" to several pixels, normalize later (splatting)

Inverse Warping

- Get each pixel $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)$ from its corresponding location $\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{x})$ in $\boldsymbol{f}(\boldsymbol{x})$
- What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel $\boldsymbol{g}\left(\boldsymbol{x}^{\prime}\right)$ from its corresponding location $\boldsymbol{x}^{\prime}=\boldsymbol{h}(\boldsymbol{x})$ in $\boldsymbol{f}(\boldsymbol{x})$
- What if pixel comes from "between" two pixels?
- Answer: resample color value from interpolated (prefiltered) source image

Inverse warping

Get each pixel $g\left(x^{\prime}, y\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearest neighbor, bilinear...

Bilinear interpolation

Sampling at $f(x, y)$:

$$
\begin{array}{cll}
f(x, y)=(1-a)(1-b) & f[i, j] \\
+a(1-b) & f[i+1, j] \\
\quad+a b & f[i+1, j+1] \\
+(1-a) b & f[i, j+1]
\end{array}
$$

Interpolation

- Possible interpolation filters
- nearest neighbor
- bilinear
- bicubic (interpolating)
- sinc / FIR
- Needed to prevent "jaggies"
and "texture crawl"

Prefiltering

- Essential for downsampling (decimation) to prevent aliasing
- MIP-mapping [Williams'83]:

1. build pyramid (but what decimation filter?):

- block averaging
- Burt \& Adelson (5-tap binomial)
- 7-tap wavelet-based filter (better)

2. trilinear interpolation

- bilinear within each 2 adjacent levels
- linear blend between levels (determined by pixel size)

2D coordinate transformations

- translation:

$$
x^{\prime}=x+t
$$

$$
x=(x, y)
$$

- rotation: $\boldsymbol{x}^{\prime}=\boldsymbol{R} \boldsymbol{x}+\boldsymbol{t}$
- similarity:

$$
x^{\prime}=s R x+t
$$

- affine: $\quad \boldsymbol{x}^{\prime}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{t}$
- perspective: $\underline{\boldsymbol{x}}^{\prime} \cong \boldsymbol{H} \underline{\boldsymbol{x}} \quad \underline{\boldsymbol{x}}=(x, y, 1)$
(\underline{x} is a homogeneous coordinate)
- These all form a nested group (closed w/inv.)

Basic 2D Transformations

Basic 2D transformations as 3×3 matrices

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Translate

$$
\left[\begin{array}{c}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\boldsymbol{s}_{\boldsymbol{x}} & 0 & 0 \\
0 & \boldsymbol{s}_{\boldsymbol{y}} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right]
$$

Scale

$$
\begin{aligned}
{\left[\begin{array}{l}
\boldsymbol{x}^{\prime} \\
\boldsymbol{y}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
1 & s \boldsymbol{h}_{x} & 0 \\
\boldsymbol{s h}_{\boldsymbol{y}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{y} \\
1
\end{array}\right] } \\
\text { Shear }
\end{aligned}
$$

2D Affine Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Affine transformations are combinations of ...

- Linear transformations, and
- Translations

Parallel lines remain parallel

Projective Transformations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

Image alignment

- Two broad approaches:
- Direct (pixel-based) alignment
- Search for alignment where most pixels agree
- Feature-based alignment
- Search for alignment where extracted features agree
- Can be verified using pixel-based alignment

Fitting an affine transformation

Affine model approximates perspective projection of planar objects.

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

$$
\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]
$$

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

Fitting an affine transformation

$$
\left[\begin{array}{cccccc}
& & \cdots & & & \\
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& & \cdots & & &
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{c}
\cdots \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\cdots
\end{array}\right]
$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for $\left(x_{\text {new }}, y_{\text {new }}\right)$?

Panoramas

Obtain a wider angle view by combining multiple images.

How to stitch together a panorama?

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Panoramas: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Homography

How to relate two images from the same camera center?

- how to map a pixel from PP1 to PP2?

Think of it as a 2D image warp from one image to another.
A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines
called Homography

$$
\underset{\mathbf{p}}{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]} \underset{\mathbf{p}}{ } \quad\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Homography

To apply a given homography \mathbf{H}

- Compute $\mathbf{p}^{\prime}=\mathbf{H p}$ (regular matrix multiply)
- Convert \mathbf{p}^{\prime} from homogeneous to image coordinates

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
* & * & * \\
\mathbf{p}^{*} & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
{\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{array}\right.
$$

Homography

To compute the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of \mathbf{H} are the unknowns...

Solving for homographies

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{H p} \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Can set scale factor $i=1$. So, there are 8 unknowns.
Set up a system of linear equations:

$$
A h=b
$$

where vector of unknowns $h=[a, b, c, d, e, f, g, h]^{\top}$
Need at least 8 eqs, but the more the better...
Solve for h . If overconstrained, solve using least-squares:

$$
\min \|A h-b\|^{2}
$$

>> help lmdivide

Recap: How to stitch together a panorama?

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)

Image warping with homographies

Image rectification

Analysing patterns and shapes

The floor (enlarged)
Slide from Criminisi
Automatically rectified floor

Analysing patterns and shapes

Slide from Crimìnisi

Analysing patterns and shapes

What is the (complicated) shape of the floor pattern?

Automatically rectified floor
St. Lucy A/tarpiece, D. Veneziano
Slide from Criminisi

Analysing patterns and shapes

Automatic rectification

From Martin Kemp, The Science of Art (manual reconstruction)

changing camera center

Does it still work?
synthetic PP

Source: Alyosha Efros

Planar scene (or far away)

PP3 is a projection plane of both centers of projection, so we are OK!
This is how big aerial photographs are made

Outliers

- Outliers can hurt the quality of our parameter estimates, e.g.,
- an erroneous pair of matching points from two images
- an edge point that is noise, or doesn't belong to the line we are fitting.

Example: least squares line fitting

- Assuming all the points that belong to a particular line are known

Outliers affect least squares fit

Outliers affect least squares fit

RANSAC

- RANdom Sample Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use those only.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC

- RANSAC loop:

1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers

RANSAC Line Fitting Example

RANSAC Line Fitting Example

RANSAC Line Fitting Example

Fit Line

RANSAC Line Fitting Example

RANSAC Line Fitting Example

RANSAC Line Fitting Example

RANSAC Line Fitting Example

Repeat, until get a good result

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

RANSAC example: Translation

Feature-based alignment outline

Feature-based alignment outline

- Extract features

Feature-based alignment outline

- Extract features
- Compute putative matches

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Feature-based alignment outline

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Towards large-scale mosaics...

Motion models

Translation
3D rotation

2 unknowns

Perspective

6 unknowns

8 unknowns

3 unknowns

Plane perspective mosaics

- 8-parameter homographies
- Limitations:
- local minima
- slow convergence
- difficult to control interactively

Rotational mosaics

- Directly optimize rotation and focal length
- Advantages:
- ability to build full-view panoramas
- easier to control interactively
- more stable and accurate estimates

3D \rightarrow 2D Perspective Projection

$$
\begin{gathered}
{\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]=[\mathbf{R}]_{3 \times 3}\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]+\mathbf{t} \downarrow_{u}^{u_{c}}} \\
{\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] \sim\left[\begin{array}{c}
U \\
V \\
W
\end{array}\right]=\left[\begin{array}{ccc}
f & 0 & u_{c} \\
0 & f & v_{c} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\left.X_{c} Y_{c} Z_{c}\right) \\
Y_{c} \\
Z_{c}
\end{array}\right]}
\end{gathered}
$$

Rotational mosaic

- Projection equations

1. Project from image to 3D ray

- $\left(x_{0}, y_{0}, z_{0}\right)=\left(u_{0}-u_{c}, v_{0}-v_{c}, f\right)$

2. Rotate the ray by camera motion

- $\left(x_{1}, y_{1}, z_{1}\right)=\boldsymbol{R}_{01}\left(x_{0}, y_{0}, z_{0}\right)$

3. Project back into new (source) image

$$
\left(u_{1}, v_{1}\right) \quad=\left(f x_{1} / z_{1}+u_{c}, f y_{1} / z_{1}+v_{c}\right)
$$

Establishing correspondences

1. 'Direct' method: (more next week)

- Use generalization of affine motion model [Szeliski \& Shum '97]

2. Feature-based method

- Extract features, match, find consistent inliers [Lowe ICCV'99; Schmid ICCV'98, Brown\&Lowe ICCV'2003]
- Compute \boldsymbol{R} from correspondences (absolute orientation)

Absolute orientation

[Arun et al., PAMI 1987] [Horn et al., JOSA A 1988] Procrustes Algorithm [Golub \& VanLoan]

Given two sets of matching points, compute R

$$
\begin{array}{ll}
\text { - } & p_{i}{ }^{\prime}=\boldsymbol{R} p_{i} \quad \text { 3D rays } \\
\text { - } & \boldsymbol{A}=\Sigma_{\mathbf{i}} p_{i} p_{i}{ }^{T}=\Sigma_{\mathbf{i}} p_{i} p_{i}{ }^{T} \boldsymbol{R}^{T}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}=\left(\boldsymbol{U} \boldsymbol{S} \boldsymbol{U}^{T}\right) \boldsymbol{R}^{T} \\
\text { - } & \boldsymbol{V}^{T}=\boldsymbol{U}^{T} \boldsymbol{R}^{T} \\
\text { - } & \boldsymbol{R}=\boldsymbol{V} \boldsymbol{U}^{T}
\end{array}
$$

Stitching demo

Panoramas

- What if you want a 360° field of view?

Cylindrical panoramas

- Steps

- Reproject each image onto a cylinder
- Blend
- Output the resulting mosaic

Cylindrical Panoramas

- Map image to cylindrical or spherical coordinates
- need known focal length

Image 384x300

$\mathrm{f}=180$ (pixels)

$\mathrm{f}=\mathbf{2 8 0}$

$\mathrm{f}=\mathbf{3 8 0}$

Determining the focal length

1. Initialize from homography \boldsymbol{H}
(see text or [SzSh'97])
2. Use camera's EXIF tags (approx.)
3. Use a tape measure

Cylindrical projection

Cylindrical warping

-Given focal length f and image center (x_{c}, y_{c})

$$
\begin{aligned}
\theta & =\left(x_{c y l}-x_{c}\right) / f \\
h & =\left(y_{c y l}-y_{c}\right) / f \\
\hat{x} & =\sin \theta \\
\widehat{y} & =h \\
\hat{z} & =\cos \theta \\
x & =f \hat{x} / \hat{z}+x_{c} \\
y & =f \hat{y} / \hat{z}+y_{c}
\end{aligned}
$$

Spherical warping

-Given focal length f and image center (x_{c}, y_{c})
$\theta=\left(x_{c y l}-x_{c}\right) / f$
$\varphi=\left(y_{c y l}-y_{c}\right) / f$
$\hat{x}=\sin \theta \cos \varphi$
$\widehat{y}=\sin \varphi$
$\hat{z}=\cos \vartheta \cos$
$x=\varphi^{x} / \widehat{z}+x_{c}$
$y=f \hat{y} / \hat{z}+y_{c}$

3D rotation

-Rotate image before placing on unrolled sphere
$\theta=\left(x_{c y l}-x_{c}\right) / f$
$\varphi=\left(y_{c y l}-y_{c}\right) / f$
$\hat{x}=\sin \theta \cos \varphi$
$\widehat{y}=\sin \varphi$
$\hat{z}=\cos \vartheta \cos$
$\vec{x}=\varphi_{\underline{\underline{x}} / \hat{z}}+x_{c}$
$y=f \hat{y} / \hat{\underline{z}}+y_{c}$

Radial distortion

- Correct for "bending" in wide field of view lenses

$$
\begin{aligned}
\widehat{r}^{2} & =\widehat{x}^{2}+\widehat{y}^{2} \\
\widehat{x}^{\prime} & =\widehat{x} /\left(1+\kappa_{1} \widehat{r}^{2}+\kappa_{2} \widehat{r}^{4}\right) \\
\widehat{y}^{\prime} & =\widehat{y} /\left(1+\kappa_{1} \widehat{r}^{2}+\kappa_{2} \widehat{r}^{4}\right) \\
x & =f \widehat{x}^{\prime} / \widehat{z}+x_{c} \\
y & =f \widehat{y}^{\prime} / \widehat{z}+y_{c}
\end{aligned}
$$

Fisheye lens

- Extreme "bending" in ultra-wide fields of view

$$
\begin{aligned}
& \widehat{r}^{2}=\widehat{x}^{2}+\widehat{y}^{2} \\
& (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)=s(x, y, z) \\
& \text { uations become }
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime} & =s \phi \cos \theta=s \frac{x}{r} \tan ^{-1} \frac{r}{z} \\
y^{\prime} & =s \phi \sin \theta=s \frac{y}{r} \tan ^{-1} \frac{r}{z}
\end{aligned}
$$

Image Stitching

1. Align the images over each other

- camera pan \leftrightarrow translation on cylinder

2. Blend the images together

Assembling the panorama

- Stitch pairs together, blend, then crop

Problem: Drift

- Error accumulation
- small (vertical) errors accumulate over time
- apply correction so that sum $=0$ (for 360° pan.)

Problem: Drift

- add another copy of first image at the end image
- this gives a constraint: $y_{n}=y_{1}$
- there are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- compute a global warp: $y^{\prime}=y+a x$
- run a big optimization problem, incorporating this constraint
- best solution, but more complicated
- known as "bundle adjustment"

Full-view (360° spherical) panoramas

Full-view Panorama

Szeliski

Texture Mapped Model

Global alignment

- Register all pairwise overlapping images
- Use a 3D rotation model (one R per image)
- Use direct alignment (patch centers) or feature based
- Infer overlaps based on previous matches (incremental)
- Optionally discover which images overlap other images using feature selection (RANSAC)

Bundle adjustment formulations

Full bundle adjustment, using 3-D point positions $\left\{\boldsymbol{x}_{i}\right\}$

$$
\begin{equation*}
E_{\mathrm{BA}-2 \mathrm{D}}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\boldsymbol{x}}_{i j}\left(\boldsymbol{x}_{i} ; \boldsymbol{R}_{j}, f_{j}\right)-\hat{\boldsymbol{x}}_{\text {Map } 3 D \text { point i in to 2D point in image } i}\right\|^{2}, \tag{9.30}
\end{equation*}
$$

Bundle adjustment using 3-D ray:

$$
\begin{equation*}
E_{\mathrm{BA}-3 \mathrm{D}}=\sum_{i} \sum_{j} c_{i j}\left\|\tilde{\boldsymbol{x}}_{i}\left(\hat{\boldsymbol{x}}_{i j} ; \boldsymbol{R}_{j}, f_{j}\right)-\boldsymbol{x}_{i}\right\|^{2}, \tag{9.31}
\end{equation*}
$$

All-pairs 3-D ray formulation:

$$
\begin{align*}
& \left.E_{\text {all-pairs-3D }}=\sum_{i} \sum_{j k} c_{i j} c_{i k} \| \tilde{\boldsymbol{x}}_{\substack{i \\
j-D \\
\text { jray }}} \hat{\boldsymbol{x}}_{i j} ; \boldsymbol{R}_{j}, f_{j}\right)-\tilde{\boldsymbol{x}}_{i}\left(\hat{\boldsymbol{x}}_{i k} ; \boldsymbol{R}_{k}, f_{k}\right) \|^{2} . \tag{9.32}\\
& \quad \text { Projected point } \longrightarrow \tilde{\boldsymbol{x}}_{i j} \sim \boldsymbol{K}_{j} \boldsymbol{R}_{j} \boldsymbol{x}_{i} \text { and } \boldsymbol{x}_{i} \sim \boldsymbol{R}_{j}^{-1} \boldsymbol{K}_{j}^{-1} \tilde{\boldsymbol{x}}_{i j},
\end{align*}
$$

Recognizing Panoramas

Matthew Brown \& David Lowe ICCV'2003

Recognizing Panoramas

Finding the panoramas

Finding the panoramas

\leftrightarrows

Finding the panoramas

Finding the panoramas

Fully automated 2D stitching demo

Windows Live Photo Gallery

Easily manage and share your photos and videos

Get it free

Overview ! Features ! System Requirements

Easily share your photos
The "Publish" button makes it simple to share your photos and videos online. Or you can easily e-mail as many photos as you'd like to friends and family. You can also display your photos with cool screensavers and slideshows.

Quickly find and organize your photos and videos Import your photos from your digital camera; the Windows Live Photo Gallery will automatically organize them based on date and time. Keep your images organized by name, date, rating, and type. Locate similar photos with tags you add.

Enhance your photos
Create a cool panoramic view by combining multiple photos. Capture the moment by adding captions. Enhance your photos by adjusting things like color and exposure. Improve your photos with simple crop and red-eye fixes.

Get this and more Windows Live services all at once

http://get.live.com/photogallery/overview

Rec.pano.: system components

1. Feature detection and description

- more uniform point density

2. Fast matching (hash table)
3. RANSAC filtering of matches
4. Intensity-based verification
5. Incremental bundle adjustment

- [M. Brown, R. Szeliski, and S. Winder. Multi-image matching using multi-scale oriented patches, CVPR'2005]

Multi-Scale Oriented Patches

- Interest points
- Multi-scale Harris corners
- Orientation from blurred gradient
- Geometrically invariant to similarity transforms
- Descriptor vector
- Bias/gain normalized sampling of local patch (8x8)
- Photometrically invariant to affine changes in intensity

Features

- Distribute points evenly over the image

Descriptor Vector

- Orientation = blurred gradient
- Similarity Invariant Frame
- Scale-space position (x, y, s) + orientation (θ)

Probabilistic Feature Matching

RANSAC motion model

RANSAC motion model

RANSAC motion model

Probabilistic model for verification

How well does this work?

Test on 100s of examples...

How well does this work?

Test on 100s of examples...
...still too many failures (5-10\%)
for consumer application

Matching Mistakes: False Positive

Matching Mistakes: False Positive

Matching Mistake: False Negative

- Moving objects: large areas of disagreement

Matching Mistakes

- Accidental alignment
- repeated / similar regions
- Failed alignments
- moving objects / parallax
- low overlap
- "feature-less" regions
(more variety?)
- No 100\% reliable algorithm?

How can we fix these?

- Tune the feature detector
- Tune the feature matcher (cost metric)
- Tune the RANSAC stage (motion model)
- Tune the verification stage
- Use "higher-level" knowledge
- e.g., typical camera motions
- \rightarrow Sounds like a big "learning" problem
- Need a large training/test data set (panoramas)

Image Blending

Image feathering

- Weight each image proportional to its distance from the edge
(distance map [Danielsson, CVGIP 1980]

- 1. Generate weight map for each image
- 2. Sum up all of the weights and divide by sum: weights sum up to 1: $w_{i}{ }^{\prime}=w_{i} /\left(\sum_{i} w_{i}\right)$

Image Feathering

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid Blending

Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

(g)

(f)

(e)
right pyramid

(k)

(j)

(i)
blended pyramid

Laplacian image blend

1. Compute Laplacian pyramid
2. Compute Gaussian pyramid on weight image (can put this in A channel)
3. Blend Laplacians using Gaussian blurred weights
4. Reconstruct the final image

- Q: How do we compute the original weights?
- A: For horizontal panorama, use mid-lines
- Q: How about for a general "3D" panorama?

Weight selection (3D panorama)

- Idea: use original feather weights to select strongest contributing image

- Can be implemented using L- ∞ norm: $(p=10)$

$$
w_{i}^{\prime}=\left[w_{i}^{p} /\left(\sum_{i} w_{i}^{p}\right)\right]^{1 / p}
$$

Poisson Image Editing

sources/destinations

- Blend the gradients of the two images, then integrate
- For more info: Perez et al, SIGGRAPH 2003

De-Ghosting

Local alignment (deghosting)

- Use local optic flow to compensate for small motions [Shum \& Szeliski, ICCV'98]

Figure 3: Deghosting a mosaic with motion parallax: (a) with parallax; (b) after single deghosting step (patch size 32); (c) multiple steps (sizes 32, 16 and 8).

Local alignment (deghosting)

- Use local optic flow to compensate for radial distortion [Shum \& Szeliski, ICCV'98]

Figure 4: Deghosting a mosaic with optical distortion: (a) with distortion; (b) after multiple steps.

Region-based de-ghosting

- Select only one image in regions-of-difference using weighted vertex cover [Uyttendaele et al., CVPR'01]

Figure 5 - (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.

Region-based de-ghosting

-Select only one image in regions-of-difference using weighted vertex cover [Uyttendaele et al., CVPR’01]

Figure 6 - (A) Ghosted mosaic. (B) Result of de-ghosting algorithm.

Cutout-based de-ghosting

- Select only one image per output pixel, using spatial continuity
- Blend across seams using gradient continuity ("Poisson blending")
[Agarwala et al., SG'2004]

Cutout-based compositing

- Photomontage [Agarwala et al., SG'2004]
- Interactively blend different images: group portraits

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Cutout-based compositing

- Photomontage [Agarwala et al., SG'2004]
- Interactively blend different images: focus settings

Figure 2 A set of macro photographs of an ant (three of eleven used shown on the left) taken at different focal lengths. We use a global maximum contrast image objective to compute the graph-cut composite automatically (top lett, with an inset to show detail, and the labeling shown directly below). A small number of remaining artifacis disappear after gradient-domain fusion (top, middle). For conparison we show composites made by Aub-Montage (top, right), by IIaeberli's method (bottom, middle), and by Laplacian pyramids (bottom, right). All of these other approaches have artifacts; Ilaeberli's method creates excessive neise, Auto-Montage fails to attach some hairs to the body, and Laplecian pyramids create halos around some of the hairs.

Cutout-based compositing

- Photomontage [Agarwala et al., SG'2004]
- Interactively blend different images: people's faces

Other types of mosaics

- Can mosaic onto any surface if you know the geometry
- See NASA's Visible Earth project for some stunning earth mosaics
- http://earthobservatory.nasa.gov/Newsroom/BlueMarble/

Final thought: What is a "panorama"?

- Tracking a subject
- Repeated (best) shots
- Multiple exposures
- "Infer" what photographer wants?

Slide Credits

- Steve Seitz
- Kristen Grauman
- Alyosha Efros

Next time: Parametric Motion and Optic Flow

- The 'Direct Motion' analogue to today...

