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Abstract  
 

Study of Variability in Advanced Transistor Technologies 

  
by  
 

Nattapol Damrongplasit 
 
 

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences 
 

University of California, Berkeley  
 

Professor Tsu-Jae King Liu, Chair 
 
 

As transistor dimensions are scaled down in accordance with Moore’s Law to provide for 
improved performance and cost per function, variability in transistor performance grows in 
significance and can present a major challenge for achieving high yield in the manufacture of 
integrated circuits utilizing transistors with sub-30 nm gate lengths. Increased variability in the 
threshold voltage (VT) of a transistor ultimately limits the minimum operating voltage for six-
transistor (6T) static memory (SRAM) cells, hinders aggressive scaling of cell area, and causes 
performance degradation in analog circuits. Better understanding and accurate assessment of 
device variation are needed in order to minimize yield loss and design margin.  

Several variability reduction techniques and variability characterization/modeling methodologies 
are explored in this work. Device simulations are performed to assess the benefit of super-steep 
retrograde (SSR) channel doping to reduce variability in transistor performance and thereby 
extend the scalability of planar bulk-Si CMOS technology with minimal incremental cost. 
Variability analysis of a 32nm high-permittivity-dielectric/metal gate (HKMG) stack CMOS 
technology using current-vs.-voltage characteristics of transistors operated in forward (F) and 
reverse (R) modes measurements is used to explain variabilities in VT and in drain-induced 
barrier lowering (DIBL) and their correlations, which cannot be captured by a traditional SPICE 
modeling.  Test chips are designed for characterization of systematic and random variability in 
16nm and 28nm generation Fully Depleted Silicon-On-Insulator (FDSOI) technologies via 
device arrays and padded-out SRAM cells.  

The effect of random variability on the performance of a tunnel-field effect transistor (TFET) is 
also examined.  The TFET has emerged as a promising candidate to replace the MOSFET for 
low-power applications, due to its promise of achieving higher ION/IOFF at low operating 
voltages. Three-dimensional (3D) device simulations are used to simulate the effects of random 
dopant fluctuations and line edge roughness on the performance of planar Ge-source and a 
raised-Ge-source TFET structures.  
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Chapter 1   

Introduction 
 

 

1.1 Transistor, Circuit, and Moore’s Law: A Historical 
Perspective 

 

During the first half of the twentieth century, electronic circuits were powered by vacuum 
tubes which are bulky, expensive, power-hungry, and notoriously unreliable [1]. The state-of-
the-art computing machine ENIAC (Electronic Numerical Integrator And Computer) used for 
calculating missile trajectories was made out of 18,000 vacuum tubes, and it occupied a large 
room [2]. To overcome these short-comings of the vacuum tube, much research was aimed on 
finding its replacement. In 1947, three scientists (John Bardeen, Walter Brattain, and William 
Shockley) at Bell Laboratories were credited for inventing what is now considered as the first 
transistor [2]. Compared to a vacuum tube, a transistor is much more power-efficient and far 
more reliable. Fast forward about ten years after, Jack Kilby at Texas Instruments introduced the 
world to the first integrated circuit (1958), where two transistors were connected together to 
build a flip-flop [1]. As simplistic as that circuit was, it was a monumental point for the age of 
digital electronics since it provided a glimpse into the potential of integrating multiple transistors 
on the same chip, having them work together to perform a more complex operation. In 1965, 
Gordon Moore who was working at Fairchild Corporation and later co-founded Intel Corporation 
made an observation that the number of transistors on a single die doubled every 18 months, and 
he predicted that this exponential growth would continue (Fig. 1.1a) [1,3]. This prediction has 
proven to be surprisingly accurate and it later became known as Moore’s Law [4-5]. It is 
arguably one of the most important laws which helped to usher in the digital era. Not only did 
Moore’s original paper state that integrating more transistors would increase performance, but it 
also highlighted the fact that the cost of manufacturing each transistor can be cheaper as shown 
in Fig. 1.1b [3]. This has driven the semiconductor industry towards increasing transistor density 
on a chip ever since.  
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Fig. 1.4 Transfer characteristic IDS-VGS of a typical N-channel MOSFET, comparing between low- and high-VT 
transistors. A linear decrease in VT results in an exponential increase in OFF-state leakage current at VGS = 0 V.   

 

The energy consumed per operation of a CMOS digital circuit can be broken down into 
dynamic and static components as shown in Eqn. 1.1 – 1.2 and graphically plotted in Fig. 1.5. 

  

	  
(1.1)

 

  

	
2 ∙

 
(1.2)

  

where α = switching activity factor, Ld = logical depth, C = gate capacitance per stage, VDD = 
supply voltage, IOFF = OFF-state current, ION = ON-state current. 

For higher computational throughput, transistors are pushed to run at faster operating 
frequency as more of them are integrated on a chip. Increasing frequency without scaling down 
VDD results in higher dynamic power consumption. On top of this, as VT has been lowered, 
transistors have become more leaky resulting in higher static power consumption (Fig. 1.6) [10]. 
All of this led to a CMOS power crisis, where the power density of a chip was increasing at an 
alarming rate. This prompted the industry to adopt parallelism (with the introduction of multiple 
cores rather than increasing the clock speed of a single core) as the primary means of improving 
throughput within a power constraint, as shown in Fig. 1.7. The overall performance of the 
integrated circuit chip can still be improved by having multiple slower cores running in parallel.  
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1.3.4 Tunneling FET (TFET) 
 
Advanced structures such as the FD-SOI MOSFET and FinFET can certainly help to 

improve the performance of a transistor and allows for further technology scaling. Nevertheless, 
CMOS has a fundamental limit on energy per operation as shown previously in Fig. 1.5. 
Governed by Boltzmann statistics, the theoretical minimum subthreshold swing (SS) of a 
MOSFETis 60 mV/dec at room temperature. Any prospective MOSFET-replacement device 
should have a SS that is smaller than this limit in order to provide for lower energy computing. 
For the same leakage current, this new device with a smaller SS will be able to achieve a higher 
on-state drive current (Fig. 1.12a), resulting in a lower energy per operation for a given operating 
frequency (Fig. 1.12b). There are currently a number of device candidates that have the potential 
for a very steeply switching operation; these include tunneling FETs, the negative capacitance 
MOSFET, and nano-electro-mechanical (NEM) relays [34-39]. The TFET in particular has 
emerged as a strong MOSFET-replacement candidate due to its close similarity to a conventional 
MOSFET. Fig. 1.13 shows a basic comparison between the MOSFET and tunnel FET. Because 
carrier injection in a TFET relies on quantum mechanical tunneling instead of thermionic 
emission over a potential barrier, the TFET can theoretically achieve a SS smaller than 60 
mV/dec at room temperature.  

Optimization of TFET performance is still an area of active research. Many efforts have 
been focused on increasing the small reported ON-state drive current [36-37]. Other non-
idealities such as process-induced variations and trap-assisted tunneling can significantly 
increase the OFF-state leakage current and degrade SS [40-43]. 

 

 
Fig. 1.12 a) A new logic device with a smaller subthreshold swing (i.e. turning on/off more steeply) as compared to 
the MOSFET allows for higher ON-state drive current for the same OFF-state leakage current. b) Energy per 
operation vs. delay can be lowered for a steep switching device. However, the impact of non-idealities such as 
process-induced variations will reduce the energy savings.  
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Fig. 1.13 Comparison between MOSFET and TFET structures, and their operations  

 

1.4 Variability Sources 
 
Process-induced variation has emerged as one of the potential limiters for Moore’s Law 

as its effects on transistor performance has increased significantly with transistor scaling [44-45]. 
With the number of transistors on a chip exceeding 1 billion today, it is imperative that the actual 
electrical behavior of a transistor is as close as possible to the nominal characteristic as modeled 
for circuit design. If some transistors do not meet performance specifications, then  the result can 
be faulty circuit operation and hence lower chip manufacturing yield. Worsening short-channel 
effects increase the sensitivity of transistor performance to process-induced variations and 
thereby compound this problem.. In today’s chip designs, a large design margin or “guard band” 
is required in order to ensure that the circuits will still function correctly in the presence of 
transistor variability. Such a requirement often leads to over designing of the circuit which can 
result in increased power consumption or larger delay. Thus, it is imperative to understand the 
causes of transistor variability and how they affect transistor performance.  

Variability sources are often categorized as either systematic or random [46]. Systematic 
variability is often dependent on the layout of the transistors and its surroundings. For example, a 
jog in a metal pattern can systematically lead to corner rounding after the exposure step, or a 
high-density pattern can have a lower etch rate resulting in etched features of different size than 
for a sparse pattern. Random variability, on the other hand, is more troublesome, since it can 
result in differences between identically drawn transistors within the same layout environment 
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In Chapter 5, a comprehensive study of process-induced variability due to RDF and LER 
is investigated for planar and raised Germanium-Source Tunnel FETs. Device characteristics are 
studied via three-dimensional device simulation calibrated to experimental data. The 
contributions to RDF-induced VT variation due to atomistic doping in the different regions of the 
device are identified. Different source-edge roughness profiles of a TFET are considered to 
assess the impact of LER. The combined effect of RDF- and LER- induced variations on VT, ION, 
and IOFF is analyzed. The energy vs. delay performance of a TFET accounting for variability is 
benchmarked against that of a MOSFET. 

In Chapter 6, the contributions of this dissertation are summarized and suggestions for 
future work are offered.  
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Chapter 2   

Comparative Study of Uniform vs Super-
Steep Retrograde Channel MOSFET and 
Implications for 6T SRAM Yield 
 

 

2.1 Introduction 
 

Short-channel effects and variability in planar bulk silicon (bulk-Si) MOSFET 
performance worsen as the gate length (Lg) is scaled down below 30 nm [1].  For the 
conventional six-transistor (6-T) SRAM cell design, variability-induced transistor mismatch 
results in cell imbalance which limits reductions in cell operating voltage [2].  These challenges 
can be overcome by adopting thin-body MOSFET structures, such as the FinFET [3] or the fully 
depleted silicon-on-insulator (FD-SOI) MOSFET [4], which can have superior electrostatic 
integrity.  However, such structures require greater process complexity and/or more expensive 
starting substrates, so that increased manufacturing cost is a concern.  Since price is a key factor 
for mobile electronics applications, planar bulk-Si CMOS technology still can be competitive 
because of its lower process and/or substrate cost.   

Super-steep retrograde (SSR) channel doping has been proposed to extend the scalability 
of planar bulk-Si CMOS technology [5], and has been investigated in MOSFETs with relatively 
long channel lengths by today’s standards [6-9]. Conventional doping approaches mostly utilize 
ion implantation, which unavoidably results in dopants near to the channel-region surface, since 
the dopant atoms are introduced through the surface. Recently developed epitaxial silicon 
technology can alleviate this effect, since undoped silicon can be grown on diffusion barrier 
layers, such as carbon-doped silicon [10-11] or oxygen partial monolayers [12-13], after 
introduction of the ground-plane dopant atoms. In particular, the use of oxygen partial 
monolayers [12] has not only the dopant diffusion blocking effect but also a dopant pile-up effect 
below the inserted layers and thus shows promise for achieving the ideal SSR profile.  In this 
letter, the benefit of SSR channel doping over uniform channel doping (UD) for reducing 
variability in planar bulk-Si MOSFET performance and improving SRAM yield is studied via 
TCAD simulation of three-dimensional (3-D) devices with 28 nm gate length (Lg).   
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2.3 Device Simulation Result 

 
Table 1 summarizes the performance parameters for the different transistor designs.  UD 

devices generally show higher ID,Sat as compared to SSR devices, due to smaller electrical 
channel length (LEFF) in the UD devices and larger body factor for the SSR devices [6]. DIBL is 
much lower for SSR devices, in particular SSR2.  SSR2 shows the worst subthreshold swing 
(SS), however, due to its larger depletion capacitance (Cdep). 
 

TABLE 2.1 

COMPARISON OF TRANSISTOR PERFORMANCE PARAMETERS  

 
 

VT roll-off curves are shown in Fig 2.5 (Lg is varied from 12 nm to 500 nm; the doping 
profiles are unchanged.)  The poor VT roll-off characteristics for the uniformly doped channels 
are attributed to relatively thick EOT value used in this work. The short-channel effect is best 
suppressed with the SSR2 channel doping profile for the same EOT, indicating that SSR channel 
doping can extend poly-Si/SiON gate stack technologies beyond the 28nm node. 

NMOS
UD 1

PMOS
UD 1

NMOS
UD 2

PMOS
UD 2

NMOS
SSR 1

PMOS
SSR 1

NMOS
SSR 2

PMOS
SSR 2

LEFF †(nm) 34.5 34.9 39.4 71.8 48.2 67.2 48.2 66.9

ID,Sat (A/um) 4.76E‐04 2.52E‐04 4.37E‐04 1.43E‐04 4.28E‐04 2.27E‐04 3.84E‐04 1.96E‐04

IOFF (A/um) 1.08E‐09 5.79E‐10 8.21E‐10 1.33E‐11 8.74E‐10 8.80E‐10 9.15E‐10 8.46E‐10

VT Sat (mV) 335 ‐380 335 ‐499 321 ‐347 343 ‐370

VT Lin(mV) 467 ‐536 435 ‐597 393 ‐446 389 ‐429

SS (mV/dec) 91 94 88 86 86 89 93 95

DIBL(mV/V) 139 164 105 103 76 104 48 62

σVT, Sat (mV) 49.6 52.9 43.9 45.6 32.8 40.0 25.4 22.4

Body Factor 
(V1/2)

0.55 0.54 0.48 0.55 0.85 0.71 1.20 1.20

Logic VDD,MIN

(mV)
380 364 296 225

† LEFF is defined as the lateral distance at which S/D doping decays to 2 x 10
19 cm‐3
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Fig. 2.5 VT vs. Lg plots for a) NMOS and b) PMOS devices.  VT is defined at a constant current (Io = 100 nA·W/L, 
VDS = 1V). 

 
 

ID,Sat vs. IOFF scatter plots are shown in Fig. 2.6. The distribution of performance for UD1 
devices shows that they generally achieve higher ID,Sat as compared to UD2 devices with the 
same IOFF.  This is due to larger parasitic series resistance and longer LEFF in the UD2 devices.  
Although SSR devices show less variation due to better suppression of SCE, they also have 
degraded ID,Sat as compared with UD devices: at IOFF = 1 nA/um, the average value of ID,Sat is 
lower for SSR2 than for UD1, by 7% for NMOS and 20% for PMOS. 

 

 
Fig. 2.6 ID,Sat-IOFF scatter plots due to RDF for a) NMOS and b) PMOS devices. Nominal device width=50 nm. 

 

 
A comparison of VT variation between SSR1 and SSR2 devices shows that σVT is most 

effectively suppressed when the channel depletion region does not extend beyond the SSR peak.  
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pull-up (PU), and pass-gate (PG) devices are set to be 80 nm, 50 nm, and 50 nm, respectively.  
(Based on reports in the literature [20], 50 nm is the typical device width for this technology 
node.)  Taking into account various layout constraints such as minimum active spacing, poly-
poly spacing, poly-active overlap, contact size, and so forth, the allowable range of the active 
width for each transistor was estimated. Within the layout constraint of WPG + WPD ≤ 165 nm, 
these device widths can be adjusted to tune the trade-off between read stability and write 
stability. The sensitivity of SNM and Iwrite vs. the width of PG are shown in Fig. 2.8. Based on 
the nominal design (WPG = 50nm) , SSR 2 shows the highest SNM, but also lower Iwrite 
compared to other design cases. However, due to better trade-off between read and write 
stability, the width of the PG in SSR2 can be made larger such that the SNM is lowered to match 
that of UD’s cases while increasing its write current. When the read SNM of SSR2 is matched to 
the UD’s nominal SNM ( ~190 nm), it has a 21.4% higher write current as compared to the UD’s 
cases. 

 
Fig. 2.8 Sensitivity of a) SNM and b) Iwrite to the width of PG as it is varied from 50 nm to 80 nm. 

 
 Cells implemented with UD devices have better writeability than read stability; 

therefore, WPD should be increased to improve SNM and thereby maximize cell sigma.  Figs. 
2.9a) and 2.9b) show how the trade-off between read yield and write yield (each measured in 
number of cell sigmas) changes as WPD is increased from 80 nm to 115 nm, for SRAM cells 
implemented with UD1 and UD2 devices, respectively.  (Note that writeability depends 
primarily on the strength of the PU device relative to the PG device, so that changes in WPD have 
little impact on Iw yield.)  Cells implemented with SSR devices have better read stability than 
writeability; therefore, WPG should be increased to improve writeability and thereby maximize 
cell sigma.  Figs. 2.9c) and 2.9d) show how the trade-off between read yield and write yield 
changes as WPG is increased from 50 nm to 80 nm, for SRAM cells implemented with SSR1 and 
SSR2 devices, respectively. 

For large-capacity SRAM, six-sigma yield for both read and write operation is required.  
For UD1 devices, the minimum cell operating voltage (VMIN, SRAM) is 0.95 V, and for UD2 
devices VMIN,SRAM = 0.75 V.  Comparing UD vs. SSR devices with the same background doping, 
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it can be seen that VMIN, SRAM is reduced by ≥ 0.25 V with SSR doping.  This translates to 
dynamic power savings of >50%.  It is interesting to note that for SSR2 doping, VMIN, SRAM is 
limited not by SNM yield but by IW yield; hence, further reduction in VMIN, SRAM can be achieved 
by improving the strength of the NMOS transistors relative to the PMOS transistors, e.g. by 
employing strain technology [20] or incorporating oxygen partial monolayers into the channel 
region [13] to boost electron mobility. 

 

 
Fig. 2.9 SRAM yield result for a) UD 1, b) UD 2, c) SSR 1, and d) SSR 2. For UD, WPD = 80 – 115 nm, WPU = 
50nm, WPG = 50nm. For SSR, WPD = 80 nm, WPU = 50 nm, WPG = 50–80 nm.  

 
2.5 Summary 

 
Short-channel effects can be effectively mitigated in 28 nm Lg MOSFETs by employing a 

super-steep retrograde (SSR) channel doping profile, albeit at the cost of degraded transistor 
drive current due to enhanced body factor.  Estimations of six-transistor (6-T) SRAM cell yield 
indicate SSR doping can provide for 33% reduction in VMIN, SRAM – which translates into >50% 
dynamic power savings – as compared against uniform channel doping. 
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Chapter 3   

Threshold Voltage and DIBL Variability 
Modeling based on Forward and Reverse 
Measurement for SRAM and Analog 
MOSFETs 
 

 

3.1 Introduction 
 

Variability in transistor threshold voltage (VT) worsens as transistor size continues to be 
scaled down, severely affecting SRAM cell yield and degrading the performance of analog 
circuits, preventing reductions in VDD [1-9]. Random sources of variability become dominant in 
deep-sub-micron transistor technology, and include Random Dopant Fluctuation (RDF), Work 
Function Variation (WFV), and Gate Line-Edge Roughness Variation (LER) [10-18]. It is 
imperative to have a physical understanding of how these variability sources affect the 
characteristic of a transistor. For example, RDF-induced variation is not only caused by the 
different number of dopant atoms statistically distributed among transistors, but also the position 
at which these atoms are located within the channel region. A detailed variability component 
breakdown is necessary to fully describe VT variability and correlations.  

 A method to investigate the impact of RDF-induced variability by comparing the current-
vs.-voltage (I-V) characteristics of a transistor operating in forward (F) mode vs. reverse (R) 
mode is proposed in [19].  Source-Drain positional asymmetry due to RDF has been studied in 
[19-24] and results in asymmetric electrical characteristics between the forward and reverse 
modes, but quantitative analysis with variability component breakdown has not been shown. This 
chapter describes a methodology to breakdown VT LIN, VT SAT, and non-Gaussian drain induced-
barrier lowering (DIBL) variability into more fundamental terms and also predicts the bivariate 
correlations between VT and DIBL, and has been validated using SRAM and analog transistor 
pairs [25]. 

Even though the MOS transistor is a symmetric device by design, there can be a 
significant difference between its I-V characteristics measured in forward and reverse modes, 
due to RDF. This difference is not systematic but rather random in nature, with no intentional 
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When this same device is measured in the reverse mode as shown in Fig. 3.4(b), in the 
linear regime the maximum source-channel potential barrier is unchanged relative to the forward 
mode, i.e. it is now located on the drain side with respect to the reverse mode measurement.  This 
results in VT LIN being approximately the same in both F and R modes (VT LIN F ≈ VT LIN R ). In the 
saturation regime, the applied VDS is large enough such that the band-edge profile near the drain 
side is lowered significantly, leaving the maximum potential to be always located on the source-
side of the device. Thus, in reverse mode, the saturation threshold voltage (VT SAT R) will be set 
by the potential barrier at the source-side which is lower (due to lower net doping in this case). 
The height difference between the maximum potential barrier in the linear and saturation regime 
is again representative of DIBL in the reverse mode (DIBL R). It is imperative to note that for the 
reverse mode measurement shown here the maximum potential barrier in the channel changes 
from the drain-side in the linear regime to the source-side in the saturation regime. In essence, 
VT LIN is unchanged in F-R, whereas VT SAT can be quite different in F-R. Consequently, there 
can be a large difference between VT LIN R and VT SAT R for this particular device as compared to 
the forward mode. This implies that both the median and the standard deviation value of DIBLR 
will also be larger as compared to those of DIBLF. Thus, random device asymmetry contributes 
to the differences between VT SAT F and VT SAT R, and determines the degree of correlation 
between linear and saturation threshold voltage, which is captured in the DIBL variability metric. 

 
3.2.4 Parameter Extraction Flow 

 
Fig. 3.5 illustrates the parameter extraction flow for the proposed model. Threshold 

voltages in both the linear and saturation regimes of operation, as well as for forward and reverse 
modes, are extracted using a constant-current definition: 300 nA *(W/L) for NMOS; 70 
nA*(W/L) for PMOS. Once experimental data is acquired, quantities such as DIBL and VT 

mismatch (VT LIN/SAT MM) can be derived with respect to different mode of measurements. Using 
the proposed governing equations, the four fundamental variation components mentioned earlier 
can be extracted. Lastly, by employing these variation components in the model, VT LIN, VT SAT, 
and DIBL are reconstructed and compared against silicon data for variability component 
validation. 

 
 



 

 
Fig. 3.5 

 
Parameter Exttraction flow 
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TABLE 3.1 

LIST OF EQUATIONS IN VARIABILITY MODELING 
 

 

−

= −

= −

= −

VT LIN F 1/2 = VT0 − VDS,LIN · NDIBL + ∆VT CM + ∆VT Sym 1/2

+ max(∆VT Asym-Source 1/2  ,∆VT Asym-Drain 1/2) − VDS,LIN · ∆VT SCE_Leff F 1/2

VT LIN R 1/2 = VT0 − VDS,LIN · NDIBL + ∆VT CM + ∆VT Sym 1/2

+ max(∆VT Asym-Drain 1/2  ,∆VT Asym-Source 1/2) − VDS,LIN · ∆VT SCE_Leff R 1/2

VT SAT F 1/2 = VT0 − VDS,SAT · NDIBL + ∆VT CM + ∆VT Sym 1/2

+ ∆VT Asym-Source 1/2  − VDS,SAT · ∆VT SCE_Leff F 1/2

VT SAT R 1/2 = VT0 − VDS,SAT · NDIBL + ∆VT CM + ∆VT Sym 1/2

+ ∆VT Asym-Drain 1/2  − VDS,SAT · ∆VT SCE_Leff R 1/2

= 2 + 2

= 2 + 2 + 2

= 2 + 2 + 2

(a)

(b)

(c)
= = 

= 
= 

(d)

NOTE: VT0 and NDIBL are fitting parameters

∆VT ‘Extracted Variability’ ≡  Gaussian Random Variable N(0,σ2 
‘Extracted Variability’ )
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Table 3.1(a) summarizes the equations used to obtain the derived experimental quantities. 
Note that the derived DIBL value presented here is the absolute DIBL value (i.e. the difference 
between VT LIN and VT SAT, without normalizing to the difference in VDS bias used in linear and 
saturation regimes). Table 3.1(b) summarizes how the linear and saturation threshold voltages for 
forward and reverse modes are derived using fundamental VT components, namely chip mean 
(CM), symmetric (Sym), asymmetric (Asym), and short channel effect due to LEff (SCE_Leff). 
Focusing first on the modeling of a linear threshold voltage of a forward mode device (VT LIN F), 
the equation consists of two fitting parameters: VT0 and NDIBL (Normalized DIBL). VT0 and 
NDIBL are used to adjust for the mean of the threshold voltage distribution. It is important to 
note that these two fitting parameters are simply constant; they do not in any way affect the 
calculation of the standard deviation of VT. In addition to the two fitting parameters, the 
threshold voltage also comprises a random component pertaining to four fundamental variability 
components (i.e. ΔVT CM , ΔVT Sym , ΔVT Asym , ΔVT SCE_Leff) . Each component of VT variability is 
assumed to have a Gaussian distribution, with a mean value of zero and a standard deviation 
corresponding to that of the extracted variability components. Additionally, in the linear regime 
of operation, since only the maximum potential barrier matters, the asymmetric variation 
component captures this physical effect mathematically through the ‘max’ function. The short 
channel effect is captured through the LEff component, which is a function of drain bias. Its effect 
is to lower the nominal VT, as indicated by the negative sign. VT LIN R can be constructed in the 
same manner as VT LIN F.  

For VT SAT, the main difference is that the potential barrier will always appear at the 
source-side due to the large VDS bias, which pulls down the electron conduction band energy 
near the drain-side. As a result, the source-side barrier will always determine the saturation 
threshold voltage for VT SAT ; the potential on the drain-side has little influence on the overall VT. 
Therefore, only the asymmetric variation component at the source-side is taken into account in 
the modeling. For VT SAT in forward mode, the asymmetric variation at the source-side is denoted 
as ΔVT Asym-Source. But for VT SAT in the reverse mode, the source-side is actually what was 
previously denoted as the drain-side in the forward mode. Hence the asymmetric variation at the 
drain-side, ΔVT Asym-Drain, is included in the modeling of VT SAT R instead.   

The modeling assumptions are summarized in Table 3.1(c). The standard deviation of 
variation of the asymmetric component is assumed to be the same for both devices in a mismatch 
pair, and for forward vs. reverse modes. The symmetric component of variation is also assumed 
to have the same standard deviation for both devices in a mismatch pair. The standard deviation 
of variation due to LEff is assumed to be the same for both devices in a mismatch pair, and for 
forward vs. reverse modes. There is no closed-form expression for the standard deviation of the 
max function between two Gaussian random variables. Thus, the standard deviation due to the 
max function between the source-side and drain-side asymmetric variation can be well 
approximated (as validated by Monte Carlo simulation) by the standard deviation of the 
asymmetric variation divided by the fourth root of 2.  

Table 3.1(d) describes the governing equations used to extract the fundamental variability 
components from standard deviations of the derived experimental data. These were derived using 
the VT equations in Table 3.1(b). From experimental measurements the standard deviations for 
VT SAT MM [F-RVT SAT MM [1-2], and VT LIN MM[1-2] are determined. Then, using the equations in Table 
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3.1(d) one can solve for the three unknowns: σSym, σAsym, and σSCE,Leff. The chip mean component 
of variation σCM can be calculated directly from the experimental data by assuming that random 
variation and systematic variation components are uncorrelated, and local variations between the 
devices in a mismatch pair are uncorrelated [12]. Once the four fundamental variability 
components are extracted, the entire set of VT LIN and VT SAT distributions including the median 
and standard deviation can be reconstructed and validated against silicon data. 

 
 

3.3 Results 
3.3.1 Variability Component Analysis in SRAM 

 
The histograms of VT LIN, VT SAT, and DIBL for PG transistors is shown in Fig. 3.6. The 

number of mismatch pairs used in this study is 1900. Experimental distributions are shown in red 
while the modeling results are shown in black. The distributions of VT LIN and VT SAT are found to 
be well approximated by Gaussian functions. On the other hand, DIBL distribution is 
experimentally found to be non-Gaussian and the model is able to capture the non-Gaussian 
nature of this distribution with good accuracy. This observation is consistent with the published 
literature in which it was found that the DIBL distribution is better described by a Log-Normal 
distribution [20]. The key point to note here is that non-Gaussian behavior of DIBL can be 
reproduced by the model without having to assume any empirical distribution for DIBL a priori. 

 
Fig. 3.6 Distributions of (a) VT LIN [@VDS=50mV] (b) VT SAT [@VDS=1V] (c) DIBL. VT LIN and VT SAT have nearly 
Gaussian distributions, but DIBL clearly does not follow a normal distribution. 

 
Fig. 3.7 shows a correlation plot of threshold voltage values for F vs. R mode operation 

of the same device.  VT LIN is shown in red (model) and blue (experiment) symbols. This result is 
also consistent with [20]; linear VT values for forward and reverse modes of the same device are 
almost identical as expected from the aforementioned analysis of the conduction band-edge 
profile. For VT SAT shown in black (model) and green (experiment) symbols, there can be much 
larger differences between F vs. R mode values. The primary reason for this weaker correlation 
between VT SAT F and VT SAT R is random asymmetric variability and, to a lesser extent, the 
contribution of the LEff component since its effect also increases with increasing drain bias. 
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Fig. 3.7 Strong correlation between F vs. R mode is seen for VT LIN. Weaker correlation is seen for VT SAT. 

 
 

A device with a higher VT SAT in the forward mode would likely have a maximum 
potential barrier near the source-side in the linear regime of operation. Therefore, a device with a 
higher VT SAT in the forward mode is denoted as a “source-limited” device. A similar argument 
can be made for a device that has a higher VT SAT in the reverse mode. In this case, it is likely that 
this particular device has a maximum potential barrier near the drain-side (with respect to the 
forward mode) in the linear regime of operation, and hence it is denoted as a “drain-limited” 
device. Consequently, the ensemble of the devices can be broken down into two groups, 
depending on where the maximum potential barrier along the channel is located in the linear 
regime of operation. 

The device ensemble is sorted into source-limited and drain-limited devices. Based on 
this grouping, the median threshold voltage of the source-limited and drain-limited devices can 
be calculated separately. Fig. 3.8 shows the experimental data of median threshold voltage as a 
function of drain bias VDS, for source-limited devices (solid black curve), drain-limited devices 
(dotted blue curve), and all devices (red dashed curve).   
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Fig. 3.8 Median value of threshold voltage as a function of drain voltage. Source-limited devices show lower DIBL 
compared to drain-side devices.  

 

At low VDS, the median VT of the source- and drain-limited populations are the same. But 
as VDS increases, the median VT for source-limited devices does not decrease as rapidly, 
implying that DIBL is lower for these devices as compared to drain-limited devices. The median 
VT for the entire population of devices is in fact an average of the source- and drain-limited 
devices’ median VT values.  

The experimental result of σVT mismatch (σVT MM 1-2) as a function of VDS is shown in 
Fig. 3.9.  The overall VT mismatch variation is represented by the black curve. As shown, the VT 

mismatch variation increases with increasing drain bias. To explain this effect, it is informative 
to investigate the random asymmetric variation component of σVT mismatch as a function of 
drain bias. This can be experimentally determined by measuring σVT mismatch for forward vs. 
reverse mode (σVT MM F-R) as a function of VDS. The result is plotted with a dotted blue curve in 
Fig. 3.9, and it is clear that mismatch variation due to asymmetric variation increases 
substantially with increasing drain bias.  Furthermore, one can analytically remove this 
asymmetric variation component by measuring the variation in mismatch between two source-
limited devices (or drain-limited devices) in a device pair. With the asymmetric variation 
component removed, σVT mismatch does not depend on VDS as shown by the red dotted line. In 
other words, the short channel effect component only has a small contribution to the increase in 
variation of VT mismatch with increasing VDS. Rather, random asymmetric variation is the major 
component responsible for the increase in variation of VT mismatch with increasing drain bias, 
resulting in the experimental observation that σVT MM SAT > σVT MM LIN.  
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Fig. 3.9 Dependence of measured σVT MM on VDS. Random asymmetry variation causes σVT MM to increase with 
increasing VDS. 

Correlation between linear and saturation VT of the same device measured under a given 
mode (i.e. forward mode) is plotted in Fig. 3.10. The experimental data is indicated by the black 
symbols. Overlaid on top are the modeling results which are decomposed into two groups: the 
source-limited devices as shown in green and the drain-limited devices as shown in blue. 
Overall, there is a positive correlation between VT SAT and VT LIN. By dividing the population into 
two groups, the model reveals why the correlation has this particular shape. The source-limited 
device exhibits two characteristics: 1) For a given VT LIN, the mean of the corresponding VT SAT 
of source-limited device shows a larger value as compared to drain-limited device (lower median 
DIBL) 2) Correlation between linear and saturation threshold voltage for source-limited device is 
much greater compared to drain-limited devices (lower DIBL variability).  The reason behind 
these observations can be explained by recalling the conduction band-edge profile introduced 
previously in Fig 3.4. Source-limited devices show higher correlation between VT SAT and VT LIN 
because the maximum potential appears near the source-side in both the linear and saturation 
regime. On the other hand, for the drain-limited devices, the maximum potential in the channel 
shifts from near the drain-side in the linear regime to near the source-side in the saturation 
regime, resulting in lower correlation between VT LIN and VT SAT. Therefore, random asymmetric 
variation which introduces asymmetry in the potential profile will result in wider distributions of 
VT SAT and VT LIN, as is evident for the drain-limited devices. The overall distribution of VT SAT 
vs. VT LIN is a combination of distributions for these two subsets.  
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Fig. 3.10 Correlation between VT LIN F1 and VT SAT F1. The distribution is broken down into source-limited (S) and 
drain-limited (D) devices. 

 

The relationship between DIBL and VT can also be understood by comparing the 
modeling result to the experimental data. In Fig. 3.11(a), forward DIBL (VT LIN F1 – VT SAT F1) is 
plotted against linear threshold voltage VT LIN. The variation and median of VT LIN of the source- 
and drain- limited devices are essentially the same (i.e. this is seen by the same horizontal spread 
in the scatter plot). However, there is a large difference in the corresponding DIBL value. In 
particular, the drain-limited devices show a higher median DIBL and a much larger variability. 
Again, this is because drain-limited devices are prone to random device asymmetry, resulting in 
a weak correlation between linear and saturation threshold voltage. As a result, this helps explain 
the origin of the ‘dome’ shape when plotting DIBL vs. VT LIN that has been reported elsewhere in 
literature. Similarly, a plot between DIBL vs. VT SAT can also be constructed. As expected, one 
observes an anti-correlation relationship since higher VT SAT implies lower DIBL. Moreover, the 
result suggests that drain-limited devices are responsible not only for the increase in DIBL value, 
but also the increase in DIBL variability. We can conclude that DIBL and its variability is not 
only electrostatic in nature but is also impacted by components of RDF.  
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Fig. 3.11 (a) The weak correlation between VT LIN F1 and DIBLF1 is comprised of two populations (S and D), driven 
by random positional asymmetry. (b) Anti-correlation between VT SAT F1 and DIBLF1. Drain-limited devices 
increase the mean of DIBL and have larger DIBL variability.  

 

It is also informative to examine the relationship between DIBL in the forward mode vs. 
DIBL in the reverse mode as shown in Fig. 3.12. The result reveals a weak anti-correlation 

0.04

0.08

0.12

0.16

-100 -50 +100+50V
T,REF

 Experiment
 Model (Source-limited 'S')
 Model (Drain-limited 'D')

D
IB

L
 F

1 
(V

)

  V
T LIN F1, REF

 (mV)

 

 

S

D

(a)

0.04

0.08

0.12

0.16

 Experiment
 Model (Source-limited 'S')
 Model (Drain-limited 'D')

D
IB

L
 F

1 
(V

)

V
T SAT F1, REF

 (mV)

 

 

S

D

-100 -50 V
T,REF

+50 +100

(b)



 

50 

 

shape between DIBLF and DIBLR. The model is able to explain why the correlation has this 
particular characteristic by breaking down the entire population into source- and drain- limited 
devices. Focusing first on the source-limited devices, the mean value of the forward DIBL is 
generally lower compared to the reverse DIBL, as illustrated by the vertical ellipsoidal shape. 
This traces back to the fact that source-limited device has maximum potential barrier closer to 
the source-side in the linear regime. Therefore, DIBL measured in forward mode is better 
suppressed as compared to measuring it in the reverse mode. The same argument applies for the 
drain-limited device. Since the maximum potential barrier is located at the drain end in the 
linear regime, measuring in reverse mode ensures that the maximum potential barrier does not 
shift position as device is biased from linear to saturation regime, and thus DIBL for reverse 
mode will be smaller compared to DIBL for forward mode. The superposition of these two 
distribution results in the particular anti-correlation seen in the experimental data. 

 
Fig. 3.12 Anti-correlation between forward and reverse DIBL mismatch (DIBLF1 vs. DIBLR1) is driven by random 
positional asymmetry and is comprised of source- and drain-limited devices. 

 

In addition to pass-gate devices in the SRAM cell, the modeling was also done for pull-
up and pull-down devices. Similar trends and correlations were observed for these devices as 
well.  

 
3.3.2 Variability Component Analysis in Analog Devices 
 

The same model that is used to describe variability in SRAM devices was applied to 
analog devices as well. Experimental data for analog devices was analyzed for two datasets: 
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short gate length and long gate length devices.  Sample results for an analog device with short 
gate length are shown in Fig. 3.13. The number of devices under test for short gate length is 4920 
mismatch pairs. Excellent agreement between the silicon data and modeling results is observed. 
Similar to the SRAM results, high correlation exists between VT LIN values and a weak 
correlation exists between VT SAT values as shown in Fig 3.13 (a). The overall data can be broken 
down into source- and drain-limited devices, as illustrated in the correlation plot between DIBLF 
and VT SAT F in Fig. 3.13(b). The results for long gate length analog devices are shown in Fig. 
3.14(a)-(b), showing similar trends.  

In short, the modeling presented herein has been validated across multiple geometries and 
device flavors, showcasing the robustness of the component breakdown framework. 

 

 
Fig. 3.13 Analog devices with short gate length Lg. a) Correlation plot between forward and reverse mode VT b) 
Correlation plot of DIBL vs. VT SAT. 

-100

-50

+50

V
T,REF

-100

 Model V
T LIN

 Experiment V
T LIN

 Model V
T SAT

 Experiment V
T SAT

Number of samples ~ 4920  

 

 

V
T

 R
1,

R
E

F
 (

m
V

)

 V
T F1,REF

 (mV)
V

T,REF-50 +50

(a)

0.04

0.06

0.08

0.10

D
IB

L
 F

1 
(V

)

V
T SAT F1,REF

 (mV)

 

 

S

D

Experiment
Model (Source-limited 'S')
Model (Drain-limited 'D')

-40 -20 V
T,REF

+20 +40

(b)



 

52 

 

 

 
Fig. 3.14 Analog devices with long gate length Lg. a) Correlation plot between forward and reverse mode VT b) 
Correlation plot of DIBL vs. VT SAT. 
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3.3.3 Symmetric and Asymmetric Random Variability Implications for 
Semiconductor Process and Gate Length Scaling 

 
The ability to decompose variability into different components not only allows a better 

understanding of device variability, but also provides opportunity to refine the device fabrication 
process. For example, when analyzing a particular flavor of transistor, if it is found that the 
asymmetric variation component is much larger compared to the symmetric component, then it is 
logical to assume that the overall variation of such device is dominated by asymmetric variation.  
From a processing standpoint, focus should be made on optimizing the halo doping, or the 
source/drain extension doping steps in the process flow. If, on the other hand, the symmetric 
variation component is the main contributor to VT variation, then the emphasis should be on 
optimizing the well doping, or the gate stack deposition. Thus, the model allows a feedback path 
between device characterization and process optimization to improve transistor performance and 
reduce variability. Such close interaction between device and process design is even more critical 
for the aggressively scaled transistors in state-of-the-art CMOS technology. 

It is well known that the variation in VT mismatch increases as the geometry of a 
transistor reduces. Specifically, Pelgrom inferred that the variation would scale inversely with 
√ ∙  [26-27]. Alternatively, one can conclude that as the width and length of the channel 
region become larger, variability should become smaller. This is true in general. However, the 
asymmetric variability does not diminish commensurately as gate length increases (relevant for 
analog devices whose Lg is much larger compared to logic). As a result, DIBL and DIBL 
variability will not scale down well when the gate length is made to be large, contributing to poor 
device mismatch and large variation in the output conductance of the analog device. Moreover, 
this observation is also evident when analyzing a Pelgrom plot. Due to the non-scalable 
component of asymmetric variation with respect to gate length, one can experimentally observe a 
non-zero crossing point in the Pelgrom plot. 

 

3.4 Conclusion 
 
Variations in VT and DIBL and their correlations can be well-captured for SRAM and 

analog devices by incorporating random asymmetry manifested through the difference between 
forward- and reverse-mode characteristics of a MOS transistor. Modeling the effects of random 
asymmetric variation provides a more accurate understanding of VT and DIBL variability, and 
their correlations, enabling better parametric yield estimation in SRAMs and ROUT variability in 
analog devices. We can conclude that DIBL and its variability is not only electrostatic in nature 
but is also impacted by components of RDF. By using this variability analysis and component 
breakdown modeling framework, the overall VT and DIBL variability can be identified and then 
optimized by minimizing symmetric and asymmetric variation components.  
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Chapter 4   

Variability Characterization in Fully-
Depleted Silicon-On-Insulator (FD-SOI) 
Transistors 
 

 

4.1 Introduction 
 

In order to satisfy Moore’s Law, transistors are made smaller in each successive 
technology node so that more of them can be put onto a chip [1-3]. However, such aggressive 
scaling can also have an adverse effect on the electrostatic integrity of a transistor, causing large 
off-state current and worsening short-channel effects. To mitigate such undesirable effects, 
planar bulk-silicon transistors often employ techniques such as the use of retrograde/halo doping, 
shallow source/drain junctions, and high-k metal gate stacks [4-7]. One of the root causes of poor 
electrostatic control is relatively weak capacitive gate coupling to the electric potential in the 
silicon body region that is further from the gate-oxide interface. The Si region which is furthest 
away from the gate can serve as a major leakage path [8-9]. To tackle this challenge head on, one 
can think of removing all paths far away from the gate. In fact, this is precisely the idea behind 
the thin-body (fully depleted) MOSFET [10-14]. If the thickness of the silicon body is made 
much thinner than the gate length short-channel effects are dramatically reduced. The two most 
common implementations of a thin-body MOSFET today are the vertical FinFET or planar 
FDSOI (Fully-Depleted Silicon-On-Insulator) MOSFET [15-16].  

The FinFET is a double-gate MOSFET structure which is more scalable compared to the 
FDSOI MOSFET due to superior gate control. However, it requires a high aspect ratio Si fin 
geometry, which presents a major challenge from a fabrication standpoint. Additionally, since 
the drive strength of a FinFET is adjusted by changing the number of fins, circuit designers must 
cope with discrete adjustments in drive current for FinFETs [17]. On the other hand, the FD-SOI 
MOSFET structure, which also uses a thin body similar to the FinFET, offers improved 
electrostatic control over the planar bulk MOSFET without adding significant fabrication 
challenges or imposing new restrictions on circuit design. Instead of a bulk Si wafer, the starting 
substrate is a Silicon-On-Insulator (SOI) wafer [18]. The device fabrication process steps are 
very similar or less complicated compared to those of a standard planar bulk Si device 
fabrication process. From a circuit designer standpoint, the FDSOI design kit is also similar to 



 

that for b
back-bias

G
technolog
implemen

 

4.2 D
 

T
performa
character
can also
electrical
variabilit
structure
were fab
technolog
vs. FDSO

. 

Fig. 4.1 La

 

4.2.1 R
 
R

function 

bulk Si techn
sing can be u

Given that F
gy, variabili
nting a devic

Device Ch

To capture 
ance, transis
rization array
 be include
lly accessed
ty test struc
s. Both NM
bricated by 
gy, on both 

OI technolog

ayout view of t

Random V

Random vari
variation (W

nology: dev
used to dyna

FDSOI tech
ity analysis 
ce characteri

haracteri

and unders
stors of diff
y. Ring osci
ed. Using b
d and chara
ctures can b

MOS and PM
STMicroel

bulk-Si and
gies. The lay

the device char

Variability 

iability sour
WFV), and 

ice widths c
amically adju

hnology is 
of FDSOI 

ization array

ization A

stand the im
ferent sizes 
illators, capa
built-in circu
acterized thr
be classified

MOS transisto
ectronics us

d SOI substr
out of the de

racterization bl

Test Struc

rces such a
line-edge ro

58 

 

can be adjus
ust transistor

a promising
MOSFETs 

y and padded

Array 

mpact of d
and layout 

acitance test
uitry on the
rough the in
d as 1) Ran
ors, of diffe
sing a 28nm
ates to allow
evice charac

lock consisting

ctures 

as random 
oughness (L

sted to tune t
r threshold v

g candidate 
is necessary

d-out SRAM

different var
geometries 

t structures, 
e chip, each
nput/output 
ndom or 2)

erent VT valu
nm high-k/m
w for a direc
terization bl

 
g of NMOS and

dopant fluc
LER) can co

transistor dr
voltage [19-2

 to replace
ry. This can

M cells in a te

riability sou
 are include
and resistan
h individua
(I/O) pads.

) Systematic
ues, are incl

metal-gate (H
ct compariso
lock is show

d PMOS transi

ctuations (R
ontribute to v

rive strength
20].  

e planar bul
n be achieve
est chip.  

urces on d
ed in the d

nce test struc
al device ca
. In general
c variability
luded. Test 
HKMG) pr
on of planar

wn in Fig. 4.1

istor arrays.  

RDF), gate 
variations in

h, and 

lk Si 
ed by 

device 
device 
ctures 
an be 
l, the 
y test 
chips 
ocess 

r bulk 
1  

work 
n VT, 



 

IOFF, and
variabilit
often use
proximity
would be
value) of
due to s
variabilit
importan
Device U
in the pa
might ar
Trench Is

Fig. 4.2 A
elimate any

 

  I
MOSFET
Specifica
values (i
significan
further e
channel 
channel 
same col
transistor
sensitive 
plots can
width on

 F
designers
of differe

d ION betwee
ty from that 
ed. These te
y to one an
e the same fo
f the perform
systematic v
ty. To ensur
nt to make su
Under Test (
ir is also dra

rise from lay
solation (ST

A layout showin
y layout-depen

It has been
T threshold 
ally, σVT is p
i.e. W x L)
nce of this tr
xamine the 
width and g
area are also
lor in Fig 4
r threshold 
to gate leng

n be generat
ly, while kee

or System-O
s [26-27]. Th
ent nominal 

en devices w
of systemat

est transistor
other on the
or both devi

mance param
variability is
re that the t
ure that the s
DUT) surro
awn in a sim
yout-depend

TI) or near-by

ng Device Und
ndent proximity

n theoretical
voltage inc

proportional
), ranging f
rend. The lis
sensitivity o

gate length),
o included; 
4.3. This all
voltage. Fo
gth scaling 
ed to compa
eping W x L

On-Chip (SO
herefore, it i
VT values. T

with identica
tic variabilit
rs are identic
e chip. If th
ces. As a res

meter between
s canceled 
transistors in
surrounding 
unded by du

milar manner
dent proximi
y active devi

der Test (DUT
y effects. 

lly derived 
creases as th
l to 1/√ ∙
from large 
st of transist
of variability
, different c
devices wh

lows one to
or example, 
as compared
are the effec

L constant. 

OC) produc
s also impor
To this end,

59 

 

al layouts. In
ty, transistor
cally drawn

here is a sys
sult, when th
n the two tra
out, i.e. the
n a pair are 
area is the sa
ummy active
r. Such a lay
ity effects s
ices [21-22].

T) surrounded b

and exper
he transistor

  [23-25]. T
to small, a
or channel d
y sources to

combinations
ich have the

o decouple d
the impact 

d to channel
ct of scaling

ts, multiple 
rtant to inves
 three differ

n order to i
r pairs (i.e. m

n structures a
stematic sou
he differenc
ansistors in a
e difference

identical in
ame for both
e regions. Th

yout will help
such as mec
.  

by dummy act

rimentally v
r channel di
Thus, device
are included
dimensions i
o various de
s of W and 
e same chan
different var
t of gate LE
l width scal

g the channe

values of V
stigate how v
rent VT leve

solate the im
mismatch te
and they are

urce of varia
e (as oppose
a pair is ana

e is due ent
n every poss
h transistors.
he other cor
p to elimina

chanical stre

tive regions w

validated th
imensions ar
es with diffe
d in the arra
is summarize
evice design
d L correspo
nnel area are
riation sourc
ER on σVT

ing. Thus, d
el length onl

VT must be
variability w
ls (Low VT,

mpact of ran
est structures
e placed in 
ability, its im
ed to the abs
alyzed, the im
tirely to ran
sible aspect,
. Fig. 4.2 sho
rresponding 
ate variability
ess from Sha

 
with equal dista

hat variabilit
re made sm
rent channel
ay to asses
ed in Fig. 4.
 parameters 

onding to a 
e coded wit
ces affectin

T might be 
different Pel
ly or the ch

 available t
will affect de
, Regular VT

ndom 
s) are 
close 

mpact  
solute 
mpact 
ndom 
, it is 
ows a 
DUT 
y that 
allow 

ance to 

ty in 
maller. 

l area 
s the 
3. To 
 (e.g. 
fixed 

th the 
g the 
more 

lgrom 
annel 

to the 
evices 
T, and 



 

High VT)
gate leng

Fig. 4.3 Su

 

4.2.2 S
 

In
are inclu
effects, i
proximity
summariz

 

4.2.2.1 

M
on-state d
direction
test. For 
two dum
λ, and 4 λ
across th
regions a

 

) are include
gth trimming

ummary of MO

Systematic

n addition to
uded to assis
including me
y, and segm
zed in the fo

Shallow T
 

Mechanical s
drive current

ns, dummy ac
example, to 
my active re
λ away from
e channel (a

at the top and

ed for each v
g and backpla

OSFET channel

c Variabilit

o device struc
st with the s
echanical st
mented cha
ollowing sect

Trench Isol

tress induce
t [28-29]. To
ctive regions
examine the

ectangles loc
m DUT, as sh
along the wid
d bottom of a

value of W x
ane doping u

l dimensions in

ty Test Str

ctures used t
study of syst
ress induced
nnel design
tions. 

ation (STI) 

d by STI can
o quantify th
s are drawn 
e stress induc
cated on the 
hown in Fig. 
dth direction
a DUT at dif

60 

 

x L. VT tuni
underneath t

ncluded in the 

ructures 

to study rand
tematic vari
d by STI, L
n. The desig

Effect 

n affect carri
he impact of 
at different d
ced along th
sides of the 
4.4. Similar

n) can also be
fferent distan

ing is achiev
the Buried O

device charact

dom variabi
iability assoc

Length of Di
gn and lay

ier mobility 
f STI-induced
distances (λ)

he channel di
DUT are dra
rly, the effec
e captured b
nces as depi

ved through 
Oxide layer (

terization array

lity, several 
ciated with 
iffusion (LO

yout of thes

and thereby
d stress  from
) away from 
irection of a 
awn at distan
ct of STI-ind
by placing th
icted in Fig. 

a combinati
BOX).  

 
y. 

device struc
layout prox

OD), well do
se structure

y affect trans
m different 
the device u
transistor, th

nces of λ, 2
duced stress 
he dummy ac

4.5.  

ion of 

ctures 
ximity 
oping 
s are 

istor 

under 
he 
λ, 3 

ctive 



 

Fig. 4.4 Te

 
 

 
Fig. 4.5 Te

 

4.2.2.2 
 

D
achieved
step [30]

est structures to

est structures to

 
Gate Effe

Design Rule C
d in order to 
]. However, 

o monitor the e

o monitor the e

ect 

Check (DRC
ensure an ac
these dumm

effect of STI-in

effect of STI-in

C) often requ
cceptable yie
my poly stru

61 

 

 
nduced stress a

nduced stress a

uires that a m
eld during th
uctures or ga

along the chann

across the chan

minimum den
he chemical-
ate electrode

nel direction (la

 

nnel direction (v

nsity of the 
-mechanical 
es of neighb

ateral). 

vertical). 

gate/poly lay
polishing (C

boring trans

yer is 
CMP) 
istors 



 

62 

 

can influence the stress within the channel region of the DUT. In addition to stress effects, 
optical proximity effects during the photolithographic exposure process can cause the adjacent 
gate electrodes to have an impact on the patterned shape of the gate electrode [31]. The test 
structures used to investigate the impact of this neighboring gate/poly feature effect are shown in 
Fig. 4.6, where one device has a dummy poly feature on each side of the DUT and the other 
device only has a dummy poly feature on one side.  

 

 
Fig. 4.6 Test structure used to study systematic variability induced by neighboring gate-level features. 

 

 

 

4.2.2.3 Length of  Diffusion 
 

The stress profile within the channel region of the DUT also depends on the length of the 
diffusion (LOD) or source/drain regions of the transistor [32]. To study the impact of LOD on 
device performance, transistors with same gate length Lg and channel width W were drawn with 
different diffusion lengths at λ, 3λ, 4λ, and 5λ for both the source and the drain sides, as shown 
in Fig. 4.7. 
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As mentioned in the previous section, the built-in leakage control circuitry allows the 
gate terminal of the idle transistors to be set at VGX in order to make them strongly off. In 
conjunction with this method, one can also try to calibrate out the leakage current. This is 
accomplished by first performing a parametric I-V sweep with none of the devices in the array 
selected (i.e. the scan-chain is filled with zeros). Let’s call the resulting current ILeakage. Then, one 
can perform the I-V measurement for the DUT to get IDUT. To calibrate the leakage current out, 
the two current quantities are subtracted from one another, i.e. IDUT,Calibrated = IDUT – ILeakage. The 
quality of the calibrated current depends on the current sensitivity level of the SPA which can be 
set for optimal operation.  

 
 

4.3 SRAM Characterization Array 
 
Static memory (SRAM) is a critical component of VLSI systems today. SRAM can 

provide the fastest random access time to stored data, and is used for lower-level caches (L1-L3) 
and registers [37]. In order to increase the size of the cache on a chip, it is desirable and 
economical to fit as many cells into an SRAM array as possible. However, as the memory cell 
area is scaled down with each new technology node, the read and write margins are degraded due 
to increasing variability in transistor characteristics. It is desirable to minimize the operating 
voltage VDD of an SRAM cell in order to minimize power consumption. But a small mismatch in 
VT values can significantly reduce cell stability, setting a lower limit for the minimum operating 
voltage VDD, min of the cell [37-39].  Therefore, variability analysis for SRAM is important for 
improving cell yield to reduce VDD, min.  

A widely used SRAM cell design is the six-transistor (6T) cell, consisting of one pair of 
NMOS pull-down transistors, one pair of PMOS pull-up transistors, and one pair of NMOS pass-
gate transistors. Since the transistors in the SRAM cell are packed very close to one another to 
maximize storage density, the transistor pairs inside a 6T cell naturally form mismatch pairs 
which are ideal for studying random variability.  

 

4.2.1 Padded-out 6T SRAM Macro  
 

 A SRAM cell characterization block consisting of 6T SRAM cells was designed for a 
16nm FD-SOI CMOS technology developed by CEA-LETI. There are 14 SRAM macros in total. 
Each consists of a 128 kB array and peripheral circuitry. Different flavors of SRAM macros are 
included, with design variations in transistor sizes and threshold voltage values. The floor plan 
for the 14 different SRAM macros is shown in Fig. 4.19. For each macro, 21 memory cells inside 
the array are fully padded out. Fig. 4.20 illustrates the approximate location of the padded out 
cells with respect to the entire array, containing 10 horizontal cells, 10 vertical cells, and 1 center 
cell. The locations of the padded out cells are chosen so that systematic variation across the 
SRAM array can be effectively monitored. Additionally, these particular cell locations can 
minimize some variation gradients and isolate stress variation within the array.  
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In addition to regular I-V characterization, a voltage stress mode is also implemented on 
this test chip. NBTI/PBTI and random telegraph noise (RTN) can have a significant impact on 
device variability over time [40-42]. In order to characterize these effects, one would start out by 
measuring the I-V characteristic of an unstressed device. Then, a large voltage is applied to stress 
the device for a period of time. And immediately following the stress period, another I-V sweep 
is performed to examine the device characteristic just after stress. Once the measurement has 
been taken, the device can be placed back in stress mode for continued monitoring of stress-
induced degradation. The short amount of time required to switch between I-V mode and stress 
mode is made possible through the switchbox logic. Fig. 4.21 shows a circuit schematic of the 
devices in stress mode. The bias conditions are chosen carefully such that a pair of transistors 
(NMOS and PMOS) can be stressed at the same time for each cell. For example, to stress PD1 
and PU2, the logic circuit would pass Vstress (typically greater than 1V) to the gate of PD1 and 0V 
to the CL node. Effectively, PD1 will have 0V at both its source and drain, and Vstress at its gate. 
To piggy back on this biasing scheme, PU2 can also be put under stress at the same time as PD1. 
Since the gate of PU2 is the same as the CL node, it will also have a 0V on it. One terminal of 
the source /drain of PU2 is already connected to CH node, which has been set at Vstress. 
Therefore, the circuit only needs to put Vstress to the other source/drain terminal of PU2 in order 
to put it under stress mode. 

 

 
Fig. 4.21 Circuit schematic of a pair of NMOS and PMOS transistors placed under stress mode (adapted from [43]). 

 

 

4.2.3 Test Setup and Measurement 
 

The fabricated test chip was sent back in a form of a 12-inch wafer. The wafer was then 
diced into quarters (as in Fig. 4.22), making it manageable to be used with a Cascade probe 
station. A custom-made Probe card with 72 probe tips is used to probe the pads. The I/O pad 
configuration is shown in Fig. 4.23.  Since the probe tip alignment has to be done manually, 
extreme care must be taken when landing the probe tips. It is easiest to first adjust the rotation by 
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gate length and channel width dimensions, and different layout proximity allows for the 
collection of data which can be used to analyze random and systematic variability. In addition to 
logic and analog transistors, a padded-out SRAM array is also an excellent test structure to use 
for characterizing the impact of variability on an actual SRAM array. Furthermore, the padded-
out SRAM cell design allows one to correlate SRAM performance metrics with transistor 
characteristics (i.e. VT, IEffective, DIBL) in order to understand the root cause of the problems that 
affect cell yield. Since the number of I/O pads is quite limited, many signals have to be shared 
among test blocks either through a decoder or a multiplexer. Care must be taken when designing 
the selection circuitry to ensure correct operation when accessing a particular device in an array 
and to minimize its impact on the measured device characteristics. Leakage minimization circuits 
can be designed to ensure that the devices which are not under test are turned strongly off to 
minimize their contributions to the measured current. A switch box designed to switch between 
regular I-V sweep mode and voltage stress measurement mode allows for fast, built-in 
NBTI/PBTI and RTN characterizations - all of which are critical to study for ensuring robust 
SRAM operation. 
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Chapter 5   

Variability in Germanium-Source Tunnel 
FETs 
 

 

5.1 Introduction 
 

A MOSFET switches on/off via the modulation of an energy barrier to thermal diffusion; 
therefore the steepest sub-threshold swing that it can achieve is 60 mV/dec at room temperature.  
This limits its on/off current ratio (ION/IOFF) for low-voltage (sub-threshold) operation and hence 
the energy efficiency of CMOS circuitry [1].  Because of this limitation, there has been a strong 
push toward finding a MOSFET-replacement device, one that can achieve higher ION/IOFF for a 
given supply voltage (VDD).  Of the various candidates proposed, the tunnel field-effect transistor 
(TFET) is emerging as one of the promising devices [2-4].  Since a TFET switches on/off via 
alignment/misalignment of energy bands, its minimum sub-threshold swing can be less than 60 
mV/dec [5-6].  One of the challenges for the TFET to become a practical alternative to the 
MOSFET is its relatively low on-state drive current, which is limited by the rate of carrier 
tunneling.  To overcome this challenge, a reduction in the effective tunneling band-gap is 
necessary.  This can be achieved by using a smaller band-gap material in the source region.  
Indeed, the use of germanium (Ge) as the source material within a silicon n-channel TFET has 
resulted in the highest ION/IOFF reported to date for a TFET operating at low voltage (0.5V) [7]. 

 As transistor dimensions are scaled down to provide for improved performance and cost 
per function, random variability (vs. systematic variability) in transistor performance grows in 
significance and will present a major challenge for achieving high yield in the manufacture of 
integrated circuits utilizing MOSFETs with sub-30 nm gate lengths [8].  Sources of random 
variability include random dopant fluctuations (RDF), gate line-edge roughness (LER), and gate 
work function variation (WFV) [8-9].  Previous studies of variability in TFET performance have 
focused on systematic sources of variation [10].  In this chapter, variability in Ge-source TFET 
performance due to RDF is investigated via three-dimensional (3D) device simulations. 
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TABLE 5.1 

DEVICE DIMENSIONS USED IN THIS WORK 

 

Device Parameter Nominal Value 

Gate Length (Lg) 30 nm 

Germanium Thickness (TGe) 15 nm 

Spacer Length (Lsp) 8 nm 

Germanium Overlap (Overlap) 13 nm 

Silicon Thickness (Tsi) 40 nm 

Equivalent Oxide Thickness (EOT) 1 nm 

Width (W) 30 nm 

 

The 3D device simulations were performed using Sentaurus Device [13], which uses an 
algorithm for dynamically determining the non-local tunneling rate, i.e. it calculates the band-to-
band tunneling rate in multiple directions without a priori knowledge of the tunneling locations 
and vectors.  The tunneling model is calibrated to experimental data for polycrystalline-Ge 
source TFETs (A = 1.46 x 1017 cm-3·s-1 and B =3.59 x 106 V·cm-1) [14].  Polycrystalline Ge has a 
high density of defects with associated trap state energy level close to the valence-band edge, so 
that these defects effectively lower the tunnel band gap and therefore enhance ION [7] in contrast 
with mid-gap states which would degrade subthreshold swing and IOFF. 

A positive fixed charge of 8.5×1012 q/cm2 at the interface between the germanium and the 
SiO2 gate dielectric is assumed, as in [15].  (This was necessary to fit the device simulation to the 
measured ID-VG characteristic, and is not unreasonable considering that the SiO2 was exposed to 
a dry etch process [7] prior to selective Ge growth and that the Ge-SiO2 interface is known to be 
poor [16].)  Carrier transport is modeled using the standard drift-diffusion models. Bandgap 
narrowing is modeled using Oldslotboom model. Quantum confinement effect is taken into 
account using Modified local-density approximation (MLDA) model. 

 
5.2.2 Methodology for Implementing Random Dopant Fluctuations 

 
The methodology proposed by Sano [17] is used to investigate the impact of RDF on 

TFET performance.  Following this methodology, the randomized doping profiles are generated 
from a nominal structure with continuum doping profile.  The dopant atom locations are 
randomized, and a doping function is assigned to each discrete dopant atom.  (The doping 
function only includes the long-range portion of the Coulombic potential of the ionized dopant 
atom, to avoid unrealistic singularities in the potential profile [18].)  The superposition of these 
doping functions yields the random doping concentration profile.  To obtain statistically 
significant results, an ensemble of 200 device structures with microscopically different doping 
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equal to the conduction band energy (plus any band offset) at the ending position. A tunneling 
path undergoes specular reflection when it encounters Neumann boundaries. [13]  

It is not clear how the modeled tunneling current would be affected by the short-range 
Coulombic potentials of discrete dopant atoms. Sano’s approach uses a screening parameter that 
is doping-dependent to distinguish the short- and long-range portions of the Coulombic potential 
profile. It is possible that additional screening by carriers induced by the gate in the transistor on 
state could affect the tunneling current. An ab initio study is necessary to elucidate the extent of 
such quantum mechanical effects.  

The simulation approach taken in this study is not intended to precisely account for every 
subtle physical phenomenon. Rather, it uses established analytical models carefully calibrated to 
experimental data to reasonably approximate physical processes.  (Note: the A and B coefficient 
values may be different for different doping configurations and under the influence of the short-
range Coulombic potential of the discrete dopant atoms. Because of limited reliable experimental 
data for TFETs reported in the literature, a comprehensive calibration for all possible doping 
configurations is not possible at the present time.) The limitations of this approach are a subject 
of ongoing research from both theoretical and experimental perspectives.  Thus, the reader 
should keep in mind that the findings reported herein should be viewed qualitatively rather than 
quantitatively.  

 

 
5.2.4 Impact of RDF on VTH Variation for Optimized Nominal Design 

 

A previous design optimization study [11] found that a source doping concentration of NS 
= 1019 cm-3, channel doping concentration of NCH = 1018 cm-3, and drain doping concentration of 
ND = 1019 cm-3 provides for maximum ION/IOFF for a vertical tunneling TFET design, wherein 
tunneling occurs primarily within the Ge source. This particular design serves as the starting 
point for the current study.  To distinguish the variability contribution from each region of the 
device, the doping profiles within the source, channel, and drain regions are randomized 
separately, as well as together.  Fig. 5.3a shows the simulated ID-VG curves for different 
randomized doping profiles in each of the source, channel, and drain regions.  Similarly as for 
the MOSFET [8], the average threshold voltage of a TFET is reduced with randomized doping 
profiles.  The transistor can be considered as many narrow transistors connected in parallel, each 
narrow transistor comprising one slice of the transistor.  In a TFET, VTH is largely set by the slice 
in which band-to-band tunneling occurs first (i.e. at the lowest gate voltage). Thus, all it takes for 
VTH lowering to occur is the presence of a few such slices. The probability of finding those few 
slices with lower VTH compared to the nominal VTH is greater than finding all the slices with 
larger VTH; therefore RDF is more likely to lower VTH than to raise VTH. To elucidate how RDF 
affects VTH, the randomized doping profiles for the devices with the highest and lowest VTH 
values in Fig. 5.3a are shown in Fig. 5.3b.  It can be seen that, for this particular TFET design, 
high VTH corresponds to a device with higher dopant concentration in the gate-to-source overlap 
region while low VTH corresponds to a device with lighter dopant concentration in this region.  
This is reasonable since a larger voltage drop is required to invert the surface of a more heavily 
doped Ge source.  
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the p-type Si channel/body [11]. As a result, tunneling occurs in a direction that is more vertical, 
across a shorter depletion distance. The lower amount of associated depletion charge within the 
source region results in smaller σVTH, similarly as for a MOSFET with lower channel/body 
doping concentration. For the lateral tunneling design which turns on when the surface of the Si 
channel region becomes inverted (as in a MOSFET), lower NCH results in smaller depletion 
charge in the channel region and hence smaller σVTH. Fig. 5.6b also compares the values of local 
subthreshold swing (SS) at VGS = VTH, extracted from simulated ID-VG curves for TFETs with 
continuum doping profiles.  It is interesting to note that steeper local SS does not necessarily 
provide for smaller σVTH.  A more meaningful metric is the ‘effective’ subthreshold swing, 
which is defined as the inverse slope of the line connecting the operating ION and IOFF on a 
log(ID)-VG plot [21].  Therefore, for TFET design optimization, it is imperative to examine ION 
and IOFF more closely. 

 

Fig. 5.6 (a) σVTH contributions due to RDF in different regions of the TFET, for different combinations of source 
and channel nominal doping concentrations, (b) σVTH resulting from RDF in all regions of the TFET, for the vertical 
tunneling design (NS = 1019 cm-3) and the lateral tunneling design (NS = 1020 cm-3).  Local subthreshold swing, 
extracted from simulated ID-VG curves for TFETs with continuum doping profiles at VGS = VTH, is also shown for 
reference. 
 

 

5.2.7 Impact of Variability on ION – IOFF 
 

From the ID-VG curves in Fig. 5.3a and Fig. 5.5a, it can be seen that the effect of RDF is 
not always a simple VTH shift, i.e. the turn-on voltage (corresponding to the onset of band-to-
band tunneling) and the switching steepness each can be affected as well.  Thus, from a circuit 
design perspective, it is also important to examine the variations in ION and IOFF.  Here IOFF is 
defined as the drain current at VGS = 0V, VDS = VDD = 0.5 V, and ION is defined as the drain 
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similar dependence of σΔVTH on W.  The results shown in Fig. 5.8 confirm this to be the case.  
The AVt values extracted from the best (least-squares) linear fit are lower than reported for 
advanced MOSFET structures, ~1 mV·um [23]. This may be due to the fact that tunneling 
depends both on the local electric potential at the point of hole generation and the local electric 
potential at the point of electron generation; since these two points are spatially separated (Fig. 
9), there is an averaging effect which results in reduced variation (and hence mismatch) in VTH.  
(In contrast, diffusion depends only on the local electric potential at the point of thermionic 
emission in a MOSFET.)  

 

 

Fig. 5.8 Width dependence of σVTH.  The dashed lines indicate the best linear fit through the origin.  VTH is 
measured for VDS = 0.5 V. 
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5.3 Line-Edge Roughness (LER) in Ge-Source TFET 
 

In addition to random dopant fluctuation effects, as transistor gate lengths are scaled 
down to 30 nm and below, gate line edge roughness (LER) due to lithography and etching steps 
can become a significant fraction of the nominal gate length, making it a prominent source of 
variation in transistor performance [24],[25].  For the conventional planar bulk MOSFET, 
threshold voltage (VT) variation due to gate LER may be significant compared to RDF [8]. 

   
The planar Ge-source TFET is designed for vertical (perpendicular to the 

semiconductor/gate-dielectric interface) tunneling in which BTBT occurs primarily within the 
region of the source overlapped by the gate electrode.  Therefore, the electrical behavior is 
strongly dependent on the geometry as well as the doping of this region.  The impact of RDF was 
previously examined in [26].  Since gate LER can affect the length of the gate-to-source overlap 
region, it is important to also assess the impact of gate LER. The contribution of gate LER to 
variability in planar Ge-source TFET performance is assessed and compared to that of RDF, 
using technology computer aided design (TCAD) tools to model three-dimensional (3D) device 
performance. 

 
5.3.1 LER Implementation 

 

Scanning Electron Micrograph (SEM) measurements of extreme-ultraviolet (EUV) resist 
lines with root mean square roughness of 3.96 nm and correlation length of 21.6 nm are used to 
define the gate line edge profiles.  The gate-sidewall spacers are assumed to be perfectly 
conformal, so that their outer edges have roughness that is perfectly correlated to the gate LER.  
Since the Ge source region is formed by first recessing the silicon on the source side and then 
selectively depositing Ge to refill the etched region [7], the source (channel) edge profile can be 
rough.  Two extreme cases of the source edge profile are considered herein: 1) “Smooth edge” 
case, wherein the interface between the Ge source region and the Si channel region is smooth, 
and 2) “Rough edge” case, wherein the Ge-source/Si-channel interface has roughness that is 
perfectly correlated with that of the outer edges of the gate-sidewall spacers. The nominal 
simulated device structure is shown in Fig. 5.11 (a), and the structures with two cases of source 
edge profile are shown in Fig. 5.11 (b),(c).  
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Fig. 5.25 Comparison of σVT induced by RDF or LER in a planar bulk MOSFET vs. a planar Ge-source TFET. 

 
5.4 Random Dopant Fluctuation Induced Variability in the 

Raised-Ge-Source TFET 
 

5.4.1 Introduction 
 
One of the main challenges for a tunnel FET is its relatively low on-state drive current 

compared to a MOSFET. This challenge can be overcome by using a smaller band-gap material 
such as InGaAs, SiGe, or Ge to help reduce the effective tunneling band gap [29-31,7]. However, 
the reported ION values from these works for operating voltage of 0.5V are approximately 
1uA/um or less. In addition to band-gap engineering, the performance of a tunnel FET can be 
improved through optimization of the device geometry. Most tunnel FETs are designed for 
lateral/point tunneling. This approach can indeed achieve SS steeper than 60 mV/decade at room 
temperature. However, the major drawback is that the carrier injection happens across a very 
small area, and hence ION will also be small.  

An alternative design to a lateral tunneling device is the vertical tunneling device where 
the tunneling happens within the source-region, perpendicular to the gate/gate-dielectric 
interface. A planar Ge-source TFET discussed previously is an example of a vertical tunneling 
device, which results in an improvement in ION. But as the device is turning on, there still exists a 
lateral tunneling component before the vertical tunneling component dominates at high gate 
voltage. This lateral tunneling ultimately degrades the overall subthreshold swing. To mitigate 
this issue, a raised-Ge-source TFET was proposed [14], wherein the source-region is fully 
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elevated. The raised source design allows tunneling to happen almost entirely vertically, while 
virtually eliminating the lateral tunneling component. Moreover, the source region at which 
tunneling happens is electrically de-coupled from the drain field, which results in a smaller 
modulation of the tunneling barrier by the drain bias. 

Variability in transistor performance worsens significantly as the gate length (Lg) is 
scaled down below 25 nm [8], and can limit reductions in supply voltage (VDD) and hence power 
consumption, due to the need for design margin to achieve high yield [32-35].  Sources of 
random variation in TFETs include random dopant fluctuations (RDF), gate line-edge roughness 
(LER), and surface roughness [8],[36],[37]. With its improved electrostatic and higher drive 
current capability, a raised-Ge-source TFET is a promising device candidate for a low voltage 
operation. Nevertheless, one must carefully assess the performance degradation in the presence 
of variability.  In the previous section, it was found that RDF is the dominant source of VT 
variation for the planar Ge-source TFET [37].  In this section, the impact of RDF is investigated 
via TCAD simulation for the raised-Ge-source TFET design.  

 
5.4.2 Device Structure and Simulation Approach 
 
 A cross-sectional view of the simulated n-channel TFET structure is shown in Fig. 5.26 
(a).  The nominal structure is optimized to achieve maximum ION/IOFF for a supply voltage of 
0.5V, similarly as in [34].  The nominal design parameter values are summarized in Table 5.3.  
Three-dimensional (3-D) device simulations are performed using Sentaurus [16].  Drift and 
diffusion models are used for carrier transport. (Due to the low operating voltage, ballistic 
transport and velocity overshoot are ignored.)  A dynamic non-local tunneling model is used to 
simulate the tunneling process using calibrated tunneling coefficients A = 1.46 x 1017 cm-3·s-1 
and B = 3.59 x 106 V·cm-1 [11,34].  The Modified Local Density Approximation (MLDA) 
captures quantum confinement effects, and the Oldslotboom model accounts for band-gap 
narrowing.  A fixed charge density (8 × 1012 q/cm2) at the Ge-source and gate oxide interface is 
assumed, based on previous fitting to experimental data [11,34].  

To model RDF, device structures with atomistic doping profiles are generated following 
Sano’s algorithm [17]. The algorithm accounts for the long-range Coulombic potential of the 
ionized dopant atoms, while the short-range potential is ignored to avoid unrealistic charge 
trapping and non-convergence issues. The short-range Coulombic potential is accounted for by 
the drift-diffusion simulator itself through appropriate mobility models.  Fig 5.26 (b) shows an 
example of a device with randomly placed boron atoms within the source and body regions. An 
ensemble of 200 TFETs, each with uniquely randomized doping profiles, is simulated to assess 
the impact of RDF.  
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Fig 5.28 Cumulative probability plots of Drain-Induced Barrier Tunneling (DIBT) for raised-Ge-source (Red) vs. 
planar-Ge-source (Black) TFET designs.  DIBT  VT,Lin – VT,Sat. 
 

 
5.4.4 Energy vs. Frequency Performance 
 

Fig. 5.29 (a) plots the average value of IOFF (defined as the value of IDS for VGS = 0 V and 
VDS = VDD = 0.5V) vs. the average value of ION (defined as the value of IDS for VGS = VDS = VDD 
= 0.5V), when the gate work function is varied from 4.35 eV down to 4.0 eV.  In the regime 
where IOFF is dominated by reverse-bias p-n junction leakage (i.e. when the onset of BTBT 
occurs at VGS > 0V), there is minimal trade-off between increasing ION and increasing IOFF.  
However, in the regime where IOFF is dominated by BTBT (where ION > 30 uA/um), there is a 
large trade-off between increasing ION and increasing IOFF.  The boundary between these two 
regimes occurs at lower ION, ~10 uA/um, if RDF-induced variability (3σ increase in log(IOFF) and 
3σ decrease in ION) is taken into account. 

 The minimum energy per cycle vs. frequency for a 30-stage inverter chain (fanout = 1, 
activity factor = 0.05, load capacitance = 4.12 f F/um = 2× Cgg) is evaluated using the 
methodology described in [21].  Fig. 5.29 (b) compares the results of this analysis for the 
nominal raised-Ge-source TFET design, an ideal short-channel MOSFET design (SS = 60 
mV/dec), and the ensemble of raised-Ge-source TFETs with atomistic doping profiles.  The IDS – 
VGS characteristics for the nominal TFET and ideal MOSFET are shown in the inset of Fig 5.29 
(b).   
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RDF in the source and channel regions are equally important for the lateral tunneling TFET 
design (heavily doped source).  Analysis of variations in ION and IOFF are necessary to assess the 
impact of RDF on energy-delay performance, because VTH is not a good proxy for these (i.e. 
σVTH does not fully capture the effect of variability on device performance).  Accounting for the 
impact of RDF-induced variations, the vertical tunneling TFET design is best for ION in the range 
>3uA/um.  Unlike MOSFET, there is a weak dependence on TFET σVTH  and the drain to source 
voltage VDS. 

The impact of gate LER on the performance and variability of the planar Ge-source TFET is 
relatively small as compared to the impact of RDF, and it is minimized if the source edge is 
perfectly correlated to the gate edge.  The impact of LER-induced variation in ION becomes 
significant for applications requiring transistor drive current above ~5 uA/um for VDD = 0.5 V.  
From an energy-performance point of view, the impact of LER on variation in minimum 
operating energy becomes comparable to that of RDF at frequencies greater than 100 MHz. 

 
RDF within the source region results in degraded SS and lower turn-on voltage for the raised-

Ge-source TFET design.  However, drain-induced barrier tunneling is further mitigated with the 
raised source design, resulting in a relatively small threshold voltage variation, as compared to 
the planar-Ge-source design with a longer channel length.  For these reasons, the raised-Ge-
source TFET is a promising candidate for low-power digital logic applications requiring 
operating frequencies below 500 MHz. 
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Chapter 6   

Conclusion 
 

 

6.1 Summary and Contributions of This Work 
 

The planar bulk-Si MOSFET has been the workhorse transistor structure for CMOS 
integrated circuits over the last four decades. But with continued transistor scaling, its 
performance and variability worsen due to short channel effects, resulting in excessive OFF-state 
leakage current and increased reliability problems. Advanced transistor structures such as the 
planar FD-SOI MOSFET and 3D FinFET can suppress these undesirable effects, but at the same 
time they can substantially increase process complexity and manufacturing cost.  Super steep 
retrograde (SSR) channel doping is shown to have the potential for extending the scalability of 
planar-bulk CMOS technology at minimal cost, which is ideal for mobile applications which are 
cost-sensitive. At the 28nm technology node, a SSR channel doping profile can reduce σVT 
variability by 40 – 50 % compared to uniform doping profile. Estimation of 6-T SRAM cell yield 
(6σ) shows a 33% reduction in VMIN, which provides for more than 50% dynamic power savings. 

 
Traditional Monte Carlo SPICE models are inadequate for explaining and predicting 

variability in device performance at advanced technology nodes. Accurate modeling of VT and 
DIBL variability is essential for estimating SRAM cell yield and for estimating rout variability in 
analog devices. To meet this need, a physically-based variability model is developed to explain 
variations in VT and DIBL, as well as the correlation between them. The model shows an 
excellent match to measured data for a 32nm HKMG transistor technology in production for both 
SRAM and analog devices. It analyzes the forward-and reverse-mode characteristics of 
MOSFETs. Four fundamental variability components are proposed including Chip Mean, 
Symmetric, Asymmetric, and LEFF variability. The results indicate that random asymmetric 
variation (e.g. random dopant fluctuations due to halo and/or source-drain extension doping) is 
responsible for the weak correlation of VT, Lin vs. VT, Sat, the non-Gaussian distribution of DIBL, 
and the increased  σVT, MM with increased drain bias VDS.  

 
A test chip has been designed to investigate the sources of variability in transistor 

performance. A device characterization array comprising mismatch transistor pairs and 
transistors with different layout proximity is used to study random and systematic variability in 
planar bulk and FD-SOI MOSFETs in a 28nm technology. To study the impact of transistor 
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variability on SRAM cell performance, a padded-out SRAM array implemented in a 16nm FD-
SOI technology is designed to examine the individual transistor characteristics and to correlate 
them to SRAM cell performance metrics. Multiplexer and decoder circuits are necessary for 
accessing each device under test (DUT), given the limited number of I/O pads on a chip. 
Automated testing allows for the characterization of many devices without the need for constant 
supervision. Parasitic effects inherent to test chips such as array leakage current or voltage drop 
along the wires can be mitigated by strongly turning off the devices which are not under test and 
implementing the Kelvin Force/Sense measurement technique, respectively. To allow for 
accurate reliability testing, a switchbox can be used to quickly switch between regular I-V sweep 
mode and voltage stress mode, which is important for NBTI/PBTI and RTN characterizations 
that rely on short time-constant.   

The tunnel FET has emerged as a promising candidate to replace the MOSFET for low-
power applications due to its potential for achieving higher ON/OFF current ratio at low 
operating voltage. In particular, a planar Ge-Source TFET structure provides for better ION as 
compared to silicon TFET without incurring too much process complexity which comes with the 
use of exotic materials such as III-V. The impact of RDF on threshold voltage variation of a 
planar Ge-Source TFET is less than 20 mV at Lg = 30 nm (compared to 36 mV of a planar 
MOSFET of similar gate length) [1]. Depending on the relative doping between the source and 
the channel regions of a TFET, the tunneling mechanism can occur predominantly in either the 
lateral or the vertical direction. The effect of atomistic doping in the source region is found to be 
the main contributor to σVT for a vertical tunneling TFET design.  Atomistic doping effects  in 
the source and channel regions are equally important for the lateral tunneling TFET design. 
Analysis of ION and IOFF variation is required to accurately evaluate the impact of RDF on the 
energy-delay performance tradeoff for a TFET. The vertical tunneling TFET design shows lower 
energy per operation as compared to the lateral design for ION > 3 uA/um. Furthermore, the 
impact of gate LER on the source edge profile of a TFET is found to have minimal impact on VT 
variation. The impact of LER on ION variation can be significant when drive current is above ~ 
5uA/um for VDD = 0.5V. To further improve the performance of a planar Ge-Source TFET, a 
raised source structure can be used. Drain induced barrier tunneling (DIBT) is found to be 2.4 
times smaller and DIBL variation is also reduced by 35% for a raised-Ge-source TFET. From a 
comparison of energy-delay performance accounting for the effect of RDF, the raised-Ge-source 
TFET can provide energy savings for low-power applications at operating frequencies below 500 
MHz.   

 
 

6.2 Suggestions for Future Work 
 
The use of SSR channel doping in the conventional planar bulk MOSFET design is 

advantageous for low-power and low-cost applications. The benefit of this design can be 
extended even further when body biasing is exploited at the circuit level [2]. Forward-biasing 
can be used to lower the VT of the device, increasing its drive current. On the other hand, 
reverse-biasing can be used to raise the VT of the device to reduce OFF-state leakage current. It 
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would be informative to assess the improvement gain with this optimized biasing scheme for 
different circuit topologies.  

 To study VT and DIBL variability, the physically based model developed in this work 
can be made more useful for digital and analog circuit designers if it can be incorporated into a 
SPICE model. By utilizing the four extracted fundamental variability components as the base 
parameters, a wrapper can be implemented around industry-standard compact models such as 
BSIM or PSP to better predict statistical variations in transistor performance.   

A device characterization array enables a large number and variety of transistors to be 
characterized on a single chip,but the leakage current contributions from non-accessed devices 
within the array can significantly affect the accuracy of the measurement of the DUT 
characteristics as compared to direc probing of individual devices. Thus, better access circuit 
designs or array partitioning to help mitigate unwanted leakage current is desired.  For dynamic 
characterization of trap-related phenomena that requires fast rise or fall times, a built-in self-test 
(BIST) circuit can be implemented to generate the desired waveform on the chip, rather than 
relying on an external pulse generator to supply signals through long wires. (By the time the 
signal finally arrives at the device, the shape of the waveform can be altered significantly.) 

First principles calculations and atomistic simulation can provide for more accurate 
modeling of novel switching devices such as TFETs. However, due to computational 
complexity, these approaches are practically limited to small device sizes and numbers, and are 
not suitable for simulating a large number of transistors required for variability study. Device 
simulation using TCAD modeling is the preferred approach and offers a good trade-off between 
accuracy and computation time. Nevertheless, better calibration of the models (band-to-band 
tunneling, quantum confinement incluing dimensionality effects, etc.) to experimental results or 
atomistic simulations will be necessary in order to accurately predict TFET performance for 
different doping values and biasing conditions. More experimental TFET data is also desired to 
verify the accuracy of the models variability sources such as RDF and LER on TFET 
characteristic. 

 

 
6.3 The Variability Challenge Ahead 

 
The semiconductor industry has seen a remarkable progression in integrated circuit 

technology over the years, which helped to usher in the personal computing era, World Wide 
Web, mobile and cloud based computing, and the nascent market of Internet of Things (IoT). 
Underlying this success is the unwavering determination and resiliency to keep pace with 
Moore’s Law, in spite of all the technical challenges. Unfortunately, all exponential growth 
trends eventually come to an end, and Moore’s Law is no exception. There are signs that the end 
of Moore’s Law may not be far out. Market analysis shows that the cost of manufacturing a 
transistor is no longer decreasing, starting from the 28 nm technology node as shown in Fig. 6.1 
[3]. Since the motivation behind Moore’s Law is to reduce cost, the recent trend for transistor 
manufacturing cost is of major concern. Chip design cost has also risen rapidly with each new 
technology node [3]. In fact, an apparent slowdown can be observed when looking at the volume 
production at a given technology node vs. the year it is introduced. It can be seen that starting 
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