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Abstract. Modeling all aspects of a complex system within a single model is a
difficult, if not impossible, task. Multi-view modeling is a methodology where
different aspects of the system are captured by different models, or views. A key
question then is consistency: if different views of a system have some degree
of overlap, how can we guarantee that they are consistent, i.e., that they do not
contradict each other? In this paper we formulate this and other basic problems
in multi-view modeling within an abstract formal framework. We then instantiate
this framework in a discrete, finite-state system setting, and study how some key
verification and synthesis problems can be solved in that setting.

1 Introduction

Real systems are usually complex objects, and grasping all the details of a system at the
same time is often difficult. In addition, each of the various stakeholders in the system
are concerned with different system aspects. For these reasons, modeling and design
teams usually deal only with partial and incomplete views of a system, which are easier
to manage separately. For example, when designing a digital circuit, architects may
be concerned with general (boolean) functionality issues, while ignoring performance.
Other stakeholders, however, may be concerned about timing aspects such as the delay
of the critical path, which ultimately affects the clock rate at which the circuit can
be run. Yet other stakeholders may be interested in a different aspect, namely, energy
consumption of the circuit which affects battery life.

Modeling and simulation are often used to support system design. In this paper,
when we talk about views, we refer concretely to the different models of a system that
designers build. Such models may be useful as models of an existing system: the system
exists, and a model is built in order to study the system. Then, the model is only a
partial or incomplete view of the system, since it focuses on certain aspects and omits
others. For example, an energy consumption model for an airplane ignores control, air
dynamics, and other aspects. Models may also be used for a system-to-be-built: an energy
consumption model as in the example above could be developed as part of the design
process, even before the airplane is built.
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For large systems, each aspect of the system is typically designed by a dedicated
design team. These teams often use different modeling languages and tools to capture
different views, which is generally referred to as multi-view modeling (MVM). MVM
presents a number of challenges, such as the crucial issue of consistency: if different
views of the system are captured by different models, and these models have some
degree of overlap, how can we guarantee that the models are consistent, i.e., that they do
not contradict each other? Understanding the precise meaning of such questions, and
developing techniques to answer them, ideally fully automatically, is the main goal of
this paper.

Toward this goal, we begin in Section 2 by introducing an example of simple 3-
dimensional structure modeling. Even though our focus is on dynamic behaviors, we
will use this static system as an illustrative running example to demonstrate the salient
concepts of our formal MVM framework. The latter is itself presented in Section 3. The
main concepts are as follows: (1) views can be derived from systems using abstraction
functions, which map system behaviors to view behaviors; (2) conformance formalizes
how “faithful” a view is to a system; (3) consistency of a set of views is defined as
existence of a witness system to which all views conform; (4) view reduction allows to
“optimize” views by using the information contained in other views; (5) orthogonality
captures independence between views.

The framework proposed in Section 3 is abstract, in the sense that it does not refer to
specific notions of behaviors, neither to concrete representations of systems and views.
In the rest of the paper we instantiate this abstract framework for the case of discrete
systems. The latter, defined in Section 4, are finite-state symbolic transition systems
consisting of a set of state variables, a predicate over the state variables characterizing
the set of initial states, and a predicate characterizing the transition relation.

In Section 5 we study projections as abstraction functions for discrete systems. Fully-
observable systems, where all variables are observable, are not closed under projection,
therefore we also consider systems with internal (unobservable) variables. We show how
to effectively solve a number of verification and synthesis problems on discrete systems
and views, including view conformance and consistency checking.

2 Running Example: 3D Objects
To illustrate the concept of views we introduce a running example. Consider the 3D
structure shown at the left of Figure 1. It can be modeled as a set of points in a 4× 4× 4
space, each point (x, y, z) representing a “box” appearing at coordinate (x, y, z), for
x, y, z ∈ {1, 2, 3, 4}. The object shown to the left of the figure contains 16 such boxes,
and the corresponding set contains 16 points.

Three views of the object are shown to the right of the figure: a top view, a front
view, and a side view. These views can be formalized as 2D projections. Let S be the
set of points representing the 3D object. Then the three views can be formalized as sets
Vtop, Vfront, Vside, where: Vtop = {(x, y) | ∃z : (x, y, z) ∈ S}, Vfront = {(x, z) | ∃y :
(x, y, z) ∈ S}, Vside = {(y, z) | ∃x : (x, y, z) ∈ S}.

The above projections can be seen as abstractions of S. In fact, they are generally
strict abstractions in the sense that some information about S is lost during the abstraction.
In the case of Figure 1, e.g., the same views would be obtained if one were to add to the
object the missing boxes so that no box under the “staircase structure” hangs in the air.



Fig. 1. A 3D structure (left) and 3 views of it (right) – image produced using this tool: http:
//www.fi.uu.nl/toepassingen/02015/toepassing_wisweb.en.html.

3 Views: a Formalization
Systems: We define a system semantically, as a set of behaviors. As in [15], there
is no restriction on the type of behaviors: they could be discrete traces, continuous
trajectories, hybrid traces, or something else. We only assume given a domain of possible
behaviors, U . Then, a system S over domain of behaviors U is a subset of U : S ⊆ U .

View domains: A view is intuitively an “incomplete picture” of a system. It can be
incomplete in different ways:

– Some behaviors may be missing from the view, i.e., the view may contain only a
subset of system behaviors. (As we shall see when we discuss conformance, the
view may also be a superset.)

– Some parts of a behavior itself may be missing in the view. E.g., if the behavior
refers to a state vector with, say, 10 state variables, the view could refer only to 2
state variables. In this case the view can be seen as a projection.

– More generally, the view may be obtained by some other kind of transformation
(not necessarily a projection) to behaviors. E.g., the original system behaviors may
contain temperature as a state variable, but the view only contains temperature
averages over some period of time.

From the above discussion, it appears that: semantically, views can be formalized
as sets of behaviors, just like systems are. However, because of projections or other
transformations, the domain of behaviors of a view is not necessarily the same as the
domain of system behaviors, U . Therefore, we let Di be the domain of behaviors of
view i (there can be more than one view, hence the subscript i). When we refer to a
general view domain, we drop the subscript and simply write D.

In the case of our running example, U = {1, 2, 3, 4}3, and Dtop = Dfront =
Dside = {1, 2, 3, 4}2.

Views: A view is a set of behaviors over a given view domain. That is, a view V over
view domain D is defined to be a subset of D: V ⊆ D.

Abstraction functions: Given a domain of behaviors U and a view domain D, we
would like to relate systems over U and views over D. In order to do this, we will first
introduce abstraction functions, which map behaviors from U to D. An abstraction
function from U to D is defined to be a mapping a : U → D. Abstraction functions can
be projections or other types of transformations, as discussed above.
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In the case of our running example, the abstraction functions atop, afront, aside are
3D-to-2D projections on the corresponding planes.

An abstraction function a can be naturally “lifted” from behaviors to systems. If
S ⊆ U , then a(S) is defined to be: a(S) := {a(σ) | σ ∈ S}. Note that a(S) ⊆ D,
therefore, a(S) is a view over D.

Conformance: Given system S ⊆ U , view V ⊆ D, and abstraction function a : U →
D, we say that V is a complete view of S w.r.t. a if V = a(S). The notion of complete
view is a reasonable way of capturing how “faithful” a given view is to a certain system.
For example, if S is an object containing two boxes, S = {(1, 1, 1), (2, 2, 2)} and atop
is the top view, then V1 = {(1, 1), (2, 2)} is complete w.r.t. atop, whereas V2 = {(2, 2)}
and V3 = {(1, 1), (2, 2), (3, 3)} are not complete.

But faithfulness need not always require a strict equality as in the condition V =
a(S). Depending on the usage one makes of a view, weaker conditions may be appropri-
ate. Because of this, we introduce the notion of conformance. Conformance is defined
with respect to a partial order w on the set of all views over view domain D. That is, w
is a partial order on 2D, the powerset of D. Then, we say that V conforms to S w.r.t. a
and w, denoted V wa S, if V w a(S).

For example, if one uses the top view to decide whether it is safe to drop a box to the
floor without touching another box during landing, then a view that safely approximates
the set of free (x, y) positions could be acceptable. In this case, the partial order w is ⊇,
i.e., conformance is defined as V ⊇ atop(S). Indeed, dropping a box to (x, y) 6∈ V
would be safe, since (x, y) 6∈ V and V ⊇ atop(S) imply (x, y) 6∈ atop(S). In another
scenario, it may be more appropriate to require that the view under-approximates a(S),
thus over-approximates the set of free (x, y) positions. For example, if one uses the top
view to decide whether it is safe to drop an object so that it does not hit the floor, then it
is more appropriate to define conformance as V ⊆ atop(S). In this case, w is ⊆.

An alternative formalization – starting with conformance: In the way we formalized
things so far, we started with an abstraction function a and a partial order w, and defined
the conformance relation wa with respect to those. As an alternative, we can start with
a conformance relation |= ⊆ 2D × 2U , which relates a view V and a system S, i.e.,
V |=S, and derive an abstraction function a. We can do this provided that |= satisfies
the conditions described below, and that the domain of views equipped with w, denoted
(2D,w), forms a complete lattice. Let

d
denote the greatest lower bound in this lattice.

Note that the interpretation of the lattice is that the smaller an element the more accurate
it is, and x w y says that y is smaller than x. Therefore, whenw is⊇, top isD, bottom is
∅, and

d
is
⋂

. When w is ⊆,
d

is
⋃

. Then, |= induces an abstraction function a defined
as follows:

a|=(S) :=
l
{V ⊆ D | V |=S}.

For this to work, however, we need |= to have the two following properties:

1. (monotonicity) V1|=S ∧ V2 w V1 ⇒ V2|=S.
2. (conformance preserved by

d
) ∀W ⊆ 2D : (∀V ∈W : V |=S)⇒ (

d
W )|=S.

Condition 1 says that if V1 conforms to S then any view greater than V1 also conforms
to S. Condition 2 says that if a set of views all conform to a system S, then their greatest



lower bound also conforms to S. Any relation wa defined by an abstraction function a
and an order w forming a complete lattice has these two properties by construction.

Consistency: Consider a set of views, V1, V2, ..., Vn, over view domainsD1,D2, ...,Dn.
For each view domain Di, consider given a conformance relation |=i (which could
be derived from given abstraction function ai and partial order wi, or defined as a
primitive notion as explained above). We say that V1, V2, ..., Vn are consistent w.r.t.
|=1, |=2, ..., |=n if there exists a system S over U such that ∀i = 1, ..., n : Vi|=iS. We
call such a system S a witness to the consistency of V1, V2, ..., Vn. Clearly, if no such
S exists, then one must conclude that the views are inconsistent, as there is no system
from which these views could be derived. When wi is = for all i, i.e., when Vi = ai(S)
for all i, we say that V1, ..., Vn are strictly consistent. Note that if wi is ⊇ for all i, then
consistency trivially holds as the empty system is a witness, since Vi ⊇ ∅ = ai(∅) for all
i. Also, if wi is ⊆ for all i and every ai satisfies ai(U) = Di, then consistency trivially
holds as the system U is a witness, since Vi ⊆ Di = ai(U) for all i.

In our 3D objects example, if Vtop is non-empty but Vside is empty, then the two
views are inconsistent w.r.t. strict conformance V = a(S). A less trivial case is when
Vtop = {(1, 1)} and Vside = {(2, 2)}. Again the two views are inconsistent (w.r.t. =):
Vtop asserts that some box must be in the column with (x, y) coordinates (1, 1), but
Vside implies that there is no box whose y coordinate is 1.

The last example may mislead to believe that consistency (w.r.t. =) is equivalent to
“intersection of inverse projection of views being non-empty.” This is not true. Even in
the case where abstraction functions are projections, non-empty intersection of inverse
projections is a necessary, but not a sufficient condition for consistency. To see this,
consider views Vtop = {(1, 1), (3, 3)} and Vside = {(2, 2), (1, 2)} in the context of our
running example. These two views are inconsistent w.r.t. =. Yet the intersection of their
inverse projections is non-empty, and equal to {(1, 1, 2)}.

View reduction: Given a set of views V1, ..., Vn of a system S, it may be possible to
“reduce” each view Vi based on the information contained in the other views, and as
a result obtain views V ′1 , ..., V

′
n that are “more accurate” views of S. We use the term

reduction inspired from similar work in abstract interpretation [5,10].
For example, if we assume that conformance is defined as V ⊇ a(S), then the views

Vtop = {(1, 1), (3, 3)} and Vside = {(2, 2), (1, 2)} can be reduced to V ′top = {(1, 1)}
and V ′side = {(1, 2)}. V ′top is still a valid top view, in the sense that for every system S,
if both Vtop ⊇ atop(S) and Vside ⊇ aside(S), then V ′top ⊇ atop(S). In addition, V ′top is
more accurate than Vtop in the sense that V ′top is a strict subset of Vtop. Indeed, Vtop does
not contain the “bogus” square (3, 3) which cannot occur in S, as we learn from Vside.

Let us now define the notion of view reduction formally. First, given a conformance
relation between views and systems, |= ⊆ 2D × 2U , we define the concretization
function c|= which, given a view V , returns the set of all systems which V conforms to:

c|=(V ) := {S ⊆ U | V |=S} = {S ⊆ U | V w a|=(S)}.

Note that V1, ..., Vn are consistent w.r.t. |=1, ..., |=n iff
⋂n

i=1 c|=i
(Vi) 6= ∅. Also observe

that, by definition, a|=(S)|=S. As a consequence, S ∈ c|=(a|=(S)) for all S ⊆ U .



We next lift a|= to sets of systems. For this, we will again assume that (2D,w) forms
a lattice, with

d
denoting its greatest lower bound.3 Then, if S is a set of systems over U ,

we define a|=(S) to be the “most accurate” view that conforms to all systems in S:

a|=(S) :=
l
{V ⊆ D | c|=(V ) ⊇ S} =

l
{V ⊆ D | ∀S ∈ S : V |=S}.

Lemma 1. The most accurate view that conforms to a set of systems S can also be
determined from the individual systems’ abstractions:

a|=(S) =
⊔
{a|=(S) | S ∈ S}.

Missing proofs to lemmas and theorems can be found in the technical report [17].
Given the above, and assuming n view domains with corresponding conformance

relations, (D1, |=1), ..., (Dn, |=n), view reduction can be defined as follows:

reducei(V1, V2, ..., Vn) := a|=i

( n⋂
i=1

c|=i
(Vi)

)
.

Lemma 2. Reduction is a reductive operation, i.e., Vi w reducei(V1, V2, ..., Vn) for
all i. The set of witnesses to the consistency of views V1, ..., Vn is invariant under
reduction, i.e.,

⋂n
i=1 c|=i

(reducei(V1, V2, ..., Vn)) =
⋂n

i=1 c|=i
(Vi) for all i.

The second part of the lemma implies that reduction is idempotent, i.e., for all i:
reducei(V1, ..., Vn) = reducei(V ′1 , ..., V

′
n), where V ′i = reducei(V1, V2, ..., Vn).

Orthogonality: In some fortunate cases different aspects of a system are independent of
each other. Intuitively, what this means is that each aspect can be defined separately with-
out the need for communication between development teams to avoid inconsistencies.

Formally, we say that view domains D1, ...,Dn are orthogonal if all sets of non-
empty views V1, ..., Vn from these view domains are mutually irreducible, i.e., if
reducei(V1, ..., Vn) = Vi for all i = 1, ..., n. The view domains from our example
of 3D objects, capturing projections onto two dimensions, are not orthogonal, as the
reduction example involving the domains shows. On the other hand, view domains
corresponding to the projection onto individual dimensions would indeed be orthogonal
to each other.

Alternatively, orthogonal view domains can be defined by requiring that all sets of
non-empty views V1, ..., Vn from these domains are consistent w.r.t. =.

The following lemma shows that the two definitions of orthogonal domains are
equivalent, if we assume that conformance is defined based on abstraction functions and
the superset and equality relations as the partial orders on views.

Lemma 3. Given non-empty views V1, ..., Vn, the following statements are equivalent:

1. V1, ..., Vn are consistent w.r.t. =a1 , ...,=an .
2. V1, ..., Vn are mutually irreducible w.r.t. ⊇a1 , ...,⊇an .
3. V1, ..., Vn are mutually irreducible w.r.t. ⊆a1 , ...,⊆an .

3 Note that whenw is a set-theoretic relation such as⊆ or⊇, this obviously holds and
d

is
⋃

or⋂
. When w is = then (2D,=) is not a lattice, and the definition of view reduction given below

does not apply. This is not a problem, as in that case we require views to be complete.



A system S ⊆ U is called view definable w.r.t. |=1, ..., |=n if there exist views
V1 ⊆ D1, ..., Vn ⊆ Dn, such that c|=1

(V1) ∩ · · · ∩ c|=n
(Vn) = {S}. In the example of

3D objects, with 2D projections, the empty object S = {} is view definable, as it is
defined by the empty views. Similarly, all objects Si,j,k = {(i, j, k)} are view definable.
Note that a general cube is not view definable, as there are other objects (e.g., a hollow
cube) which have the same 2D projections.

Verification and synthesis problems related to views:
View conformance checking: given (concrete representation of) system S, view V , and
a certain conformance relation, does V conform to S?
View synthesis: given system S and abstraction function a, synthesize (concrete rep-
resentation of) a(S). Alternatively, given S and conformance relation |=, construct
smallest view V such that V |=S, that is, construct a|=(S).
View consistency checking: given views V1, ..., Vn and conformance relations |=1, ..., |=n,
check whether V1, ..., Vn are consistent w.r.t. |=1, ..., |=n.
System synthesis from views: given consistent views V1, ..., Vn and conformance rela-
tions |=1, ..., |=n, construct a system S such that for all i, Vi|=iS.
View reduction: given views V1, ..., Vn compute reducei(V1, V2, ..., Vn) for given i.

4 Discrete Systems
Our goal in the rest of this paper is to instantiate the view framework developed in
Section 3. We instantiate it for a class of discrete systems, and we also provide answers
to some of the corresponding algorithmic problems.

We will consider finite-state discrete systems. The state space of such a system can
be represented by a set of boolean variables, X , resulting in 2n potential states, where
n = |X| is the size of X . A state s over X is a valuation over X , i.e., a function
s : X → B, where B := {0, 1} is the set of booleans. For convenience, we sometimes
consider other finite domains with the understanding that they can be encoded as booleans.
A behavior over X is a finite or infinite sequence of states over X , σ = s0s1s2 · · · .
U(X) denotes the set of all possible behaviors over X .

Semantically, a discrete system S over X is a set of behaviors over X , i.e., S ⊆
U(X). For computation, we need a concrete representation of discrete systems. We will
start with a simple representation where all system variables are observable. We will then
discuss limitations of this representation and consider an extension where the system
can also have internal (unobservable) variables in addition to the observable ones.

Fully-observable discrete systems: A fully-observable discrete system (FOS) is repre-
sented concretely by a triple (X, θ, φ). X is the (finite) set of (boolean) variables. All
variables in X are considered observable. θ is a boolean expression over X , characteriz-
ing the set of initial states of the system. Given state s, we write θ(s) to denote the fact
that s satisfies θ, i.e., s is an initial state. φ is a boolean expression over X ∪X ′, where
X ′ is the set of primed copies of variables in X , X ′ := {x′ | x ∈ X}, representing the
next state variables, as usual. φ characterizes pairs of states (s, s′), each representing a
transition of S, i.e., a move from state s to state s′. We write φ(s, s′) to denote that the
pair (s, s′) satisfies φ, i.e., that there is a transition from s to s′.



A behavior of a system (X, θ, φ) is a finite or infinite sequence of states over X ,
σ = s0s1s2 · · · , such that θ(s0) and ∀i : φ(si, si+1), i.e., s0 is an initial state and there
is a transition from each si to si+1 (if the latter exists). A state s is reachable if there is
a finite behavior s0s1 · · · sn, such that s = sn.

We sometimes use S = (X, θ, φ) to denote the concrete (syntactic) representation of
discrete system S, and JSK to denote its semantics, i.e., its set of behaviors.

Projection (variable hiding): Projection, or variable hiding, is a natural operation on
systems, which can also serve as a basic abstraction function for views, as we shall see
below. Here, we define projection and motivate the introduction of internal variables in
the concrete representation of discrete systems.

Let s be a state over a set of variables X . Given subset Y ⊆ X , the projection
function hY projects s onto the set of variables Y , that is, hY hides from s all variables
in X \Y . hY (s) is defined to be the new state s′ over Y , that is, the function s′ : Y → B,
such that s′(x) = s(x) for all x ∈ Y .

Projection can be lifted to behaviors in the standard way. If σ = s0s1 · · · is a behavior
over X , then hY (σ) is a behavior over Y defined by hY (σ) := hY (s0)hY (s1) · · · .
Projection can also be lifted to systems. If S is a discrete system overX then hY (JSK) :=
{hY (σ) | σ ∈ JSK}.

Non-closure properties

Non-closure under projection: The projection hY (JSK) is defined semantically, as a set
of behaviors. It is natural to ask whether the syntactic representation of discrete systems
is closed under projection. That is, is it true that for any S = (X, θ, φ), and Y ⊆ X ,
there exists S′ = (Y, θ′, φ′), such that JS′K = hY (JSK)? This is not generally true:

Lemma 4. There exists a FOS S = (X, θ, φ), and Y ⊆ X , such that there is no FOS
S′ = (Y, θ′, φ′), such that JS′K = hY (JSK).

Proof. Consider the finite-state system S = ({x, y}, x = 0 ∧ y = true, (x′ = (x +
1) mod 5) ∧ (y′ ↔ (x′ = 0))), where x ∈ {0, 1, 2, 3, 4} and y ∈ B. Let Y = {y}.
Then hY (JSK) = {y0y1 · · · | ∀i : yi ⇔ i mod 5 = 0}. We claim that there is no
S′ = (Y, θ′, φ′) such that JS′K = hY (JSK). The reason is that S′ needs to count modulo
five in order to produce the correct output. But S′ has only one boolean variable y. ut

As it turns out, we can check whether closure under projection holds for a given
system: see Theorem 2 in Section 5.

Non-closure under union:

Lemma 5. Fully-observable systems over a set of variables X are not closed under
union, i.e., there exist S1 = (X, θ1, φ1), S2 = (X, θ2, φ2) such that there is no S =
(X, θ, φ) such that JSK = JS1K ∪ JS2K.

Proof. Consider as an example S1 = ({x}, θ1 = x, φ1 = x∧¬x′) and S2 = ({x}, θ2 =
¬x, φ1 = ¬x ∧ x′). Both systems allow exactly one transition, from x 7→ true to
x 7→ false and vice versa. A system that represents the union of S1 and S2 needs
to include both transitions. Then, however, it also includes arbitrarily long behaviors
alternating between x 7→ true and x 7→ false . ut



Discrete systems with internal variables: The above non-closure properties motivate
us to study, in addition to fully-observable discrete systems, a generalization which ex-
tends them with a set of internal, unobservable state variables. Most practical modeling
languages also allow the construction of models with both internal and observable state
variables.

Accordingly, we extend the definition of a discrete system to be in general a tuple
(X,Z, θ, φ), where X,Z are disjoint (finite) sets of variables. X models the observable
and Z the internal variables. θ is a boolean expression over X ∪ Z and φ is a boolean
expression over X ∪ Z ∪X ′ ∪ Z ′. In such a system, we need to distinguish between
behaviors, and observable behaviors. A behavior of a system S = (X,Z, θ, φ) is a
finite or infinite sequence σ over X ∪ Z, defined as above. The observable behavior
corresponding to σ is hX(σ), which is a behavior over X . From now on, JSK denotes the
set of all behaviors (over X ∪ Z) of S, and JSKo denotes the set of observable behaviors
(over X) of S.

Note that we allow Z to be empty. In that case, the system has no internal variables,
i.e., it is a FOS. We will continue to represent a FOS by a triple S = (X, θ, φ). A FOS S
satisfies JSK = JSKo.

Closure properties: We have already shown (Lemma 5) that FOS are not closed under
union. They are however closed under intersection:

Lemma 6. Given two FOS S1 = (X, θ1, φ1) and S2 = (X, θ2, φ2), a FOS S such that
JSK = JS1K ∩ JS2K is S1 ∧ S2 = (X, θ1 ∧ θ2, φ1 ∧ φ2).

General discrete systems (with internal variables) are closed under intersection,
union, as well as projection.

Lemma 7. Let S1 = (X,Z1, θ1, φ1) and S2 = (X,Z2, θ2, φ2) be two systems, such
that Z1 ∩ Z2 = ∅. Let Y ⊆ X and let z be a fresh variable not in X ∪ Z1 ∪ Z2. Let:

S∩ = (X,Z1 ∪ Z2, θ1 ∧ θ2, φ1 ∧ φ2),
S∪ =

(
X,Z1 ∪ Z2 ∪ {z}, (θ1 ∧ z) ∨ (θ2 ∧ ¬z).(z → φ1 ∧ z′) ∧ (¬z → φ2 ∧ ¬z′)

)
,

Sh = (Y,Z1 ∪ (X \ Y ), θ1, φ1).

Then, JS∩Ko = JS1Ko ∩ JS2Ko, JS∪Ko = JS1Ko ∪ JS2Ko, and JShKo = hY (JS1Ko).

5 Views of Finite-State Discrete Systems
Having defined discrete systems, we now turn to instantiating the view framework for
such systems.

Discrete views, view domains, and abstraction functions: Discrete views are finite-
state discrete systems. They are represented in general by tuples of the form (X,Z, θ, φ),
and when Z = ∅, by triples of the form (X, θ, φ).

In this paper, we will study projection as the abstraction function for the discrete
view framework. That is, a system will be a discrete system S over a set of observable
variables X , and therefore the domain of system behaviors will be U = U(X). A view



will be a discrete system V over a subset of observable variables Y ⊆ X . Therefore, the
view domain of V is D = U(Y ). Note that both S and V may have (each their own)
internal variables.

Let S = (X,Z, θ, φ) be a discrete system, V = (Y,W, θ′, φ′) be a discrete view,
with Y ⊆ X , and w be one of the orders =, ⊆, or ⊇. To make notation lighter, we will
write V w hY (S) instead of JV Ko w hY (JSK). Note, that hY (JSK) = hY (JSKo). More
generally, when comparing systems or views, we compare them w.r.t. their observable
behaviors. For instance, when writing V1 w V2, we mean JV1Ko w JV2Ko.

Least and greatest fully-observable views: Let S be a discrete system over set of
observable variablesX . Given a set Y ⊆ X , one might ask whether there is a “canonical”
view V of S w.r.t. Y . Clearly, if we allow V to have internal variables, the answer is yes:
it suffices to turn all variables in X \ Y into internal variables in V . Then, by Lemma 7,
V represents precisely the projection of S to Y , i.e., it is a complete view, it satisfies
V = hY (S), and therefore trivially also V ⊇ hY (S) and V ⊆ hY (S). Note that this is
true independently of whether S has internal variables or not.

In this section we study the question for the case where we forbid V from having
internal variables, i.e., we restrict views to be fully-observable. As FOS are not closed
under projection, there are systems that have no complete fully-observable view. On the
other hand, there can be multiple views V over Y such that V ⊇ hY (S) or V ⊆ hY (S).
In particular, (Y, true, true) ⊇ hY (S) and (Y, false, false) ⊆ hY (S), for any S and Y .
Thus, the question arises, whether there is a least fully-observable view lv(S, Y ) of S
with lv(S, Y ) ⊇ hY (S), such that for any fully-observable view V ′ with V ′ ⊇ hY (S),
we have V ′ ⊇ lv(S, Y ). Similarly, one may ask whether there is a greatest fully-
observable view gv(S, Y ) w.r.t. ⊆hY

. These questions are closely related to whether
views are closed under intersection and union. In particular, we can use closure under
intersection to show that a least view always exists. A greatest view, on the other hand,
does not necessarily exist.

Theorem 1. Let S = (X,Z, θ, φ) be any discrete system and let Y ⊆ X . Let ψS

characterize the set of reachable states of S. Then the FOS

(Y, θY = ∃(X ∪ Z) \ Y : θ, φY = ∃(X ∪ Z) \ Y : ψS ∧ ∃(X ′ ∪ Z ′) \ Y ′ : φ)

is the unique fully-observable least view lv(S, Y ), that is, lv(S, Y ) ⊇ hY (S), and for
any fully-observable view V ′ over Y with V ′ ⊇ hY (S), we have V ′ ⊇ lv(S, Y ).

As Lemma 4 shows, the projection of a system cannot generally be represented as a
fully-observable view. As it turns out, we can effectively check whether this is the case
for a given system S, by checking whether the least view of S conforms to S w.r.t. =.

Theorem 2. Given discrete system S overX and Y ⊆ X , there exists a fully-observable
view V over Y with V = hY (S) iff Jlv(S, Y )K = hY (JSK).

Theorem 2 implies that it is decidable to check whether a system admits a fully-
observable complete view V .



Theorem 3. There is a discrete system S over X and a subset Y ⊆ X for which there
is no unique greatest fully-observable view gv(S, Y ) with gv(S, Y ) ⊆ hY (S), such that
for any fully-observable view V ′ with V ′ ⊆ hY (S), we have V ′ ⊆ gv(S, Y ).

Proof. Consider the FOS S = ({x, y}, θ = (x ∧ y) ∨ (¬x ∧ ¬y), φ = (x ∧ ¬x′ ∧ y ∧
y′) ∨ (¬x ∧ x′ ∧ ¬y ∧ ¬y′)). The FOS S1 and S2 from the proof of Lemma 5 are both
views of S for Y = {x}, yet they are incomparable and there is no FOS view conforming
to S w.r.t. ⊆ that is greater than both of them as their union is not a view of S. ut

View conformance checking for discrete systems and views:

Problem 1. Given discrete system S = (X,Z, θ, φ), discrete view V = (Y,W, θV , φV ),
where Y ⊆ X and Z ∩ W = ∅, and partial order w∈ {=,⊆,⊇}, check whether
V w hY (S).

Problem 2. Given discrete systems S1 = (X,Z1, θ1, φ1) and S2 = (X,Z2, θ2, φ2),
where Z1 ∩ Z2 = ∅, and partial order w∈ {=,⊆,⊇}, check whether JS1Ko w JS2Ko.

Theorem 4. Problem 1 can be reduced to Problem 2 in polynomial time. Problem 2 is
in PSPACE.

Proof. For the first part of the theorem, observe that discrete systems are closed under
projection. An instance of Problem 1 can be transformed into an instance of Problem 2,
simply by shifting the variables X \ Y of S from the observable to the internal variables.

For the second part of the theorem, we limit our attention to the case w=⊆, as the
other two cases then follow trivially. Problem 2 can be reduced to the finite state automa-
ton inequivalence problem, which is known to be in PSPACE [9]. As discrete systems
are closed under union, we construct a system S∪, with JS∪Ko = JS1Ko ∪ JS2Ko. Then
JS∪Ko = JS2Ko iff JS1Ko ⊆ JS2Ko. From S∪ and S2 we can construct NFAs M∪ and M2

that accept a sequence σ iff σ is an observable behavior of S∪ and S2, respectively. ut

Theorem 5. Problem 1 is in P for partial order w=⊇ if the discrete view V is a FOS.

Proof. First, notice that if Y ⊆ X , then V = (Y, θV , φV ) is a view of S = (X,Z, θ, φ)
if and only if it is a view of the fully-observable system S′ = (X ∪ Z, θ, φ). This is
because hY (S) = hY (S

′). Thus, in the following, we will assume S to be a FOS with
S = (X, θ, φ).

Let ψS denote the reachable states of S. ψS can, e.g., be computed incrementally
using BDDs. Let Z := X \ Y and Z ′ := X ′ \ Y ′. Then, V ⊇hY

S, if and only if the
following two conditions hold, which can be effectively checked:

1. ∀Y,Z : θ(Y, Z)→ θV (Y ) ≡ ∀s : θ(s)→ θV (hY (s)), and
2. ∀Y,Z, Y ′, Z ′ : ψS(Y,Z) → (φ((Y, Z), (Y ′, Z ′)) → φV (Y, Y

′)) ≡ ∀s, s′ :
ψS(s)→ (φ(s, s′)→ φV (hY (s), hY (s

′))).

We need to show that Conditions 1 and 2 from above hold, if and only if V ⊇hY
S.

Let us first show that Conditions 1 and 2 imply V ⊇hY
S:

We show this by induction over the length n of behaviors σ of S.
Base case: let σ = s0 ∈ JSK be any behavior of length 1 of S. Then θ(s0) must hold,



which, by Condition 1 implies θV (h(s0)), which implies that h(s0) ∈ JV K.
Induction step: let σ = s0s1 · · · sn−1sn ∈ JSK be a sequence of length n+1. As S is by
definition prefix-closed, s0s1 · · · sn−1 is also in S. By the induction hypothesis, we know
that h(s0)h(s1) · · ·h(sn−1) is in JV K. As σ ∈ S, sn−1 is reachable, thus ψS(sn−1)
holds. Thus, we can apply Condition 2, and deduce from the fact that φ(sn−1, sn),
that φV (h(sn−1), h(sn)). This in turn implies that h(s0)h(s1) · · ·h(sn−1)h(sn) is a
behavior of V .

Now, let us show the opposite direction, i.e., that V ⊇hY
S implies Conditions 1

and 2. We show this by contraposition. Assume Condition 1 does not hold. Then,
there is a valuation vY of Y and a valuation vZ of Z, such that θ(vY vZ) holds
(where vY vZ is the valuation that agrees with vY on Y and with vZ on Z), but
θV (vY ) does not. Clearly, h(vY vZ) = vY . So, vY vZ ∈ JSK, but h(vY vZ) 6∈
JV K, which implies that V ⊇hY

S does not hold. Now assume that Condition 2
does not hold. This implies that there are valuations vY, vZ and vY ′, vZ ′, such that
ψS(vY vZ) and φ(vY vZ, vY ′vZ ′) hold, but φV (vY, vY ′) does not. As vY vZ is thus
reachable, there must be a behavior s0 · · · (vY vZ) ∈ JSK. By φ(vY vZ, vY ′vZ ′), we
also have that s0 · · · (vY vZ)(vY ′vZ ′) ∈ JSK. Yet, because φV (vY, vY ′) does not hold,
h(s0) · · ·h(vY vZ)h(vY ′vZ ′) 6∈ JV K, which concludes the proof. ut

Theorem 6. Problem 1 is PSPACE-hard even if the discrete view V is fully-observable
for |Y | ≥ 1 and partial orders =,⊆. Problem 1 is also PSPACE-hard for |Y | ≥ 1 and
partial order ⊇ if V is not restricted to be fully-observable.

In [13], it is shown that checking the universality of non-deterministic finite automata
(NFA), having the property that all states are final, is PSPACE-hard for alphabets of size
at least 2. In the technical report [17], we show how to reduce this problem to Problem 1.

View consistency checking for discrete systems and views:

Problem 3. Given partial order w∈ {=,⊆,⊇} and discrete views V1, ..., Vn, with
Vi = (Yi,Wi, θi, φi) for i = 1, ..., n, check whether there exists discrete system
S = (X,Z, θ, φ), with X ⊇ Yi for all i, such that Vi whYi

S for all i.

Problem 3 asks to check whether a given number of views are consistent w.r.t.
projection as abstraction function and a given partial order among =,⊆,⊇. Note that
we can assume without loss of generality that the witness system has set of observable
variables X =

⋃n
i=1 Yi, as any extra variables could be made internal.

Problem 3 is trivially solved by the “all” system θ = φ = true for ⊆ and by the
“empty” system θ = φ = false for ⊇. For =, if we restrict the witness system to be a
FOS, then Problem 3 is trivially decidable as there are only finitely many systems with
X =

⋃n
i=1 Yi. Clearly, this is not very efficient. Theorems 7-9 (which also apply to

general discrete systems, non necessarily FOS) provide a non-brute-force method.

Theorem 7. For a set of views V1, . . . , Vn, with Vi = (Yi,Wi, θi, φi) for all i, there al-
ways exists a computable unique greatest witness system gw(V1, . . . , Vn) = (X,Z, θ, φ),
with X =

⋃n
i=1 Yi, w.r.t. partial order ⊇.



Proof. First, observe that Si = (X,Wi, θi, φi) is the unique greatest witness system for
Vi for systems with the set of variables X , i.e., Vi ⊇hYi

Si and for all S = (X,W, θ, φ)
such that Vi ⊇hYi

S, we have JSiK ⊇ JSK. In fact, Vi =hYi
Si. Given two views Vi, Vj ,

the unique greatest witness system for both views is Si,j = (X,Wi∪Wj , θi∧θj , φi∧φj),
whose behaviors are exactly the intersection of the behaviors of Si and Sj (see Lemma 7).
Adding any behavior to Si,j would violate either Vi ⊇hYi

Si,j or Vj ⊇hYi
Si,j General-

izing the above, S∧ = (X∧ =
⋃n

i=1 Yi, Z∧ =
⋃n

i=1Wi, θ∧ =
∧n

i=1 θi, φ∧ =
∧n

i=1 φi)
is the unique greatest witness system for the set of views V1, . . . , Vn. ut

Theorem 8. Consistency with respect to = holds if and only if the greatest witness
system gw(V1, . . . , Vn) derived in Theorem 7 is a witness with respect to =.

Theorem 9. Problem 3 is PSPACE-complete for partial order =.

Theorem 10. There are discrete views V1, . . . , Vn, with Vi = (Yi,Wi, θi, φi) for all i,
for which there is no unique least witness system lw(V1, . . . , Vn) = (X,Z, θ, φ), with
X =

⋃n
i=1 Yi, w.r.t. partial order ⊆.

Proof. Consider the following two views Vx = ({x}, θx = x, φx = true) and Vy =
({y}, θy = y, φy = true). We provide two witness systems S1, S2, both consistent with
Vx, Vy, such that their intersection is not consistent with Vx and Vy, which proves that
there is no unique least witness system for Vx, Vy w.r.t. ⊆:

S1 = ({x, y}, θ1 = x ∧ y, φ1 = (x⇔ y) ∧ (x′ ⇔ y′))

S2 = ({x, y}, θ2 = x ∧ y, φ2 = x′ ∨ y′)

In every behavior of S1, x and y take the same value, whereas in S2, x and y are never
both false . In their intersection S∩ = ({x, y}, θ1 ∧ θ2, φ1 ∧φ2), neither x nor y can thus
ever be false . So S∩ is neither consistent with Vx nor with Vy . ut

View reduction for discrete systems and views:

Problem 4. Given partial order w∈ {=,⊆,⊇} and discrete views V1, ..., Vn, with Vi =
(Yi,Wi, θi, φi) for i = 1, ..., n, compute reducei(V1, ..., Vn) for all i = 1, ..., n.

Theorem 11. For partial order ⊇, Problem 4 is solved by the projection of the greatest
witness system to the observable variables of the respective view: let gw(V1, . . . , Vn) =
(X,Z, θ, φ), with X =

⋃n
i=1 Yi, be the greatest witness system to the consistency of

V1, ..., Vn w.r.t. partial order ⊇. Then:

reducei(V1, ..., Vn) = (Yi, Z ∪ (X \ Yi), θ, φ).

For partial order ⊆, Problem 4 is often trivial. Specifically, if the sets of observable
variables of all views are incomparable, then no information can be transferred from one
view to another:

Theorem 12. Let V1, ..., Vn be discrete views with Vi = (Yi,Wi, θi, φi). Assume Yi \
Yj 6= ∅ for all i, j. Then, assuming w is ⊆, the following holds for all i:

reducei(V1, ..., Vn) = Vi.



6 Discussion

MVM is not a new topic, and terms such as “view” and “viewpoint” often appear in
system engineering literature, including standards such as ISO 42010 [12]. Despite this
fact, and the fact that MVM is a crucial concern in system design, an accepted mathe-
matical framework for reasoning about views has so far been lacking. This is especially
true for behavioral views, that is, views describing the dynamic behavior of the system,
as opposed to its static structure. Behavioral views are the main focus of our work.

Discrete behavioral views could also be captured in a temporal logic formalism
such as LTL. View consistency could then be defined as satisfiability of the conjunction
φ1 ∧ · · · ∧ φn, where each φi is a view (possibly over a different set of variables).
This definition is however weaker than our definition of strict consistency (w.r.t. =).
Satisfiability of φ1∧· · ·∧φn is equivalent to checking that the intersection of the inverse
projections of views is non-empty, which, as we explained earlier, is a necessary but not
sufficient condition for strict consistency.

The same fundamental difference exists between our framework and view consistency
as formulated in the context of interface theories, where a special type of interface
conjunction is used [11] (called “fusion” in [2] and “shared refinement” in [7,18]).

Behavioral abstractions/views are also the topic of [15,16]. Their framework is
close to ours, in the sense that it also uses abstraction functions to map behaviors
between different levels of abstraction (or between systems and views). The focus
of both [15,16] is to ease the verification task in a heterogeneous (e.g., both discrete
and continuous) setting. Our main focus is checking view consistency. The notion of
“heterogeneous consistency” [15] is different from our notion of view consistency. The
notion of “conjunctive implication” [15] is also different, as views which have an empty
intersection of their inverse projections trivially satisfy conjunctive implication, yet these
views can be inconsistent in our framework. Problems such as view consistency checking
are not considered in [15,16].

Consistency between architectural views, which capture structural but not behavioral
aspects of a system, is studied in [3]. Consistency problems are also studied in [8] using
a static, logic-based framework. Procedures such as join and normalization in relational
databases also relate to notions of static consistency.

An extensive survey of different approaches for multi-view modeling can be found
in [14]. [14] also gives a partial and preliminary formalization, but does not discuss
algorithmic problems. [4] discusses an informal methodology for selecting formalisms,
languages, and tools based on viewpoint considerations. A survey of trends in multi-
paradigm modeling can be found in [1]. Trends and visions in multi-view modeling are
also the topic of [19]. The latter paper also discusses pragmatics of MVM in the context
of the Ptolemy tool. However formal aspects of MVM and algorithmic problems such as
checking consistency are not discussed.

Implicitly, MVM is supported by multi-modeling languages such as UML, SysML,
and AADL. For instance, AADL defines separate “behavior and error annexes” and
having separate models in these annexes can result in inconsistencies. But capabilities
such as conformance or consistency checking are typically not provided by the tools im-
plementing these standards. Architectural consistency notions in a UML-like framework
are studied in [6].



This work is a first step toward a formal and algorithm-supported framework for multi-
view modeling. A natural direction for future work is to study algorithmic problems such
as consistency checking in a heterogeneous setting. Although the framework of Section 3
is general enough to capture heterogeneity, in this paper we restricted our attention to
algorithmic MVM problems for discrete systems, as we feel that we first need a solid
understanding of MVM in this simpler case.

Other directions for future work including investigating other types of abstraction
functions, generalizing the methods developed in Section 5, e.g., so that ⊆,=,⊇ can be
arbitrarily combined, and studying algorithmic problems related to orthogonality.
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