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Two views of Duality: Lagrangians and Geometric

1 Linear Programs.

Recall last time, we discussed linear programs and their duals. Today, we discuss them in
the context of a general manner of obtaining duals: Lagrangian ultipliers. We also discuss
a proof of the strong duality theorem for linear programming.

Primal LP Dual LP

min c.x max yT b

Ax ≥ b yTA ≤ c
x ≥ 0 y ≥ 0

2 Lagrangian Duals

Consider finding a feasible solution to the system:

fi(x) ≤ 0, i = 1, ...,m (1)

The Lagrangian is written as follows:

L(x, λ) =
m∑
i=1

λifi(x)

where λi ≥ 0 is called the Lagrangian multiplier associated with the ith inequality. It can
can be viewed as a penalties for violating the constraint: fi(x) ≤ 0.

Notice that if there is no feasible solution for the constraint system, that the Lagrangian
function can have an arbitrarily large value for any x.

Indeed, given λ such that ∑
i

λfi(x) > 0

implies that there is no solution satisfiying the system 1; On the other hand, any solution
satisfying the system should satisfy any positive linear combination of the constraints and
thus there are no positive fi(x) and no positive setting of the λ’s will yield a positive value
for the dual.

One can generalize the notion of dual for optimization problems1 as follows:

1Equality constraints can be dealt with as well, where the lagrange multipliers will then be unrestricted.
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min f(x) (2)

subject to fi(x) ≤ 0, i = 1, ...,m (3)

The corresponding Lagrangian function will be

L(x, λ) = f(x) +
m∑
i=1

λifi(x)

Here, in the case that there is a feasible primal solution with value v, the dual solution
can only have nonzero values for λi > 0 with fi(x) = 0. Moreover, the value of the best λ
will also be v.

We can also see that if there is a λ where for all x, L(x, λ) ≥ α, that the value of the
minimization function for problem 2-?? is at least α; the optimal feasible solution for 2-??
yields this value for any dual value of λ.

The primal problem is to find an x that minimizes the Lagrange function against any
set of dual variables λ. The dual problem is to provide a λ that maximizes the Lagrange
function against any value of x. That is, the dual problem is to Find λ which achieves
minλ maxx L(x, λ).

For convex programs, these values will be the same. For any setup the dual provides
a lower bound on the optimal solution of the primal. It is often used in that manner as a
heuristic approach to solving constrained optimization problems.

2.1 Linear Program.

For a linear program, we have

min c · x
subject to bi − ai · x ≤ 0, i = 1, ...,m

And a Lagrangian formulation of

L(λ, x) = cx+
∑
i

λi(bi − aixi).2

We can rewrite the function as follows:

L(λ, x) = −(
∑
j

xj(ajλ− cj)) + bλ.

Translating back to a set of linear inequalities one gets the following problem.

max b · λ
2Note for any x, the minimizing λ can only take nonzero values for i where (bi − aixi) is zero. This is

the complementary slackness condition that we discussed before in the context of linear programs.
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Figure 1: (x− p)T (b− p) < 0 for x in convex body.

aj · λ = cj .

λ ≥ 0

The linear programming dual of 5- ??!
That is the Lagrangian dual problem, of finding a lower bound for the Langrangian

function for any x, is the linear programming dual.
Again, this technique applies more generally, but it is informative to see that the La-

grangian dual formulation is equivalent to linear programming. One might surmise that the
nice part of some optimization problem may behave nicely with this formulation.

3 Strong Duality

We will begin a discussion of a the proof of strong duality here. We saw a proof based on
experts for the special case of zero sum 2 person games. We discuss a geometric proof here.
We begin with the notion of that a convex bodies can be separated using a hyperplane.

3.1 Convex Separator.

Theorem 1
For any convex body A, and a point b, either b ∈ A or there exists a point, p, where
(x− p)t(b− p) ≤ 0 for all x ∈ A.

Proof: Choose p as the closest point in A to b in the convex region.
For the sake of contradition, there is an x ∈ A, where (x − p)T (b − p) > 0. For some

intuition, note that the angle between (x− p) and (b− p) is less than 90.
Since A is convex every point between p and x is in A. Moreover, there must be a point

closer to b along this path. Again some intution. In the figure below, a portion of the line
segment between p and x is inside the circle of radius |p−b|, and thus there is a closer point
to b along this line segment. This contradicts that p is the closest point in A to p.

b
p

x

To prove this formally, one can express the squared distance to b from a point p+(x−p)µ
(which for nonnegative µ ≤ is some point between p and x)
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(|p− b| − µ|x− p|cosθ)2 + (µ|x− p|sinθ)2

where θ is the angle between x− p and b− p. (See the figure below.)

b
|p− b| − `cosθ

Distance to new point.

p

θ

p+ µ(x− p)

` = µ|x− p|
`sinθ

`cosθ

x

Simplifying (and substituting that sin2 θ = (1− cos2 θ), we obtain the following:

|p− b|2 − 2µ|p− b||x− p|cosθ + (µ|x− p|)2.

Taking the derivative with respect to µ yields,
−2|p− b||x− p|cosθ + 2(µ|x− p|).
which is negative for a small enough value of µ ( for positive cosθ.)
End of proof.

3.2 Convex to Strong Duality.

We refer the reader to www-math.mit.edu/ goemans/18415/18415-FALL01/lect9-19.ps. (The
proof there is does not have so much intuition. But it does do a translation from the simple
geometric lemma above.)

What one should get from this picture is that there is a translation of the problem of
solving an LP back and forth from the problem of finding a separating hyperplane for a
convex region from a point.

The notion that there is a separating hyperplane follows from finding the point in the
convex region that is “closest” to b.

One could proceed by identifying a closer point to b. This problem turns out to be
finding a positive solution to a single linear equation; i.e., a dot product is positive. Thus,
again, as with experts and the Lagrangian dual, one sees that satisfying many constraints
can be approached by iteratively satisfying a linear combination of those constraints.


