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Two views of Duality: Lagrangians and Geometric

1 Linear Programs.

Recall last time, we discussed linear programs and their duals. Today, we discuss them in
the context of a general manner of obtaining duals: Lagrangian ultipliers. We also discuss
a proof of the strong duality theorem for linear programming.

Primal LP Dual LP
min c.x max y’ b
Ax > b yTA <c
x>0 y=>0

2 Lagrangian Duals

Consider finding a feasible solution to the system:

The Lagrangian is written as follows:

L(z,A) = ) Nifi(x)
i=1

where A\; > 0 is called the Lagrangian multiplier associated with the ith inequality. It can
can be viewed as a penalties for violating the constraint: f;(z) < 0.

Notice that if there is no feasible solution for the constraint system, that the Lagrangian
function can have an arbitrarily large value for any .

Indeed, given X such that

Z)\fi(x) >0

implies that there is no solution satisfiying the system 1; On the other hand, any solution
satisfying the system should satisfy any positive linear combination of the constraints and
thus there are no positive f;(x) and no positive setting of the A’s will yield a positive value
for the dual.

One can generalize the notion of dual for optimization problems' as follows:

'Equality constraints can be dealt with as well, where the lagrange multipliers will then be unrestricted.
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min  f(z) (2)
subject to fi(z) <0, i=1,...,m (3)

The corresponding Lagrangian function will be

Lz, \) = f(2) + Y N\ifilx)
=1

Here, in the case that there is a feasible primal solution with value v, the dual solution
can only have nonzero values for \; > 0 with f;(z) = 0. Moreover, the value of the best \
will also be v.

We can also see that if there is a A\ where for all z, L(z,\) > «, that the value of the
minimization function for problem 2-77 is at least «; the optimal feasible solution for 2-77?
yields this value for any dual value of .

The primal problem is to find an x that minimizes the Lagrange function against any
set of dual variables A\. The dual problem is to provide a A that maximizes the Lagrange
function against any value of x. That is, the dual problem is to Find A which achieves
miny max, L(x, \).

For convex programs, these values will be the same. For any setup the dual provides
a lower bound on the optimal solution of the primal. It is often used in that manner as a
heuristic approach to solving constrained optimization problems.

2.1 Linear Program.

For a linear program, we have

min c¢-x

subject to b; —a; - x <0, i=1,....m

And a Lagrangian formulation of
L\ x)=czx+ Z Ni(b; — a;x;).2
We can rewrite the function as follows: Z
LA z) == wj(a;A — c;)) + bA.
J
Translating back to a set of linear inequalities one gets the following problem.

maxb -\

2Note for any x, the minimizing A can only take nonzero values for i where (b; — a;z;) is zero. This is
the complementary slackness condition that we discussed before in the context of linear programs.



Notes for Two views of Duality: Lagrangians and Geometric: 3

Figure 1: (z — p)T (b — p) < 0 for z in convex body.

aj - A= cj.
A>0

The linear programming dual of 5- 77!

That is the Lagrangian dual problem, of finding a lower bound for the Langrangian
function for any x, is the linear programming dual.

Again, this technique applies more generally, but it is informative to see that the La-
grangian dual formulation is equivalent to linear programming. One might surmise that the
nice part of some optimization problem may behave nicely with this formulation.

3 Strong Duality

We will begin a discussion of a the proof of strong duality here. We saw a proof based on
experts for the special case of zero sum 2 person games. We discuss a geometric proof here.
We begin with the notion of that a convex bodies can be separated using a hyperplane.

3.1 Convex Separator.

THEOREM 1
For any convex body A, and a point b, either b € A or there exists a point, p, where
(x —p)(b—p) <0 for all z € A.

Proof: Choose p as the closest point in A to b in the convex region.

For the sake of contradition, there is an 2 € A, where (z — p)?(b — p) > 0. For some
intuition, note that the angle between (x — p) and (b — p) is less than 90.

Since A is convex every point between p and z is in A. Moreover, there must be a point
closer to b along this path. Again some intution. In the figure below, a portion of the line
segment between p and x is inside the circle of radius |p — b|, and thus there is a closer point
to b along this line segment. This contradicts that p is the closest point in A to p.

p

X

To prove this formally, one can express the squared distance to b from a point p+(x—p)u
(which for nonnegative p < is some point between p and z)
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(Ip = b| = plz — pleosd)? + (u|z — p|sing)?

where 6 is the angle between x — p and b — p. (See the figure below.)
p Lcost) [p — b| — Lcost

Simplifying (and substituting that sin?@ = (1 — cos? ), we obtain the following:

Ip — b]* — 2ulp — bl|z — pleosd + (u|z — p|)*.

Taking the derivative with respect to u yields,

—2|p — bl|z — p|cost + 2(p|z — pl).

which is negative for a small enough value of u ( for positive cosf.)
End of proof.

3.2 Convex to Strong Duality.

We refer the reader to www-math.mit.edu/ goemans/18415/18415-FALLO01 /lect9-19.ps. (The
proof there is does not have so much intuition. But it does do a translation from the simple
geometric lemma above.)

What one should get from this picture is that there is a translation of the problem of
solving an LP back and forth from the problem of finding a separating hyperplane for a
convex region from a point.

The notion that there is a separating hyperplane follows from finding the point in the
convex region that is “closest” to b.

One could proceed by identifying a closer point to . This problem turns out to be
finding a positive solution to a single linear equation; i.e., a dot product is positive. Thus,
again, as with experts and the Lagrangian dual, one sees that satisfying many constraints
can be approached by iteratively satisfying a linear combination of those constraints.



