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Profit maximization.

Plant Carrots or Peas?

2$ bushel of carrots. 4$ for peas.

Carrots take 3 unit of water/bushel.
Peas take 2 units of water/bushel.

100 units of water.

Peas require 2 yards/bushel of sunny land.
Carrots require 1 yard/bushel of shadyland.

Garden has 60 yards of sunny land and 75 yards of shady land.

To pea or not to pea, that is the question!
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To pea or not to pea.
4$ for peas.

2$ bushel of carrots.
x1- to pea! x2 to carrot ?
Money 4x1 +2x2 maximize max4x1 +2x2.
Carrots take 2 unit of water/bushel.
Peas take 3 units of water/bushel. 100 units of water.

3x1 +2x2 ≤ 100

Peas 2 yards/bushel of sunny land. Have 40 sq yards.
2x1 ≤ 40
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards.
3x2 ≤ 75
Can’t make negative! x1,x2 ≥ 0.
A linear program.

max4x1 +2x2

2x1 ≤ 40
3x2 ≤ 75

3x1 +2x2 ≤ 100
x1,x2 ≥ 0
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Any two points in region connected by a line in region.

Algebraically:
If x and x ′ satisfy onstraint,
→ x ′′ = αx +(1−α)x
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Optimal at pointy part of feasible region!

Vertex of region.

Intersection of two of the constraints (lines in two dimensions)!
Try every vertex!

Choose best.

O(m2) if m constraints and 2 variables.
For n variables, m constraints, how many?

nm?
(m

n

)
? n+m?(m

n

)
Finite!!!!!!
Exponential in the number of variables.
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3x2 ≤ 75

3x1 +2x2 ≤ 100
x1,x2 ≥ 0

Simplex: Start at vertex.

Move to better neighboring vertex.
Until no better neighbor. This example.
(0,0) objective 0. → (0,25) objective 50.
→ (162

3 ,25) objective 1152
3

→ (20,20) objective 120.
Duality:
Add blue equations to get objective function?
1/3 times first plus second.
Get 4x1 +2x2 ≤ 120. Every solution must satisfy this inequality!
Objective value: 120.
Can we do better? No!
Dual problem: add equations to get best upper bound.
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x1 ≤ 4 and x2 ≤ 3 ..
....so x1 +8x2 ≤ 4+8(3) = 28.
Added equation 1 and 8 times equation 2

yields bound on objective..
Better solution?
Better upper bound?
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Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..

x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure: 6 times equation 2 and 1 times equation 3.

x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure: 6 times equation 2 and 1 times equation 3.

x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?

Sure: 6 times equation 2 and 1 times equation 3.
x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure:

6 times equation 2 and 1 times equation 3.
x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure: 6 times equation 2 and 1 times equation 3.

x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure: 6 times equation 2 and 1 times equation 3.

x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure: 6 times equation 2 and 1 times equation 3.

x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure: 6 times equation 2 and 1 times equation 3.

x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality.

maxx1 +8x2

x1 ≤ 4
x2 ≤ 3

x1 +2x2 ≤ 7
x1,x2 ≥ 0

Solution value: 25.
Add equation 1 and 8 times equation 2 gives..
x1 +8x2 ≤ 4+24 = 28.

Better way to add equations to get bound on function?
Sure: 6 times equation 2 and 1 times equation 3.

x1 +8x2 ≤ 6(3)+7 = 25.

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Duality:example

Idea: Add up positive linear combination of inequalities to “get”
upper bound on optimization function.

Will this always work?

How to find best upper bound?



Duality:example

Idea: Add up positive linear combination of inequalities to “get”
upper bound on optimization function.

Will this always work?

How to find best upper bound?



Duality:example

Idea: Add up positive linear combination of inequalities to “get”
upper bound on optimization function.

Will this always work?

How to find best upper bound?



Duality: computing upper bound.

Best Upper Bound.

Multiplier Inequality

y1 x1 ≤ 4
y2 x2 ≤ 3
y3 x1 + 2x2 ≤ 7

Adding equations thusly...

(y1 +y3)x1 +(y2 +2y3)x2 ≤ 4y1 +3y2 +7y3.

The left hand side should “dominate” optimization function:

If y1,y2,y3 ≥ 0
and y1 +y3 ≥ 1 and y2 +2y3 ≥ 8 then..

x1 +8x2 ≤ 4y1 +3y2 +7y3

Find best yi ’s to minimize upper bound?
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The dual.

In general.

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Theorem: If a linear program has a bounded value, then its dual is
bounded and has the same value.

Weak Duality: primal (P) ≤ dual (D)

Feasible (x ,y)
P(x) = c ·x ≤ yT Ax ≤ yT b ·x = D(y).

Strong Duality: next lecture.
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Complementary Slackness

Primal LP Dual LP

max c ·x min yT b

Ax ≤ b yT A≥ c
x ≥ 0 y ≥ 0

Given A,b,c, and feasible solutions x and y .

Solutions x and y are both optimal if and only if
xi(ci − (yT A)i) = 0, and yj(bj − (Ax)j).

xi(ci − (yT A)i) = 0→
∑i(ci − (yT A)i)xi = cx−yT Ax → cx = yT Ax .

yj(bj − (Ax)j) = 0→
∑i yj(bj − (Ax)j) = yb−yT Ax → by = yT Ax .

cx = by .

If both are feasible, cx ≤ by , so must be optimal.

In words: nonzero dual variables only for tight constraints!
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10 20 30

10

20

30

max4x1 +2x2

3x1 ≤ 60
3x2 ≤ 75

3x1 +2x2 ≤ 100
x1,x2 ≥ 0

Simplex: Start at vertex.

Move to better neighboring vertex.
Until no better neighbor. Duality:
Add blue equations to get objective function?
1/3 times first plus second.
Get 4x1 +2x2 ≤ 120. Every solution must satisfy this inequality!
Geometrically and Complementary slackness:

Add tight constraints to “dominate objective function.”
Don’t add this equation! Shifts.
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Example: review.

maxx1 +8x2 min 4y1 +3y2 +7y3

x1 ≤ 4 y1 +y3 ≥ 1
x2 ≤ 3 y2 +2y3 ≥ 8
x1 +2x2 ≤ 7 x1,x2 ≥ 0
y1,y2,y3 ≥ 0

“Matrix form”

max[1,8] · [x1,x2] min[4,3,7] · [y1,y2,y3]1 0
0 1
1 2

[x1
x2

]
≤

4
3
7

 [y1,y2,y3]

1 0
0 1
1 2

≥ [1
8

]
[x1,x2]≥ 0 [y1,y2,y3]≥ 0



Matrix equations.

max[1,8] · [x1,x2] min[4,3,7] · [y1,y2,y3]1 0
0 1
1 2

[x1
x2

]
≤

4
3
7

 [y1,y2,y3]

1 0
0 1
1 2

≥ [1
8

]
[x1,x2]≥ 0 [y1,y2,y3]≥ 0

We can rewrite the above in matrix form.

A =

1 0
0 1
1 2

 c = [1,8]b = [4,3,7]

The primal is Ax ≤ b,maxc ·x ,x ≥ 0.
The dual is yT A≥ c,minb ·y ,y ≥ 0.



Rules for School...

or...”Rules for taking duals”

Standard:

Ax ≤ b,maxcx ,x ≥ 0↔ yT A≥ c,minby ,y ≥ 0.

min↔max

≥↔≤
“inequalities”↔ “nonnegative variables”

“nonnegative variables”↔ “inequalities”

One more useful trick: Equality constraints.

“equalities”↔ “unrestricted variables.”
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Maximum Weight Matching.
Bipartite Graph G = (V ,E), w : E → Z .

Find maximum weight perfect matching.
Solution: xe indicates whether edge e is in matching.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1

pv

xe ≥ 0
Dual.

Variable for each constraint. pv unrestricted.
Constraint for each variable. Edge e, pu +pv ≥ we
Objective function from right hand side. min∑v pv

min∑v pv
∀e = (u,v) : pu +pv ≥ we

Weak duality? Price function upper bounds matching.
∑e∈M wexe ≤ ∑e=(u,v)∈M pu +pv ≤ ∑v pu.

Strong Duality? Same value solutions. Hungarian algorithm !!!
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Complementary Slackness.

max∑
e

wexe

∀v : ∑
e=(u,v)

xe = 1 pv

xe ≥ 0

Dual:
min∑v pv

∀e = (u,v) : pu +pv ≥ we

Complementary slackness:
Only match on tight edges.
Nonzero pu on matched u.
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Multicommodity Flow.

Given G = (V ,E), and capacity function c : E → Z , and pairs
(s1, t1), . . . ,(sk , tk ) with demands d1, . . . ,dk .

Route Di flow for each si , ti pair, so every edge has ≤ µc(e) flow with
minimum µ.

variables: fp flow on path p.
Pi -set of paths with endpoints si , ti .

min µ

∀e : ∑
p3e

fp ≤ µce

∀i : ∑
p∈Pi

fp = Di

fp ≥ 0
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Take the dual.
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Dual. min µ

∀e :µce−∑
p3e

fp ≥ 0

de

∀i : ∑
p∈Pi

fp = Di

di

fp ≥ 0

Introduce variable for each constraint.
Introduce constraint for each var:
µ → ∑e cede = 1. fp → ∀p ∈ Pi di −∑e∈p de ≤ 0.
Objective: right hand sides. max∑i Didi

max∑
i

Didi

∀p ∈ Pi :di ≤ ∑
e∈p

d(e)

∑
e

cede = 1di - shortest si , ti path length. Toll problem!
Weak duality: toll lower bounds routing.
Strong Duality. Tight lower bound. First lecture. Or Experts.

Complementary Slackness: only route on shortest paths
only have toll on congested edges.
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See you on Thursday.


