Today

Continue Review: linear programming.

Simplex and Matching.

Taking Duals.

Optimal point?

Try every point if we only had time!

How many points?

Real numbers?

Infinite. Uncountably infinite!

Profit maximization.

Plant Carrots or Peas?

2\$ bushel of carrots. 4\$ for peas.

Carrots take 3 unit of water/bushel.

Peas take 2 units of water/bushel.

100 units of water.

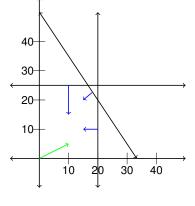
Peas require 2 yards/bushel of sunny land.

Carrots require 1 yard/bushel of shadyland.

Garden has 60 yards of sunny land and 75 yards of shady land.

To pea or not to pea, that is the question!

A linear program.



Optimal point?

To pea or not to pea.

4\$ for peas. 2\$ bushel of carrots.

 x_1 - to pea! x_2 to carrot?

Money $4x_1 + 2x_2$ maximize $\max 4x_1 + 2x_2$.

Carrots take 2 unit of water/bushel.

Peas take 3 units of water/bushel. 100 units of water.

$$3x_1 + 2x_2 \le 100$$

Peas 2 yards/bushel of sunny land. Have 40 sq yards.

 $2x_1 \le 4$

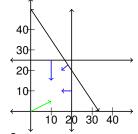
Carrots get 3 yards/bushel of shady land. Have 75 sq. yards.

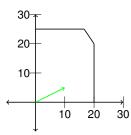
 $3x_2 \le 75$

Can't make negative! $x_1, x_2 \ge 0$.

A linear program.

Feasible Region.



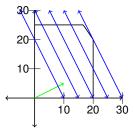


Convex.

Any two points in region connected by a line in region. Algebraically:

If x and x' satisfy onstraint,

$$\rightarrow x'' = \alpha x + (1 - \alpha)x$$



Optimal at pointy part of feasible region!

Vertex of region.

Intersection of two of the constraints (lines in two dimensions)!

Try every vertex! Choose best.

 $O(m^2)$ if m constraints and 2 variables.

For *n* variables, *m* constraints, how many?

 $nm? \binom{m}{n}? n+m?$

(m)

Finite!!!!!!

Exponential in the number of variables.

Duality.

$$\max x_1 + 8x_2$$

$$x_1 \le 4$$

$$x_2 \le 3$$

$$x_1 + 2x_2 \le 7$$

$$x_1, x_2 \ge 0$$

Solution value: 25.

Add equation 1 and 8 times equation 2 gives...

$$x_1 + 8x_2 \le 4 + 24 = 28$$
.

Better way to add equations to get bound on function?

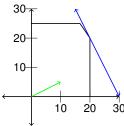
Sure: 6 times equation 2 and 1 times equation 3.

$$x_1 + 8x_2 \le 6(3) + 7 = 25.$$

Thus, the value is at most 25.

The upper bound is same as solution!

Proof of optimality!



Simplex: Start at vertex. Move to better neighboring vertex.

Until no better neighbor. This example.

(0,0) objective 0. \rightarrow (0,25) objective 50.

 \rightarrow (16 $\frac{2}{3}$,25) objective 115 $\frac{2}{3}$ \rightarrow (20,20) objective 120.

Duality:

Add blue equations to get objective function?

1/3 times first plus second.

Get $4x_1 + 2x_2 \le 120$. Every solution must satisfy this inequality!

Objective value: 120. Can we do better? No!

Dual problem: add equations to get best upper bound.

Duality:example

Idea: Add up positive linear combination of inequalities to "get" upper bound on optimization function.

Will this always work?

How to find best upper bound?

Duality.

$$\max x_1 + 8x_2$$

$$x_1 \le 4$$

$$x_2 \le 3$$

$$x_1 + 2x_2 \le 7$$

$$x_1, x_2 \ge 0$$

One Solution: $x_1 = 1, x_2 = 3$. Value is 25.

Best possible?

For any solution.

 $x_1 \le 4$ and $x_2 \le 3$...

....so
$$x_1 + 8x_2 \le 4 + 8(3) = 28$$
.

Added equation 1 and 8 times equation 2 yields bound on objective..

Better solution?

Better upper bound?

Duality: computing upper bound.

Best Upper Bound.

Multiplier	Inequality
<i>y</i> 1	$x_1 \leq 4$
<i>y</i> ₂	$x_2 \leq 3$
<i>V</i> 3	$x_1 + 2x_2 <$

Adding equations thusly...

$$(y_1+y_3)x_1+(y_2+2y_3)x_2 \leq 4y_1+3y_2+7y_3.$$

The left hand side should "dominate" optimization function:

$$\begin{array}{c} \text{If } y_1,y_2,y_3\geq 0\\ \text{and } y_1+y_3\geq 1 \text{ and } y_2+2y_3\geq 8 \text{ then..}\\ x_1+8x_2\leq 4y_1+3y_2+7y_3 \end{array}$$

Find best y_i 's to minimize upper bound?

The dual, the dual, the dual.

Find best y_i 's to minimize upper bound?

Again: If you find
$$y_1, y_2, y_3 \ge 0$$

and $y_1 + y_3 \ge 1$ and $y_2 + 2y_3 \ge 8$ then..
 $x_1 + 8x_2 \le 4y_1 + 3y_2 + 7y_3$
$$\min 4y_1 + 3y_2 + 7y_3$$
$$y_1 + y_3 \ge 1$$
$$y_2 + 2y_3 \ge 8$$
$$y_1, y_2, y_3 \ge 0$$

A linear program.

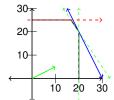
The Dual linear program.

Primal: $(x_1, x_2) = (1,3)$; Dual: $(y_1, y_2, y_3) = (0,6,1)$.

Value of both is 25!

Primal is optimal ... and dual is optimal!

Again: simplex



$$\max 4x_1 + 2x_2$$

$$3x_1 \le 60$$

$$3x_2 \le 75$$

$$3x_1 + 2x_2 \le 100$$

$$x_1, x_2 > 0$$

Simplex: Start at vertex. Move to better neighboring vertex.

Until no better neighbor. Duality:

Add blue equations to get objective function?

1/3 times first plus second.

Get $4x_1 + 2x_2 \le 120$. Every solution must satisfy this inequality! Geometrically and Complementary slackness:

Add tight constraints to "dominate objective function."

Don't add this equation! Shifts.

The dual.

In general.

Primal LP	Dual LF
$\max c \cdot x$	$\min y^T h$
$Ax \leq b$	$y^T A \ge a$
x > 0	v > 0

Theorem: If a linear program has a bounded value, then its dual is bounded and has the same value.

Weak Duality: primal $(P) \leq \text{dual }(D)$

Feasible (x, y)

$$P(x) = c \cdot x \le y^T A x \le y^T b \cdot x = D(y).$$

Strong Duality: next lecture.

Example: review.

$$\max x_1 + 8x_2 \qquad \min 4y_1 + 3y_2 + 7y_3
 x_1 \le 4 \qquad y_1 + y_3 \ge 1
 x_2 \le 3 \qquad y_2 + 2y_3 \ge 8
 x_1 + 2x_2 \le 7 \qquad x_1, x_2 \ge 0
 y_1, y_2, y_3 \ge 0$$

"Matrix form"

$$\begin{aligned} & \max[1,8] \cdot [x_1,x_2] & & \min[4,3,7] \cdot [y_1,y_2,y_3] \\ & \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} & & [y_1,y_2,y_3] \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \geq \begin{bmatrix} 1 \\ 8 \end{bmatrix} \\ & [x_1,x_2] \geq 0 & & [y_1,y_2,y_3] \geq 0 \end{aligned}$$

Complementary Slackness

Primal LP	<u>Dual LP</u>
max c⋅x	min $y^T b$
$Ax \leq b$	$y^T A \ge c$
$x \ge 0$	$y \ge 0$

Given A, b, c, and feasible solutions x and y.

Solutions x and y are both optimal if and only if $x_i(c_i - (y^T A)_i) = 0$, and $y_i(b_i - (Ax)_i)$.

$$x_i(c_i - (y^T A)_i) = 0$$
, and $y_j(b_j - (Ax)_j)$.
 $x_i(c_i - (y^T A)_i) = 0 \rightarrow$
 $\sum_i (c_i - (y^T A)_i) x_i = cx - y^T Ax \rightarrow cx = y^T Ax$.
 $y_j(b_j - (Ax)_j) = 0 \rightarrow$
 $\sum_i y_j(b_j - (Ax)_j) = yb - y^T Ax \rightarrow by = y^T Ax$.

If both are feasible, $cx \le by$, so must be optimal.

In words: nonzero dual variables only for tight constraints!

Matrix equations.

$$\begin{aligned} \max[1,8] \cdot [x_1,x_2] & \min[4,3,7] \cdot [y_1,y_2,y_3] \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} & [y_1,y_2,y_3] \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \geq \begin{bmatrix} 1 \\ 8 \end{bmatrix} \\ [x_1,x_2] \geq 0 & [y_1,y_2,y_3] \geq 0 \end{aligned}$$

We can rewrite the above in matrix form.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \qquad c = [1, 8]b = [4, 3, 7]$$

The primal is $Ax \le b$, $\max c \cdot x$, $x \ge 0$. The dual is $y^T A \ge c$, $\min b \cdot y$, $y \ge 0$.

Rules for School...

or..."Rules for taking duals"

Standard:

 $Ax \le b, \max cx, x \ge 0 \leftrightarrow y^T A \ge c, \min by, y \ge 0.$ $\min \leftrightarrow \max$

 $\geq \leftrightarrow \leq$

"inequalities" ↔ "nonnegative variables"

"nonnegative variables" \leftrightarrow "inequalities"

One more useful trick: Equality constraints.

"equalities" \leftrightarrow "unrestricted variables."

Maximum Weight Matching.

Bipartite Graph G = (V, E), $w : E \rightarrow Z$. Find maximum weight perfect matching. Solution: x_e indicates whether edge e is in matching.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} > 0$$

Dual.

Variable for each constraint. p_v unrestricted. Constraint for each variable. Edge e, $p_u + p_v \ge w_e$ Objective function from right hand side. min $\sum_v p_v$

$$\min \sum_{V} p_{V}$$

 $\forall e = (u, v): p_{u} + p_{V} \geq w_{e}$

Weak duality? Price function upper bounds matching.

 $\sum_{e \in M} w_e x_e \leq \sum_{e=(u,v) \in M} p_u + p_v \leq \sum_{v} p_u.$

Strong Duality? Same value solutions. Hungarian algorithm !!!

Multicommodity Flow.

minimum μ .

Given G=(V,E), and capacity function $c:E\to Z$, and pairs $(s_1,t_1),\ldots,(s_k,t_k)$ with demands d_1,\ldots,d_k . Route D_i flow for each s_i,t_i pair, so every edge has $\leq \mu c(e)$ flow with

variables: f_p flow on path p. P_i -set of paths with endpoints s_i , t_i .

$$\min \mu$$

$$\forall e : \sum_{p \ni e} f_p \le \mu c_e$$

$$\forall i : \sum_{p \in P_i} f_p = D_i$$

$$f_p \ge 0$$

Complementary Slackness.

$$\max \sum_{e} w_{e} x_{e}$$

$$\forall v : \sum_{e=(u,v)} x_{e} = 1$$

$$x_{e} \ge 0$$

Dual:

$$\min \sum_{V} p_{V}$$

$$\forall e = (u, v): \quad p_{U} + p_{V} \geq w_{e}$$

Complementary slackness: Only match on tight edges. Nonzero p_u on matched u.

Take the dual.

$$\forall e : \sum_{p \ni e} f_p \le \mu c_e$$

$$\forall i : \sum_{p \in P_i} f_p = D_i$$

$$f_p \ge 0$$

Modify to make it \geq , which "go with min. And only constants on right hand side.

$$\begin{aligned} \min \mu \\ \forall e : & \mu c_e - \sum_{p \ni e} f_p \ge 0 \\ \forall i : & \sum_{p \in P_i} f_p = D_i \\ f_p > 0 \end{aligned}$$

Dual.

$$\min \mu$$

$$\forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0$$

$$\forall i : \sum_{p \in P_i} f_p = D_i$$

$$\forall i: \sum_{p \in P_i} f_p = D_i$$

$$f_p \ge 0$$

Introduce variable for each constraint. Introduce constraint for each var: $\begin{array}{ll} \mu & \to \sum_{e} c_e d_e = 1. & f_p & \to \forall p \in P_i \ d_i - \sum_{e \in p} d_e \leq 0. \\ \text{Objective: right hand sides. } \max \sum_{i} D_i d_i \end{array}$

$$\max \sum_{i} D_{i} d_{i}$$
 $\forall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$

 d_i - shortest s_i, t_i path l $e^{-t}e^{-t}$ e^{-t} problem! Weak duality: toll lower bounds routing. Strong Duality. Tight lower bound. First lecture. Or Experts. Complementary Slackness: only route on shortest paths only have toll on congested edges.

See you on Thursday.

Exponential size.

Multicommodity flow.

$$\begin{aligned} \min \mu \\ \forall e : \mu c_e - \sum_{p \ni e} f_p \ge 0 \\ \forall i : \sum_{p \in P_i} f_p = d_i \\ f_p \ge 0 \end{aligned}$$

Dual is.

$$\max \sum_{i} D_{i}d_{i}$$
 $\forall p \in P_{i} : d_{i} \leq \sum_{e \in p} d(e)$

Exponential sized programs?

Answer 1: We solved anyway!

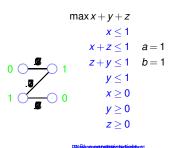
Answer 2: Ellipsoid algorithm.

Find violated constraint \rightarrow poly time algorithm.

Answer 3: there is polynomial sized formulation.

Question: what is it?

Maximum matching and simplex.



Sum: x + 2z + y.