Today

Boosting and Experts.

Routing and Experts.

Poll.

Given a weak learning method (produce ok hypotheses.) produce a great hypothesis.

Can we do this?

- (A) Yes
- (B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

Looks hard.

Get 1/2 on correct side? Easy. Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify $\geq \frac{1}{2} + \varepsilon$ points correctly.

Not really important but ...

Experts Picture

Weak Learner/Strong Learner

Input: *n* labelled points.

Weak Learner:

produce hypothesis correctly classifies $\frac{1}{2} + \varepsilon$ fraction

Strong Learner:

produce hypothesis correctly classifies $1 + \mu$ fraction That's a really strong learner! produce hypothesis correctly classifies $1 - \mu$ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Boosting/MW Framework

Experts are points. "Adversary" weak learner.

Points want to be misclassified.

Learner wants to maximize probability of classifying random point correctly. Strong learner algorithm will come from adversary.

Do
$$T = \frac{2}{\gamma^2} \log \frac{1}{\mu}$$
 rounds

- 1. Row player: multiplicative weights (1γ) on points.
- 2. Column: run weak learner on row distribution.
- 3. Hypothesis h(x): majority of $h_1(x), h_2(x), \dots, h_T(x)$.

Claim: h(x) is correct on $1 - \mu$ of the points!!!

Cool!

Really? Proof?

Some intuition

Intuition 1: Each point classified correctly independently in each round with probability $\frac{1}{2} + \varepsilon$.

After enough rounds, majority rule correct for almost all points.

Intuition 2:

Say some point classified correctly $\leq 1/2$ of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability $1/2 + \varepsilon$.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.

Adaboost proof.

Claim: h(x) is correct on $1 - \mu$ of the points!!

Let S_{bad} be the set of points where h(x) is incorrect.

majority of $h_t(x)$ are wrong for $x \in S_{bad}$.

 $x \in S_{bad}$ is a good expert – loses less than $\frac{1}{2}$ the time.

$$W(T) \ge (1-\varepsilon)^{\frac{T}{2}} |S_{bad}|$$

Each day, weak learner gets $\geq \frac{1}{2} + \gamma$ payoff.

$$\rightarrow L_t \geq \frac{1}{2} + \gamma$$
.

$$\to W(T) \le n(1-\varepsilon)^L \le ne^{-\varepsilon L} \le ne^{-\varepsilon(\frac{1}{2}+\gamma)T}$$

Combining

$$|S_{bad}|(1-arepsilon)^{T/2} \leq W(T) \leq ne^{arepsilon(rac{1}{2}+\gamma T)}$$

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if

there is a hyperplane, $\mathscr{H},$ that separates all the points.

and find $\frac{1}{2} + \varepsilon$ weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!

 $\frac{1}{2} + \varepsilon$ separating hyperplane?

Assumption: margin γ .

Random hyperplane?

Not likely to be exactly normal to \mathcal{H} .

Should get $\frac{1}{2} + \gamma/\sqrt{d}$

 $O(\frac{d \log n}{\gamma^2})$ to find separating hyperplane.

Weak learner: random Wow. That's weak.

Calculation...

$$|S_{bad}|(1-\varepsilon)^{T/2} \leq ne^{\varepsilon(\frac{1}{2}+\gamma)}T$$

Set $\varepsilon = \gamma$, take logs.

$$\ln\left(\frac{|S_{bad}|}{n}\right) + \frac{7}{2}\ln(1-\gamma) \le -\gamma T(\frac{1}{2}+\gamma)$$

Again,
$$-\gamma - \gamma^2 \leq \ln(1 - \gamma)$$
,

$$\ln\left(\frac{|S_{bad}|}{n}\right) + \frac{7}{2}(-\gamma - \gamma^2) \le -\gamma T(\frac{1}{2} + \gamma) \to \ln\left(\frac{|S_{bad}|}{n}\right) \le -\frac{\gamma^2 T}{2}$$

And
$$T = \frac{2}{v^2} \log \frac{1}{\mu}$$
,

$$ightarrow \operatorname{In}\left(rac{|S_{\mathit{bad}}|}{n}
ight) \leq \log \mu
ightarrow rac{|S_{\mathit{bad}}|}{n} \leq \mu.$$

The misclassified set is at most μ fraction of all the points.

The hypothesis correctly classifies $1 - \mu$ of the points !!!

Claim: Multiplicative weights: h(x) is correct on $1 - \mu$ of the points!

Claim: Weak learning → strong learning!

not so weak after all.

Better weak learner?

Hyperplane that separates weighted average of +/- points? Change loss a bit, and get better results.

Toll/Congestion

Given: G = (V, E). Given $(s_1, t_1) ... (s_k, t_k)$.

Row: choose routing of all paths.

Column: choose edge.

Row pays if column chooses edge on any path.

Matrix:

row for each routing: r column for each edge: e

A[r,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls. Route: minimize max congestion on any edge.

Better setup.

Runtime: O(km) to route in each step.

 $O(k \log n(\frac{1}{\varepsilon^2}))$ steps

 $\rightarrow O(k^2 m \log n)$ to get a constant approximation.

Homework: $O(km\log n)$ algorithm.

Two person game.

Row for every roting. (A[r, e])

An exponential number of rows!

Two person game with experts won't be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r.

m rows. Exponential number of columns.

Multiplicative Weights only maintains *m* weights.

Adversary only needs to provide best column each day.

Runtime only dependent on *m* and *T* (number of days.)

Fractional versus Integer.

Did we solve path routing?

Yes? No?

No! Average of *T* routings.

We approximately solved fractional routing problem.

No solution to the path routing problem that is $(1 + \varepsilon)$ optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Congestion minimization and Experts.

Will use gain and $[0, \rho]$ version of experts:

$$G \geq (1-\varepsilon)G^* - \frac{\rho \log n}{\varepsilon}.$$

Let
$$T = \frac{k \log n}{\varepsilon^2}$$

- 1. Row player runs multiplicative weights: $w_i = w_i (1 + \varepsilon)^{g_i/k}$.
- 2. Route all paths along shortest paths.
- 3. Output the average of all routings: $\frac{1}{\tau} \sum_t f(t)$.

Claim: The congestion, c_{max} is at most $(1 + \varepsilon)C^* + \varepsilon$.

Proof:

$$G \ge G^*(1-\varepsilon) - \frac{k \log n}{\varepsilon}$$

 $G^* = c_{\text{max}}T$ — Best row payoff against average routing.

 $G \leq C^*T$ — each day, gain is average congestion $\leq C^*$ since each day cost is toll solution which is at most C^*

$$C^*T \ge c_{max}T(1-\varepsilon) - \frac{k\log n}{\varepsilon}$$

For $T = \frac{k\log n}{\varepsilon^2}$

Randomized Rounding

For each s_i , t_i , choose path p_i with probability $f(p_i)$.

Congestion c(e) edge rounds to $\tilde{c}(e)$.

Edge e.

used by paths p_1, \ldots, p_m .

Let
$$X_i = 1$$
,

if path p_i is chosen.

otherwise,
$$X_i = 0$$
.

Rounded congestion, $\tilde{c}(e)$, is $\sum_i X_i$.

Expected Congestion: $\sum_i E(X_i)$.

$$E(X_i) = 1Pr[X_i = 1] + 0Pr[X_i = 0] = f(p_i)$$

$$\rightarrow \sum_{i} E(X_{i}) = \sum_{i} f(p_{i}) = c(e).$$

$$\rightarrow E(\tilde{c}(e)) = c(e).$$

Concentration (law of large numbers)

$$c(e)$$
 is relatively large $(\Omega(\log n))$

$$ightarrow ilde{c}(e) pprox c(e).$$

Concentration results? later.

