Today
Boosting and Experts.
Routing and Experts.

Poll.

Given a weak learning method (produce ok hypotheses.) produce a great hypothesis.
Can we do this?
(A) Yes
(B) No

If yes. How?
Multiplicative Weights!
The endpoint to a line of research.

Learning.
Learning just a bit.
Example: set of labelled points, find hyperplane that separates

Get $1 / 2$ on correct side? Easy. Arbitrary line. And Scan.
Useless. A bit more than $1 / 2$
Weak Learner: Classify $\geq \frac{1}{2}+\varepsilon$ points correctly
Not really important but ...

Experts Picture

Weak Learner/Strong Learner

nput: n labelled points

Weak Learner:

produce hypothesis correctly classifies $\frac{1}{2}+\varepsilon$ fraction
Strong Learner:
produce hypothesis correctly classifies $1+\mu$ fraction That's a really strong learner!
produce hypothesis correctly classifies $1-\mu$ fraction Same thing?
Can one use weak learning to produce strong learner? Boosting: use a weak learner to produce strong learner.

Boosting/MW Framework

Experts are points. "Adversary" weak learner.
Points want to be misclassified.
Learner wants to maximize probability of classifying random point correctly.
Strong learner algorithm will come from adversary.
Do $T=\frac{2}{\gamma^{2}} \log \frac{1}{\mu}$ rounds

1. Row player: multiplicative weights($1-\gamma$) on points
2. Column: run weak learner on row distribution
3. Hypothesis $h(x)$: majority of $h_{1}(x), h_{2}(x), \ldots, h_{T}(x)$.

Claim: $h(x)$ is correct on $1-\mu$ of the points !!!
Cool!
Really? Proof?

Some intuition

Intuition 1: Each point classified correctly independently in each round with probability $\frac{1}{2}+\varepsilon$.
After enough rounds, majority rule correct for almost all points. Intuition 2:
Say some point classified correctly $\leq 1 / 2$ of time.
High probability of choosing such point in distribuiont.
In limit, whole distribution becomes such point.
This subset will be classified correctly with probability $1 / 2+\varepsilon$.

Some details..

Weak learner learns over distributions of points not points.
Make copies of points to simulate distributions.
Used often in machine learning.

Adaboost proof.

Claim: $h(x)$ is correct on $1-\mu$ of the points !!
Let $S_{b a d}$ be the set of points where $h(x)$ is incorrect. majority of $h_{t}(x)$ are wrong for $x \in S_{b a d}$.
$x \in S_{\text {bad }}$ is a good expert - loses less than $\frac{1}{2}$ the time.
$W(T) \geq(1-\varepsilon)^{\frac{T}{2}}\left|S_{b a d}\right|$
Each day, weak learner gets $\geq \frac{1}{2}+\gamma$ payoff.
$\rightarrow L_{t} \geq \frac{1}{2}+\gamma$.
$\rightarrow W(T) \leq n(1-\varepsilon)^{L} \leq n e^{-\varepsilon L} \leq n e^{-\varepsilon\left(\frac{1}{2}+\gamma\right) T}$
Combining
$\left|S_{b a d}\right|(1-\varepsilon)^{T / 2} \leq W(T) \leq n e^{\varepsilon\left(\frac{1}{2}+\gamma T\right)}$

Example.

Set of points on unit ball in d-space
Learner: learns hyperplanes through origin

Can learn if

there is a hyperplane, \mathscr{H}, that separates all the points.
and find $\frac{1}{2}+\varepsilon$ weighted separating plane.
Experts output is average of hyperplanes ...a hyperplane
$\frac{1}{2}+\varepsilon$ separating hyperplane?
Assumption: margin γ
Random hyperplane?
Not likely to be exactly normal to \mathscr{H}.
Should get $\frac{1}{2}+\gamma / \sqrt{d}$
$O\left(\frac{d \log n}{\gamma^{2}}\right)$ to find separating hyperplane.
Weak learner: random Wow. That's weak

Calculation.

$$
\begin{aligned}
& \left.\left|S_{\text {bad }}\right|(1-\varepsilon)^{T / 2} \leq n e^{\varepsilon\left(\frac{1}{2}+\gamma\right.}\right) T \\
& \text { Set } \varepsilon=\gamma, \text { take logs. } \\
& \qquad \ln \left(\frac{\left|S_{\text {bad }}\right|}{n}\right)+\frac{T}{2} \ln (1-\gamma) \leq-\gamma T\left(\frac{1}{2}+\gamma\right)
\end{aligned}
$$

$$
\text { Again, }-\gamma-\gamma^{2} \leq \ln (1-\gamma)
$$

$$
\ln \left(\frac{\left|S_{b a d}\right|}{n}\right)+\frac{T}{2}\left(-\gamma-\gamma^{2}\right) \leq-\gamma T\left(\frac{1}{2}+\gamma\right) \rightarrow \ln \left(\frac{\left|S_{b a d}\right|}{n}\right) \leq-\frac{\gamma^{2} T}{2}
$$

$$
\text { And } T=\frac{2}{\gamma^{2}} \log \frac{1}{\mu} \text {, }
$$

$$
\rightarrow \ln \left(\frac{\left|S_{b a d}\right|}{n}\right) \leq \log \mu \rightarrow \frac{\left|S_{b a d}\right|}{n} \leq \mu .
$$

The misclassified set is at most μ fraction of all the points
The hypothesis correctly classifies $1-\mu$ of the points !!!
Claim: Multiplicative weights: $h(x)$ is correct on $1-\mu$ of the points !
Claim: Weak learning \rightarrow strong learning!
not so weak after all.
Better weak learner?

Hyperplane that separates weighted average of $+/$ - points? Change loss a bit, and get better results.

Toll/Congestion

Given: $G=(V, E)$.
Given $\left(s_{1}, t_{1}\right) \ldots\left(s_{k}, t_{k}\right)$.
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.
Matrix:
row for each routing: r
column for each edge: e
$A[r, e]$ is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths.
Toll: charge most loaded edge.
Defense: Toll: maximize shortest path under tolls. Route: minimize max congestion on any edge.

Better setup.

Runtime: $O(\mathrm{~km})$ to route in each step. $O\left(k \log n\left(\frac{1}{\varepsilon^{2}}\right)\right)$ steps
$\rightarrow O\left(k^{2} m \log n\right)$ to get a constant approximation.
Homework: $O(k m \log n)$ algorithm.

Two person game.

Row for every roting. ($A[r, e]$)
An exponential number of rows!
Two person game with experts won't be so easy to implement.
Version with row and column flipped may work.
$A[e, r]$ - congestion of edge e on routing r.
m rows. Exponential number of columns.
Multiplicative Weights only maintains m weights.
Adversary only needs to provide best column each day.
Runtime only dependent on m and T (number of days.)

Fractional versus Integer.

Did we solve path routing?
Yes? No?
No! Average of T routings.
We approximately solved fractional routing problem.
No solution to the path routing problem that is $(1+\varepsilon)$ optimal! Homework 2. Problem 1.
Decent solution to path routing problem?

Congestion minimization and Experts.
Will use gain and $[0, \rho]$ version of experts:

$$
G \geq(1-\varepsilon) G^{*}-\frac{\rho \log n}{\varepsilon} .
$$

Let $T=\frac{k \log n}{\varepsilon^{2}}$

1. Row player runs multiplicative weights:
$w_{i}=w_{i}(1+\varepsilon)^{g_{i} / k}$.
2. Route all paths along shortest paths.
3. Output the average of all routings: $\frac{1}{T} \sum_{t} f(t)$.

Claim: The congestion, $C_{\text {max }}$ is at most $(1+\varepsilon) C^{*}+\varepsilon$.
Proof:
$G \geq G^{*}(1-\varepsilon)-\frac{k \log n}{\varepsilon}$
$G^{*}=c_{\max } T$ - Best row payoff against average routing.
$G \leq C^{*} T$ - each day, gain is average congestion $\leq C^{*}$ since each day cost is toll solution which is at most C $C^{*} T \geq c_{\max } T(1-\varepsilon)-\frac{k \log n}{\varepsilon}$
For $T=\frac{k \log n}{\varepsilon^{2}}$

$$
\rightarrow C^{*} \frac{1^{c}}{1-\varepsilon}+\varepsilon \geq c_{\max } \text { plus } \frac{1}{1-\varepsilon} \leq 1+\varepsilon \rightarrow c_{\max }-C^{*} \leq \varepsilon C+\varepsilon
$$

Randomized Rounding
For each s_{i}, t_{i}, choose path p_{i} with probability $f\left(p_{i}\right)$.
Congestion $c(e)$ edge rounds to $\tilde{c}(e)$.
Edge e.
used by paths p_{1}, \ldots, p_{m}.
Let $X_{i}=1$,
if path p_{i} is chosen.
otherwise, $X_{i}=0$.
Rounded congestion, $\tilde{c}(e)$, is $\sum_{i} X_{i}$.
Expected Congestion: $\sum_{i} E\left(X_{i}\right)$.
$E\left(X_{i}\right)=1 \operatorname{Pr}\left[X_{i}=1\right]+0 \operatorname{Pr}\left[X_{i}=0\right]=f\left(p_{i}\right)$
$\rightarrow \sum_{i} E\left(X_{i}\right)=\sum_{i} f\left(p_{i}\right)=c(e)$.
$\rightarrow E(\tilde{c}(e))=c(e)$.
Concentration (law of large numbers) $c(e)$ is relatively large $(\Omega(\log n))$

$$
\rightarrow \tilde{c}(e) \approx c(e)
$$

Concentration results? later.

