
Today

Experts/Zero-Sum Games Equilibrium.

Boosting and Experts.

Routing and Experts.

Today

Experts/Zero-Sum Games Equilibrium.

Boosting and Experts.

Routing and Experts.

Today

Experts/Zero-Sum Games Equilibrium.

Boosting and Experts.

Routing and Experts.

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).

Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

1A(i) is i th row.

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

1A(i) is i th row.

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

1A(i) is i th row.

Best Response

Column goes first:

Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo.

Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo.

Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :

row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v

=⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .

column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v

=⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.

=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point!

and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Proof of Equilibrium.

Later.

Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)

→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)

→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”

→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of approximate equilibrium.

How?

(A) Using geometry.

(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.

(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.

(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C)

..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).

Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard.

Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy.

Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1 + ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1 + ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1 + ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1 + ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1 + ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1 + ε)L∗+ logn
ε

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.

Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .

Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt

and x∗ = argminxt
xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:

xt minimizes the best column response is chosen. Clearly good for row.
column best response is at least what it is against xt . Total loss, L is at least

column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen.

Clearly good for row.
column best response is at least what it is against xt . Total loss, L is at least

column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt .

Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff.

Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.

Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds.

Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt

and x∗ = argminxt
xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .

Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .

Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt

and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt

→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.

→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights:

L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε

→ C(x∗)≤ (1 + ε)R(y∗) + lnn
εT

→ C(x∗)−R(y∗)≤ εR(y∗) + lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT

→ C(x∗)−R(y∗)≤ εR(y∗) + lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1

→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt

and y∗ = 1
T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .

Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).

Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .

Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr
L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt

and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt

→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.

→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights:

L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε

→ C(x∗)≤ (1 + ε)R(y∗) + lnn
εT

→ C(x∗)−R(y∗)≤ εR(y∗) + lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT

→ C(x∗)−R(y∗)≤ εR(y∗) + lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1

→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist?

Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here?

Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?

T = lnn
ε2 → O(nm logn

ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2

→ O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2).

Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m)

Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.

(Faster linear programming: O(
√

n + m) linear solution solves.)
Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower

... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n + m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side?

Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.

Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line.

And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless.

A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Learning.

Learning just a bit.

Example: set of labelled points, find hyperplane that separates.

+ −
+

−
+

−

−
+−

+

−

+

Looks hard.

Get 1/2 on correct side? Easy.
Arbitrary line. And Scan.

Useless. A bit more than 1/2

Weak Learner: Classify ≥ 1
2 + ε points correctly.

Not really important but ...

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:

produce hypothesis correctly classifies 1
2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:

produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction

That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!

produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.

Poll.

Given a weak learning method (produce ok hypotheses.)

produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes.

How?

Multiplicative Weights!

The endpoint to a line of research.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Poll.

Given a weak learning method (produce ok hypotheses.)
produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.

Experts Picture

Boosting/MW Framework

Experts are points.

“Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability

of classifying random point correctly.
Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.

2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.

3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x):

majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points

! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points !

! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! !

!

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really?

Proof?

Boosting/MW Framework

Experts are points. “Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights(1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?

Some intuition

Intuition 1: Each point classified correctly independently in each
round with probability 1

2 + ε.

After enough rounds, majority rule correct for almost all points.

Intuition 2:
Say some point classified correctly ≤ 1/2 of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability 1/2 + ε.

Some intuition

Intuition 1: Each point classified correctly independently in each
round with probability 1

2 + ε.

After enough rounds, majority rule correct for almost all points.

Intuition 2:
Say some point classified correctly ≤ 1/2 of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability 1/2 + ε.

Some intuition

Intuition 1: Each point classified correctly independently in each
round with probability 1

2 + ε.

After enough rounds, majority rule correct for almost all points.

Intuition 2:
Say some point classified correctly ≤ 1/2 of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability 1/2 + ε.

Some intuition

Intuition 1: Each point classified correctly independently in each
round with probability 1

2 + ε.

After enough rounds, majority rule correct for almost all points.

Intuition 2:
Say some point classified correctly ≤ 1/2 of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability 1/2 + ε.

Some intuition

Intuition 1: Each point classified correctly independently in each
round with probability 1

2 + ε.

After enough rounds, majority rule correct for almost all points.

Intuition 2:
Say some point classified correctly ≤ 1/2 of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability 1/2 + ε.

Some intuition

Intuition 1: Each point classified correctly independently in each
round with probability 1

2 + ε.

After enough rounds, majority rule correct for almost all points.

Intuition 2:
Say some point classified correctly ≤ 1/2 of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability 1/2 + ε.

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points

! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points !

!

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert

– loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→

W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L

≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL

≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Adaboost proof.

Claim: h(x) is correct on 1−µ of the points ! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T)≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T)≤ n(1− ε)L ≤ ne−εL ≤ ne−ε(1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T)≤ neε(1
2+γT)

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)

→ ln
(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ

→ |Sbad |
n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points

! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points !

! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! !

!

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points

!

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Calculation..
|Sbad |(1− ε)T/2 ≤ neε(1

2+γ)T

Set ε = γ, take logs.

ln
(
|Sbad |

n

)
+ T

2 ln(1− γ)≤−γT (1
2 + γ)

Again, −γ− γ2 ≤ ln(1− γ),

ln
(
|Sbad |

n

)
+ T

2 (−γ− γ2)≤−γT (1
2 + γ)→ ln

(
|Sbad |

n

)
≤− γ2T

2

And T = 2
γ2 log 1

µ
,

→ ln
(
|Sbad |

n

)
≤ log µ → |Sbad |

n ≤ µ.

The misclassified set is at most µ fraction of all the points.

The hypothesis correctly classifies 1−µ of the points ! ! !

Claim: Multiplicative weights: h(x) is correct on 1−µ of the points !

Claim: Weak learning→ strong learning!

not so weak after all.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.

Some details...

Weak learner learns over distributions of points not points.

Make copies of points to simulate distributions.

Used often in machine learning.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if

there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes

...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!

1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?

Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?

Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .

Should get 1
2 + γ/

√
d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random

Wow. That’s weak.

Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2) to find separating hyperplane.

Weak learner: random Wow. That’s weak.

Better weak learner?

Hyperplane that separates weighted average of +/- points?

Change loss a bit, and get better results.

Better weak learner?

Hyperplane that separates weighted average of +/- points?

Change loss a bit, and get better results.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r

column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.

Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.

Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.

Two person game.

Row for every roting.

(A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows.

Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:

wi = wi (1 + ε)gi/k .
2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.

3. Output the average of all routings: 1
T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:

G ≥G∗(1− ε)− k logn
ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε

→
cmax −C∗ ≤ εC + ε/(1− ε)

Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)

Better setup.

Runtime: O(km) to route in each step.

O(k logn(1
ε2)) steps

→O(k2m logn) to get a constant approximation.

Homework: O(km logn) algorithm.

Better setup.

Runtime: O(km) to route in each step.
O(k logn(1

ε2)) steps

→O(k2m logn) to get a constant approximation.

Homework: O(km logn) algorithm.

Better setup.

Runtime: O(km) to route in each step.
O(k logn(1

ε2)) steps
→O(k2m logn) to get a constant approximation.

Homework: O(km logn) algorithm.

Better setup.

Runtime: O(km) to route in each step.
O(k logn(1

ε2)) steps
→O(k2m logn) to get a constant approximation.

Homework: O(km logn) algorithm.

Fractional versus Integer.

Did we solve path routing?

Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes?

No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes? No?

No!

Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes? No?

No! Average of T routings.

We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Fractional versus Integer.

Did we solve path routing?
Yes? No?

No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.

used by paths p1, . . . ,pm.
Let Xi = 1,

if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,

if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.

otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).

E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)

→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi)

= ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi)

= c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).

→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)

c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))

→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results?

later.

Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.

See you on Tuesday.

