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Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)
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Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At )(j) ·x = (x∗)tAy∗.

1A(i) is i th row.
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Best Response

Column goes first:

Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?
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Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!
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Proof of Equilibrium.

Later.

Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”
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(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.
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Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1 + ε)L∗+ logn
ε
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Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!
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Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1 + ε)L∗+ lnn
ε

TC(x∗)≤ (1 + ε)TR(y∗) + lnn
ε
→ C(x∗)≤ (1 + ε)R(y∗) + lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗) + lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.
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Weak Learner/Strong Learner

Input: n labelled points.

Weak Learner:
produce hypothesis correctly classifies 1

2 + ε fraction

Strong Learner:
produce hypothesis correctly classifies 1 + µ fraction
That’s a really strong learner!
produce hypothesis correctly classifies 1−µ fraction

Same thing?

Can one use weak learning to produce strong learner?

Boosting: use a weak learner to produce strong learner.
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Poll.

Given a weak learning method (produce ok hypotheses.)

produce a great hypothesis.

Can we do this?

(A) Yes
(B) No

If yes. How?

Multiplicative Weights!

The endpoint to a line of research.
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Boosting/MW Framework

Experts are points.

“Adversary” weak learner.

Points want to be misclassified.

Learner wants to maximize probability
of classifying random point correctly.

Strong learner algorithm will come from adversary.

Do T = 2
γ2 log 1

µ
rounds

1. Row player: multiplicative weights( 1− γ) on points.
2. Column: run weak learner on row distribution.
3. Hypothesis h(x): majority of h1(x),h2(x), . . . ,hT (x).

Claim: h(x) is correct on 1−µ of the points ! ! !

Cool!

Really? Proof?
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Some intuition

Intuition 1: Each point classified correctly independently in each
round with probability 1

2 + ε.

After enough rounds, majority rule correct for almost all points.

Intuition 2:
Say some point classified correctly ≤ 1/2 of time.

High probability of choosing such point in distribuiont.

In limit, whole distribution becomes such point.

This subset will be classified correctly with probability 1/2 + ε.
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Adaboost proof.

Claim: h(x) is correct on 1−µ of the points

! !

Let Sbad be the set of points where h(x) is incorrect.

majority of ht (x) are wrong for x ∈ Sbad .

x ∈ Sbad is a good expert – loses less than 1
2 the time.

W (T )≥ (1− ε)
T
2 |Sbad |

Each day, weak learner gets ≥ 1
2 + γ payoff.

→ Lt ≥ 1
2 + γ.

→W (T )≤ n(1− ε)L ≤ ne−εL ≤ ne−ε( 1
2+γ)T

Combining

|Sbad |(1− ε)T/2 ≤W (T )≤ neε( 1
2+γT )
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Example.

Set of points on unit ball in d-space.

Learner: learns hyperplanes through origin.

Can learn if
there is a hyperplane, H , that separates all the points.

and find 1
2 + ε weighted separating plane.

Experts output is average of hyperplanes ...a hyperplane!
1
2 + ε separating hyperplane?
Assumption: margin γ.

Random hyperplane?
Not likely to be exactly normal to H .
Should get 1

2 + γ/
√

d

O(d logn
γ2 ) to find separating hyperplane.

Weak learner: random Wow. That’s weak.
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Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max congestion on any edge.
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Two person game.

Row for every roting.

(A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows.

Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Two person game.

Row for every roting. (A[r ,e])

An exponential number of rows!

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

A[e, r ] - congestion of edge e on routing r .

m rows. Exponential number of columns.

Multiplicative Weights only maintains m weights.

Adversary only needs to provide best column each day.

Runtime only dependent on m and T (number of days.)



Congestion minimization and Experts.
Will use gain and [0,ρ] version of experts:

G ≥ (1− ε)G∗− ρ logn
ε

.

Let T = k logn
ε2

1. Row player runs multiplicative weights:
wi = wi (1 + ε)gi/k .

2. Route all paths along shortest paths.
3. Output the average of all routings: 1

T ∑t f (t).

Claim: The congestion, cmax is at most (1 + ε)C∗+ ε/(1− ε).

Proof:
G ≥G∗(1− ε)− k logn

ε

G∗ = cmaxT — Best row payoff against average routing.

G ≤ C∗T — each day, gain is average congestion ≤ C∗

since each day cost is toll solution which is at most C∗

C∗T ≥ cmaxT (1− ε)− k logn
ε

For T = k logn
ε2

→ C∗ 1
1−ε

+ ε ≥ cmax plus 1
1−ε
≤ 1 + ε →

cmax −C∗ ≤ εC + ε/(1− ε)
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→O(k2m logn) to get a constant approximation.

Homework: O(km logn) algorithm.
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Did we solve path routing?
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No! Average of T routings.
We approximately solved fractional routing problem.

No solution to the path routing problem that is (1 + ε) optimal!

Homework 2. Problem 1.

Decent solution to path routing problem?
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Randomized Rounding
For each si , ti , choose path pi with probability f (pi).

Congestion c(e) edge rounds to c̃(e).

Edge e.
used by paths p1, . . . ,pm.

Let Xi = 1,
if path pi is chosen.
otherwise, Xi = 0.

Rounded congestion, c̃(e), is ∑i Xi .

Expected Congestion: ∑i E(Xi).
E(Xi) = 1Pr [Xi = 1] + 0Pr [Xi = 0] = f (pi)
→ ∑i E(Xi) = ∑i f (pi) = c(e).
→ E(c̃(e)) = c(e).

Concentration (law of large numbers)
c(e) is relatively large (Ω(logn))
→ c̃(e)≈ c(e).

Concentration results? later.
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See you on Tuesday.


