
Today.

Quick Review:

experts framework/multiplicative weights algorithm
Finish:

randomized multiplicative weights algorithm for experts framework.

Equilibrium for two person games:
using experts framework/MW algorithm.

Today.

Quick Review:
experts framework/multiplicative weights algorithm

Finish:
randomized multiplicative weights algorithm for experts framework.

Equilibrium for two person games:
using experts framework/MW algorithm.

Today.

Quick Review:
experts framework/multiplicative weights algorithm

Finish:

randomized multiplicative weights algorithm for experts framework.

Equilibrium for two person games:
using experts framework/MW algorithm.

Today.

Quick Review:
experts framework/multiplicative weights algorithm

Finish:
randomized multiplicative weights algorithm for experts framework.

Equilibrium for two person games:
using experts framework/MW algorithm.

Today.

Quick Review:
experts framework/multiplicative weights algorithm

Finish:
randomized multiplicative weights algorithm for experts framework.

Equilibrium for two person games:
using experts framework/MW algorithm.

Notes.

Got to definition of Approximate Equilibrium for zero sum
games.

The multiplicative weights framework.

Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..

never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never!

Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make?

Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:

makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.

”You could have done so well”...
but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t!

ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..

ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Concept Alert.

Note.

Adversary:
makes you want to look bad.
”You could have done so well”...

but you didn’t! ha..ha!

Analysis of Algorithms: do as well as possible!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1

Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.

Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound:

every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Back to mistake bound.

Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!

Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1

At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts

mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts

mistake→ ≤ n/4 perfect experts
...

mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...

mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert

→ at most logn mistakes!

Alg 2: find majority of the perfect

How many mistakes could you make?
(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm.

Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.

2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.

3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.

Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function:

∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi .

Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:

total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by

−1? −2? factor of 1
2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1?

−2? factor of 1
2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2?

factor of 1
2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?

each incorrect expert weight multiplied by 1
2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !

total weight decreases by
factor of 1

2? factor of 3
4?

mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?

mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: weighted majority
1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes

M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)

≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!

Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!

Randomization

!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization

!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly

optimal!

Randomization!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!

Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t .

W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) =

n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total.

→W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt)

Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:

W (t +1)≤∑
i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi

= ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)

= W (t)(1− εLt)

Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T)≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i)wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε)

ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish

of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Analysis

(1− ε)L∗ ≤W (T)≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:

Choose proportional to weights
multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).

Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

1A(i) is i th row.

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

1A(i) is i th row.

Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

1A(i) is i th row.

Best Response

Column goes first:

Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo.

Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo.

Value of C?

Best Response

Column goes first:
Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :

row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v

=⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .

column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v

=⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.

=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point!

and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!

Proof of Equilibrium.

Later.

Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)

→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)

→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”

→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of Equilibrium.

Later. Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”

Proof of approximate equilibrium.

How?

(A) Using geometry.

(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.

(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.

(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C)

..and (D).
Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).

Not hard. Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard.

Even easy. Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy.

Still, head scratching happens.

Proof of approximate equilibrium.

How?

(A) Using geometry.
(B) Using a fixed point theorem.
(C) Using multiplicative weights.
(D) By the skin of my teeth.

(C) ..and (D).
Not hard. Even easy. Still, head scratching happens.

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and experts

Again: find (x∗,y∗), such that

(maxy x∗Ay)− (minx x∗Ay∗)≤ ε

C(x∗) − R(y∗)≤ ε

Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε

Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.

Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.

Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .

Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.

Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt

and x∗ = argminxt
xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:

xt minimizes the best column response is chosen. Clearly good for row.
column best response is at least what it is against xt . Total loss, L is at least

column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen.

Clearly good for row.
column best response is at least what it is against xt . Total loss, L is at least

column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt .

Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff.

Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.

Combine bounds. Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds.

Done!

Games and Experts.
Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt

and x∗ = argminxt
xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .

Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .

Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt

and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt

→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.

→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights:

L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε

→ C(x∗)≤ (1+ ε)R(y∗)+ lnn
εT

→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT

→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1

→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt

and y∗ = 1
T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .

Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).

Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .

Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr
L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt

and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt

→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.

→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights:

L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε

→ C(x∗)≤ (1+ ε)R(y∗)+ lnn
εT

→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT

→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn
εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1

→ C(x∗)−R(y∗)≤ 2ε.

Approximate Equilibrium: notes!
Experts: xt is strategy on day t , yt is best column against xt .

Let x∗ = 1
T ∑t xt and y∗ = 1

T ∑t yt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Let yr be best response to C(x∗).
Day t ,yt best response to xt → xtAyt ≥ xtAyr .
Algorithm loss: ∑t xtAyt ≥ ∑t xtAyr

L≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1→ C(x∗)−R(y∗)≤ 2ε.

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist?

Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here?

Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?

T = lnn
ε2 → O(nm logn

ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2

→ O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2).

Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m)

Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.

(Faster linear programming: O(
√

n +m) linear solution solves.)
Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower

... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r

column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)

Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.

Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.

Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.

Two person game.

Row is router.

An exponential number of rows.

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

Next Time.

Two person game.

Row is router.

An exponential number of rows.

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

Next Time.

Two person game.

Row is router.

An exponential number of rows.

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

Next Time.

Two person game.

Row is router.

An exponential number of rows.

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

Next Time.

Two person game.

Row is router.

An exponential number of rows.

Two person game with experts won’t be so easy to implement.

Version with row and column flipped may work.

Next Time.

