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Notes.

Got to definition of Approximate Equilibrium for zero sum
games.



The multiplicative weights framework.



Expert’s framework.

n experts.

Every day, each offers a prediction.

“Rain” or “Shine.”

Whose advise do you follow?

“The one who is correct most often.”

Sort of.

How well do you do?
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Infallible expert.
One of the expert’s is infallible!

Your strategy?

Choose any expert that has not made a mistake!

How long to find perfect expert?

Maybe..never! Never see a mistake.

Better model?

How many mistakes could you make? Mistake Bound.

(A) 1
(B) 2
(C) logn
(D) n−1

Adversary designs setup to watch who you choose, and make
that expert make a mistake.

n−1!
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Infallible Experts.

Alg: Choose one of the perfect experts.

Mistake Bound: n−1
Lower bound: adversary argument.
Upper bound: every mistake finds fallible expert.

Better Algorithm?

Making decision, not trying to find expert!

Algorithm: Go with the majority of previously correct experts.

What you would do anyway!
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Alg 2: find majority of the perfect

How many mistakes could you make?

(A) 1
(B) 2
(C) logn
(D) n−1
At most logn!

When alg makes a mistake,
|“perfect” experts| drops by a factor of two.

Initially n perfect experts mistake→ ≤ n/2 perfect experts
mistake→ ≤ n/4 perfect experts

...
mistake→ ≤ 1 perfect expert

≥ 1 perfect expert→ at most logn mistakes!
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Imperfect Experts

Goal?

Do as well as the best expert!

Algorithm. Suggestions?

Go with majority?

Penalize inaccurate experts?

Best expert is penalized the least.

1. Initially: wi = 1.
2. Predict with weighted majority of experts.
3. wi → wi/2 if wrong.
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Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.
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Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m + logn)/ log(4/3)≤ 2.4(m + logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m + 2lnn
ε

Approaches a factor of two of best expert performance!
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Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!
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Randomization

!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!
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Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2 ],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·
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Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i )wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)
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Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn +∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!
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Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε



Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m + logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!
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Two person zero sum games.
m×n payoff matrix A.

Row mixed strategy: x = (x1, . . . ,xm).
Column mixed strategy: y = (y1, . . . ,yn).

Payoff for strategy pair (x ,y):

p(x ,y) = x tAy

That is,

∑
i

xi

(
∑
j

ai ,jyj

)
= ∑

j

(
∑
i

xiai ,j

)
yj .

Recall row minimizes, column maximizes.

Equilibrium pair: (x∗,y∗)?

(x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)
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Equilibrium.

Equilibrium pair: (x∗,y∗)?

p(x ,y) = (x∗)tAy∗ = max
y

(x∗)tAy = min
x

x tAy∗.

(No better column strategy, no better row strategy.)

No row is better:
mini A(i) ·y = (x∗)tAy∗. 1

No column is better:
maxj(At)(j) ·x = (x∗)tAy∗.

1A(i) is i th row.
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Best Response

Column goes first:

Find y , where best row is not too low..

R = max
y

min
x

(x tAy).

Note: x can be (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of R?

Row goes first:
Find x , where best column is not high.

C = min
x

max
y

(x tAy).

Agin: y of form (0,0, . . . ,1, . . .0).

Example: Roshambo. Value of C?
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Duality.

R = max
y

min
x

(x tAy).

C = min
x

max
y

(x tAy).

Weak Duality: R ≤ C.
Proof: Better to go second.

At Equilibrium (x∗,y∗), payoff v :
row payoffs (Ay∗) all ≥ v =⇒ R ≥ v .
column payoffs ((x∗)tA) all ≤ v =⇒ v ≥ C.
=⇒ R ≥ C

Equilibrium =⇒ R = C!

Strong Duality: There is an equilibrium point! and R = C!

Doesn’t matter who plays first!
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Proof of Equilibrium.

Later.

Still later...

Aproximate equilibrium ...

C(x) = maxy x tAy

R(y) = minx x tAy

Always: R(y)≤ C(x)

Strategy pair: (x ,y)

Equilibrium: (x ,y)

R(y) = C(x)→ C(x)−R(y) = 0.

Approximate Equilibrium: C(x)−R(y)≤ ε.

With R(y)≤ C(x)
→ “Response y to x is within ε of best response”
→ “Response x to y is within ε of best response”
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Games and experts

Again: find (x∗,y∗), such that
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Experts Framework: n Experts, T days, L∗ -total loss.

Multiplicative Weights Method yields loss L where

L≤ (1+ ε)L∗+ logn
ε
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Games and Experts.

Assume: A has payoffs in [0,1].

For T = logn
ε2 days:

1) m pure row strategies are experts.
Use multiplicative weights, produce row distribution.
Let xt be distribution (row strategy) xt on day t .

2) Each day, adversary plays best column response to xt .
Choose column of A that maximizes row’s expected loss.
Let yt be indicator vector for this column.

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Proof Idea:
xt minimizes the best column response is chosen. Clearly good for row.

column best response is at least what it is against xt . Total loss, L is at least
column payoff. Best row payoff, L∗ is roughly less than L due to MW anlysis.
Combine bounds. Done!
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Approximate Equilibrium!
Experts: xt is strategy on day t , yt is best column against xt .

Let y∗ = 1
T ∑t yt and x∗ = argminxt

xtAyt .

Claim: (x∗,y)∗ are 2ε-optimal for matrix A.

Column payoff: C(x∗) = maxy x∗Ay .
Loss on day t , xtAyt ≥ C(x∗) by the choice of x .
Thus, algorithm loss, L, is ≥ TC(x∗).

Best expert: L∗- best row against all the columns played.

best row against ∑t Ayt and Ty∗ = ∑t yt
→ best row against TAy∗.
→ L∗ ≤ TR(y∗).

Multiplicative Weights: L≤ (1+ ε)L∗+ lnn
ε

TC(x∗)≤ (1+ ε)TR(y∗)+ lnn
ε
→ C(x∗)≤ (1+ ε)R(y∗)+ lnn

εT
→ C(x∗)−R(y∗)≤ εR(y∗)+ lnn

εT .

T = lnn
ε2 , R(y∗)≤ 1
→ C(x∗)−R(y∗)≤ 2ε.
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Comments

For any ε, there exists an ε-Approximate Equilibrium.

Does an equilibrium exist? Yes.

Something about math here? Fixed point theorem.

Later: will use geometry, linear programming.

Complexity?
T = lnn

ε2 → O(nm logn
ε2 ). Basically linear!

Versus Linear Programming: O(n3m) Basically quadratic.
(Faster linear programming: O(

√
n +m) linear solution solves.)

Still much slower ... and more complicated.

Dynamics: best response, update weight, best response.

Also works with both using multiplicative weights.

“In practice.”
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Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.
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Route: minimize max loaded on any edge.



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.



Toll/Congestion

Given: G = (V ,E).
Given (s1, t1) . . .(sk , tk ).
Row: choose routing of all paths.
Column: choose edge.
Row pays if column chooses edge on any path.

Matrix:
row for each routing: r
column for each edge: e

A[r ,e] is congestion on edge e by routing r

Offense: (Best Response.)
Router: route along shortest paths.
Toll: charge most loaded edge.

Defense: Toll: maximize shortest path under tolls.
Route: minimize max loaded on any edge.



Two person game.

Row is router.
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