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Rational players should play this way!
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Matching/Weighted Vertex Cover

Maximum Weight Matching.

Given a bipartite graph, G = (U,V ,E), with edge weights
w : E → R, find a maximum weight matching.

A matching is a set of edges where no two share an endpoint.

Minimum Weight Cover.

Given a bipartite graph, G = (U,V ,E), with edge weights
w : E → R, find an vertex cover function of minimum total value.

A function p : V → R, where for all edges, e = (u,v)
p(u)+p(v)≥ w(e).

Minimize ∑v∈U∪V p(u).

Optimal solutions to both if
for e ∈M, w(e) = p(u)+p(v) (Defn: tight edge.) and
perfect matching.
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Maximum Weight Matching
Goal: perfect matching on tight edges.

...

...

...
..
.

p(·)

p(·)−δ

p(·)

p(·)+δ

Algorithm

Start with empty matching, feasible cover function (p(·))
Add tight edges to matching.

Use alt./aug. paths of tight edges.
”maximum matching algorithm.”

No augmenting path.
Cut, (S,T ), in directed graph of tight edges!

All edges across cut are not tight. (loose?)

Nontight edges leaving cut, go from SU , TV .

Lower prices in SU , raise prices in ST ,
all explored edges still tight,
backward edges still feasible

... and get new tight edge!
What’s delta? w(e)> p(u)+p(v)→
δ = mine∈(SU×TV )w(e)−p(u)−p(v).
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Some details/Runtime

Add 0 value edges, so that optimal solution contains perfect
matching.

Beginning “Matcher” Solution: M = {}.
Feasible! Value = 0.

Beginning “Coverer” Solution: p(u) = maximum incident
edge for u ∈ U, 0 otherwise.

Main Work:
breadth first search from unmatched nodes finds cut.

Update prices (find minimum delta.)

Simple Implementation:
Each bfs either augments or adds node to S in next cut.
O(n) iterations per augmentation.
O(n) augmentations.

O(n2m) time.
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Analysis: weighted majority

1. Initially: wi = 1.

2. Predict with
weighted
majority of
experts.

3. wi → wi/2 if
wrong.

Goal: Best expert makes m mistakes.

Potential function: ∑i wi . Initially n.

For best expert, b, wb ≥ 1
2m .

Each mistake:
total weight of incorrect experts reduced by
−1? −2? factor of 1

2?
each incorrect expert weight multiplied by 1

2 !
total weight decreases by

factor of 1
2? factor of 3

4?
mistake→ ≥ half weight with incorrect experts.

Mistake→ potential function decreased by 3
4 .

We have

1
2m ≤∑

i
wi ≤

(
3
4

)M

n.

where M is number of algorithm mistakes.
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Analysis: continued.

1
2m ≤ ∑i wi ≤

(3
4

)M
n.

m - best expert mistakes M algorithm mistakes.

1
2m ≤

(3
4

)M
n.

Take log of both sides.

−m ≤−M log(4/3)+ logn.

Solve for M.
M ≤ (m+ logn)/ log(4/3)≤ 2.4(m+ logn)

Multiple by 1− ε for incorrect experts...

(1− ε)m ≤
(
1− ε

2

)M n.

Massage...

M ≤ 2(1+ ε)m+ 2lnn
ε

Approaches a factor of two of best expert performance!
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Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!



Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!



Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!



Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!



Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!



Best Analysis?

Two experts: A,B

Bad example?

Which is worse?
(A) A right on even, B right on odd.
(B) A right first half of days, B right second

Best expert peformance: T/2 mistakes.

Pattern (A): T −1 mistakes.

Factor of (almost) two worse!



Randomization

!!!!

Better approach?

Use?

Randomization!

That is, choose expert i with prob ∝ wi

Bad example: A,B,A,B,A...

After a bit, A and B make nearly the same number of mistakes.

Choose each with approximately the same probabilty.

Make a mistake around 1/2 of the time.

Best expert makes T/2 mistakes.

Rougly optimal!
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Randomized analysis.

Some formulas:

For ε ≤ 1,x ∈ [0,1],

(1+ ε)x ≤ (1+ εx)
(1− ε)x ≤ (1− εx)

For ε ∈ [0, 1
2 ],

−ε− ε2 ≤ ln(1− ε)≤−ε

ε− ε2 ≤ ln(1+ ε)≤ ε

Proof Idea: ln(1+x) = x− x2

2 + x3

3 −·· ·
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Randomized algorithm
Losses in [0,1].

Expert i loses `t
i ∈ [0,1] in round t.

1. Initially wi = 1 for expert i .

2. Choose expert i with prob wi
W , W = ∑i wi .

3. wi ← wi(1− ε)`
t
i

W (t) sum of wi at time t . W (0) = n

Best expert, b, loses L∗ total. →W (T )≥ wb ≥ (1− ε)L∗ .

Lt = ∑i
wi `

t
i

W expected loss of alg. in time t .

Claim: W (t +1)≤W (t)(1− εLt) Loss→ weight loss.

Proof:
W (t +1)≤∑

i
(1− ε`t

i )wi = ∑
i

wi − ε ∑
i

wi`
t
i

= ∑
i

wi

(
1− ε

∑i wi`
t
i

∑i wi

)
= W (t)(1− εLt)
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Analysis

(1− ε)L∗ ≤W (T )≤ n ∏t(1− εLt)

Take logs
(L∗) ln(1− ε)≤ lnn+∑ ln(1− εLt)

Use −ε− ε2 ≤ ln(1− ε)≤−ε

−(L∗)(ε + ε2)≤ lnn− ε ∑Lt

And

∑t Lt ≤ (1+ ε)L∗+ lnn
ε

.

∑t Lt is total expected loss of algorithm.

Within (1+ ε) ish of the best expert!

No factor of 2 loss!
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Gains.

Why so negative?

Each day, each expert gives gain in [0,1].

Multiplicative weights with (1+ ε)gt
i .

G ≥ (1− ε)G∗− logn
ε

where G∗ is payoff of best expert.

Scaling:

Not [0,1], say [0,ρ].

L≤ (1+ ε)L∗+
ρ logn

ε
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Summary: multiplicative weights.

Framework: n experts, each loses different amount every day.

Perfect Expert: logn mistakes.

Imperfect Expert: best makes m mistakes.

Deterministic Strategy: 2(1+ ε)m+ logn
ε

Real numbered losses: Best loses L∗ total.

Randomized Strategy: (1+ ε)L∗+ logn
ε

Strategy:
Choose proportional to weights

multiply weight by (1− ε)loss.

Multiplicative weights framework!

Applications next!
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