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Applications

Jobs to workers.

Teachers to classes.

Classes to classrooms.

“The assignment problem”

Min Weight Matching.
Negate values and find maximum weight matching.
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Vertex Cover

Given a bipartite graph, G = (U,V ,E), with edge weights w : E → R,
find an vertex cover function of minimum total value.

A function p : V → R, where for all edges, e = (u,v)
p(u)+p(v)≥ w(e).
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Cover is upper bound.

Feasible p(·),

for edge e = (u,v), p(u)+p(v)≥ w(e).

u v
w(e)

p(u) p(v)

For a matching M, each u is the endpoint of at most one edge in M.

u

∑
e=(u,v)∈M

w(e)≤ ∑
e=(u,v)∈M

(p(u)+p(v))≤ ∑
u∈U

p(u)+ ∑
v∈V

p(v)

Holds with equality if
for e ∈M, w(e) = p(u)+p(v) (Defn: tight edge.) and
perfect matching.
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Using max incident edge.

Value: 3.
Using max incident edge.

Value: 2.
Same as optimal matching!

Proof of optimality.
Matching and cover are optimal,

edges in matching have w(e) = p(u)+p(v). Tight edge.
all nodes are matched.
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Maximum Matching

Given a bipartite graph, G = (U,V ,E), find a maximum sized
matching.

Key Idea: Augmenting Alternating Paths.

Example:
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Start at unmatched node(s),
follow unmatched edge(s),

follow matched.
Repeat until an unmatched node.
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No perfect matching

a

b

x

y

c z

Can’t increase matching size.
No alternating path from (a) to (y).

Cut!

Still no augmenting path.
Still Cut?

Use directed graph!
Cut in this graph.

Algorithm:
Given matching.
Direct unmatched edges U to V , matched V to U.
Find path between unmatched nodes on left to right. (BFS, DFS).
Until everything matched ... or output a cut.
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... and get new tight edge!
What’s delta? w(e) < p(u)+p(v)→
δ = mine∈(SU×TV )p(u)+p(v)−w(e).
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Lecture 2 ended in the middle of the previous slide.
A question was asked why don’t we just drop prices around the
blue (loose) edge in the figure. Why not?



Some details

Add 0 value edges, so that optimal solution contains perfect
matching.

Beginning “Matcher” Solution: M = {}.
Feasible! Value = 0.

Beginning “Coverer” Solution: p(u) = maximum incident
edge for u ∈ U, 0 otherwise.

Main Work:
breadth first search from unmatched nodes finds cut.

Update prices (find minimum delta.)

Simple Implementation:
Each bfs either augments or adds node to S in next cut.
O(n) iterations per augmentation.
O(n) augmentations.

O(n2m) time.
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retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.

Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching.

Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function.

Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.

Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:

no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.



Example

u

v

w

x

a

b

c

d

3

3

3

3

0

0

0

0

3

2

2

3

0

0

0

0

3

1

1

2

1

0

0

0

u

v

w

x

a

b

c

d

v

w

v

w

x

aX

X

All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.

retain previous matching through price changes.
retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.

retains edges in failed search through price changes.
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All matched edges tight.
Perfect matching. Feasible price function. Values the same.
Optimal!

Notice:
no weights on the right problem.
retain previous matching through price changes.
retains edges in failed search through price changes.


