Linear Systems...

Linear Systems

Ax = b

Find x.

Gaussian elimination: $O(n^3)$

 $O(n^{2.36...})$ with fast matrix multiplication.

Iterative Methods: $O(nm\log\frac{1}{\varepsilon})$ to ε approximate. For today: where m is sum of nonzeros in matrix.

For positive semidefinite matrix.

Today: $\tilde{O}(m)$ for Laplacian matrices. Laplacian: dI - A where A is adjacency matrix of a graph.

 \rightarrow symmetric diagonally dominant matrices by reduction.

Some Matrices.

Given G = (V, E), arbitrarily orient edges.

(c,d) 0 0 1 -1

(d,b) 0 -1 0 1

$$B_{v,e} = \begin{cases} -1 & e = (u, v) \\ 1 & e = (v, u) \\ 0 & \text{otherwise} \end{cases}$$

$$C \qquad B \qquad \qquad \begin{vmatrix} a & b & c & d \\ (a,b) & 1 & -1 & 0 & 0 \\ (a,c) & 1 & 0 & -1 & 0 \end{cases}$$

U		otherwise		
L				
	а	b	С	d
а	2	-1	-1	0
a b	-1	2	0	-1
С	-1	0	2	-1
d	0	-1	-1	2

Fun facts: $\mathbf{f} \in \mathfrak{R}^{|E|}$ $[B^T f]_u = \sum_{e=(u,v)} f_e - \sum_{e=(v,u)} f_e$ $B^T B = L$ $[Bx]_{e=(u,v)} = x_u - x_v$ $x^T Lx = \sum_{e=(u,v)} (x_u - x_v)^2$

Duality...

Given $G, \chi, \chi \perp 1$

Minimize $|f|^2$ subject to $B^T f = \chi$.

Lagrangian: $L(\phi, f) = \sum_{e} f(e)^2 + 2\phi^T (\chi - B^T f)$

Lagrangian Dual: Find ϕ that maximizes $\min_f L(\phi, f)$.

Given ϕ , minimize $L(\phi, f)$? Calculus.

For e = (u, v)

 $2f(e) + 2(\phi_V - \phi_U) = 0$ (Minimum when partial derivatives = 0.)

 $\rightarrow f(e) = (\phi_u - \phi_v)$ Potential differences!!!

Matrix Form: $f = B\phi$ Again, flows should be potential differences.

Dual problem: Find ϕ that maximizes ...

 $\max_{\phi} 2\phi^T \chi - \phi^T L \phi$

Note: want $\phi^T L \phi = \sum_e (\phi_u - \phi_v)^2$ to be small. Minimize Squared Potential differences!

Electrical Flow: a detour.

A graph G = (V, E).

Circuit: nodes V, resistors E, value 1 (for today.)

Given $\chi: V \to \Re$

Find flow that routes χ and minimizes

 $\sum_e f(e)^2$.

Claim: Minimizer is electrical flow.

Flow corresponds to flow induced by a set of potentials.

Why did we take dual?

Dual problem:

Find ϕ that maximizes ...

 $\max_{\phi} 2\phi \chi - \phi L\phi$

Take the derivative:

 $L\phi - \chi$

 $L\phi = \chi$ at optimal point!

Optimal potential is solution to a Laplacian linear system.

Also useful for convergence.

Algorithm maintains feasible ϕ , f,

Primal value: $|f|^2$.

Dual value: $2\phi \chi - \phi^T L \phi$

Duality gap is "distance" from optimal!

Algorithm: Work on flow and potentials.

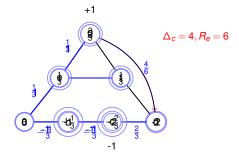
To drive gap to 0.

Alg.

Given: χ , G

Take a spanning tree T of G. (Which tree?) Route flow, f, to satisfy χ through T Compute, ϕ , using tree; $\phi_s=0$, add f_θ through T Repeat:
Choose non-tree edge e=(u,v) (Which non-tree edge?) $f(e)=(\phi_u-\phi_v)/(I_T(u,v)+1)$ ($I_T(u,v)$) path length in T) Route excess on path through tree.

Which Tree?
Claim: Linear time algorithm for T w/ stretch $O(m\log n\log\log n)!$ Stretch: $\sum_{e=(u,v)}I_T(u,v)$ Which non-tree edge?
Choose an edge w/prob. proportional to $I_T(e)$.
Finds $(1+\varepsilon)$ approximation in $O(m\log n\log\log n\log(n\log n\log(n\log n))!$



Duality Gap?

Algorithm maintains feasible $\phi, f, (B^T f = \chi)$ Primal value: $|f|^2$. Dual value: $2\phi\chi - \phi L\phi$ ϕ is tree induced voltages. Total Duality Gap? Gap: $|f|^2 - (2\phi^T\chi - \phi^T L\phi)$. $= |f|^2 - 2\phi^T B^T f + \phi^T B^T B\phi$ where $B^T f = \chi$ and $L = B^T B$. $= (f - B\phi)^T (f - B\phi)$. Gap $= \sum_e (f(e) - \Delta_\phi(e))^2$ Difference between ϕ flow and f. $\Delta_\phi(u,v) = \sum_{e \in P_{u,v}} -f(e)$. assume f(e) is oriented around cycle. For $e \in T$, $\Delta_\phi(e) = 0$. For $e \not\in T$ $f(e) + \sum_{e \in P_e} f(e) = \Delta_{C_e}(f)$ Duality Gap: $\sum_{e \not\in T} \sum_e \Delta_{C_e}(f)^2$ Total distance from optimal is cycle violations!

Duality Gap: $\sum_{e \not \in T} \Delta_{C_e}(f)^2$ Choose edge e reduce energy by $-\frac{\Delta_{C_e}^2}{R_e}$. Choose edge with probability $\frac{R_e}{\tau}$. Expected reduction $-\sum_e \frac{R_e}{\tau} \frac{\Delta_{C_e}^2}{R_e} = -\sum_e \frac{\Delta_{C_e}^2}{\tau}$ Duality Gap reduces by $(1-1/\tau)$ every iteration on expectation. $O(\tau \log(n/\varepsilon))$ iterations gives $(1+\varepsilon)$ approximation. $\tau = O(m \log n \log \log n)$... $\tilde{O}(m)$ iterations Iteration in $O(\log^2 n)$ time using balanced binary trees.

 $\rightarrow \tilde{O}(m)$ time!!!!!!!!!!!!!!!

Claim: $E[\text{change in energy}|Gap] = \frac{Gap}{\tau} (\tau \text{ is stretch of } E \text{ in } T.)$

Energy reduction.

Given T,e=(u,v), let $R_e=I_T(u,v)+1$. Algorithm: Repeatedly "Fix" edge e=(u,v). Route $-\delta=-\frac{\sum_{e'\in C_e}f(e')}{R_e}$ flow around cycle induced in T: C_e (assume e' are oriented around cycle.) Difference in energy from f and f'. $\sum_{e'\in C_e}(f(e')-\delta)^2-(f(e'))^2=\sum_{e'\in C_e}-2f(e')\delta+\delta^2=-(2\delta\sum_{e'\in C_e}f(e'))+R_E\delta^2$ Note: $\sum_{e'\in C_e}f(e')=R_e\delta$ $\to -\Delta_{C_e}^2/R_e$ where $\Delta_{C_e}=\sum_{e'\in C_e}f(e')$. Fix a part of the potential difference, Δ_{C_e} around cyle!! \to reduction of $\Delta_{C_e}^2/R_e$ in energy! Fix $1/R_e$ of a cycle violation!

See you ...

Thursday